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Jean-Claude Deville’s contributions to survey theory and
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Pascal Ardilly, David Haziza, Pierre Lavallée and Yves Tillé!

Abstract

Jean-Claude Deville, who passed away in October 2021, was one of the most influential researchers in the field
of survey statistics over the past 40 years. This article traces some of his contributions that have had a profound
impact on both survey theory and practice. This article will cover the topics of balanced sampling using the cube
method, calibration, the weight-sharing method, the development of variance expressions of complex estimators
using influence function and quota sampling.

Key Words: Calibration; Balanced sampling; Quota sampling; Variance estimation; Cube method; Weight-share method.

1. Introduction

Jean-Claude Deville, who passed away in October 2021, will undoubtedly leave an important legacy in
survey statistics. For more than 40 years, as part of the National Institute of Statistics and Economic Studies
(INSEE) and then Ecole nationale de la statistique et de [’analyse de I'information (ENSAI) in France, he
developed major innovations including calibration techniques; balanced sampling; indirect sampling and
weight sharre methods; variance calculation, particularly for complex estimators; processing of non-
ignorable non-response; and quota surveys. That being said, he has worked in all survey fields and beyond.
His exceptional productivity is mainly attributable to a very fruitful imagination combined with a
remarkable mastery of mathematical tools. It was also fed by the concrete cases encountered at INSEE,
which, like all national statistical institutes, was constantly confronted with various constraints and obstacles
that had to be overcome, generally quickly and at a low cost. As head of the statistical methodology unit, he

had to meet the technical challenges presented to him as they arose.

The following is an overview of Jean-Claude Deville’s developments, all of which have moved on to
posterity and can be found in depth in the many articles he published throughout his career, some shared
with colleagues with whom he had privileged relationships. Clearly, some of his developments have found
considerable international applications since their publication. There has even been an “industrial” imple-
mentation for calibration, the development of which was designed with another prestigious statistician, Carl-
Erik Sdrndal.

2. Unequal and balanced probability sampling

2.1 Innovations in sampling algorithms

A sample is said to be balanced on a variable if the Horvitz-Thompson estimators of the totals calculated

from a sample are equal to or nearly equal to the population total U = {1,..., k..., N}. Formally, suppose

1. Pascal Ardilly, L’Institut national de la statistique et des études économiques (France); David Haziza, University of Ottawa (Canada). E-mail:
dhaziza@uottawa.ca; Pierre Lavallée, Statistics Canada (retired); Yves Tillé, Université de Neuchatel (Suisse).
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that a vector of auxiliary variables z, =(z,,...,z,)  is known for all population units. Sample S is

balanced on z, if

EZZi': Elzw

kes Ty keU

where 7, is the inclusion probability, i.e., the probability that unit £ is selected in the random sample S.

The idea of selecting a balanced sample dates back to the very beginning of survey theory. Kizer (1896,
1899, 1903, 1905) was the first to propose what he called “representative counts”. It is actually a selection
of samples by quota. However, it was Gini and Galvani (1929) who first selected a balanced sample in
official statistics. They selected 29 Italian districts (circondari) out of 214 to match several population
averages as well as possible (Langel and Till¢, 2011; Tillé, 2016; Brewer, 2013). This method was harshly
criticized by Jerzy Neyman because the sample was not randomly selected (see Bellhouse, 1988). Yates
(1949) and Thionet (1953) proposed methods for which a sample is selected and then improved by
successively replacing units to approach a balancing setting. Hajek (1964, 1981) proposed using rejective
sampling, which consists of selecting a series of samples until a sufficiently balanced sample is obtained.
However, this method has the drawback of changing the inclusion probabilities of units without being able
to calculate them accurately afterwards (Choudhry and Singh, 1979; Dupacova, 1979; Fuller, 2009; Legg
and Yu, 2010; Boistard, Lopuhai and Ruiz-Gazen, 2012; Fuller, Legg and Li, 2017).

Jean-Claude Deville quickly became interested in sampling methods. In 1987, he published a book
chapter with Jean-Marie Grosbras in which sampling methods were described and compared (Deville and
Grosbras, 1987). The following year, along with Nicole Roth, they proposed a first balanced sampling
method (Deville, Grosbras and Roth, 1988). The method applies only to equal probability of selection. The
idea is to divide the variable space into quadrants and select one unit in the quadrant at each step that will
contribute the most to achieving balancing. In the proceedings of the Orebro Conference held at Statistics
Sweden in 1992, Jean-Claude Deville expressed his views on the three facets of the use of auxiliary
information, namely constrained samples (i.e., balanced), conditional inference and weighting (Deville,
1992).

In parallel with this work, Jean-Claude Deville conducted very specific research on sampling issues. He
proposed a formalization of sampling in a continuous population (Deville, 1989) long before the publication
by Cordy (1993), who is often cited as the first reference in this field. He also proposed a selection method

with unequal probabilities (Deville, 1998c), which is a variant of systematic sampling.

Then, with Yves Tillé, he proposed the splitting method (Deville and Till¢, 1998) to select samples with
unequal probabilities of selection. This class of methods consists of starting with the vector of inclusion
probabilities, w(0) = &, the sum of which is equal to an integer n. Then, at each step ¢, 0,1, 2, ..., this vector
n(¢) is randomly modified until a vector containing only values equal to 0 or 1 is obtained, which

corresponds to the selection of a sample. For the method to be correct, three conditions must be met:

1. All components of the @(¢) remain in the interval [0, 1].
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2. The sum of the components of 7(¢) remains equal to .

3. The martingale property must be satisfied:
E {n(®)|n(t-1)} = n(¢t-1), forall ¢, (2.1)

where E (-) is the expectation with respect to the sampling design that takes the sampling

randomization into account.

The martingale property is sufficient to show that the inclusion probabilities are respected at each stage. In

fact, through the law of total expectation, we readily obtain E {zn(z)} = 7(0).

The splitting method is a very general way of representing a sampling method. Almost all selection
algorithms can be viewed as a splitting procedure. This allows one to focus on basic steps. Checking the

three conditions allows one to quickly check whether or not the method is correct.

One of the methods proposed as a special case of the splitting method is the pivot method for which only
two components of the vectors m(¢) are changed at each step. This method was generalized to select multiple
non-overlapping samples in the same population with equal or unequal probabilities (Deville and Tillé,
2000Db).

The transition from the splitting method to balanced sampling was relatively simple when Jean-Claude
Deville and Yves Tillé realized that samples (/,,...,1,)" coded as vectors containing only 0 and 1 are the
vertices of a N -cube of R". In addition, conditions 1 and 2 of the splitting method can be interpreted
geometrically. The vectors 7(¢f) must remain in the simplex P = {c,{ [0, 1]‘ szzlck =n } Figure 2.1
shows a representation of this simplex for a sample of size n =2 in a population of size N = 3. The splitting

method is therefore a random walk in a simplex that must statisfy the martingale property.

Figure 2.1 Simplex bringing together samples of size » =2 in a population of size N = 3 within a cube where
the samples are the vertices. Here, the simplex is an equilateral triangle.
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2.2 Balanced sampling using the cube method

The shift to balanced sampling then became self-evident. It was simply a matter of replacing condition
2 in the splitting method to obtain the general principles of a balanced sampling method. The following

three conditions are therefore obtained:
1. All components of the 7(¢) remain in the interval [0.1].

2. At each step 1=0,1,2,... the vectors =n(¢)=(x,(¢),...,7,(t))) must meet the balancing

equations:

S Zr ) =Yg,
keU 0y keU
3. The martingale property must be satisfied
E {n(®)|n(-1)} = a(t-1), forall . (2.2)

Conditions 1 and 2 now define a polytope

P = {ck €[0,1]

Z, ., _
/; z, i /; zZ, }a
in which the vectors m(¢) must remain to statisfy the balancing constraints at each step. An example of a
polytope is shown in Figure 2.2. However, when the constraints are complex, the vertices of the polytope
P are not necessarily the vertices of the cube, meaning that there may not be exactly balanced samples.
This will result in a roughly balanced sample. That is why the cube method consists of two phases: the flight
phase and the landing phase.

The flight phase is a random walk in the polytope P that ends on one of the polytope vertices. The
landing phase consists of selecting an approximately balanced sample close to the vertex of the polytope

obtained at the end of the flight phase while satisfying the inclusion probabilities.

Figure 2.2 Polytope P in cases where the polytope vertices are not the vertices of the cube.
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The cube method is a family of methods that allows such a random walk to be generated. For the flight

phase, to go from #@(¢) to m(z+1), the cube method is conducted in the following manner.

1. A vector u(t) = (u,(¢),...,u,(t))" is generated so that

> () = 0,

keU ﬂk

and u, (1) =0, if 7, (¢) is an integer (0 or 1). If such a vector does not exist, the flight phase stops.

2. We look for the largest positive values, 4, and 4,, that satisfy
0<7m ()+Au,(t)<1 and 0<x, (¥)—Au,(¢)<1, forall keU.

3. We update

a(t)+Au(z) with probability ¢

n(t+1) = . .
a(t)—A,u () with probability 1-g¢,

where g=A4,/ (4, +1,).

There are several ways to generate the vector u(#), which allows you to define several variants of the
method. After a maximum of N steps, the flight phase ends on the vertex of the polytope P. This vertex is
a vector containing at most () values that are neither 0 nor 1, where O is the number of auxiliary variables.
To obtain a sample, one must apply the landing phase. Two variations are proposed in Deville and Tillé
(2004).

The cube method was first published in the proceedings of the Journées de méthodologie statistique
(Deville and Till¢, 2000a) and then as a chapter of a book (Deville and Tillé, 2001). The English publication
was much more difficult but was eventually accepted in Biometrika (Deville and Tillé, 2004, 2005). A
referee could not accept that the samples could be balanced and random at the same time. Another could
not admit that the method worked without listing all possible samples. Another criticism was that the method
did not provide exactly balanced samples. However, the existence of an exact solution does not depend on

the method but on the geometry of the problem.

2.3 Implementation, method applications and research extensions

A first prototype of a SAS-IML function was written by three students from the ENSAI (Bousabaa,
Lieber and Sirolli, 1999) under the supervision of Frédéric Tardieu and Yves Tillé. The first version was
very slow, to the point its applicability was doubtful, but progress was quickly made. Chauvet and Tillé
(2006a) proposed an implementation that considers only a small portion of the population at each stage,
significantly reducing the computational time. An SAS function was written using this procedure (Chauvet
and Tillé, 2006b). Several R packages also allow the selection of a balanced sample (Tillé and Matei, 2021;
Grafstrom and Lisic, 2019; Jauslin, Eustache, Panahbehagh and Tillé, 2021). Their method is especially
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simple because the functions depend on only two arguments: the matrix of balancing variables and the

vector of inclusion probabilities.

Jean-Claude Deville was instrumental in changing the census procedure in France to a continuous system
(Deville and Jacod, 1996). The cube method has been a valuable tool for constructing rotation groups (Durr
and Dumais, 2002). The primary sampling units of the master sample were also selected using the cube
method. The method was very quickly used in many applications (Till¢, 2011). As with calibration,

balancing has become a standard procedure in survey statistics.

The cube method has also generated a lot of academic work. The accuracy of balancing is discussed in
Chauvet, Haziza and Lesage (2015). Leuenberger, Eustache, Jauslin and Tillé (2022) suggest sorting
observations in ascending depth order in the scatter plot, reducing the rounding problem. The issue of
optimal inclusion probabilities is addressed in Nedyalkova and Tillé (2008, 2012) and Chauvet, Bonnéry
and Deville (2011). These results generalized the optimal stratification of Neyman (1934). Several articles
deal with balancing for stratified populations (Chauvet, 2009; Hasler and Tillé, 2014; Jauslin, Eustache and
Till¢, 2021).

Several studies have been dedicated to spatial sampling. Grafstrom, Lundstrom and Schelin (2012) use
the repulsive aspect of the pivot method to obtain samples properly spread out in space, increasing accuracy
when data are autocorrelated. Grafstrom and Tillé (2013) then propose a variation of the cube method to
obtain samples that are properly spread out and balanced on totals. Lastly, Jauslin and Till¢ (2020a, b)

balance on micro-strata containing the neighborhood of each unit to obtain particularly well-spread samples.

Jean-Claude Deville did a lot of work on maximum entropy plans, which he left several handwritten
notes on (Deville, 2000b; Deville, nda, ndb, ndc). These results finally enabled a relatively quick imple-
mentation of this plan. Deville and Qualité (2005) then proposed an extension to the multidimensional case.
As a result of a referee’s remark during the submission of the article on the cube method, Jean-Claude
Deville focused on determining a necessary and sufficient condition for balancing to have no rounding
problems (Deville, 2015, 2014). Unfortunately, the condition obtained is very restrictive. In cases where the

condition is met, it develops maximum entropy balanced designs (Deville, 2014).

Jean-Claude Deville quickly understood the value of the cube method for applications other than
sampling. Several balanced imputation methods were proposed by Chauvet, Deville and Haziza (2011);
Hasler and Tillé (2016); Eustache, Vallée and Tillé (2022). These methods have the advantage of properly
restoring the distribution of the imputed variable while reducing the variance caused by random imputation.
The cube method is also used in fields of application far from sampling such as in the MCMC (Monte Carlo
Markov Chain) methods (Chopin and Ducrocq, 2021).

3. Calibration

The papers by Deville and Sérndal (1992) and Deville, Sdrndal and Sautory (1993) on calibration

methods (also called recovery methods) and published in the prestigious Journal of the American Statistical
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Association are considered to be two of the most important and influential articles in the past 30 years in the
field of sampling and official statistics. These two articles propose a unified theory of estimation in the
presence of auxiliary information, the premises of which are discussed in Lemel (1976) and Huang and
Fuller (1978). The two papers co-authored by Jean-Claude Deville have generated numerous research
articles over the past three decades. The reader is referred to Sdrndal (2007), Haziza and Beaumont (2017),
Devaud and Tillé¢ (2019), and Zhang, Han and Wu (2022) for reviews on calibration methods. Post-
stratification (e.g., Holt and Smith 1979), raking methods (Deming and Stephan, 1940; Stephan, 1942),
generalized regression estimation (see, for example, Sérndal, Swensson and Wretman, 1992) can be
obtained as special cases of calibration methods.

Calibration methods use auxiliary information available at the estimation stage to ensure consistency
between the survey estimates produced and known or estimated external totals. In practice, calibration

methods are also used to reduce non-response and coverage errors.

3.1 Calibration in the absence of non-sampling errors

In this section, we consider an ideal theoretical framework for which non-response and coverage errors
are assumed to be negligible. Calibration is based on the availability of a vector of auxiliary variables,
X, =(x,,...,x,) , and the corresponding vector of population totals, t = (le,...,txj)T, where 7, =
zkd/ Xy J= 1,...,J. The vector t_ is obtained from an external source such as the census, an adminis-
trative file or another survey.

When selecting a sample S of a population U, it is almost certain that the sample will suffer from a
random distortion in terms of the vector of auxiliary variables X, in the sense fw #t,, with t =
zkes X, / 7, . Unlike a systematic distortion (as is usually encountered in a non-response context), we face

a random distortion since E p(fm) —t_=0. The purpose of calibration is therefore to correct this distortion.

More formally, we are seeking a set of calibration weights {w,; k €S} such that

keS 4qy
is minimized subject to the J calibration constraints
D owx, =t (3.2)

keS

where d, =1/7, and g, is a scaling factor selected by the user (see Deville and Sirndal, 1992; Deville
et al., 1993). In the majority of cases encountered in practice, we set g, =1 for all k. The function G(-) is
a pseudo-distance function to measure the closeness between the weights before calibration d, and the

weights after calibration w,.

Calibration weights w, are given by
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w, = d,F(gh'x,), (3.3)

where A is a vector of size J of estimated coefficients ensuring that the constraints (3.2) are satisfied, and
F()= g '() is the calibration function, defined as the inverse function of g(.)=0G(¢)/ot. The calibrated
weight (3.3) can be viewed as the product of the weight before calibration, d,, and an adjustment factor,
F (q,):TXk). In addition to the vector A, the latter is dependent on the calibration function F(-) (and
therefore pseudo-distance function G(-)) as well as the characteristics of the unit &, ¢, and x,. In some
situations, the term qkiTxk does not depend on &, in which case all calibration functions will lead to the
same set of weights w,. This occurs in the cases of post-stratification or ratio estimation (Haziza and
Beaumont, 2017).

The calibration estimator of 7, is given by

;y,C = Zwkyk‘ (3.4)

keS

Deville and Sarndal (1992) considered a range of functions G(-) some of which are presented in Table 3.1.
For the generalized chi-squared distance, Deville and Sérndal (1992) showed that calibration weights are

given by
w, = d,(1+ qkiTxk):

where

-
A= (dekukXZJ (t, _i\:x,n)'
keS

It follows that the calibration estimator coincides with the well-known generalized linear regression

estimator (see, for example, Sérndal et al., 1992)

fe=1 .+t -t ) B, (3.5)

s y X

where

keS keS

1
B = (dexk%"zjj dexquyk‘

This result is one of the important breakthrough in the field of estimation in the presence of auxiliary
information: it is possible to construct the generalized regression estimator using calibration. Deville et al.
(1993) have established that the use of Kullback-Leibler information (see Table 3.1) leads to the standard
raking estimator, which is another major contribution. The truncated generalized chi-squared distance and
the logit distance (see Table 3.1) allow for bounds to be placed on the calibration adjustment factors,

F (qkiTxk ), to limit the dispersion of the weights.

Although the calibration estimators are biased with respect to the sampling design, they are consistent,

which is a desirable property (Deville and Sérndal, 1992). When the sample size 7 is large enough, the
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square bias of calibration estimators becomes negligible in front of their variance. Therefore, the mean
square error of calibration estimators is approximately equal to their variance, provided that »n is large

enough.

Deville and Sarndal (1992) showed that the variance of a calibration estimator can be approximated by

AORED IS S (3.6)

keU reU T, T,

where E, = y, —x, B is the “census residual” associated with unit £ with

-l
B= (zxquXZJ Zxk%yk-

keU keU

This is a remarkable property: all calibration estimators have the same asymptotic variance regardless of the
calibration function F(-). Expression (3.6) suggests that calibration estimators are efficient when residuals
E, are small, which will occur when the relationship between the variable of interest y and the calibration
variables x is linear and strong. What if the relationship is not linear? In this case, the model may not fit the
data well, leading to large residuals and a large variance. This has led Wu and Sitter (2001) to propose a
model calibration procedure that allows for non-linear relationships through, for example, generalized linear
models. However, unlike the classic calibration of Deville and Sadrndal (1992), model calibration requires
the availability of the vector x for all population units. This requirement is generally not met in practice,

especially in household surveys.

Table 3.1
A few distance functions introduced in Deville and Sirndal (1992).
Distance function G(w, /d,) Calibration adjustment factor F(g,3.'x,)
2
Generalized chi-square 1 [Wk _ IJ 1+q,Ax,
distance 21 d,
Kullback-Leibler W lo Wi W +1 AT
Information d, g d, d, oxp(gh x,)
1nverse Kullback-Leibler log 4, + Wy lh
information w, d, 1-g,A"x,
: 1
Hellinger distance 2] Py ~
dy J1-2¢,07x,
2 T T
1w, l+gr x, (L-D<gh x, <(M-1)
~ —| ey <ty
Tr.uncated ggnerahzed B ( d, J , M gA'x, > (M 1)
chi-square distance ; " -
otherwise L qh X, <(L-1)
dy Wi T
Logit di 1 o L<{7<M L(M-1)+M(1-L)exp(Aq,: x,)
ogit distance ko M —1+(1-L)exp(Aq,L'x,)
o0 otherwise,
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266 Ardilly et al.: Jean-Claude Deville’s contributions to survey theory and official statistics

In multi-stage or multi-phase surveys, we face several layers of auxiliary information. For example, in
two-stage sampling, we may have auxiliary information at the household level (number of individuals in
the household, number of individuals in each age group, owner or tenant status, etc.) and information at the
individual level (gender, age group, etc.). The reader is referred to Sautory and Le Guennec (2003) and
Estevao and Sarndal (2002, 2006) for a discussion of calibration methods in a multi-stage or multi-phase

sampling.

3.2 Adjustment of non-response by calibration

Post-stratification and raking methods have long been used to treat unit non-response; see, for example,
Thomsen (1978), Bethlehem and Keller (1987), and Bethlehem (1988). The first work on a unified non-
response calibration approach is presented in Deville and Dupont (1993) and Dupont (1993). The approach
was further investigated by Lundstrom and Sérndal (1999) and Siarndal and Lundstrom (2005). The idea is
to obtain final weights w, from the initial weights in order d, to achieve the following two objectives: (i)

reduce non-response bias and (ii) ensure consistency between survey estimates and known population totals.

We consider a population U in which a sample S is selected and only a subset S  of units have
responded. We therefore have S, © § cU. We have two levels of auxiliary information: (1) The vector x,,
that is observed for k € S, and for which the vector of population totals, zkeU X, 1s known. (2) The vector
X, that is observed for £ €S and for which the vector of Horvitz-Thompson estimates, zkes d,Xg, 1s
available. Variables x,, are those that will ensure consistency between survey estimates and known
population totals. Ideally, the variables X, are those that explain both the response status R, and the
variables of interest. For each k€ S,, we create the stacked vector x, = (igﬁ) We are seeking a final

weighting system, {w,;k €S }, such that

deG(wk/dk)

kes, 9

is minimized subject to the calibration constraints

DI
Uk
E WX, = kv .
d.x
keS, ZkeS k7 Sk

The final weights are given by
W, = dy xF(q, i:xk)'

The estimator for #, is given by

~

fe = D {dixFlg 3 %)) v (3.7)

keS,
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Although any pseudo-distance function G(-) can be used, caution should be exercised. Indeed, selecting a
pseudo-distance function in the context of non-response comes down to imposing a parametric model
describing the relationship between the inverse of the response probabilities and the vector x (Haziza and
Lesage, 2016). In general, an erroneous choice of the function G(-) will generally lead to a biased calibration
estimator. An exception to this rule will occur when the variable of interest y is linearly related to the vector

x and non-response is of the Missing At Random type (Rubin, 1976).

Another important contribution by Jean-Claude Deville is calibration on instrumental variables, also
known as generalized calibration (Deville, 1998a, 2000a, 2002). This approach has also been studied and
discussed by, among others, Sautory and Le Guennec (2003), Kott (2006), Chang and Kott (2008), Kott and
Chang (2010), Haziza and Beaumont (2017), and Lesage, Haziza and D’Haultfoeuille (2019). This approach
is especially useful in the context of nonignorable non-response (Rubin, 1976). In this case, the response
probability depends on fully observed variables but also variables available for the respondents only. As a
result, estimating the response probabilities is not easy. Generalized calibration leads to a consistent

estimator of a total if the exclusion restriction conditions are met.

4. The weight-sharing method

Indirect sampling involves selecting a sample from a target population using a different sampling frame,
but somewhat related to that target population. Many developments related to the indirect survey can be
found in Lavallée’s books (2002, 2007) to which we add more recent contributions such as Deville and
Maumy-Bertrand (2006); Falorsi, Piersante and Bako (2016); Kiesl (2010); Medous, Goga, Ruiz-Gazen,
Beaumont, Dessertaine and Puech (2023). We will see that Jean-Claude Deville played a leading role in the

development of indirect sampling.

4.1 The very beginning: Longitudinal surveys

The genesis of the indirect sampling relates to a weighting problem in the context of longitudinal surveys.
This involved weighting individuals interviewed in a social longitudinal survey that tracks individuals
belonging to an household over time.

After a selection of households (and thus individuals) in the first wave, changes in household
composition throughout the waves, partly due to marriages and deaths, made the weighting process difficult.
The solution is achieved by using the weight-share method (see Lavallée, 1995).

The problem of weighting longitudinal household surveys has attracted interest from several authors,
including Huang (1984); Judkins, Hubble, Dorsch, McMillen and Ernst (1984); Ernst, Hubble and Judkins
(1984); Ernst (1989); and Kalton and Brick (1995). The article by Ernst (1989) clearly described the basis

of the problem and proposed a solution related to the weight share method.
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Consider a longitudinal survey of individuals drawn from households. Two waves of data are available:
the wave 4 (or first wave) and the wave B (a subsequent wave). A sample S* containing m” individuals
was drawn from the population in the wave 4 containing M* individuals. Let z;' >0, the probability of
selection of individual k. In wave B, the population then contains M *® individuals distributed among N”*

households U, where the household i contains M, individuals.

The longitudinal survey process is as follows. For each individual & from S“, a list is established of
M/ individuals from the household i in wave B containing this individual, i.e., S”, all of the n®
households identified by the individuals k€ S”. Once households from S® have been identified, all
individuals & in households i € S* are surveyed to measure the variable of interest y. The weight-share
method assigns an estimation weight w, to each individual & in a surveyed household U. The method

steps are as follows:

—Step1 For each individual & in the households i of S%, we calculate the initial weight
wl, =y, /x, where y, =1 if k€ S*, and 0 otherwise.
—Step 2 For each household i of S”, we obtain the total number of individuals M/ in the

household i present in wave A (but not necessarily contained in S*).

—Step3  The final weight w, =Y ), / M is calculated.

keU?

—Step4 Lastly, we set w, =w, forall keU/.

We could consider calculating the selection probability 7. of the individual & in household i of S°.
This probability corresponds to the probability of selecting any of the M/ individuals in the household i,
and therefore we must know each of the M ” probabilities 7;' in the household i of S°. Unfortunately,
especially in the case of multistage surveys, the probabilities 7, are often unknown. In addition, apart from
relatively simple cases (for example, when individuals k are independently selected in S*), the calculation
of the weights 7, can be very complex. The weight-share method thus offers a simple solution to a

weighting problem that is difficult, if not impossible, to carry out in practice.

4.2 A generalization of the problem

Imagine links (or correspondence) between individuals in both waves of the survey. Since it involves
tracking individuals over time, these links can be seen as “one-to-one” (Figure 4.1). During discussions with
Jean-Claude Deville, he came up with the following idea: “Why not generalize the links?” So instead of
having “one-to-one” links, why not consider “many-to-many” links (Figure 4.2)? Figures 4.1 and 4.2
provide a graphical representation of the methods. The sample S is the yellow subset of the wave 4. The

green subsets of the wave B are clusters U (the households) encountered in the second wave.
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Figure 4.1 Longitudinal links (“one-to-one”).

wave A wave B

Figure 4.2 Arbitrary links (“many-to-many”).

Population U4 Population U
1 ik

With this new way of looking at links, the question then became how to associate a weight (unbiased) to
the surveyed units of U” (the target population) following the selection of units in U” (survey frame). In
fact, the problem was much broader than that of longitudinal surveys.

The new problem studied was the following. Let U” and U” be two populations related to each other.

An estimate is required for U” (target population), but a survey frame is available only for U”. The
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proposed solution is to then draw a sample from U to produce estimates for U” using the existing
correspondence (links) between the two populations. For this new approach, Jean-Claude Deville then

coined the term indirect sampling.

Indirect sampling proceeds as follows. First, for each unit j of S*, we identify the units & from the
clusters i of U” that have a link with j. Let U/ be the set of all the units k in cluster i. For each unit k
identified, we list the M” units from cluster i containing this unit. Lastly, we survey all the units & from

the clusters i € S” to measure the variable of interest y.

To illustrate indirect sampling, Jean-Claude Deville suggested an example where the goal is to survey
people (units) living in dwellings (clusters). A sampling frame of dwellings is available, but unfortunately
not up to date. This sampling frame does not include, among other things, the renovations impacting the
divisions of dwelling in buildings. An example of this type of renovation is shown to the left of Figure 4.3.
It can be seen that dwellings a,b,c,d and e were transformed to obtain dwellings a',b’,¢’ and d'.
Drawing a sample of dwellings from the sampling frame, we get to the new dwellings using the
correspondence between the old and new dwellings. This correspondence is illustrated to the right of

Figure 4.3.

Figure 4.3 Pre- and post-renovation dwellings (left) and indirect sampling of renovated dwellings (right).

_ _—> 1 a . y
e ‘_’ d' - ——
d

Estimating the total tyB of the target population U” can be done using S* drawn from U*. However,
note that this can be a major challenge if the links between the units of U” and U” are not one-to-one. In
fact, in this case, it is difficult, if not impossible, to associate a selection probability, or an estimation weight,
to the units surveyed in U”. The solution then is to use the Generalized Weight-Share Method (GWSM),

which yields an estimation weight for each surveyed unit of the target population U”.
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As with longitudinal surveys, we consider a sample S* containing m" units drawn from U* containing
M units. The target population U” contains M ® units and it is divided into N* clusters, where the cluster
i contains M units. The links (or correspondence) between the units j of U” and the units & of the
clusters i of U” are identified by the variable L y» where [, =1 if there is a link between the unit j e U*
and the unit & of the cluster i of U”, and 0 otherwise.

To apply the GWSM, simply follow these steps (reminiscent of the weight-share method, but more

general):
—Step1 For each unit k of the clusters i of S”, we calculate the initial weight w/, =
Z/_Eu,, Liu yj/ﬂf , where y, =1 if jeS”, and 0 otherwise.
—Step2 For each unit & of the clusters i of S”, we obtain the total number of links L) =
2t
—Step 3  The final weight w, = zkd}ig w, / ZkeU,B L} is calculated.
—Step 4 Lastly, we apply w, =w, forall keU/.

Lavallée (2002, 2007) mentioned that indirect sampling and the GWSM are useful because they offer a
simple solution to complex survey and weighting problems. In addition, the GWSM generally yields the
same results as classical results in the context of simple problems. In fact, the GWSM is an interesting
solution, although it is not always the most accurate (minimum variance) compared with another more

complex estimation method.

4.3 Properties of the Generalized Weight-Share Method

The development of the properties of the GWSM took place during discussions with Jean-Claude

Deville, which began in 1995. These led to the following theorem and its two corollaries:

Theorem 1 Duality of the form of ff with respect to U" and U”. The estimator ff can be written in both

forms:

tAyB = z z Wik Vik

ies? keUf

(with GWSM weights) and

B __ A
1, = Z ijj/ﬂ'-j )

jeU"’
— E E B
where Zj - ieU® keU? l.f-ikY;/Li :

Theorem 1 shows that we are, ultimately, in the presence of a simple Horvitz-Thompson estimator. From

this finding, we obtain the following two corollaries:
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Corollary 1 Bias of fyB . The estimator t yB is unbiased for the estimation of Y*, with respect to the sampling

design.

. ~B . . ~B . . .
Corollary 2 Variance of t;. The variance formula for the estimator t;, with respect to the sampling design,

is given by
Z.Z,
V(t )—ZZ( —7r7r) —,
jEUA J o ﬂj ﬂj'
where ﬂ]’.}, is the joint probability of selection of units j and j'.

4.4 Calibration

Let’s assume that we want to correct the GWSM weights so that the estimates produced correspond to
known totals (auxiliary information). The most commonly used technique is the calibration developed by
Deville and Sarndal (1992).

In the context of indirect sampling, there are two possible sources of auxiliary information:

(i) From the survey frame U”, we have a column vector x/ and its total t; = Z,-EUA X/ (assumed
to be known).

(ii) From the target population U”, we have a column vector x2 and its total t’ = ZieU‘g z - x7

(assumed to be known).

The calibration constraints associated with the GWSM are:
. 2CAL, 4 CAL,A A _
1) ¢, ZJGSA w; =t and

s CALB CALB B_ B CAL,4 : . . . A4 _
(i) t = zlé o z cevr X, where w; is the calibration weight obtained from d; =

x’

CAL,B

1 / 7;, and wy, is the calibration weight of the unit £ from the surveyed cluster i where the

GWSM was applied.

. . 2CAL,B __ CAL,4 __ ,B
Based on Theorem 1, the latter constraint can be rewritten as: t." " = zjes,, w T, =t , where

B /1B . .. . . .
r= Z[EUB z cev? L X / L’ . This constraint is now expressed in terms of units j € s*.

A A

X t
xf3=[ ’j and tf3=(2}

r, t

we get the single constraint encompassing U* and U*:

By defining the vectors

$CAL, 4B _ CAL, A 4B AB
t, = : =t
J J
jes*
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The formulation of the problem for determining the estimator tAyC ALB = ZjESA WJCAL’AZ , associated with the
GWSM is: Determine w(*"**, for je S§*, to minimize the total distance

36,06, )

jeSA
subject to the single constraint

ECAL,AB — z CAL, A AB _ tAB
x j j x
jeSA J J

This formulation is consistent with that of Deville and Sarndal (1992). Calibration can therefore be readily

applied to indirect sampling and GWSM.

It is important to note that this calibration work was done without direct collaboration with Jean-Claude
Deville. However, after all the work presented by Lavallée (2001) at the Colloque francophone sur les
sondages in Brussels, he discovered the article of Deville (1998b), which provides the same solution to the

calibration problem associated with GWSM.

4.5 Optimization of the links

The indicator variable /,, indicates whether or not there is a link between the units j of the sampling
frame U and the units & of the clusters i of the target population U”. However, it does not indicate the
relative importance that some links might have over others. It is possible to replace /;, with a quantitative

variable 0, , representing the importance we want to give to the link /,,

.- This variable 6, , is defined on

[0,+00), where 6, , =0 is equivalent to /;, =0. It should be noted that if the process for assigning values

Joik
of 0, is independent of the selection of § 4, the GWSM remains unbiased.

By replacing the links /,, with 6, ,, we obtain a new estimator (unbiased) fyBg. The problem is then to
determine optimal values 0, so as to minimize the variance of ffg Indeed, since the estimator tAJ‘f; remains
unbiased regardless of the values of 6,,, it must be possible to determine the values of the latter to
maximize the precision of 7. The problem is therefore to determine [Q_i’ik] to minimize V,(7,5) =

S i=1,.., N k=1,...,M}").

MAxMP

Deville and Lavallée (2006) determined the values of 6, such that the variance of the estimator ZA}@ is
(almost) minimal. The optimal solution is relatively complex, and often depends on the variable of interest
y. However, Jean-Claude Deville came up with the idea of defining the concept of weak optimality as well

as that of strong optimality independent of the y -variables.

Weak optimality consists of determining values of €, ; to minimize the variance of fyBg for a very specific
choice of a variable of interest: y, =1 for a given unit & of a cluster i of U” and y,, =0 for all other
units of U”. The optimization problem reduces to determining [0, 41,4, @ to minimize V, (ff;) =
S, =1y, =0; Vi#i and k #k'). Deville and Lavallée (2006) mention that weak optimality consists
of minimizing the variance V(w}, |ik € S*) of the weight w!, obtained by the GWSM (with 0, instead of

[, 4) for all possible values of [, ] We note that the resulting weakly optimal weighted links do

MAxM®”
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not involve the variable y itself (since the values of y have been replaced by 1 and 0). In addition, the
weakly optimal values of 6 i are generally relatively easy to calculate.

Strong optimality independent of y involves an additional step to weak optimality. It consists of
checking that the weakly optimal values of 6, , do not generally depend (i.e., for any value of y other than
1 and 0) on the variable of interest y. With this in mind, Deville and Lavallée (2006) proposed a criterion
to check whether the weak optimality corresponds to the strong optimality (minimum variance of f}g). If

this criterion is met, strong optimality does not depend on the variable of interest y.

5. The development of variance expression and its estimation for
complex estimators

The development of a variance formula and its estimation for a sample estimator is an essential step in
producing confidence intervals that will inform users of statistics on their reliability. Conventional theory
uses either an analytical approach, which is, by nature, based on mathematical formulas, or a sample
replication approach (bootstrap, jackknife, random groups). Roughly speaking, the analytical approach may
be considered more applicable when sampling is complicated and the expression estimator is rather simple,
whereas the replication approach is used more readily in the opposite configuration, that is, in the presence
of simple sampling and a complex estimator. This was certainly a common strategy before the development
of the linearization theory for complex statistics. Jean-Claude Deville has contributed a great deal to the
theory of linearization. Of course, the technique of linearization of estimators defined as functions of linear
components, typically differentiable functions of estimators of totals, such as a ratio or coefficient of
regression or estimators that are the solution of estimating equations (Woodruff, 1971; Binder, 1983;
Wolter, 1985; Binder, 1991; Francisco and Fuller, 1991; Binder and Kovacevi¢, 1995; Binder, 1996), has
been known for many years. In the late 1990s, Jean-Claude Deville proposed a formal framework based on
the influence function in the journal Survey Methodology (Deville, 1999) to deal with highly non-linear
statistics, such as fractiles or parameters defined as solutions to certain equations (implicit parameters), in
an asymptotic and general setting. When the sample size is large, linearization eventually allows a very
complex estimator to be approximated by a classical linear estimator of the Horvitz-Thompson type, and
then the variance of the former is approximated by the variance of the latter, thus producing the desired

result.

More specifically, the historical approach considers the parameter 6 and estimator 0 as differentiable
functions of the individual variables of interest. Linearization is then based on a Taylor expansion procedure
of 0 around its expectation 0. Survey weights are present in the expression of 0 but are not treated as
variables. Jean-Claude Deville reverses the approach in some ways by considering 0 as a function of survey
weights and uses a derivative with respect to the weights; it is the influence function, introduced in the next

part.
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5.1 The theoretical framework

The proposed methodology is explained in three stages: first, an asymptotic framework, second, a
formalization using the concept of measure on a probabilistic space, and third, the use of the concept of

influence function, which is appropriately adapted to the context.

The asymptotic framework is the one defined in Isaki and Fuller (1982), and considers a series of nested
populations, with respective sizes N going to infinity, within which samples s are selected, whose size n
also goes to infinity. For any individual variable x,, if 7, is the true total of x, and

[, = Z Wi Xy

kes

its estimator, we assume that N7, has a limit, and that N~'(7_ —¢_) converges towards 0 in probability and
that ~/nN ’l(fx —t.) converges in distribution towards a Gauss distribution. Any complex statistic S

constructed from true or estimated totals is based on similar assumptions; depending to its expression, it is
consistent when it is multiplied by N, where « is a positive integer. The integer « is called the degree
of homogeneity. A ratio is a homogeneous statistic of degree 0 and a variance is a homogeneous statistic of

degree 2. The first axiom is therefore extended by assuming that N*S has a limit.

Then comes the formalization of the estimators by using the concept of measure. In the expression of
any parameter, individuals in the finite population are “naturally” weighted by a weight equal to 1,
interpreted as a mass associated with a measure M with finite support. In the same population, sampling
results in weighting any individual k£ in the selected sample s by the survey weight w, and any individual
k outside s by 0. This leads to the measure M. A parameter, however complex, can be expressed as a

function of M, noted 7 (M) 