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Statistical methods for sampling cross-classified populations 
under constraints 

Louis-Paul Rivest1 

Abstract 

The article considers sampling designs for populations that can be represented as a N M  matrix. For instance 
when investigating tourist activities, the rows could be locations visited by tourists and the columns days in the 
tourist season. The goal is to sample cells ( , )i j  of the matrix when the number of selections within each row and 
each column is fixed a priori. The thi  row sample size represents the number of selected cells within row ;i  the 

thj  column sample size is the number of selected cells within column .j  A matrix sampling design gives an 
N M  matrix of sample indicators, with entry 1 at position ( , )i j  if cell ( , )i j  is sampled and 0 otherwise. The 
first matrix sampling design investigated has one level of sampling, row and column sample sizes are set in 
advance: the row sample sizes can vary while the column sample sizes are all equal. The fixed margins can be 
seen as balancing constraints and algorithms available for selecting such samples are reviewed. A new estimator 
for the variance of the Horvitz-Thompson estimator for the mean of survey variable y  is then presented. Several 
levels of sampling might be necessary to account for all the constraints; this involves multi-level matrix sampling 
designs that are also investigated. 

 
Key Words: Balanced sampling; Creel surveys; Cube method; Multi-level sampling; Monte Carlo simulation; Variance 

estimation. 

 
 

1. Introduction 
 

Sampling from cross-classified populations raises interesting statistical issues, see Juillard, Chauvet and 

Ruiz-Gazen (2017) for a recent discussion. When each cell of the cross-classification contains a single unit, 

the population to sample has size NM  as it can then be viewed as a N M  matrix. The sample consists of 

cells ( , )i j  of the population matrix; this defines the N M  matrix Z  of sample indicators, with =1ijZ  if 

cell ( , )i j  is selected and = 0ijZ  otherwise. We focus on designs where the number of selections within 

each row and each column is fixed a priori. We define the thi  row sample size as the number of selected 

cells within row i  while the 
thj  column sample size is the number of selected cells within column .j  This 

work studies matrix sampling designs for which the row and the column sample sizes are predetermined; 

the row sample sizes vary from one row to the next while all the column sample sizes are equal. This 

generalizes a stratified sampling design that would apply if the sample sizes for only one dimension, either 

row or column, were fixed. Multi-level generalizations of the proposed design are also introduced.  

Populations having a matrix format occur, for instance, when pooling tourists (Deville and Maumy-

Bertrand, 2006) and in creel surveys (Kozfkay and Dillon, 2010); time, that is days, is one dimension of the 

matrix and the other one is location, such as venues frequented by tourists and fishing sites. Figure 1.1 

presents a sample selected in a 10 20  population matrix with row sample sizes equal to = 8m  and column 

sample sizes equal to = 4.n  The black entries identify the cells ( , )i j  that are selected, for which = 1.ijZ  

Having constraints on the row and the column sample sizes is useful in many contexts. In Ida, Rivest and 
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Daigle (2018)’s population matrix the rows are sites and the columns are days. The column sample size n  

is the number of sites that can be visited in one day while the row sample sizes { : = 1, , }im i N…  are related 

to sites’ importance. The sample matrix presented in Figure1.1 also applies for planning N  repeated surveys 

in a population of size .M  The thi  row of Z  identifies the units selected in survey .i  The row sample sizes 

are determined by the objectives of the individual surveys. The fixed column sample size creates a 

dependency between the row samples that ensures their coordination (Matei and Tillé, 2005): the response 

burden is shared equally among all population units. This work focusses mostly on the first application as 

it investigates the sampling properties of the Horvitz-Thompson estimator of the mean of the survey variable 

y  over the NM  population units: ijy  is the value of the survey variable for cell ( , ), = 1, , ;i j i N…  

= 1, , .j M…  For instance, ijy  is the total number of hours of fishing at site i  on day j  in Ida et al. (2018). 

The goal is to estimate the population mean, 
,

= ( )iji j
y y NM  using the Horvitz-Thompson estimator 

=1
ˆ ˆ= ,

N

ii
y y N  where ˆiy   is the sample mean for row .i  

 
Figure 1.1 Sample units, in black, drawn out of a 10 20  population matrix. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The set of N M  0-1 matrices Z  with row totals given by = , = 1, ,i iZ m i N …  and column totals 

= , = 1, ,jZ n j M …  is fairly large (Barvinok, 2010). The goal of the matrix sampling design is to select 

uniformly among that set, thus all the N M  matrices Z  fulfilling the constraints on the row and the column 

sample sizes are equally likely to be selected. This can be achieved using the cube algorithm (Deville and 

Tillé, 2004); the constraints on the margins are then interpreted as balancing constraints. Rivest and Ebouele 

(2020) also discuss other sampling algorithms such as hypergeometric sampling and sampling through a 

Markov chain defined on the set of acceptable matrices .Z  

si
te

s 
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The next section summarizes the findings of Rivest and Ebouele (2020) for the sampling design 

illustrated in Figure 1.1. A new approach, called the conditional approach, for the evaluation of the sampling 

properties of the Horvitz-Thompson estimator is proposed in Section 3. Section 4 suggests a new estimator 

for the between row covariances. Section 5 considers a hierarchical sampling design to select the rows of 

the population matrix. It also investigates the properties of the Horvitz-Thompson estimator of the 

population mean of the survey variable for this new design. 

 
2. The properties of the matrix sampling design with fixed row and 

column totals 
 

Consider a sampling design that selects the N M  matrix of sample indicators { }ijZ  uniformly among 

all the 0-1 matrix with row totals given by { }im  and fixed column total n  for = 1, ,j M…  where 

=1
= .

N

ii
m Mn  Given a matrix Z  that meets these constraints, any permutation of the columns of Z  is an 

acceptable matrix of sample indicators. This implies that the sampling design for selecting the units in row 

i  is without replacement simple random sampling of im  units among M  as all possible samples have the 

same probability of being chosen. This also entails that the sampling designs for selecting n  units among 

M  in a column are identical. It is a without replacement design with variable selection probabilities and a 

fixed sample size.  

The unit inclusion probabilities for cell ( , )i j  of the proposed design are = =ij i im M   for 

=1, ,i N…  and = 1, , .j M…  The joint inclusion probabilities of two cells ( , )i j  and ( , )k   is , .ij k   They 

can be expressed in terms of ik  the joint inclusion probabilities when sampling units within a column. They 

are given by  

 ,

, = ,

( 1) { ( 1)} = , ,
=

, .
( 1) 1

ik

i i
ij k

i k ik

i k j

m m M M i k j

m m
i k j

M M M









   


   

 









 (2.1) 

The joint selection probabilities in the same row or in the same column of a matrix are deduced from the 

row and the column sampling designs discussed above. When ,i k j    the joint selection probabilities 

only depend on ( , )i k  because of the column exchangeability. One has  

 ,= ( ) ( ) = ( 1) .i k ij k ij kj ij k ik
j j

m m E Z Z E Z Z M M M 


    


  

Solving this equation gives the general formula for , .ij k   

The joint probability for sampling rows i k  in two different columns, ,j    is larger than that for 

sampling i  and k  in the same column as  

 , = 1 > ,
1

ik i k
ij k ik

ik

M
M

  
 



 
 

  
   
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provided that  

 > .i k ik    (2.2) 

This condition ensures that the Sen-Yates-Grundy variance estimator for the Horvitz-Thompson estimator 

of a column total is positive. The condition >i k ik    is satisfied by the conditional Poisson sampling design 

(Chen and Dempster, 1994). It is conjectured that (2.2) is true for the design for sampling units within a 

column as this design converges to a conditional Poisson sampling design when M  goes to   and N  is 

fixed (Rivest, 2021). If true, (2.2) would also mean that the probability ik  that a column is sampled in both 

row i  and row k  is less than ,i k   the inclusion probability if the rows were sampled independently. Thus 

the fixed row and column totals create a negative coordination between row samples, see Grafström and 

Matei (2015) for a discussion of positive and negative coordination between samples.  

Another interesting result is that, for i k  and ,j    

 
1 1

Cov( , ) = Cov( , ) = ( ).
1 1

ij k ij kj ik i kZ Z Z Z
M M

    
 

   

This result remains true when =i k  provided that ii  is defined as being equal to = / .i im M  Indeed, one 

has Cov( , ) = (1 ) ( 1)ij i i iZ Z M     which is minus the variance of ijZ  divided by 1.M   This is used 

to prove that the covariance between ˆiy   and ˆ ,ky   the sample means for survey variable y  in rows i  and 

k  is  

 ˆ ˆCov( , ) = , , =1, ,i k ik iky y S i k N   …   

where  = / ( ) 1 /ik ik i k M     is the ( , )i k  entry of a N N  matrix   and ikS  is the covariance between 

rows i  and ,k
=1

= ( ) ( ) / ( 1),
M

ik ij i kj kj
S y y y y M    , =1, ,i k N…  and 

=1
= / .

M

i ijj
y y M   This result is 

used to evaluate the variance of 
=1

ˆ ˆ= / ,
N

ii
y y N  the Horvitz-Thompson estimator of the mean of :y  

 2

tr ( )ˆVar ( ) = ,y
N

S
 (2.3) 

where S  is the N N  covariance matrix of the y  column vectors and tr  is the trace operator. If (2.2) 

holds, then the off-diagonal entries of   are negative and (2.3) is smaller than 
2/ ,ii iii

S N  the variance 

of the stratified estimator obtained when sampling the rows independently when the between row 

covariances, ,ikS  are positive. Note also that to evaluate (2.3) one needs numerical values for the joint 

selection probabilities .ik  These can be obtained through simulations or using a numerical algorithm to 

evaluate the joint selection probabilities for the conditional Poisson sampling design, see Tillé (2006) and 

Rivest (2021), that can be used as an approximation. A conditional variance formula, that does not use the 

joint selection probabilities ik  is proposed in the next section.  

An obvious choice for an estimator of (2.3) would be the Sen-Yates-Grundy variance estimator. 

Unfortunately, the condition for it to be positive fails. Indeed the joint selection probability in two different 

rows and two different columns, ,ij k   satisfies  

 ,

1
= ( ),

1
ij k ij k ik i k

M
       


    
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which as argued in the discussion of (2.2) should be positive. Thus the Sen-Yates-Grundy variance estimator 

can be negative and an alternative estimator is needed. A plug-in estimator for (2.3) is given in Section 4. It 

demands the estimation of the ( 1) 2N N   between row covariances. The negative coordination between 

row samples renders the construction of estimators difficult. The proposals in Rivest and Ebouele (2020) 

are not really satisfactory as they give biased estimators when the column sample sizes are small. Alternative 

estimators are considered in Section 4. 

 

2.1 Extensions to unequal column sample sizes 
 

This section assumes that both the row and the column sample sizes of the matrix Z  vary. They are 

given by { : = 1, , }im i N…  and { : = 1, , }.jn j M…  The set of possible samples consists of N M  0-1 

matrices with fixed row and column totals. All the algorithms reviewed in Rivest and Ebouele (2020) can 

be used to select the sample uniformly in that set. The resulting design is however rather complex when jn  

takes several positive values. There are no closed form expressions for the unit inclusion probability of cell 

( , )i j  and for the joint inclusion of cells ( , )i j  and ( , )j   and there does not seem to be a manageable 

expression for the variance of the Horvitz-Thompson estimator. The limiting sampling design within a 

column converges, as M  goes to infinity, to a generalization of the conditional Poisson sampling design 

with untractable single inclusion probabilities, see Rivest (2021). Thus, to implement a design with varying 

column sample sizes, a simple solution is to stratify by column sample size. Independent matrix designs are 

then used to select the matrix sample in each stratum.  

The matrix sampling design of the previous section can be extended to situations where the two possible 

column sample sizes are either 0 or .n  Suppose that out of M  columns, 0 <M M  have a non-null sample. 

The row sample sizes { : = 1, , }im i N…  satisfy 0= .ii
m M n  The selection of a matrix Z  of sample 

indicators proceeds in two steps. Step 1 uses without replacement simple random sampling to select the 0M  

columns with non-null samples and a matrix design is used at step 2 to select the sampled cells in the 0M  

columns chosen at step 1. 

Let ik  be the conditional joint selection probability for rows i  and k  given that the column has been 

selected at step 1. The findings of the previous section are easily generalized to this new design. For instance  

  2
0

1 1
Cov( , ) = Cov( , ) = .

1 1
ij k ij kj ik i kZ Z Z Z M M m m M

M M
  

 
   

In addition variance formula (2.3) holds with a matrix g  defined by  0= ( ) 1g
ik ik i kMM m m M   for 

, =1, , ,i k n…  provided that one sets 0= .ii im M  

 
3. A conditional matrix sampling design  
 

This section discusses a conditional sampling design for which the matrix of sample indicators Z  is 

fixed, up to a random permutation of its columns. It derives a conditional alternative to (2.3), the variance 

of the Horvitz-Thompson estimator.  
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Let 0Z  be a 0-1 matrix with row sums equal to { : = 1, , }im i N…  and column sums all equal to .n  

Suppose that the random matrix of sample indicators Z  is obtained by randomly permuting the columns of 

0.Z  This conditional sampling design shares many of the properties discussed in Section 2. The design for 

sampling units within row i  is simple random sampling of im  units in a population of size .M  The design 

for sampling units within a column is the same for each column. This design gives a probability of 1 M  to 

each of the columns of 0Z  and the probability for selecting unit i  and k  within a column is  

 0 0
=1

= ,
M

c
ik ij kj

j

Z Z M   (3.1) 

where 0 0,ij kjZ Z  are the entries ( , )i j  and ( , )k j  of 0Z  and exponent c  stands for conditional. For this 

design (2.1) holds with ik  replaced by the conditional joint selection probability .c
ik  In some instances, 

the sampling design proposed in Section 2 is a conditional sampling design. This occurs when the column 

sample size is either = 1n  or = 1n N   since all the possible sample indicator matrices Z  are then equal up 

to a permutation of their columns.  

The conditional variance of the Horvitz-Thompson estimator y  is a function of the N N  matrix c  

whose ( , )i k  entry is equal to  = ( ) 1 ,c c
ik ik i k M    c

ik  is defined in (3.1) and = ,i im M  as defined 

in Section 2. It is given by  

   2

tr ( )ˆVar = .
c

c y
N

S
 (3.2) 

Given a random matrix Z  of sample indicators obtained with one of the algorithms presented in Rivest 

and Ebouele (2020), one can evaluate the conditional joint inclusion probabilities using (3.1), applied to the 

matrix .Z  Then the conditional variance formula (3.2) is simpler than (2.3) as it does not require the 

evaluation of the unconditional joint selection probabilities .ik  The derivation of a simple variance formula 

is the main application of the conditional approach. 

The conditional matrix sampling design is a low entropy design and it may happen that (3.2) cannot be 

estimated. This occurs when one of the conditional joint selection probabilities (3.1) is equal to 0. Consider, 

for instance, the design in the Monte Carlo simulations of Section 4.1. It has = 9,N  = 36,M  = 2n  and 

row sample sizes im  varying between 6 and 11. This design involves ( 1) 2 = 36N N   joint selection 

probabilities and it not possible to find a matrix 0Z  with row totals varying between 6 and 11 for which the 

36 values of (3.1) are positive. For this design, only (2.3) can be estimated. 

 
4. A new estimator for the between row covariance 
 

This section suggests new estimators for the N N  covariance matrix S  for .y  The diagonal elements 

of S  are easily estimated using the row sample variances. Rivest and Ebouele (2020) use the columns that 

are sampled in both rows, i  and ,k  to estimate the covariance .ikS  The joint sample size for rows i  and k  

is often less than 2, considering the negative coordination between row samples noted in Section 2. Thus 

many covariances cannot be estimated using this approach and an alternative estimation strategy is proposed 
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in this section. It gives nearly unbiased estimators of the variances (2.3) and (3.2) of the Horvitz-Thompson 

estimator  

The proposed covariance estimator relies on the following expression for the covariance as a U-statistic,  

 
=1

2 2

=1

1
= ( ) ( )

1

1
= ( ) ( 1) ( ) ,

2 ( 1)

M

ik ij i kj k
j

M M

ij k ij kj
j j

S y y y y
M

y y M y y
M M

 



 


 
    

  



 


 (4.1) 

where .i k  See Appendix for a derivation of (4.1). 

The new covariance estimator uses the joint selection probabilities ik  of Section 2 that are assumed to 

be strictly positive, to construct estimators of the two terms in (4.1). This yields  

 

2 2

=1

2 2

=1

( ) ( )1ˆ = ( 1)
2 ( 1) ( 1) ( 1)

( ) ( )1
= .

2

M M
ij k ij k ij kj ij kj

ik
j ji k ik ik

M M
ij k ij k ij kj ij kj

j ji k ik ik

Z Z y y Z Z y y
S M

M M M M M

Z Z y y Z Z y y

M M

   

   





   
  

     

   
 

  

 

 

 



 



 (4.2) 

The plug-in unbiased variance estimator for (2.3) is simply  2
PI = tr ( ) ,v NS  where S  has entries given by 

(4.2). Observe that this covariance estimator can be constructed for the unconditional and the conditional 

sampling designs presented in Sections 2 and 3. For a conditional sampling design, one replaces ik  by ,c
ik  

see (3.1), in (4.2) as long as > 0.c
ik  

Covariance estimator (4.2) is very variable as its second term involves a division by ik  that can be very 

small. This leads to a covariance matrix estimator S  which is not positive definite and to an estimator for 

(2.3) that can, on some rare occasions, be negative. A more stable estimator can be obtained by assuming 

that all the between row correlations are equal. An estimator of the common correlation is then  

 
>

>

ˆ
ˆ = ,

ˆ ˆ

iki k

ii kki k

S

S S





 (4.3) 

where ˆiiS  and ˆkkS  are the sample variances for row i  and row k  respectively. An alternative covariance 

estimator is (ec)ˆ ˆ ˆˆ= .ik ii kkS S S  It leads to an equal correlation estimator, ec ,v  for (2.3). A stratified variance 

estimator, valid if the rows were sampled independently, 2
str

ˆ= ,ii iii
v S N  is also included as a 

benchmark in the Monte Carlo simulations that are presented next. 

 

4.1 A Monte Carlo investigation of the sampling properties of the new 
variance estimators 

 

The sampling properties of variance estimator (4.2) and its equal correlation alternative are investigated 

in two population matrices. The first one has = 9,N  = 36,M  column sample size is = 2n  and row sample 

sizes im  are (11,10,7,10,11,5,6,6,6). In the second one, M  and the row sample sizes are doubled while 
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= 9N  and = 2n  are unchanged. The y  variable in cell ( , )i j  has a log-normal distribution with expectation 

im  and variance 1.72 2.im  It is given by  

 = exp( ) = 1, , = 1, ,ij i j ijy m a e i N j M … …   

where the column effect ja  and the errors ije  are independent variables respectively distributed according 

to a  2 22,a aN    and a  2 22,e eN    distributions where 2 2 =a e  0.8. Simulations with 2 =a 0, 0.2 

and 0.4 are reported. This corresponds to a between row correlation    2 2 2= exp( ) 1 exp( ) 1a a       

of respectively 0, 0.18 and 0.40. Table 4.1 uses 6 simulated populations and the moments of variance 

estimators are calcuated using 410  Monte Carlo samples. These Monte Carlo samples are drawn using the 

MCMC swap algorithm of Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, O’Hara, 

Simpson, Solymos, Stevens, Szoecs and Wagner (2020) discussed in Rivest and Ebouele (2020) to which 

the reader is referred for more details on the simulations. The results are reported in Table 4.1. 

When = 0  the three variance estimators are nearly unbiased in Table 4.1. The simple stratified 

variance estimator does not capture the positive correlation between rows and over-estimates the variance 

when > 0.  The plug-in and equal correlation estimators are unbiased for the 6 populations considered in 

Table 4.1. The standard deviations are also revealing. That for strv  is small as this estimator does not depend 

on the covariance estimators. The plug-in estimator is the most variable while the equal correlation that is 

based on the average covariance has a smaller standard deviation. 

 

Table 4.1 

The variance of ŷ  evaluated using (2.3) and the expectations, and standard deviations between parenthesis, of 

three variance estimators, the stratified estimator  str ,  the plug-in estimator  PI ,  the equal correlation 

estimator  ec .  
 

M     ˆvar y  strv  PIv  ecv  

36 0 0.932 0.913 (0.684) 0.930 (0.757) 0.928 (0.746) 
36 0.18 0.653 0.800 (0.258) 0.654 (0.288) 0.657 (0.280) 
36 0.40 0.544 0.730 (0.306) 0.542 (0.338) 0.543 (0.329) 
72 0 0.486 0.506 (0.225) 0.485 (0.252) 0.486 (0.245) 
72 0.18 0.350 0.424 (0.136) 0.350 (0.151) 0.349 (0.145) 
72 0.40 0.334 0.564 (0.182) 0.334 (0.190) 0.332 (0.182) 

 
To explain the near unbiasedness of ecv  in Table 4.1, one easily checks that this estimator is indeed 

unbiased when all the row sample sizes are constant and equal to .m  The matrix   can then be expressed 

in terms of the N N  identity matrix NI  and a 1N   vector of 1’s, ,N1  as = ( ) ( NN n I  

  ) 1N N N m N 1 1  and (2.3) only involves .iki k
S

  It is easily checked that the equal correlation 

estimator of that sum is unbiased as (4.2) is unbiased. 

 
5. A multi-level matrix design 
 

This section suggests multi-level generalizations of the matrix sampling designs of Sections 2 and 3. It 

involves clusters of rows and level 1 selects a sample of clusters for each column. This is done using a level 

1 random 0-1 matrix with fixed margins. A population matrix is then created for each level 1 cluster of rows; 
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the number of rows in the matrix is the size of the cluster and the number of columns is equal to the column 

total for that cluster in the level 1 sample indicator matrix. Level 2 selection is done independently in the 

population matrices of each level 1 cluster. Level three sampling is done in a similar way. This section 

focusses on two-level designs and uses the following notation:   

 (1)N  is the number row clusters. The size of the level 1 matrix of sample indicators is (1) ;N M  

the row and column sample sizes are (1) (1){ : =1, , }im i N…  and (1);n  

 (2) (1), =1, ,iN i N…  are the sizes of the level 1 row clusters. The level 2 matrix of sample indicators 

for cluster i  has dimension (2) (1);i iN m  the row and column sample sizes are (2)
( ){ : =k im i  

(2)1, , }iN…  and (2);n  

 The matrices of sample indicators can be combined in a matrix with (2)= iN N  rows and M  

columns. The column sample size is (1) (2)=n n n  and the sample size for the 
thk  row of cluster 

i  is (2)
( ).k im  

 

Note 
(1)

(1) =ii
m n M  while for (1)=1, , ,i N…  the sum of the row totals of cluster ,i  has to be a multiple 

of (2)n  as  

 (2) (2) (1)
( ) = .k i i

k

m n m  (5.1) 

Figure 5.1 gives a sample obtained with two levels of sampling in a matrix similar to that of Figure 1.1. 

One has = 10,N  = 20,M  while the row sample sizes are = 8m  and column sample sizes are = 4.n  The 

first level of sampling involves three clusters of rows, of respective size 3, 3, and 4. The 4 Z  matrices used 

to construct Figure 5.1 are given in Appendix. 

 
Figure 5.1 A sample drawn from a 10 20  population matrix using a two level matrix sampling design. 
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The hierarchical design proposed in this section is useful to accommodate constraints. For instance, when 

the rows are sites, a cluster is a set of neighboring sites than can be visited on the same day. When planning 

repeated, say monthly, surveys for the same population over one year, clusters could be used to ensure that 

a unit is surveyed only either in the first six months or in the last six months of the year.  

The hierarchical design shares a key property with the single level sampling designs presented in 

Sections 2 and 3. Given a matrix of sample indicators that meets the row and the column constraints, such 

as that given in Figure 5.1, any permutation of the columns of that matrix gives an acceptable sample matrix. 

Thus, under this hierarchical sampling scheme, the sampling design for selecting units within a row is 

without replacement simple random sampling. The selection probability for row k  of cluster i  is (2)
( ) .k im M  

This is the product of the level 1 selection probability for cluster ,i (1)
im M  times the level 2 selection 

probability (2) (1)
( )k i im m  in row k  of cluster .i  All the designs for sampling units within a column are 

identical. It has two levels and its joint selection probabilities (2) (1) (2)
( ), ( ){ : , =1, , , =1, , ,k i j ii j N k N  … …  

(2)=1, , },jN …  are calculated as follows:   

 For rows in the same cluster, =i j  then  (2) (1) (2)
( ), ( ) , ,=k i i i i km M    where (2)

, ,i k   is the joint selection 

probabilities for rows k  and   of cluster i  at the second level of sampling.  

 For rows in different clusters, ,i j  then    (2) (1) (2) (1) (2) (1)
( ), ( ) , ( ) ( )=k i j i j k i i j jm m m m    is the product of 

the joint selection probability for these two clusters at level 1, times the level 2 single selection 

probabilities for rows k  and   in clusters i  and .j  

 

In this construction the joint selection probabilities, for levels 1 and 2, can be approximated by those of 

conditional Poisson sampling as discussed in Section 2.  

It is now convenient to change the notation and to let , =1, ,i k N…  denote rows of the design matrix, in 

agreement with Sections 2 and 3. The selection probability in row i  is =i im M  and the joint selection 

probabilities are { },h
ik  where exponent h  means hierarchical. All the findings of Sections 2 and 3 apply to 

the hierarchical design provided that the joint selection probabilities { }ik  are replaced by their multi-level 

alternatives, { }.h
ik  For instance (2.1) and (2.3) hold for this new design, when written is terms of { }h

ik  and 

the matrix h  whose ( , )i k  entry is  = ( ) 1 .h h
ik ik i k M     The variance estimators proposed in 

Section 4 applies to the hierarchical design proposed in this section provided that all the joint selection 

probabilities { }h
ik  are strictly positive. The estimates of (2.3) and (3.2) are evaluated using the matrix h  

for the hierarchical design and the covariance estimator of Section 4. 

 
5.1 A Monte Carlo investigation 
 

This section revisits the Monte Carlo simulations of Section 4.1. The populations are sampled using a 

two level design: within each column the two rows sampled need to belong to the same cluster. The clusters 

of rows for level 1 consist of {1, 2, 3},  {4, 5, 6},  and {7, 8, 9}  and the row sample sizes are (11, 10, 7, 10, 

11, 5, 6, 6, 6), the same as those used in Section 4.1. At level 1, Z  is a 3 36  matrix. Its column totals are 
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= 1n  while from (5.1), its row totals are (14, 13, 9). The three Z  matrices for level 2 have respectively 14, 

13, and 9 columns and three rows; their column total is = 2.n  For this problem the designs of Sections 2 

and 3 are the same as the column totals of all the Z  matrices are either 1 or 1.N   

Since only one cluster is sampled in each column the joint selection probability h
ik  is 0 for two rows 

( , )i k  belonging to different clusters. Thus the covariance ikS  of the survey variable between these two 

rows is not estimable. Indeed only 9 of the  36 = 8 9 2  covariances can be estimated in the simulation 

design. The variances (2.3) and (3.2) are not estimable. The simulation study investigates the performance 

of the equal correlation estimator ecv  where the common correlation is estimated, through (4.3), using the 9 

covariances that are estimable. 

 
Table 5.1 

The variance of ŷ  evaluated using (2.3) and the expectations, and standard deviations between parenthesis, of 

two variance estimators, the stratified estimator  str  and the equal correlation estimator  ec .  
 

M     ˆvar y  strv  ecv  

36 0 0.888 0.922 (0.694) 0.968 (0.759) 
36 0.18 0.582 0.796 (0.244) 0.684 (0.360) 
36 0.40 0.587 0.738 (0.309) 0.521 (0.338) 
72 0 0.521 0.504 (0.230) 0.449 (0.251) 
72 0.18 0.318 0.421 (0.136) 0.362 (0.151) 
72 0.40 0.334 0.561 (0.183) 0.321 (0.195) 

 
The population sampled are the same as those investigated in Section 4.1. Even if the sampling designs 

differ, the expectations and variances of the stratified variance estimator strv  are identical in the two 

experiments. Indeed the strv  entries for Tables 4.1 and 5.1 are the same up to Monte Carlo errors. The bias 

of the equal correlation estimator ecv  ranges between 3% and 20%. It is smaller than that of strv  when > 0.  

Thus variance estimation is a problem when the first level column sample size is 1. Estimator strv  provides 

an upper bound for the variance while the validity of ecv  rests on an homogeneity assumption that can be 

verified, at least in part, by comparing the correlation coefficients that are estimable. 

 
5.2 A complex example 
 

This section discusses a complex sampling design presented in Ida et al. (2018) that involves a 54 33  

population matrix. The goal is to estimate the fishing effort y  over = 33M  days at 9 sites, grouped in three 

clusters. In Table 5.2 the sites are numbered from 1 to 9. Sites 1, 3, 7, and 9 have more fishermen; their 

planned number of visits is about twice that for the other sites. Each day a site can be visited at 6 time points, 

2 in the morning (AM), 2 in the afternoon (PM) and 2 in the evening (EV). So for each day there are 

= 9 6 = 54N   site-time-points. The sampling design selects 4 site-time-points on each day, under two 

constraints: the sites visited must be in the same cluster and the four visits must be selected as two blocks 

of two visits in either the morning, the afternoon or the evening. Three levels of sampling are needed to 
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address these constraints. Because of these constraints it is not feasible to have the number of visits to the 

more important sites, 1, 3, 7, and 9, exactly equal to twice that at the other sites. The row totals given in 

Table 5.2 correspond to an approximate solution to the determination of the site-time-point sample sizes. 

Other approximate solutions are possible; those considered in Ida et al. (2018) are obtained by running the 

cube algorithm, modified for highly stratified populations by Hasler and Tillé (2014), for the three levels of 

sampling.  

Appendix shows how to obtain a matrix of sample indicators for the 54 33  population matrix with 

column total = 4n  and row totals given in Table 5.2. There are three level of sampling. Level 1 selects one 

cluster for each day (column), level 2 proceeds cluster by cluster and selects two time periods for each day 

it is visited. Level 3 sampling is applied within each cluster period; it selects the two sites that will be visited 

at the two time point in the period. Level three sampling is stratified: one site is selected for each time point. 

This involves 13 Z  matrices of sample indicators.  

 
Table 5.2 

Vector of 54 row totals for the 54 33  matrix Z  for the design of Ida et al. (2018). 
 

Cluster Period Time-point-site Tot 

1 1  1 2  1 3  2 1  2 2  2 3  

1 AM 4 1 3 3 2 3 16 
1 PM 3 2 3 3 2 3 16 
1 EV 3 2 3 3 1 4 16 
1 Tot 10 5 9 9 5 10 48 
  1 4  1 5  1 6  2 4  2 5  2 6   

2 AM 1 2 2 2 1 2 10 
2 PM 2 2 1 2 2 1 10 
2 EV 2 2 2 2 2 2 12 
2 Tot 5 6 5 6 5 5 32 
  1 7  1 8  1 9  2 7  2 8  2 9   

3 AM 3 2 4 4 1 4 18 
3 PM 3 2 3 3 1 3 16 
3 EV 3 2 4 4 1 3 18 
3 Tot 9 6 11 11 5 10 52 

 
In Table 5.2, equation (5.1) means that the total sample size for each cluster is a multiple of 4 while that 

for each of the 9 cluster-periods is even. Once a matrix of sample indicators has been selected, either with 

the cube algorithm or by selecting the 13 random Z  matrices implementing the hierarchical design presented 

in the appendix, the conditional approach of Section 3 is a relatively straightforward method to estimate the 

variance. This involves two 54 54  matrices, an estimated covariance matrix S  and ,c  evaluated using 

(3.1). To account for the non estimability of some covariances found in the example considered in 

Section 5.1, the two variance estimators investigated in the simulation study reported in Table 5.1 could be 

used. Taking S  as a diagonal matrix of row variances gives the stratified variance estimator. The equal 

correlation estimator S  can also be evaluated. Thus two methods of variance estimation are available for 

this complex problem. 
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6. Discussion 
 

Many samplings problems face operational constraints that need to be addressed when designing a 

survey, see for instance Vallée, Ferland-Raymond, Rivest and Tillé (2015) for a forestry example. One 

strategy to address these constraints is to use the cube method, possibly within a multi-level design, after a 

careful specification of the selection probabilities. This paper proposes an alternative strategy for cross-

classified populations where the constraints can be expressed in terms of fixed row and column sample 

sizes. As illustrated in Section 5.2, this strategy involves setting up a population matrix and target row totals 

for the matrix of sample indicators. Sample selection is done by selecting relatively small sample indicator 

matrices Z  uniformly over the set of feasible matrices at each level of the design. The hypergeometric 

sampling algorithm of Rivest and Ebouele (2020) is suited for this problem as it does not need an initial 

value 0 ,Z  that is required by MCMC algorithms. One advantage of this approach is that the constraints on 

row and column totals are always verified while the cube method sometimes fails to meet them exactly. An 

interesting feature of the methodology proposed in this paper is the availability of variance estimators. If, at 

all the levels, the column sample sizes are larger than 2, then an unbiased variance estimator for the Horvitz-

Thompson estimator of the mean of the survey variable can be constructed. 
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The matrices of sample indicators needed to construct Figure 5.1 
 

The 3 20  matrix for selecting clusters 3,Z 2,Z  and 1Z  respectively within each column is given by   

 1

1 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1

1 1 0 0 1 0 1 1 0 1 1 1 1 0 0 1 1 0 1 0 .

0 0 1 1 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1

Z

 
 

  
 
 

  

The three matrices of sample indicators for level 2 sampling in respectively zones 3, 2 and 1 are  

 3

0 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0

1 1 1 1 0 0 1 0 0 0 1 1 1 0 0 0

0 0 0 0 1 1 0 1 1 1 0 0 0 1 1 1

1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1

zZ

 
 
 
 
 
 

  

 2 1

1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1

1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 0 1 1 0 1 .

0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0
Z Z

   
   

    
     

z z   

The (10, 5) and (8, 5) entries in Figure 5.1 are equal to 1. This information can be retrieved from 1Z  and 

1:ZZ  in the fifth column of 1Z  zones 2 and 1 are sampled. It is the third times that zone 1 is sampled so that 

the third column of 1ZZ  informs us that the first and third row of 1Z  are sampled in that column. This 

translates into black boxes for entries (10, 5) and (8, 5) of Figure 5.1.  

 

Section 5.2: Some matrices of sample indicators for a three level sampling problem 
 

To simplify the presentation we use matrices 0Z  where identical columns are pooled together. A matrix 

of sample indicators is obtained by taking a random permutation of 0.Z  For the first level of sampling 0Z  

can be expressed using row vectors of ones, ,n1  and zeros, ,n0  where n  is the length of the vector. The 

level 1 0Z  matrix is  

 

12 8 13

(1)
0 12 8 13

12 8 13

= .

 
 
 
 
 

1 0 0

Z 0 1 0

0 0 1

  

  

  

  

The second cluster is selected 8 times. A 0Z  matrix for choosing the periods, AM, PM or EV, on the days 

that cluster two is selected is  

 (2)
0,2

1 1 1 1 1 0 0 0

= 1 1 0 0 0 1 1 1 ,

0 0 1 1 1 1 1 1

 
 
 
 
 

Z   

where the exponent gives the sampling level and the index accompanying 0 is the cluster to which this 

matrix 0Z  applies. The row totals for (2)
0,2 ,Z  5, 5, and 6 are half the AM, PM, EV totals for cluster 2 in 
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Table 5.2. We now consider period AM for cluster 2. Considering row 1 of (2)
0,2 ,Z  AM is selected 5 times. 

The third level matrix has five columns and 6 rows, corresponding to the time-point-site (1-4, 1-5, 1-6, 2-4, 

2-5, 2-6) with row totals (1, 2, 2, 2, 1, 2) as given in the AM line for cluster 2, see Table 5.2. Here one has 

to stratify by time point: one site need to be selected at each time point. A candidate 0Z  where the first three 

rows are for time point 1 and the last 3 for time point 2 is  

 (3)
0,2,AM

1 0 0 0 0

0 1 1 0 0

0 0 0 1 1
= .

0 1 1 0 0

1 0 0 0 0

0 0 0 1 1

Z

 
 
 
 
 
 
 
  
 

  

Thus the set of possible level 3 matrices (3)
2,AMZ  is obtained by permuting the columns of the first three and 

of the last three rows of (3)
0,2,AMZ  independently. The third level of sampling involves 9 matrices similar to 

(3)
0,2,AM .Z  
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