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Constructing all determinantal sampling designs 

Vincent Loonis1 

Abstract 

In this article, we use a slightly simplified version of the method by Fickus, Mixon and Poteet (2013) to define a 
flexible parameterization of the kernels of determinantal sampling designs with fixed first-order inclusion 
probabilities. For specific values of the multidimensional parameter, we get back to a matrix from the family P  
from Loonis and Mary (2019). We speculate that, among the determinantal designs with fixed inclusion 
probabilities, the minimum variance of the Horvitz and Thompson estimator (1952) of a variable of interest is 
expressed relative to .P  We provide experimental R programs that facilitate the appropriation of various 
concepts presented in the article, some of which are described as non-trivial by Fickus et al. (2013). A longer 
version of this article, including proofs and a more detailed presentation of the determinantal designs, is also 
available. 
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1. Introduction 
 

In sampling theory, a random sample S  is a random variable whose realizations are elements of the set 

2U  of the parts of a finite population U  of size ,N  indexed by =1, , .k N…  Each part s  of 2U  is called a 

sample. The probability law of S  is called sampling design (Tillé, 2001). Apart from the terminology, these 

concepts are the same as those used in point processes on a finite population, in probability or statistics. 

Among point processes, determinantal processes have been the subject of many studies because they appear 

in various fields: random matrices, mathematical physics or machine learning. Using these processes in the 

context of sampling theory and finite populations leads to the concept of determinantal sampling design 

studied by Loonis and Mary (2019). 

Determinantal sampling designs directly inherit properties from determinantal processes established in 

different frameworks. They are parameterized by Hermitian matrices whose eigenvalues lie between 0 and 

1 (Macchi, 1975; Soshnikov, 2000). These are called contracting Hermitian matrices. Such a matrix will 

then be notated ,K  called the kernel, and the associated determinantal sampling design will be notated 

DSD( ).K  The inclusion probabilities of such designs are known at all orders and are parameterized by .K  

This feature differentiates determinantal designs from most of the usual, somewhat complex, designs giving 

them a real practical interest, beyond their theoretical curiosity. Usually, if the first-order inclusion 

probabilities are known, the second-order inclusion probabilities are often approximated and the others are 

most often unknown. For determinantal designs, the first- and second-order inclusion probabilities are given, 

respectively, by the diagonal and non-diagonal terms of the kernel. Higher-order inclusion probabilities are 

also expressed directly in terms of .K  

Moreover, the distribution of the size of a determinantal random sample is that of a sum of independent 

Bernoulli variables, where the parameters are the eigenvalues of K  (Hough, Krishnapur, Peres and Virág, 
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2006). There are algorithms for selecting determinantal random samples (Hough, Krishnapur, Peres and 

Virág, 2006; Scardicchio, Zachary and Torquato, 2009; Lavancier, Møller and Rubak, 2015). Determinantal 

designs are negatively associated (Lyons, 2003). In other words, if A  and B  are two disjointed parts of ,U  

then pr ( ) pr ( ) pr ( ).A B A B    S S S  As a result, determinantal designs satisfy the Sen-Yates-

Grundy conditions (Sen, 1953; Yates and Grundy, 1953), which correspond to the case where A  and B  are 

singletons. They also satisfy the strong Rayleigh property (Yuan, Su and Hu, 2003; Brändén and Jonasson, 

2012; Pemantle and Peres, 2014). From this technical property, stronger than negative association, a central 

limit theorem as well as deviation and concentration inequalities (Soshnikov, 2000, 2002; Pemantle et Peres, 

2014) directly follow for the Horvitz-Thompson estimator of the total of a variable of interest y  (Horvitz 

and Thompson, 1952). 

The specifics of sampling theory lead Loonis and Mary (2019) to focus on novel properties of 

determinantal designs, such as the necessary and sufficient conditions for the perfect estimation of a total 

with the Horvitz-Thompson estimator, the search for optimal kernels, or the explicit construction of families 

of particular contracting Hermitian matrices, such as fixed-diagonal orthogonal projection matrices. These 

matrices are associated with the important practical case of fixed-size determinantal sampling designs with 

given first-order inclusion probabilities. More practically, the authors observe that the simplest 

determinantal designs can be mobilized for populations of several thousand individuals. The size of the 

population that is compatible with more sophisticated constructions, particularly those associated with 

optimization issues, is several hundred.  

Constructing a fixed-diagonal orthogonal projection matrix is a specific case of the more general problem 

of constructing Hermitian matrices, whose diagonal and spectrum are fixed. This problem has been the 

subject of many studies in the literature, some of which are recent. Schur (1911), Horn (1954) and Kadison 

(2002) studied the necessary and sufficient conditions for the existence of such matrices in complex and 

real cases. However, these studies do not specify how to construct such matrices. Dhillon, Heath Jr., Sustik 

and Tropp (2005) propose algorithms for constructing some of these matrices. The algorithm by Fickus 

et al. (2013) makes it possible to construct them all. In the previous two cases, the results are not known 

analytically. Loonis and Mary (2019) explicitly show several examples of projection matrices, whose 

diagonal terms are constant. Building on the work of Kadison (2002), they present formulae for specifically 

constructing a family P  of real orthogonal projection matrices of any diagonal ,  provided that 
=1

N

kk
  

is an integer.  

In this article, we focus specifically on the method by Fickus et al. (2013), in the context of determinantal 

designs, and draw connections with the family .P  In the first section, we introduce some algebraic 

notations and concepts that are useful for the overall understanding of the article. In the second section, we 

reiterate the main properties of determinantal sampling designs. More precisely, we present the properties 

of the family of designs associated with matrices .P  The results of this section are taken directly, without 

proof, from Loonis and Mary (2019). Readers who wish to understand the foundations of these results or 

are interested in extensions, such as asymptotic properties, are encouraged to refer to the original article. 

Algorithm 3.1 and theorem 3.1 are new, and their proofs are provided in the longer version of the article.  
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In the third section, we present the main principles and parameters of the method by Fickus et al. (2013). 

The latter are not easy to handle directly. We show that, at the cost of simplification, it is possible to modify 

them to describe the semidefinite positive Hermitian matrices K  of diagonal   with a triplet ( , , ).M   

M  is an integer giving the number of strictly positive eigenvalues of .K    and   are matrices with 

respective sizes ( )M N  and ( ( 1)),M N   all of whose coefficients have value in [0,1].  In terms of 

sampling theory, the columns of matrix   directly influence the variability of the sample size falling into 

domains of the form = {1, , },kD k… =1, , .k N…  As for the matrix ,  it determines the value of the non-

diagonal coefficients of the constructed matrices and, as such, the second-order inclusion probabilities of 

the associated determinantal designs.  

In the fourth section, for a probability vector   such that *

=1
= ,

N

kk
n  N  we examine the choices 

( )( = , = 0 , )n NM n   and ( )( = , =1 , ).n NM n   We show that the first is directly related to the family 

P  and explain the coefficients of the matrices obtained for the second choice. 

In the final section, we carry out simulations and applications. We limit ourselves to real fixed-diagonal 

orthogonal projection matrices. In this set, we minimize the variance of the Horvitz-Thompson estimator of 

a variable’s total. Given the specificity of the eligible set, we rewrite the problem in the form of an 

optimization problem on manifolds and mobilize adapted algorithms (Absil, Mahony and Sepulchre, 2009; 

Boumal, Mishra, Absil and Sepulchre, 2014; Townsend, Koep and Weichwald, 2016). We find that the 

result is also associated with the family .P  From this we deduce a conjecture defining the lower bound of 

the variance of the Horvitz-Thompson estimator of the total of variable ,y  among the determinantal designs 

with fixed first-order inclusion probabilities.  

In addition to appropriating and programming the method by Fickus et al. (2013) for use in determinantal 

sampling designs, the main contributions of this document are algorithm 3.1, theorems 3.1, 5.1 and 5.2, and 

conjecture 6.1. The points considered important for interpreting certain results are presented in the form of 

remarks or examples. The proofs, which are long and technical, are provided in a long version of the article. 

The latter also provides a comparison of the performances, in terms of balancing, of the determinantal 

designs with those of equivalent designs (Deville and Tillé, 2004; Chauvet and Tillé, 2006; Leuenberger, 

Eustache, Jauslin and Tillé, 2022). 

 
2. Algebraic notations and reminders 
 

In the rest of the article, K  is a contracting Hermitian matrix of size ( ).N N  A random variable, whose 

distribution is a determinantal design with kernel ,K  will be notated DSD( ).KS∼  The coefficients of K  

are complex. The conjugate of the complex number z  is z  and its modulus is | | .z  K  is such that =K K   

(Hermitian) and its eigenvalues are in the interval [0,1]  (contracting). If all eigenvalues are 0 or 1, K  is an 

orthogonal projection matrix. The strictly positive eigenvalues of K  are M  in number. The main submatrix 

of order =1, ,k N…  of K  is the square matrix made up of the upper left corner of size k  of .K  The 

submatrix of order =k N  is K  itself.  
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The set of eigenvalues, called spectrum, of the main submatrix of order k  is represented by the vector 

.k  The spectrum of K  is .N  Each k  has at most M  strictly positive eigenvalues, which are also less 

than or equal to 1. Each main submatrix is also Hermitian and contracting. By convention, k  is truncated 

to its own strictly positive coefficients at first. If applicable, it is supplemented with 0s to be of constant size 

.M  The coefficients of k  are notated , = 1, , , = 1, ,k
j j M k N … …  and are, again by convention, sorted 

from lowest to highest: 10 1k k k
j M       … …  with 1 > 0.N  

The ,k  as spectra of the main submatrices, satisfy the Cauchy interlacing conditions (Horn and Johnson, 

1991). By placing 0 = 0k  for = 1, , ,k N…  these conditions are written  

 1 1
1= 1, , , = 1, , 1: .k k k

j j jj M k N    
    … …  (2.1) 

The letter k  is used to index both the individuals of the population and the steps of the algorithm by 

Fickus et al. (2013). This choice is justified by the fact that step k  determines individual k ’s contribution 

to the inclusion probabilities of all orders involving it. In general, the first-order inclusion probability of 

individual = 1, ,k N…  is ,k  the coefficient of vector .  In some cases, which leave no room for doubt, 

the letter   is used based on its conventional usage. The notations k  and   will be used when we want 

k  to take the value ,k  set in advance. For example, =k n N  or k  is proportional to a size criterion, 

like the number of employees for companies. The various inclusion probabilities contained in vector   are 

not necessarily ordered. This is true for constructing matrices P  from Loonis and Mary (2019). For the 

method by Fickus et al. (2013), these probabilities will be sorted from highest to lowest, without losing 

generality. In this case, we will use the notation ,  specifying that 11 > > 0.k N      … …  The 

notation 


 refers to a permutation matrix such that = .   

 

To be consistent with sampling theory, the notations N  and M  are inverted, compared with those from 

Fickus et al. (2013). The ordering convention of k  also differs from the one chosen by these authors. This 

seemed to simplify the appropriation of the methods from a programming perspective. This choice can 

occasionally make the wording of the Schur (1911) and Horn (1954) theorem, as well as some formulae that 

derive from it, less intuitive. In this context, this theorem stipulates that there is a Hermitian matrix 
, , NM

NK 

 

with diagonal   and spectrum N  if and only if  

 
=1 =1

= 1 =1 =1

,

, 1, , 1.

N M N
k jk j

N M j j N
s s ss M j s s

j M

 

 


 

   


      

 

  



  …
 (2.2) 

By adapting the notations, this theorem also applies to all the main submatrices of a Hermitian matrix 

because they are also Hermitian.  

Finally, a matrix A  of size ( )P P  is unitary if = ,PA A I
 where PI  is the identity matrix. The square 

matrix of size ( ),P P  all terms of which equal 1, is notated .PJ  The symbol   indicates Hadamard’s 

matrix product: = = .kl kl klA B C A B C  The notation ( )P Qx   indicates a matrix of size ( ),P Q  all 

coefficients of which equal .x  The notation Px  is used for vectors of size ,P  all coefficients of which equal 

.x  xD  is a diagonal matrix, the diagonal of which is .x  
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3. Reminders about determinantal sampling designs 
 
3.1 Definition and inclusion probabilities 
 

A random variable S  over 2U  has as law a determinantal sampling design if there is a contracting 

Hermitian matrix K  such that  

 |2 , pr ( ) = det ( ),U
ss s K   S  (3.1) 

where |sK  is the submatrix constructed by extracting the rows and columns of K  indexed by the elements 

of .s  This definition directly results in the calculation of the inclusion probabilities for all orders, particularly 

those of orders 1 and 2: 

 
|{ }

2
|{ , }

= pr ({ } ) = det ( ) = ,

= pr ({ , } ) = det ( ) = = = | | .
k k kk

kl k l kk ll kl lk kk ll kl kl kk ll kl

k K K

k l K K K K K K K K K K K K








   

S

S
 (3.2) 

The diagonal terms kkK  correspond to the first-order inclusion probabilities of design DSD( ),K  whereas 

the modulus of the non-diagonal terms is used in the expression of the second-order inclusion probabilities. 

The properties of the trace matrix application give rise to a relationship between inclusion probabilities and 

eigenvalues, which frequently appear in the proofs:  

 
=1 =1 =1

Tr ( ) = = = .
N N M

N
kk k j

k k j

K K      (3.3) 

Matrix ,  of size ( ),N N  whose coefficients are = (1 )kk k k    and = ,kl kl k l     is expressed 

in terms of :K  

 
2

= (1 ),

= | | ,

= ( ).

kk kk kk

kl kl

N

K K

K

K I K

 

 
  

 (3.4) 

This matrix is used in precision calculations. It also makes it possible to see that the determinantal 

designs confirm the Sen-Yates-Grundy conditions (Sen, 1953; Yates and Grundy, 1953) because =kl kl   
2= | | 0k l klK     and, therefore, .kl k l    As such, the Sen-Yates-Grundy conditions provide an upper 

bound for the second-order inclusion probabilities of determinantal designs, function of single-order 

inclusion probabilities. 

 
3.2 Sample size, fixed-size determinantal designs and selection algorithm 
 

Let S  be the size of random sample DSD( ).KS∼  The distribution of S  is that of a sum of M  

independent Bernoulli variables, whose parameters are the M  strictly positive eigenvalues ,N
j =j  

1, , M…  of K  (Hough et al., 2006). The moments of order 1 and 2 of S  are deduced and equal 
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=1 =1

=1

( ) = ,

var ( ) = (1 ).

M N
N
j k

j k

M
N N
j j

j

 

 






 


 



E S

S





 (3.5) 

 

Remark 3.1 DSD( )KS∼  will be of fixed size, *( ) = = ,nE S S N   if and only if var ( ) = 0.S  In other 

words, if N
j  equals 1 for all = 1, , .j M…  Because K  is Hermitian, K  is an orthogonal projection matrix.  

 

Lavancier et al. (2015) propose an algorithm for selecting a random sample whose distribution is a 

determinantal design of fixed size. This algorithm requires a spectral decomposition of K  as input, which, 

when N  is large, can be computationally intensive. One of the challenges of then constructing kernels K  

will be to directly provide this decomposition. If K  is not a projection matrix, Hough et al. (2006) show 

that DSD( )K  can be written as a mixture of fixed-size determinantal designs. Thus, it is possible to refer 

to the case of projection matrices to select a random-sized determinantal sample. 

 

3.3 Estimating a total, variance of the estimators, balanced designs 
 

For any sampling design, whose first-order inclusion probabilities are strictly positive, the unknown total 

=1
=

N

y kk
t y  of a variable of interest ,y  assimilated to a vector of ,NR  is estimated without bias by the 

Horvitz-Thompson estimator (Horvitz and Thompson, 1952) such that ˆ =y k kk
t y 

 S
 and whose variance 

is  

 1 1ˆvar ( ) = = .k l
y kl

k U l U k l

y y
t y D D y 

 
 

 

    (3.6) 

If the design is determinantal, a consequence of (3.4) is that the variance of ŷt  is a function of :K  

 1 1ˆvar ( ) = ( ) [ ( )] ( ) .y N N Nt y I K K I K I K y     (3.7) 

For a set of inclusion probabilities fixed a priori, a balanced design is such that 

 ˆ ˆ= 1, , ,  = var ( ) = 0,q q q

q
k

x x x
k k

x
q Q t t t



  


…
S

 (3.8) 

where the ,qx =1, , ,q Q…  are a set of auxiliary variables, in other words, variables whose value is known 

for all individuals in the population, particularly via the sampling frame. Deville and Tillé (2004) propose 

an efficient approach for approximately resolving this problem. These authors use algebraic and probability 

methods. By staying within the determinantal family, another possibility is to use optimization techniques 

and to find optK  such that 

 opt

=1

=

ˆ= argmin var( ), s.c. diag ( ) =

0 ,

q

Q

q x
K q

N

K K

K t K

K I














 

 (3.9) 

where ˆvar ( )qx
t  is given by (3.7),   is fixed a priori, and 0 NK I   indicates that the eigenvalues of K  

are between 0 and 1. The coefficients q  make it possible to manage the relative importance of the variables. 
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The choice 2=1
qq xt  leads to minimizing the sum of the squares of the variation coefficients of the various 

estimators. Resolving such problems involves non-linear positive semidefinite optimization. Loonis and 

Mary (2019) propose heuristics to find approximate solutions. We will in the following use optimization 

methods on manifolds (Absil et al., 2009; Boumal et al., 2014; Townsend et al., 2016). 

 
3.4 A few examples of determinantal designs 
 

3.4.1 Constructing one design from another 
 

Below we present some general properties for constructing new determinantal designs from a given 

determinantal design. Let DSD( ),KS∼  then 
 

1. the complement cS  of S  in U  is determinantal and has as distribution DSD( ),NI K   

2. the restriction DS  of S  to the domain D  included in U  is determinantal of distribution 

|DSD( ),DK   

3. DSD( )K  is stratified if and only if K  is a block diagonal, up to a permutation of the rows and 

the columns,  

4. if 1U  is a unitary matrix, the matrix 1 1U KU   has the same eigenvalues as .K  Therefore, there is 

a determinantal design associated with it. Among the unitary transformations, rotations prove 

useful for defining optimization heuristics (Loonis and Mary, 2019).  

 
3.4.2 A family of fixed-size determinantal designs and any inclusion probabilities 

fixed a priori: The family P  
 

Loonis and Mary (2019) reiterate that the Poisson design is determinantal, whereas the simple random 

design is determinantal only in the cases = 1n  and = 1.n N   The authors provide examples of determi-

nantal designs with constant inclusion probabilities. They construct a family of fixed-size determinantal 

designs for any inclusion probabilities fixed a priori. To the extent that it will reappear in various contexts 

in the following sections, we specifically present the properties of the designs associated with this family in 

this section. 

Let   be a vector of ]0,1[ ,N  such that *

=1
= , .

N

kk
n n  N  Loonis and Mary (2019) mobilize a result 

from Kadison (2002) to exhibit an explicit formula of the coefficients of a real orthogonal projection matrix 

P  with diagonal   (Table 3.1). The determinantal design associated with this matrix is of fixed size and 

has inclusion probabilities .  The formula is based on the integers rk  ( = 1, , 1)r n …  such that 
1

=1
<rk

kk
r


  and 

=1
,rk

kk
r   the real numbers 

1

=1
= r

r

k

k kk
r


   and 

r
r

 such that  

 
= 1

( )
= ,

(1 ) (1 ( ))
j j j

j j j

r
k k kr

r
j r k k k

 


 






 

   
   

for < ,r r =1r
r


 otherwise. 
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Table 3.1 

Coefficients klP  of :P < .k l  
 

 l  
k  1= rl k   1< <r rk l k   

1< <r rk k k   (1 )

1 )
rl l

k r

l










 r
k l r

   

= rk k  (1 ) (1 ) ( )

1 1 ( )
rl l k k k
r

l k k

 


 
   


   

 (1 ) ( )

1 ( )
rk k k

l r

k k





  

 
  

 

 
Knowledge of the coefficients klP  makes it possible to deduce information about the inclusion 

probabilities of order greater than 1 of design DSD( ):P  

1. If { , }k l  is an element of 2
1] , [r rk k   then = 0kl  because = ,kl k lP    

2. If | |k l  is large 0klP   and kl k l    is maximal under the Sen-Yates-Grundy constraint,  

3. If 1] , [,r rj k k = ,rk k 1] , [,r rl k k   then = 0,jkl  

4. If there are integers 1, , Hr r…  such that 
=1

= , = 1, , ,rh
k

k hk
r h H …  then the design DSD( )P  is 

stratified based on the strata 
1

] , ],
h hr rk k


 

5. If n  divides N  and = ,k n N  then DSD( )P  is a 1-per-stratum design. It selects an individual 

from each of the n  groups of size N n  taken consecutively within the population: N n  first, 

and so on.  
 

Example 3.1 illustrates some of these properties and also shows that the construction of P  depends on 

the order of the individuals.  
 

Example 3.1 Construction of P  and P  for = 7,N = 4n  and  3 3 31 1 2 4
2 4 4 5 5 5 5= , , , , , , .


  is the 

vector of probabilities sorted from highest to lowest:  3 3 34 1 2 1
5 4 4 5 2 5 5= , , , , , , . 

 

 

1 1 1
0 0 0 0

2 2 2 2 2

1 3 1
0 0 0 0

4 42 2

1 1 3
0 0 0 0

4 42 2

1 2 2 2
0 0 0( ) : = ,

5 5 5 3 5 3

2 2 2 2 2
0 0 0

5 5 5 3 5 3

2 2 2 3 2
0 0 0

5 55 3 5 3

2 2 2 4
0 0 0

5 55 3 5 3

a P

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

  



Survey Methodology, December 2023 419 

 

 
Statistics Canada, Catalogue No. 12-001-X 

 

4 1 1 3 1 2 1 2

5 15 72 5 2 5 5 7 210 15 7

1 3 1 3 1 1 1

4 42 5 2 35 2 42 3 35 3 70

1 1 3 3 1 1 1

4 42 5 2 35 2 42 3 35 3 70

3 3 3 3 1 2 2
( ) : =

5 15 155 7 2 35 2 35 30

1 1 1 1 1 2 1

2 15210 2 42 2 42 30 15

2 1 1 2 2 2 2

15 15 5 515 7 3 35 3 35

1 2 1 1 2 1 2 1

15 7 15 5 53 70 3 70 15

b P

 


    



    



 

   


 


  




.









 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

If the initial order of the population, {1, 2, 3, 4, 5, 6, 7}  corresponds to vector ,  then the determinantal 

design associated with P  applies to the population in the order (7, 2, 3, 6,1, 5, 4)  (or (7, 3, 2, 6,1, 5, 4)).  

In connection with the previous properties, we see that 1 2 3 = 2.    The determinantal design 

associated with P  is indeed stratified based on the strata (1, 2, 3)  and (4, 5, 6, 7).  For example, we have 

25 = 0P  and 
2

25 2 5 25 2 5= = ,P       according to (3.2). The design associated with P  is not stratified 

because it is impossible to rearrange the rows and columns of this matrix to obtain a block diagonal matrix. 

The designs associated with P  and P  are different, even up to a permutation of the rows and the 

columns.  
 

We conclude this part with two new results pertaining to matrices .P  The first provides a basis of 

eigenvectors of .P  This basis can be used as input for the algorithm of Lavancier et al. (2015).  
 

Algorithm 3.1 (Construction of ,
N  orthonormal eigenbasis of )P  

 

1. Set 0 = 0.k  Define the integers rk  ( =1, , 1)r n …  such that 
1

=1
<rk

kk
r


  and 

=1

rk

kk
r   and 

the real numbers 
1

=1
= ,r

r

k

k kk
r


   

2. For every ,k U  calculate ks  and kc  such that  

- if there is r  such that = ,rk k
1

1= kr

r kr
ks 



   

- otherwise for 1< < ,r rk k k  1

=1
1

= k
k

ii

k r
s 



  



  

- 2= 1 ,k kc s   for every ,k  
 

3. Construct ,N  matrix of size ( )n N  of which all coefficients are nil except in ( 1, 1)rr k   (for 

= 0, , 1)r n …  where they equal 1. Let k  be the column k  of ,N  

4. Incrementally update the columns of N  as follows, for = 1, , 1:k N …   

(a) calculate 1 1= k k k kC s c     
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(b) calculate 2 1= k k k kC c s     

(c) respectively replace k  and 1k   with 1C  and 2 ,C  
 

5. = N NK  


 is such that = ,NK H P   where NH  is a real symmetric matrix whose diagonal 

terms equal 1 and non-diagonal terms equal 1 or 1.  N


 is an orthonormal eigenbasis of ,K  

6. The matrix proposed by Loonis and Mary (2019) corresponds to the systematic choice of   in 

the choices   of step 2. Another choice leads to the same coefficients as those in Table 3.1, up 

to the sign. Regardless of the choices, all matrices K  have the same first- and second-order 

inclusion probabilities for a given vector .  
 

The new second result, below, shows that the matrix P  guarantees the lowest variability, among the 

determinantal designs, of the number of units sampled in the domains of the form = {1, , }kD k…  for 

=1, , .k N…  This optimality property of family P  is one of those on which conjecture 6.1 will be based.  
 

Theorem 3.1 Let   be a vector of ]0,1[N  such that *

=1
=

N

kk
n  N  and ,P  the Loonis and Mary 

matrix (2019). Let kP  be the main submatrix of order k  of ,P = 1, , ,k N…  and =1= { } ,k k n
j j   the vector 

of its strictly positive eigenvalues, supplemented where applicable by 0s to be of size ,n  then  

1. =1= { }k k n
j j   is composed of the eigenvalue 1 with multiplicity 

=1
,

k

ss
 
   the eigenvalue 

 =1

k

ss
  with multiplicity 1 and the eigenvalue 0 with multiplicity 

=1
1,

k

ss
n    

   where 

x   and { }x  indicate the whole and decimal parts of .x   

2. let DSD( )KS∼  with inclusion probabilities given by , kD  be the domain = {1, , }kD k…  and 

kDS  be the random number of individuals of S  that are in ,kD  then, for every .k   

 
=1 =1s.c.diag( )=

Min var ( ) = 1 .
k k

k s s
K

s sK

D


    
       

    
 S   

For every ,k  the minimum is reached, particularly for = .K P  

 
4. Constructing all determinantal sampling designs with fixed first-

order inclusion probabilities 
 
4.1 Introduction 
 

The method of Fickus et al. (2013) makes it possible to construct all Hermitian matrices with given 

diagonal and spectrum. For each of them, it provides an orthonormal eigenbasis. The method is described 

by the authors as non-trivial. The goal of this section is not to understand the whole process; we attempt to 

understand its broad strokes and identify its parameters and their constraints. We reformulate the latter to 

achieve parameterization involving mutually independent parameters. This section is technical and makes 
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it possible to justify and understand the notations of theorems 5.1 and 5.2, which introduce a new property 

of matrices P  and a new family of fixed-diagonal projection matrices, the coefficients of which are 

explicitly known.  

Given our topic, we limit ourselves to the case of contracting Hermitian matrices, whose diagonal is   

and spectrum, ,N  is a known element of ]0,1] ,M  with *.M N  The mobilization of N  can seem less 

intuitive to statisticians than that of .  In practice, provided that *

=1
= ,

N

kk
n  N  the natural choice will 

be =M n  and = 1 ,N n  which leads to orthogonal projection matrices and thus to fixed-size determinantal 

designs.  
 

Remark 4.1 An important point is that the algorithm directly constructs only matrices whose diagonal terms 

are ordered from highest to lowest. It will be able to directly construct matrix (b) of example 3.1, but not 

matrix (a) of the same example. For the latter, the algorithm will provide the matrix of example 4.1. The 

two matrices are the same up to a permutation   of their rows and columns. The properties of the 

associated designs are the same, but for a differently sorted population.  
 

Next, we assume that the population is sorted in a way that the inclusion probabilities are given by the 

vector .  The matrices that we are attempting to create are notated 
, , .

NM
NK 

 
 

Example 4.1 The algorithm of Fickus et al. (2013) will be able to construct matrix P  of example 3.1 up 

to a permutation. It will provide matrix K  such that  

 

4 2 2 2
0 0 0

5 5 5 3 5 3

3 1 1
0 0 0 0

4 4 2

1 3 1
0 0 0 0

4 4 2

2 3 2 2 2
0 0 0= = ,

5 5 5 3 5 3

1 1 1
0 0 0 0

22 2

2 2 2 2 2
0 0 0

5 55 3 5 3

2 2 2 1
0 0 0

5 55 3 5 3

K P   

 
 

 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 

 

  

where 



 is a permutation matrix, which transforms   into .  If DSD( )P
 applies to the population 

indexed by (1, 2, 3, 4, 5, 6, 7),  then DSD( )K

 applies to the population in the order (7, 2, 3, 6,1, 5, 4)  (or 
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(7, 3, 2, 6,1, 5, 4)  because the value 3 4  appears twice in the inclusion probabilities). The designs 

DSD( )P  and DSD( ),K  applied to the same population, based on a tailored order, are equivalent.  

 

4.2 Sequential construction of main submatrices 
 

Fickus et al. (2013) sequentially create all square matrices , , NM
kK   of size ( ),k k = 1, , ,k N…  which 

are main submatrices of order k  of at least one matrix of type , , .
NM

NK   The algorithm is put into the form 

 
, ,

, , , , 1
1 1= ( ), = , = 2, , ,

N

N N
M

M M k k
k

k k

K b
K K k N

b


 


  

 
  

  


 


…


  

where kb  is a vector of size 1.k   This vector kb  is constructed in such a way that the spectrum of , , NM
kK   

is equal to ,k  which is a construction parameter. The value of this parameter, chosen by the statistician, 

must be compatible with a process that ultimately yields, in = ,k N  a matrix , , NM
NK   with the initially 

desired diagonal   and spectrum .N  

At chosen ,k  the authors show that various kb  are possible. They therefore introduce a second matrix 

parameter: 1,kV   of size ( ),M M  which reflects the variability of the .kb  The index 1k   refers to the fact 

that the structure of matrix 1kV   depends on 1.k   The nature of the constraints on the parameters is 

explained later. The way kb  is derived from k  and 1kV   is detailed in the appendix (Section A.5). Example 

4.2 shows how the algorithm works. 
 

Example 4.2 (How the algorithm works) In example 4.1, we have = 4 = ,M n = 7.N  Because matrix 

K  is a projection matrix, it follows that 7 4= 1 .  According to Fickus et al. (2013), there are two 

sequences of multidimensional parameters 6
=1{ }k

k  and 6
=1{ }k

kV  that we do not intend to explain here, and 

that, in six steps, lead to the matrix renamed 
44, ,1

7= .K K  

 The first steps are 

 

3

2

1

44, ,1
1

44, ,1
2

44, ,1
3

spectre=

spectre=

spectre=
2 3 4

1 2 3

4 2
0 0

4 5 5
0 0

4 5 3 1
0 0 0

4 3 15 4 40
1 335 4 4

0 00
1 3 4 44 0
4 4 2 3

0 0
5 5

V V V

K

K

K






  







 
 

  
                              
  

 













4

44, ,1
4

spectre=

5

4V

K










 










   

Moving from step 1k   to k  depends, in practice, on parameters k  and 1.kV   A different choice at one 

of the steps would lead to a different final matrix, but it would still be a projection matrix with diagonal .  
 

Remark 4.2 In sampling theory, vector k  parameterizes the variance of the sample size in the domain 

= {1, , },kD k …  based on (3.5). The term ,kb  a function of k  and 
1,kV 

 is used in the expression of second-

order inclusion probabilities and, ultimately, in that of the variance of the Horvitz-Thompson estimator 

based on (3.7).  
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4.3 Reformulation of the constraints on vector parameters =1{ }k N
k  

 

For 1 1,k N    every spectrum k  is subject to two types of constraints. As a spectrum of a main 

submatrix of a Hermitian matrix, k  is subject to the Cauchy interlacing constraints (2.1) with vectors 1k   

and 1.k   As a spectrum of a Hermitian matrix with diagonal 1( , , ) ,k  …   k  satisfies the Schur-Horn 

theorem (2.2). Fickus et al. (2013) show that this set of constraints will be respected if and only if, for 

= 1, , 1,k N … = 1, , ,j M… [ , ],k k k
j j jA B   where the formulae explaining k

jA  and k
jB  are provided in the 

appendix (equations [A.1] and [A.2], Section A.3).  

For = ,k N  Fickus et al. (2013) consider that N  is given exogenously. Noting that, for fixed ,  the 

only constraints imposed on N  are those of the Schur-Horn theorem, we show that N  will be the spectrum 

of a Hermitian matrix with diagonal   if and only if for = 1, , ,j M… [ , ],N N N
j j jA B   where the formulae 

explaining N
jA  and N

jB  are provided in the appendix (proposition A.1, Section A.4).  

A feature of k
jA  and ,k

jB  for 1k N   and > 0,j  is that these two bounds are a function only of ,  
1k   and 1

=1{ } .k j
s s   Likewise, for =k N  and > 0,j N

jA  and N
jB  depend only on   and 1

=1{ } ,N j
s s   with the 

convention 0 = 0,k  for =1, , .k N…  These remarks introduce a new parameterization of all the eigenvalues 

used in the method of Fickus et al. (2013). 
 

Proposition 4.1 
 

1. By setting = ( ),k k k k
j j jk j jA B A    with [0,1],jk   all =

=1{{ } }k k N
k  of the spectra of the main 

submatrices of the contracting Hermitian matrices with diagonal ,  having M  strictly positive 

eigenvalues, can be parameterized by all the matrices of size ( ),M N  whose coefficients have 

value in [0,1].  Such a matrix is notated .  

2. According to this parameterization, the eigenvalue k
j  is a function only of   and  

 1 1( 1) ( 1) 1( 1) ( 1) 1{ , , , , , , , , , , , , }.N MN N M N k M k k jk          … … … … …   

3. The value = 0jk  (resp. = 1)jk  leads to the smallest (resp. largest) possible value ,k
j  

conditional on  

 1 1( 1) ( 1) 1( 1) ( 1) 1 ( 1){ , , , , , , , , , , , , }.N MN N M N k M k k j k           … … … … …   

4. The matrix ( )= 0 M N  (resp. ( )=1 )M N  leads to systematically retaining the smallest (resp. 

largest) possible eigenvalue ,k
j  conditional on 

 1 1( 1) ( 1) 1( 1) ( 1) 1 ( 1){ , , , , , , , , , , , , }.N MN N M N k M k k j k           … … … … …   

5. If *

=1
= = ,

N

kk
M n   N  this parameterization will lead to a projection matrix for any matrix 

: : ( ) =1 .N n   

 

An implementation of this parameterization appears in the appendix (Section A.3). 
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4.4 Reformulating the constraints on matrix parameters 1
=1{ }k N

kV   
 

According to Fickus et al. (2013), the matrix kV  can be arbitrarily chosen from the matrices that satisfy 

the following constraints:  

1. kV  is of size ( ),M M  

2. kV  is a block diagonal,  

3. The number of blocks of kV  is equal to the number of distinct eigenvalues of ,k  

4. A block’s size is equal to the order of multiplicity of the corresponding eigenvalue,  

5. Each block is a unitary matrix of some kind.  
 

The parameterization of matrices 1
=1{ }k N

kV   occurs through the parameterization of the blocks that 

constitute them and, therefore, through the parameterization of unitary matrices. We did not identify any 

easily workable parameterization of this type of matrix in the literature (Dita, 1982, 1994; Jarlskog, 2005; 

Spengler, Huber, and Hiesmayr, 2010). We therefore propose a simplification. We assume that each element 

of k  is of multiplicity 1. As a result, matrix kV  is unitary diagonal. Its thj  diagonal term can be written 

= exp (2 ),k
jj jkV i  with jk  element of [0,1].  Thus, all matrices 1

=1{ }k N
kV   can be obtained from a matrix   

of size ( ( 1)),M N   whose coefficients are independent and have value in [0,1].  The thk  column of   is 

used to construct the diagonal of .kV  
 

Example 4.3 In example 4.2, the matrix 2V  is constructed from the spectrum 2  of matrix 
44, ,1

2 ,K 

 which 

has two strictly positive eigenvalues: 3 4  and 4 5.  Because = 4,M 2  is supplemented with 0s so it is size 

4 and 2 = (0, 0, 3 4, 4 5) .  2V  has three blocks of respective sizes 2.1 and 1, corresponding to the multi-

plicities seen in 2.  Thus, we have 

 

12

2 2 22

simplification
32

42

exp(2 ) 0 0 00 0
0 exp(2 ) 0 00 0

= = .
0 0 exp(2 ) 00 0 0
0 0 0 exp(2 )0 0 0

ia b
ic d

V V
ie

if







  
  

   
     

   

  

The simplification is inconsequential because the block associated with the eigenvalue 0 is not, in 

practice, used in the calculations of Fickus et al. (2013). The simplification could be consequential if, for a 

,k  there were an eigenvalue of multiplicity greater than 1 in the interval ]0,1[.  If   is random, with each 

coefficient following a uniform distribution on [0,1],  an intuition is that this event is of zero measurement. 

The values of the coefficients 32  and 42  that led to 
44, ,1

3K 

 are not given. To find them, it would be 

necessary to use the reciprocal of Fickus et al. (2013), the principle of which is presented in the longer 

version of the article.  
 

Remark 4.3 In the algorithm of Fickus et al. (2013), the nature of 
, , ,

NM
NK 

 complex or real, depends on 

the choice of .kV  If at least one matrix kV  is complex, 
, , NM

NK 

 will be complex. Conversely, 
, , NM

NK 

 

will be real if and only if all matrices kV  are real. Based on our parameterization, this case corresponds 

to a choice of   with value in 
( ( 1))1

2{0; ;1} .M N 
 

 



Survey Methodology, December 2023 425 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Remark 4.4 In the following, the notation ( , , )NK M  


 will refer to a Hermitian matrix with diagonal 

  and constructed according to the method of Fickus et al. (2013) with the parameters ( , , ).M   The 

reference to N  is omitted because this quantity is considered a parameter in the same way as the other 

spectra.  

 

5. Matrices ( , , )NK M  


 for specific values of   
 

5.1 Where we get back to P  
 

The construction of ,P  in Loonis and Mary (2019), relies the sequential modification of the columns 

of a matrix of size ( (= ) )M n N  using rotation matrices, which are also unitary matrices (algorithm 3.1). 

This approach is consistent with the spirit of the Fickus et al. method. (2013). However, the formalism of 

the two methods does not appear to be directly equivalent. In the theorem below, we specify some links 

between the two approaches. 
 

Theorem 5.1 Let   be a vector of size ,N  such that 0 < < 1,k *

=1
=

N

kk
n   N  and 1 k     … …  

.N  For any value of the parameter ,  

 
( )( = , = 0 , ) = ( ) ,n N N

NK M n H P   
 

   

where ( = , = 0 , )n N
NK M n  


 is constructed based on the method of Fickus et al. (2013), P  is the 

matrix defined by Loonis and Mary (2019) from the vector   and ( )NH   is an Hermitian matrix of size 

( )N N  where all diagonal terms equal 1 and non-diagonal terms have a modulus of 1.  
 

For point ( )b  in example 3.1, this theorem indicates that the method of Fickus et al. (2013), with 

parameters (4 10)( = = 4, = 0 ),M n   directly provides the matrix ,P  up to NH  for all .  According to 

this theorem, the modulus of the off-diagonal terms of ( = , = 0 , )n NK M n  


 does not depend on   

because they equal 
2( ) ( ) = ( ) .N N

kl kl kl kl klP H H P P     

 In terms of surveys, the variance of ŷt  is dependent 

on kl  and thus on the modulus of the klK

 when the design is determinantal, according to (3.7). The 

implication is that there is nothing to expect from changing the parameter   to change the variance obtained 

from .P  This is a very special feature among Hermitian matrices, and among matrices of the family .P  

When   is fixed, different from ( )0 ,M N  it is empirically observed that the variance of the estimators is 

usually affected by variations of .  
 

Remark 5.1 For a matrix ,P
 constructed from any vector ,  in other words, whose coefficients are not 

necessarily sorted, there is a matrix   that leads to P   


 with the method of Fickus et al. (2013). 

There is no reason, a priori, for   to be of the form ( )0 .n N  This is particularly true for the matrix P  of 

point ( )a  in example 3.1 and its reordered version given in example 4.1. 
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5.2 Where we discover Q  
 

The theorem below shows that it is also possible to find an explicit formulation of ( =K M  
( ), = 1 , ),n Nn   except for a few coefficients. 

 

Theorem 5.2 Let   be a vector of size ,N  such that 0 < < 1,k *

=1
=

N

kk
n   N  and 1 k     … …  

.N  Let =1 ={{ } }k n N
j j k n  be a sequence of reals such that =1N n  and  

 
1

1 1

1
1

= = , , 1,

= , = 2, , , = , , 1.

k k
n k

k k
j j

k n N

j n k n N

 

 







  




 …

… …
 (5.1) 

It is assumed that   is such that one of the following two conditions is satisfied:  

• C1: only 0 and 1 can appear multiple times in the ,k = , , .k n N…  

• C2: = ,k n N =1, , .k N…  
 

For any value of the parameter ,  we then have  

 ( = , =1 , ) = ( ) ,n N NK M n H Q   
 

   

where ( )NH   is a Hermitian matrix of size ( ),N N  where all diagonal coefficients equal 1 and non-

diagonal coefficients have a modulus of 1. The matrix Q

 is such that  

1. for ,k n  k  yields the n  largest eigenvalues of the main submatrix of order k  of ,Q

 for 

which no more than n  are strictly positive  

2. for any 2( , ) [ 1, ] ,k l n N   

(a) under 1:C  = ( mod )kl k lQ l k n   
  1  

(b) under 2 :C  = ( ( 1) mod 2 )klQ n N l k ou k N N l n     1   

3. under 2,C  if n  divides ,N  the formulae (5.1) and point 1 are true for 0 < < ,k n  the point 2( )b  

is true for k n  or .l n  
 

Figure 5.1 shows an example of matrix Q

 under 1.C  Table 5.1 shows the organization of the spectra 

of the main submatrices of Q

 based on .  The equivalents for 2,C  including in the case n  divides ,N  

are provided in the appendix (Section A.7).  

For 1,C  the constraint on the multiplicities, set out in the theorem, implies that in each column there are 

different values except, possibly, for the eigenvalues 0 and 1. If that is not the case, inextricable calculation 

difficulties arise. When < ,k n  the expression of the eigenvalues is more difficult to find. As a result, we do 

not arrive at an explicit formula of some coefficients of the matrices Q


 as a function of ,
 except under 

2C  and n  divides .N  
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Figure 5.1 Q  under 1C  for = 2,n = 8.N  

 

3 3 5 3 7

4 4 6 4 8

5 3 5 5 7

6 4 6 6 8

7 3 7 5 7

2

8 4 8

1

6 8

= .

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Q

        
 






    

    

 



      


  
 
  





 
 
  
 



 





   

  




   

 

   

    

 







  

    

    

   

  



 

  

The symbol   indicates that the explicit formula of the coefficient in question is unknown. 

 
Table 5.1 

Eigenvalues k
j  of the main submatrices of ,Q  for = = 5,n M  = 11, , .k N N …  

 

k  

N-11 N-10 N-9 N-8 N-7 N-6 

10 51 N N N       9 41 N N     8 31 N N     7 21 N N     6 11 N N     51 N N    

9 41 N N     8 31 N N     7 21 N N     6 11 N N     51 N N    41 N  

8 31 N N     7 21 N N     6 11 N N     51 N N    41 N  31 N  

7 21 N N     6 11 N N     51 N N    41 N  31 N  21 N  

6 11 N N     51 N N    41 N  31 N  21 N  11 N  

N-5 N-4 N-3 N-2 N-1 N 

41 N  31 N  21 N  11 N   1 N  1 

31 N  21 N  11 N  1 N  1 1 

21 N  11 N  1 N  1 1 1 

11 N  1 N  1 1 1 1 

1 N  1 1 1 1 1 

 
6. Applications 
 
6.1 The data 
 

The samples from Insee (Institut national de la statistique et des études économiques) household surveys 

are usually selected based on a two-stage design, when the collection method is face-to-face. In the first 

stage, primary units (PUs) are selected, from which the households to survey are then selected. The PUs 

consist of groups of the smallest nearby municipalities, with at least 2,000 principal residences. The 

sampling of PUs is stratified according to the 22 former metropolitan regions. Here we are interested in the 

sole first-stage selection of the PUs in the Provence-Alpes-Côte d’Azur region. They total = 148N  and are 
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described by auxiliary variables yielding, for each PU, the total population by sex, age, the total amount of 

certain incomes or the total number of dwellings by category (vacant, secondary residence, etc.). Inclusion 

probabilities are proportional to the number of principal residences of the PUs. 

 
6.2 A lower bound for the variance of the estimators in the determinantal 

situation? 
 

When a sampling design is of a fixed size, the variance of the estimators, given by (3.6), takes the 

following particular form: 

 

2

1ˆvar ( ) = .
2

k l
y kl

k l k k l

y y
t

 

 
   

 
  (6.1) 

In the determinantal case, (3.7) becomes  

 

2

21ˆvar ( ) = | | .
2

k l
y kl

k l k kk ll

y y
t K

K K

 
 

 
  (6.2) 

The determinantal variance will be low if the klK  modulus is low for the values of k kky K  distant from 

those of .l lly K  Assuming that the population is sorted according to = ,k k k kky y K  this situation is 

observed for the matrix P  because we have, for | |k l  large, kl k l    and therefore 2| | =kl k lK     

0kl   (see Section 3.4.2). Empirical results from Loonis and Mary (2019) suggest that matrices ,P  

constructed on a population sorted by ,k ky   perform well in terms of variance. Theorems 3.1 and 5.1 also 

show that matrices P  have special properties among all fixed-diagonal projection matrices, even though, 

in the case of theorem 5.1, the scope is limited to diagonals of the form .  

In this section, we characterize the performance of the designs associated with P  among all fixed-size 

determinantal designs and inclusion probabilities .  We limit ourselves to the case of real kernels. For this, 

we conduct the following experiment: 

• We create nested subpopulations of size = 20, 40, 60, 80,100,120N  associated with samples of 

size = 3, 6, 9,12,15,18.n  

• We consider three auxiliary variables, representing respectively the total amount of salaries, the 

number of tenants and the number of homeowners.  

• For each variable, population and sample size, 

- we minimize (6.2), in ,K  among the real projection matrices with diagonal .  We use 

optimization algorithms on manifolds (Absil et al., 2009; Boumal et al., 2014). We succinctly 

present the main principles of these procedures in the Appendix (Section A.8).  

- we calculate (6.2) for a matrix = ,q qx x
K P  where qx

P  was constructed on a population that 

was previously sorted by the values of .q
k kx   
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Figure 6.1 shows that the scatterplot obtained by crossing the previous two values, for each variable and 

sample size, is aligned with the first bisector. From this, we empirically deduce that the variance obtained 

with qx
P  corresponds to a minimum of the variance of ˆ ,qx

t  among determinantal designs. The proof of this 

result, or its refutation, seems to be out of reach. We therefore propose conjecture 6.1 below. 
 

Conjecture 6.1 Let y  be a positive variable and   be a vector of ]0,1[N  such that *

=1
= .

N

kk
n  N  Let 

P  be a determinantal sampling design with inclusion probabilities = ,k k   = 1, ,k N…  and ŷt  be the 

Horvitz-Thompson estimator of the total yt  of y  on that design. Without losing generality,   and y  are 

such that 1 1 ,k k N Ny y y      … …  then  

 1 1ˆvar ( ) [( ) ] ,y Nt y D I P P D y   
      

where 1 1[( ) ]Ny D I P P D y   
    is the variance of ŷt  obtained with design DSD( ),P  with P  matrix 

of Loonis and Mary (2019).  

 
Figure 6.1 Comparison, for three auxiliary variables and six population sizes, of the variation coefficients for 

variances obtained by minimizing (6.2) into K  and for a matrix qx
P  sorted based on the values of 

.q

k kx   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the classic configuration of a fixed-size design with constant inclusion probabilities, the previous 

conjecture makes it possible to find intuitive interpretations, when n  divides .N  

According to Section 3.4.2, if =k n N  and if n  divides ,N P  is a block diagonal with n  identical 

blocks. The coefficients of each block of size ( )N n N n  all equal .n N  The associated design involves 

selecting 1 individual in each of the n  strata of size .N n  After sorting based on the values of ,y  the first 

stratum 1U  combines the first N n  individuals, the second stratum 2U  combines the next N n  individuals, 
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and so on. Applying the variance formulae of the Horvitz-Thompson estimator for a stratified design 

(Särndal, Swensson, & Wretman, 2003) leads to the lower bound, in this case, to be equal to  

2
1 1 2

2
=1

[( ) ] = 1 ,
h

n

N yU
h

N n
y D I P P D y S

n N
   
 

 
  

 
  

where 2 2= ( )
h hyU yUS N N n   and 2

hyU  is the variance of y  in stratum .hU  

If the total you want to estimate is ,cN  the number of individuals who have a given characteristic ,c  the 

underlying variable y  equals 1 if the individual has the characteristic, otherwise it equals 0. After sorting 

this population based on this variable, in 1n   strata, the variance of y  will be zero because y  will still be 

0 or 1. In a single stratum, there will be cr  1 values, where cr  is the remainder of the Euclidean division of 

cN  by ,N n  and cN n r  0 values. The lower bound is then ( ).c cr N n r  

 
7. Conclusion 
 

In this article, we propose a workable parameterization of the kernels of determinantal sampling designs. 

We show that the family ,P  originally constructed by Loonis and Mary (2019) with the sole objective of 

having an example of a fixed-sized determinantal design with given first-order inclusion probabilities, turns 

out to have unexpected statistical properties. For any = 1, , ,k N…  it minimizes the variability of the sample 

size that falls within the fields = {1, , }kD k…  (theorem 3.1). It is directly associated with a very particular 

value of the parameter   in the construction of Fickus et al. (2013) (theorem 5.1). Finally, it appears 

empirically as a solution to a problem of minimizing the variance of the Horvitz-Thompson estimator 

(Section 6.2). This ubiquity leads to the conjecture that the lower bound of the variance of the Horvitz-

Thompson estimator, among determinantal designs, is expressed as a function of P  (conjecture 6.1).  

These results are obtained at the cost of theoretical or computational complexity, which can seem 

stimulating or bewildering. Bridges have been built between sampling theory and other fields, such as 

probabilities, algebra or semidefinite optimization. These bridges can be a source of new theoretical studies. 

However, the concepts and methods used are not part of the ordinary toolbox of survey statisticians of public 

institutes, even of the author initially. One of the challenges for developing studies around determinantal 

designs therefore lies in education, which can be facilitated through the provision of R  programs that make 

the various results tangible. Another possibility is, in the future, to focus on more practical applications. As 

such, indirect sampling, the search for alternatives to the Horvitz-Thompson estimator, or spatial sampling 

appear to be promising areas. 
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Appendix 
 
A.1 Determinantal designs and population order 
 

Matters of population order often arise in the article. Below, we provide a summary of the various 

findings, as well as some elements to assist in their interpretation. We first reiterate that exchanging two 

rows (or two columns) of a square matrix leads to multiplying its determinant by 1.  
 

1. Determinantal designs are not dependent on population order. We consider a population 

= {1, , }U N…  and a determinantal design DSD( ).K  Sorting U  involves applying a permutation 

to it, the matrix of which is notated .  The design DSD( )K  on U  is then equivalent to the 

design DSD( )K   on the sorted population. This property results from the fact that an even 

number of exchanges of rows and columns are applied to the matrix .K  Therefore, the 

determinants of the extracted matrices are not changed.  

2. An algorithm for constructing particular kernels can depend on the order of the units. This 

is true for matrices .P  Two different population orders will lead to two matrices 1P  and 2 .P  

In general, there will be no permutation matrix such that 1 2= .P P    The designs 1DSD( )P  

and 2DSD( )P  are not equivalent. However, the previous remark applies to each of them.  

3. The algorithm by Fickus et al. (2013) is not dependent on the order. Let K  be a contracting 

Hermitian matrix. For numerical reasons, the algorithm of Fickus et al. (2013) will construct the 

matrix = ,K K  
   where   transforms   into .  To find the original matrix, simply take 

= .K K  
   

4. The connection between the algorithm of Fickus et al. (2013) and the family P  arises from the 

fact that 
( )= ( , 0 , ),n NP K n  

 up to matrix ( ).NH   Theorem 5.1 does not say that there is 
( )= ( , 0 , ) ,n NP K n    

 
 for any ,  even up to matrix .NH  However, there are indeed many 

unknown parameters such that = ( , , ) .P K n      
 

 

5. The lower bound of conjecture 6.1 is a matrix P  constructed on a population sorted in such a 

way that 1 1 .k k N Ny y y      … …  

 
A.2 Programs 
 

The applications and simulations in this article were mostly obtained using SAS programs. We are 

gradually making their retranscription in R  available, experimentally, on the Insee Lab at 

https://github.com/InseeFrLab/Determinantal-Sampling-Designs. 

In particular, these will gradually be made available:  

1. The matrix P  and an eigenvector base constructed with algorithm 3.1 
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2. The matrix ( , , )K M  


 constructed following the method described in Section A.5 and an 

eigenvector base as obtained at the very end of algorithm A.2  

3. The selection algorithm of Lavancier et al. (2015) for selecting samples based on the 

determinantal designs associated with the kernels defined in the previous points.  
 

There will be programs for points not covered here, such as the reciprocal of (Fickus et al., 2013) or the 

construction of periodic determinantal designs with constant inclusion probabilities, such as described in 

Loonis and Mary (2019). A longer version of this article, which presents the determinantal designs in more 

detail and provides the proofs of algorithm 3.1, theorems 3.1, 5.1, 5.2, and proposition A.1, is available at 

the same address. 

 
A.3 Constructing the sequence = 1

=1{ }k k N
k   from   

 

According to Fickus et al. (2013), k
j  can be arbitrarily chosen in the interval [ , ],k k

j jA B  with 

 
1

1 1
1 1

=1 =1

= max , ,
j j

k k k k
j j s s k

s s

A   


 
 

 
  

 
    (A.1) 

 
11

1 1

= , ,
= 1 = =1

= min , min ,
jk i

k k k k
j j s s s

i j M
s M i s j s

B   


 

 

   
    

   
  

…
 (A.2) 

for = 1, , 1,k N …  =1, ,j M…  and where 0 = 0k  and, by convention, the sums over empty sets equal 0.  

Here we describe how to construct the sequence = 1
=1{ }k k N

k   from the formulae (A.1) and (A.2) and 

proposition 4.1. The vector ,  of size = 10,N  is such that 6(11 )

10*11= ,k

k

  =1, ,10k …  and 
=1

= 3.
N

kk
   

We choose = 7M  and set the value of 10  at  3 3 3 3 6 6 6
10 10 10 10 10 10 10, , , .


 The matrix   is of size (7 10).  We 

choose to have all its coefficients equal 0.5 for the first nine columns, which are the ones used in the 

calculations of 9
=1{ } .k

k  Table A.1 gives the final result for this sequence of eigenvalues. We then show how 

to arrive at the particular value 357 704  for 5
5 .  According to proposition 4.1, this value results from the 

calculation 5 5 5 5 5
5 5,5 5 5 5 5( ) = 0,5 ( )A B A A B    with 5

5 = 219 400A  and 5
5 = 909 1,760.B  Table A.2 shows 

how 5
5 = 219 400A  is arrived at by applying formula (A.1). Table A.3 shows how to arrive at 

5
5 = 909 1,760B  by applying formula (A.2). Since the logic is the same, we don’t show how to apply the 

formulae from proposition (A.1), which would make it possible to construct 10  from the 10th column of 

.  However, we specify that the values in this latter column do not necessarily equal 0.5. 
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Table A.1 

Final values of .k
j   

 

 k 
j 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 
3

22
 

12

55
 

3

11
 

3

10
 

2 0 0 0 0 0 
93

440
 

111

440
 

63

220
 

3

10
 

3

10
 

3 0 0 0 0 
213

880
 

3

11
 

129

440
 

3

10
 

3

10
 

3

10
 

4 0 0 0 
927

3,520
 

501

1,760
 

261

880
 

3

10
 

3

10
 

3

10
 

3

10
 

5 0 0 
5,583

14,080
 

669

1,408
 

357

704
 

909

1,760
 

21

40
 

6

11
 

63

110
 

3

5
 

6 0 
13,623

28,160
 

909

1,760
 

477

880
 

3,969

7,040
 

2,001

3,520
 

63

110
 

129

220
 

3

5
 

3

5
 

7 
6

11
 

15,561

28,160
 

7,881

14,080
 

4,041

7,040
 

4,113

7,040
 

2,073

3,520
 

261

440
 

3

5
 

3

5
 

3

5
 

Total 
6

11
 

57

55
 

81

55
 

102

55
 

24

11
 

27

11
 

147

55
 

156

55
 

162

55
 3  

k  
6

11
 

27

55
 

24

55
 

21

55
 

18

55
 

3

11
 

12

55
 

9

55
 

6

55
 

3

55
 

 
Table A.2 

How to obtain 5 5 5 3571
5 2 5 5 704= ( ) =A B   in Table A.1 calculating 5

5A  with formula (A.1). 
 

6
4  

5
6

=1
s

s

  
4

5

=1
s

s

  
6  b-c-d 

5
5A  

(a) (b) (c) (d) (e) max( , )a e  

261

880
 

93 3 261 909
+ + +

440 11 880 1,760
 

213 501
+

880 1,760
 

3

11
 

219

440
 

219

440
 

 
Table A.3 

How to obtain 5 5 5 3571
5 2 5 5 704= ( ) =A B   in Table A.1 calculating 5

5B  with formula (A.2). 
 

i 
6
5  

5

=8
s

s i

   
1

6

=5

i

s
s




  g-h-c 

 (f) (g) (h)  

5 
909

1,760
 

24 21 18

55 55 55
   0 

99

160
 

6 
909

1,760
 

27 24 21 18

55 55 55 55
    

909

1,760
 

261

440
 

7 
909

1,760
 

6 27 24 21 18

11 55 55 55 55
     

909 2,001
+

1,760 3,520
 

2,007

3,520
 

5
5

909 2,007 261 99 909
= min , , , = ,

1,760 3,520 440 160 1,760
B

 
 
 

5
5

1 219 909 357
= + =

2 440 1,760 704
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A.4 Expression of the constraints on N  
 

Here we give an expression of the constraints applying to N  in the same form as those applying to 
1

=1{ } .k N
k   The difference is that N  is subject only to the Schur-Horn theorem.  

 

Proposition A.1 Let   be a vector of ]0,1[N  such that 1 k N        … …  and 
=1

= .
N

kk
   Let 

M  be an integer such that M N    and N  be a vector of ]0,1] .M  There is a positive semidefinite 

Hermitian matrix with diagonal   and whose strictly positive eigenvalues are given by N  if and only if  

  1

1 =1

1 1

=1 =1

=1, , 1

[ , ], =1, ,

= max , ( )

= min ,

N N N
j j j

jN N N
j j ss

j M j iN
s sN s s

j
i M j

A B j M

A M j

B
i



  

 





   

 

 

   

    
  
  



  

…

…

 (A.3) 

where 0 = 0N  and, by convention, the sums over empty sets equal 0.  

 
A.5 The method by Fickus et al. (2013) 
 

The general method is based on two subalgorithms for constructing the various quantities used in 

equations (A.7) and (A.8). For a given vector ,  it is assumed that values were set for the parameters 

, , ,M   which made it possible to construct the sequences =1{ }k N
k  and 1

=1{ } .k N
kV   In its original form, the 

method of Fickus et al. (2013) also depends on any unitary matrix 1U  of size ( ).M M  This matrix does 

not directly influence the final matrices. It influences only the choice of one of their eigenvector bases. 
1 = MU I  will be taken in practice.  

 

Algorithm A.1 (Fickus et al. [2013]) 
 

For = 2k  to ,N  

1. set 1
1 2= = {1, , }k kE E M …   

2. for 1j   to ,M  

- if 
1

1 { },k

k k
j E

    where
1

{ }k

k

E
  is the set of distinct values of the subvector of k  indexed by 

1 ,kE  then 

• 
1 1

2 2= \{ }k kE E j  ( \  meaning “deprived of” here)  

• 1 1= \{ },k kE E j  where 1
1= min{ | = }k k k

j jj j E   
    

 

3. construct 
1

2
kE 

 and 1 ,kE  complementary in {1, , }M…  of 
1

2
kE 

 and 1 .kE  
 

Algorithm A.2 (Fickus et al. [2013]) 
 

1. Set 1 1
1= u   where 1u  is the first column of 1.U  

2. for = 2k  to ,N  



Survey Methodology, December 2023 435 

 

 
Statistics Canada, Catalogue No. 12-001-X 

- construct the sets 1 1
1 2 1 2, , , ,k k k kE E E E   such that 1 1

1 1 2 2= = {1, , }k k k kE E E E M   …  and 
1 1

1 1 2 2= =k k k kE E E E     based on the principles of algorithm A.1  

- let 1
1 2= card( ) = card( )k k

kr E E   

- let 1 1= ( 1)1 krk kE M E    (resp. 1
2 ),kE 

1 1= ( 1)1 kM rk kE M E    (resp. 1
2 )kE   

- let 1
k  (resp. 2 )k  be the unique permutation of {1, , }M…  increasing in 1

kE  and 1
kE  (resp. 

1
2
kE   and 1

2 )kE   and such that 1 ( ) {1, , }k
kj r  …  for any 1

kj E  (resp. 1
2 ( ) {1, , }k

kj r   …  

for any 1
2 ).kj E   Let 1

k  (resp. 1
2 )k  be the associated permutation matrices  

- let 1
2 1

1

| |
= ( , )k k

k

k k k
r E E

R  

J  be a matrix of size ( 2),kr   where 1
2

1

| k

k

E
 


 (resp. 

1|
),k

k

E
  the vector 

extracted from 1k   (resp. )k  whose rows are indexed by 1
2
kE   (resp. 1 ),kE  and 

kr
J  refers 

to the anti-diagonal matrix of size :kr  

 3

0 0 1

= 0 1 0

1 0 0

 
 
 
 
 

J   

- let ,kv kw  be two vectors of size kr  and kW  be a matrix k kr r  such that 

 
1 2=1

=

1 1
=1

( )
=

( )

k

k

r k k
i ik i

i i r k k
i i i i
i

R R
v

R R




 










 (A.4) 

 
2 1=1

=

2 2
=1

( )
= ;

( )

k

k

r k k
i ik i

i i r k k
i i i i
i

R R
w

R R




 









 (A.5) 

 [ 1]
.2 .1= ( ) ( );

k k

k k k k k
r rW e R e R v w  

   (A.6) 

where [ 1]  refers to the matrix inverse in the sense of the Hadamard product  

- set  

 1 1 1
2= ,

0
k

k

k k k k

M r

v
U V   



 
  

  



 (A.7) 

 
( , )1 1 1

2 1

( , ) ( , )

0
= ,

0

k k

k k k k

k
r M rk k k k k

M r r M r M r

W
U U V

I

  

  

 
  

  



 (A.8) 

and construct k  the matrix whose columns are the 
=
=1{ } .s s k

s   
 

The theorem of Fickus et al. (2013) states that, for = 2, , ,k N…  

• 
kU  is a basis of orthonormalized eigenvectors of 

k k 


 whose spectrum is k   

• = k k
kK  
 

 is a positive semidefinite Hermitian matrix whose diagonal is 1( , , )k  … 
and 

whose strictly positive eigenvalues are given by .k  
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In practice, we are interested in the result at the end of the process, in other words, for = .k N  In this 

case, the matrix NK  has the desired properties. The authors demonstrate that, by varying the different 

parameters, all the matrices with a fixed diagonal and spectrum N  are obtained. Conversely, any matrix 

of this type can be constructed based on this procedure.  

It is inferred from these results that a basis of orthonormalized eigenvectors of NK  is given by 
1
2 .N

N NU D



 



 This basis can be used directly as input to the selection algorithm of Lavancier et al. (2015) in 

the case of projection matrices, and with a slight adaptation for determinantal designs of random size (Loonis 

and Mary 2019).  

 
A.6 Constructing the elements of algorithms A.1 and A.2  
 

We show here how to obtain the various quantities of algorithms A.1 and A.2 from the example in 

Table A.1 for = 9k  and = 7.M  

 
8 9
2 1

8 9
2 1

= {1, 2, 5, 6} = {1, 4, 5, 7}

= {2, 3, 6, 7} = {1, 3, 4, 7}

E E

E E 
  

 9
9

12 3 129 3

55 11 220 5
0 0 0 1 63 3 6 63
0 0 1 0 220 10 11 110

= 9, = 4, = =
0 1 0 0 6 63 63 3

11 110 220 101 0 0 0
129 3 12 3

220 5 55 11

k r R

   
   
   

                          
   
   
   

  

 9
1

3 129 63 129 3 129 3 129

5 220 110 220 10 220 11 220
=

6 129 63 129 12 129

11 220 220 220 55 220

v

    
       

    
   

     
   

  

 8 9
2 1= {1, 4, 5}, = {2, 5, 6}E E    

 
8 9
2 1

1 1

2 1

3 2 3 2

4 3

6 3

7 4 7

6

1 5

2 5

= , = .4

5 7 5 6

6 7

4
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It should be noted that 8
2  (resp. 9

1 )  is indeed increasing in 8
2E  (resp. 9

1 ).E  In addition, for any 8
2j E  

(resp. 9
1 ),j E  we indeed have 8

2 ( ) {1, , }kj r  …  (resp. 9
1 ( ) {1, , }).kj r  …  For a given permutation ,  

the associated matrix is such that  

 
1 if ( )

=
0 otherwise

ij

i j
 


  

 8 9
2 1

0 1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 1 0 0 0

= , = .0 0 0 0 0 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0

   
   
   
   
   

    
   
   
   
   
   

  

 

A.7 Matrices Q  for = n N  
 

Table A.4 

Eigenvalues k
j  of the main sub-matrices of ,Q  for =k n N  and n  does not divide :N  Example of = 5n  

and = 12.N  
 

k 
1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 0 
2

1
n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 

0 0 0   
2

1
n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 

0 0     1
n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 

0       1
n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 1 

n

N
       1

n

N
  1

n

N
  1

n

N
  1 1 1 1 1 

 
Table A.5 

Eigenvalues of the main submatrices of ,Q  for =k n N  and n  divides :N  Example of = 4n  and = 12.N  
 

k 
1 2 3 4 5 6 7 8 9 10 11 12 

0 0 0 
2

1
n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 

0 0 
2

1
n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 

0 
2

1
n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  

2
1

n

N
  1

n

N
  1

n

N
  1

n

N
  1

n

N
  1 1 1 1 
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Figure A.1 Q  under 2.C  
 

(a) General case: 3, 10,n N  k n N   

 
0 0 0

0 0 0

0 0

=

0

0 0 0

0 0 0 0

n N

n N

n N

Q
n N n N

n N n N

n N n N

n N n N

n N



       
 

       
       
 

   
   
 

   
   
 
    


  

(b) Specific case: n  divides : 2, 10,N n N  k n N   

 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
= .

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n N n N n N n N

n N n N n N n N

n N n N n N n N

n N n N n N n N
Q

n N n N n N n N

n N n N n N n N

n N n N n N n N

n N n N n N n N



 
 
 
 
 
 
 
 
 
 
 
 
 


  

The symbol   indicates that the explicit formula of the coefficient in question is unknown. 

 
A.8 Optimization among real fixed-diagonal projection matrices 
 

Among real matrices of size ( ),N N  we attempt to solve a problem of the following type:  

 
1 1

2
=1 2

=
( ) [ ( )] ( )

Min s.c. diag ( ) =

= .
q

q qQ
N N N

K
q x

K K
x I K K I K I K x

K
t

K K

 


 










  
  

K  is a projection matrix, so there is a basis V  of orthonormalized vectors of size ( )N n  such that 

=K VV   and = .nV V I  It is possible to rewrite the problem in the following penalized form:  

 
1 1

2
=1=

( ) [ ( )]( )
Min Trace(( ) ( )).

q
n

q qQ
N N N

V
q xV V I

x I VV VV I VV I VV x
r VV D VV D

t

 

 


  

  






  
 

  

The objective of penalization via the trace function is for the diagonal of the optimal matrix to indeed 

be equal to .  The set of real matrices V  such that = nV V I
 is the Grassmannian manifold. The problem 

becomes a penalized optimization problem on varieties for which there are algorithms and powerful 
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problem-solving software, as long as the population size remains reasonable, around a few hundred (Absil 

et al., 2009; Boumal et al., 2014; Townsend et al., 2016). For the penalization parameter ,r  we set 

= 10 ,ir  for = 0, ,10i …  and retained the one that minimizes, to the optimum set at ,i  the function 

10 Trace(( ) ( )).i VV D VV D      
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