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Dealing with undercoverage  
for non-probability survey samples 

Yilin Chen, Pengfei Li and Changbao Wu1 

Abstract 

Population undercoverage is one of the main hurdles faced by statistical analysis with non-probability survey 
samples. We discuss two typical scenarios of undercoverage, namely, stochastic undercoverage and deterministic 
undercoverage. We argue that existing estimation methods under the positivity assumption on the propensity 
scores (i.e., the participation probabilities) can be directly applied to handle the scenario of stochastic under-
coverage. We explore strategies for mitigating biases in estimating the mean of the target population under 
deterministic undercoverage. In particular, we examine a split population approach based on a convex hull 
formulation, and construct estimators with reduced biases. A doubly robust estimator can be constructed if a 
followup subsample of the reference probability survey with measurements on the study variable becomes 
feasible. Performances of six competing estimators are investigated through a simulation study and issues which 
require further investigation are briefly discussed. 

 
Key Words: Auxiliary information; Calibration method; Convex hull; Doubly robust estimator; Inverse probability 

weighting; Model-based prediction; Outcome regression; Propensity score; Split population. 

 
 

1. Introduction 
 

Probability survey samples and design-based inference have been widely used in official statistics and 

many other scientific fields as a standard tool for data collection and analysis. In recent years, however, 

“there has been a wind of change and other data sources are being increasingly explored” (Beaumont, 

2020). One of the major reasons for looking at other data sources is the decreasing response rates for 

probability survey samples, and the seriousness of the undercoverage problem due to nonresponse as well 

as challenges in dealing with it for valid statistical inference. 

Non-probability survey samples are one of the emerging data sources. Their ascent in popularity started 

with surveys based on web panels but the more broad definition extends to any volunteer-based and/or 

convenient samples or even administrative records. Statistical analysis of non-probability survey samples 

faces many hurdles, with the unknown sample selection and participation mechanism and the unknown 

coverage of the target population as the most pressing ones. Non-probability samples are biased and do not 

represent the target population in any tractable way, unlike probability survey samples where the survey 

design information is available. Valid statistical inferences with non-probability samples require additional 

auxiliary information at the population level and suitable inferential frameworks. A popular framework is 

to assume that the required population auxiliary information is available in an existing probability survey 

sample from the same target population. This two-sample framework has been used in several 

methodological developments, including the sample matching method (Rivers, 2007) and mass imputation 

(Kim, Park, Chen and Wu, 2021), the weighted logistic regression for propensity score estimation using the 
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pooled sample (Valliant and Dever, 2011), the pseudo maximum likelihood method (Chen, Li and Wu, 

2020), the pseudo empirical likelihood approach (Chen, Li, Rao and Wu, 2022), and the Bayesian approach 

(Wisniowski, Sakshaug, Ruiz and Blom, 2020), among others. 

Statistical inferences with non-probability samples under the two-sample framework also require another 

critical assumption: the propensity score or the participation probability is positive for all the units in the 

target population. This is the so-called positivity assumption and is the foundation for the validity of several 

estimation methods proposed in the literature; see Section 2 for further discussion. With probability survey 

samples, this is equivalent to having a complete sampling frame without nonresponses. The positivity 

assumption is typically violated in practice for non-probability samples, due to limited geographic coverage 

of the population of interest and/or failing to reach subgroups of the population that are not as easily 

observable through convenient sampling methods. Violations of the positivity assumption lead to 

undercoverage problems and invalid results based on existing estimation methods. Undercoverage is a 

notoriously challenge problem in finite population sampling, and there is an added layer of complications 

with non-probability survey samples; see Elliott and Valliant (2017) for some extended discussion on the 

topic. 

This paper discusses two typical scenarios of undercoverage in practice for non-probability survey 

samples: stochastic undercoverage and deterministic undercoverage. We argue in Section 3 that methods 

developed under the positivity assumption can be applied directly to handle stochastic undercoverage for 

valid inferences. Deterministic undercoverage involves a subpopulation for which certain crucial informa-

tion is missing and no rigorous and valid estimation procedures can be developed under the existing two-

sample framework. In Section 4, we first discuss strategies for mitigating biases due to deterministic under-

coverage using existing methods, and identify conditions under which existing methods lead to valid 

estimation results. We then explore estimation procedures under the split population through a convex hull 

formulation. We show that the correct specification of the outcome regression model is essential to several 

estimation procedures and a doubly robust estimator can be constructed if a followup subsample of the 

reference probability sample with measurements on the study variable can be obtained. Performances of six 

competing estimators of the finite population mean are evaluated through a simulation study and the results 

are reported in Section 5. Brief discussions on issues which require further investigation and some 

concluding remarks are given in Section 6. 

 
2. Assumptions and existing approaches 
 

There have been exciting methodological developments in recent years on valid statistical inference with 

non-probability survey samples. One of the key assumptions used by several authors is the non-zero 

probability of participation in the non-probability survey of all units in the target population. Let =U  

{1, 2, , }N…  be the set of N  labelled units for the target population. Let iy  and ix  be the values of the 

study variable y  and the vector of auxiliary variables x  for the thi  unit in the population. Estimation 
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procedures are developed for a univariate y  with the focus on the population mean 1

=1
=

N

y ii
N y    but 

extensions can be made to other inferential problems similar to the theory of the Horvitz-Thompson 

estimator for design-based inference with probability survey samples. 

Let AS  be the set of An  participating units in the non-probability survey sample and {( , ), }i i Ay ix S  

be the sample dataset. The most crucial feature of non-probability survey samples is the unknown sample 

inclusion or participation mechanism. The recent literature on the topic assumes that the mechanism is 

guided by an underlying stochastic process. Let = ( )i AR I iS  be the indicator variable for unit i  being 

included in the non-probability sample .AS  Let  

 = ( | , ) = ( =1| , ), =1, 2, , .x xA
i A i i i i iP i y P R y i N  …S   

The term “propensity scores” from the missing data literature (Rosenbaum and Rubin, 1983) was used for 
A
i  by Chen et al. (2020), among several other authors. Some authors preferred to use the term 

“participation probabilities” for ;A
i  see, for instance, Beaumont (2020) and Rao (2021), among others. 

 
2.1 Assumptions 
 

The following assumptions have been used in the recent literature on statistical inference with non-

probability survey samples; see, for instance, Wu (2022) and several key references therein. 

A1 The sample inclusion and participation indicator iR  and the study variable iy  are independent 

given the set of auxiliary variables ,ix  i.e., ( ) | .i i iR y x  

A2 All the units in the target population have non-zero propensity scores, i.e., > 0,A
i = 1,i  

2, , .N…  

A3 The indicator variables 1 2, , ,
N

R R R…  are independent given the set of auxiliary variables 

1 2( , , , ).
N

x x x…  

A4 There exists a probability survey sample BS  of size Bn  with information on the auxiliary 

variables x  (but not on )y  available in the dataset {( , ), },B
i i Bd ix S  where 

B
id  are the design 

weights for the probability sample .BS  
 

Assumption A1 is similar to the concept of missing-at-random (MAR) widely used for missing data 

analysis. Assumption A3 is more of a convenient tool for likelihood-based estimation of propensity scores, 

and it is not crucial to the validity of several existing estimating procedures (Wu, 2022). Assumption A4 is 

on the two-sample framework where auxiliary information on the target population is available from an 

existing probability survey sample. It is the basic setting for most estimation procedures proposed in the 

literature on non-probability survey samples. 

Assumption A2 refers to the so-called positivity condition. For probability surveys, this is equivalent to 

conditions that the sampling frames are complete and there are no hardcore nonrespondents. In other words, 

the sampled population is identical to the target population, and statistical inferences based on the survey 
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sample are valid for the target population. In practice, assumption A2 is often violated for non-probability 

survey samples due to the voluntary and convenience nature of survey participation, resulting in 

undercoverage problems and invalid statistical statements on the target population. 

 
2.2 Approaches to inference 
 

There are three main approaches to inference using non-probability survey samples under assumptions 

A1-A4: (i) inverse probability weighting (IPW) based on an assumed model q  for the propensity scores; 

(ii) model-based prediction based on an assumed outcome regression model ;  and (iii) doubly robust (DR) 

procedures using both the estimated propensity scores and the outcome regression model. 

Under assumption A1, the propensity scores = ( =1| ) = ( )A
i i i iP R x x  are a function of the auxiliary 

variables ix  with an unknown form ( ).   Let = ( , )A
i i  x α  be a specified parametric form with unknown 

model parameters .α  Under the two-sample setting where the population auxiliary information is supplied 

by the reference probability sample ,BS  the pseudo log-likelihood function for α  proposed by Chen et al. 

(2020) is given by  

 *( ) = log log(1 ).
1

α
A B

A
B Ai
i iA

i ii

d



 

 
  

 
 
S S

 (2.1) 

The maximum pseudo-likelihood estimator α̂  is the maximizer of *( )α  and can be obtained as the solution 

to the pseudo score equations given by *( ) = ( ) = . U α α α 0  If the logistic regression model is assumed 

for the propensity scores where 1=1 {1 exp( )} ,A
i i   x α  the pseudo score functions are given by  

 ( ) = ( , ) .
A B

B
i i i i

i i

d 
 

 U α x x α x
S S

 (2.2) 

The estimated propensity scores are obtained as ˆˆ = ( , ),A
i i  x α .AiS  The inverse probability weighted 

(IPW) estimator of y  is computed as  

 IPW

1
ˆ = ,

ˆ ˆ
A

i
y AA

i i

y

N




S

 (2.3) 

where 1ˆ ˆ= ( )
A

A A
ii

N  

 S
 is the estimated population size. The estimator IPW

ˆ
y  is consistent under the joint 

randomization of the propensity score model q  and the probability sampling design p  for the reference 

probability sample .BS  

The model-based prediction approach to inference also relies heavily on the first assumption. Under 

assumption A1, the conditional distribution of y  given x  for units in the non-probability sample AS  (i.e., 

=1)R  is the same as the conditional distribution of y  given x  for units in the target population. It allows 

a valid model on y  given x  to be built using the non-probability sample dataset {( , ), }.i i Ay ix S  Under 

the semiparametric outcome regression model   as described in Wu (2022) with the first conditional 

moment specified as ( | ) = ( , ),i i iE y m x x β  the model parameters β  can be consistently estimated by β̂  
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using the non-probability sample. Let * ˆ= ( , )i iy m x β  be the fitted value of y  for unit AiS  or predicted 

value of y  for unit .AiS  A general form of the model-based prediction estimator of y  is computed as  

 *
MI

1
ˆ = ,

ˆ B

B

B
y i i

i

d y
N




S

 (2.4) 

where ˆ = .
B

B B
ii

N d
 S

 The subscript “MI” refers to “Mass Imputation”, since the estimator is constructed 

based on the reference probability sample BS  with the unobserved y  treated as 100% missing for the sample 

and imputed for all the units in the sample. The estimator MI
ˆ

y  is consistent under the joint randomization 

of the outcome regression model   and the probability sampling design p  for .BS  

The doubly robust estimator of y  is computed by using the estimated propensity scores ˆˆ = ( , )A
i i  x α  

and fitted or predicted values * ˆ= ( , )i iy m x β  and is given by (Chen et al., 2020)  

 
*

*
DR

1 1
ˆ = .

ˆ ˆˆ B

A B

Bi i
y i iAA

i ii

y y
d y

N N


 


 

S S

 (2.5) 

The estimator DR
ˆ

y  is consistent under the probability sampling design p  for BS  and one of the correctly 

specified models, q  or .  

 
3. Two practical scenarios with undercoverage 
 

It is known in design-based inference that there exists an unbiased estimator of y  in a subclass of the 

so-called Godambe class of linear estimators if and only if the first order inclusion probabilities are non-

zero for all the units in the finite population (Wu and Thompson, 2020). For probability survey samples, 

zero-inclusion probabilities are the consequences of incomplete sampling frames and nonrespondents, 

leading to undercoverage problems for the target population. 

The positivity assumption A2 which states that = ( =1| , ) > 0A

i i i iP R y x  for all i  in the target population 

is indeed the same condition for the validity of the IPW estimator, which is adapted from the Horvitz-

Thompson estimator for probability survey samples, under the propensity score model .q  The positivity 

assumption used in missing data analysis and causal inference is not an issue since the propensity scores are 

only defined for units in the sample. For non-probability survey samples, assumption A2 is often violated 

in practice for two major reasons: incomplete sampling frame(s) and voluntary participation. The sampling 

frame(s) used for selecting a non-probability survey sample is typically a convenient list such as a web 

panel, and it is almost surely incomplete for the target population. Participation in a non-probability survey 

sample is voluntary and nonresponse and refusals are an inherent part of the recruiting process. 

Let U  be the set of N  units for the target population. Let 0 = { |i iU U  and > 0}.A
i  It is apparent that 

0 U U  and 0 U U  when assumption A2 is violated. Let 1 = { |i iU U  and = 0}.A
i  It follows that 

0 1= .U U U  Let 0 1=N N N  where 0N  and 1N  are the sizes of the two subpopulations 0U  and 1.U  Let 

0

1
0 0=y ii

N y 

 U
 and 

1

1
1 1= .y ii

N y 

 U
 We have 0 0 1 1= ,y y yW W    where =k kW N N  for = 0,1.k  If 
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AS  is a sample from 0 ,U  and ˆ yA  is an “unbiased estimator” based on ,AS  we usually have 0
ˆ( ) = ,yA yE    

and the bias of using ˆ yA  to estimate y  is given by  

 1 0 1
ˆ( ) = ( ).yA y y yE W       

The two major factors for the amount of bias are (i) the size of the subpopulation (i.e., 1)N  not represented 

by the sample ;AS  and (ii) the difference (i.e., 0 1)y y   between all potential participants of the sample 

and those who have no chances to be included in the sample. We discuss two practical scenarios for 

undercoverage problems and their implications on inference. 

 
3.1 Stochastic undercoverage 
 

The first scenario is termed as stochastic undercoverage, where the non-probability sample AS  is 

selected from a subpopulation 0U  and the 0U  itself can be viewed as a random sample from U  (Chen, 

2020; Wu, 2022). A typical example for this scenario is when the contact list of an existing large probability 

survey sample is used to recruit participants for the non-probability survey sample. Another example is 

when the participants for the non-probability sample are selected from a very large commercial panel, and 

the composition of the panel mimics the distributions of the target population in terms of key demographical 

variables. One can argue that it falls into the scenario of stochastic undercoverage. A less obvious example 

is a convenient sample of respondents recruited from shoppers at local shopping centers over certain period 

of time. If the target population consists of certain types of consumers in the region and there is a belief that 

such consumers have a non-trivial chance to visit one of the shopping centers during the time period, then 

it is also a case of stochastic undercoverage. 

Let =1iD  if 0iU  and = 0iD  otherwise, = 1, 2, , .i N…  Noting that = ( ),i AR I iS  we have  

 ( = 1| , , = 1) > 0i i i iP R y Dx   and  ( = 1| , , = 0) = 0i i i iP R y Dx   

for = 1, 2, , .i N…  If the subpopulation 0U  is formed with an underlying stochastic mechanism such that 

( = 1| , ) > 0i i iP D yx  for all ,iU  we have  

 = ( =1| , ) = ( =1| , , =1) ( =1| , ) > 0A
i i i i i i i i i i iP R y P R y D P D y x x x   

for = 1, 2, , .i N…  The positivity assumption A2 is indeed satisfied under scenarios of stochastic 

undercoverage, and estimation procedures developed under the assumption can be used directly to provide 

valid inferences. A practical issue with stochastic undercoverage is how to specify a model for propensity 

scores due to the two-phase arguments involving iR  and .iD  See Section 5 for further discussion. 

 
3.2 Deterministic undercoverage 
 

Many non-probability samples are volunteer-based convenience samples, and the potential participants 

often possess certain characteristics which are unique to the group. For instance, if participation in a survey 
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requires the use of a computer and access to the Internet, then those who do not have Internet access or 

never used a computer will have no chance to be included. The severity of undercoverage in this case 

depends largely on the proportion of the population being excluded. 

The subpopulation 1 = { |i iU U  and = 0}A
i  may be conceptually defined through an accessibility 

function. Let ( )i x  be a function of ix  that measures the accessibility of unit i  to the survey. An individual 

with a small value of ( )i x  will have (practically) no access to the survey. More formally, we have 

= ( | , ) = 0A
i A i iP i y  xS  if ( )i c x  for an unknown cut-off value c  on accessibility. The two subpopu-

lations can alternatively be defined as  

 0 = { |i iU U   and  ( ) > }i c x   and  1 = { |i iU U   and  ( ) }.i c x  (3.1) 

The truncation on ( )i x  to exclude certain units from the non-probability survey can be viewed as a 

deterministic process, which motivates the use of the term “deterministic undercoverage”. An overly 

simplified example is when ix  represents the “age” of unit i  and all young individuals (i.e., ix c  for a 

chosen )c  are excluded from the survey. 

If the two subpopulations 0U  and 1U  can be clearly identified, valid statistical inferences can be claimed 

for the subpopulation 0.U  Extending the results to the target population U  may be possible for certain 

scenarios but has the risk of overstretching with unrealistic assumptions. 

 
4. Strategies for dealing with deterministic undercoverage 
 

Deterministic undercoverage has similarities to frame and nonresponse undercoverage for probability 

survey samples. There are two major difficulties with inferences on the target population: the identification 

of the two subpopulations 0U  and 1U  and the lack of information on 1.U  In this section, we discuss 

approaches to mitigating biases of estimation due to the undercoverage and potential issues with these 

methods. 

 
4.1 Calibrated IPW approach 
 

Under the positivity assumption A2 and the specified parametric form = ( , ),A
i i  x α  the pseudo score 

functions given by 
*( ) = ( ) U α α α  from (2.1) can be replaced by a set of unbiased estimating equations 

(Chen et al., 2020; Wu, 2022)  

 ( ) = ( , ) ( , ) ( , ),
A B

B
i i i i

i i

d 
 

 G α h x α x α h x α
S S

 (4.1) 

where ( , )ih x α  is a user-specified vector of functions with the same dimension of .α  If we let 

( , ) = ( , ) ,h x α x x α  the estimating functions given in (4.1) reduce to  

 ( ) = .
( , )

A B

Bi
i i

i ii

d
 

 
x

G α x
x αS S

 (4.2) 
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Note that ( ) =G α 0  becomes the calibration equations ( , ) =
A B

B
i i i ii i

d
  x x α x
S S

 with the population 

totals 
=1

N

ii x  estimated by the probability sample .BS  Let ˆ Cα  be the solution to ( ) = ,G α 0  where the 

subscript “ C ” indicates “Calibration”. Let ˆˆ = ( , ).C
i i C  x α  It is assumed that the first component of x  is 1 

so that  

 1ˆ ˆˆ= ( ) = = .
A B

A C B B
C i i

i i

N d N 

 
 
S S

  

The calibrated IPW estimator of y  is computed as 1
IPW

ˆˆ ˆ= ( ) .
A

C A C
y C i ii

N y 

 S
 The term “Calibrated 

IPW” was first used by Chen (2020). The idea was discussed by several other authors, including Rao (2021). 

Under deterministic undercoverage, the parametric form with the restriction = ( , ) > 0A
i i  x α  for all i  

is clearly misspecified. As a consequence, the conventional IPW estimator IPW
ˆ

y  given by (2.3) is no longer 

consistent. The calibrated IPW estimator IPW
ˆC

y  can reduce the bias if the outcome regression model is linear, 

i.e., ( | ) = .i i iE y
x x β  The calibrated IPW estimator under this scenario is an approximately model-unbiased 

prediction estimator (with the estimated population totals from the probability sample )BS  since  

 
1 1 1

= = ( ).
ˆ ˆ ˆˆ ˆ

B

C C B

A A B

i i
p p p i i yA A

i i ii iC C

y
E E E E d E

N N N
  

   

           
     
          

  
x

β x β
S S S

   

The approximate equal sign in the last step amounts to estimating N  by ˆ .BN  

A question of both practical and theoretical interest is whether the solution to ( ) =G α 0  exists, where 

( )G α  is given in (4.2). The answer depends on the chosen parametric form of ( , ).i x α  Under a generalized 

linear model with = ( | ) = ( ),i i i iE R g x x α  where ( )g   is the so-called (monotone increasing) inverse link 

function, we have  

 
2

( )
( ) = ( ) = ,

{ ( )}
A

i
i i

i i

k

g







x α
H α G α x x

α x αS

  

where ( ) = ( ) > 0.k t dg t dt  The matrix ( )H α  is negative definite, as long as the data matrix { , }i Aix S  is 

of full rank, and the usual Newton-Raphson iterative procedures for solving ( ) =G α 0  is guaranteed to 

converge. 

The calibrated IPW estimator can also be constructed when a linear regression model is not appropriate 

but there are sufficient grounds to use a nonlinear model in the form of ( | ) = ( , )i i iE y m x x β  with a known 

function ( , ).m    For instance, if iy  is a binary variable, then ( , )im x β  no longer has a linear form but may 

be chosen as the inverse logit function. Let β̂  be an estimator of β  obtained by using suitable estimation 

method and the non-probability sample dataset {( , ), }.i i Ay ix S  Let ˆˆ = ( , ).i im m x β  The calibrated 

propensity scores are computed as 
1ˆ = ( ) ,C C

i iw 
 where the calibrated weights 

C
iw  are obtained in two steps: 

(1) Compute the initial propensity scores ˆˆ = ( , ),O

i i  x α ,AiS  where α̂  is the solution to the pseudo 

score equations from (2.2). Let 
1ˆ= ( ) ,O O

i iw  
.AiS  
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(2) Obtain the model-calibrated weights ,C
iw AiS  by minimizing the distance measure =D  

2{ }C O O

A
i i ii

w w w


 S
 subject to constraints  

 ˆ=
A

C B
i

i

w N


S

  and  ˆ ˆ= .
A B

C B
i i i i

i i

w m d m
 
 
S S

 (4.3) 

 

The constraints used in (4.3) follow the general model-calibration procedures of Wu and Sitter (2001). 

The calibrated IPW approach uses the outcome regression model to mitigate the potential bias of the 

IPW estimator with deterministic undercoverage. When a linear outcome regression model can be justified, 

the calibration step does not involve estimation of the model parameters β  and hence leads to a more robust 

estimator than the model-based prediction estimator. The model-calibrated IPW estimator under a nonlinear 

outcome regression model requires the estimator β̂  which is obtained by fitting the model with the non-

probability sample. There is a risk of extrapolation in computing ˆˆ = ( , )i im m x β  for .BiS  See Section 4.2 

for further discussion. 

 
4.2 Model-based prediction approach 
 

A common scenario for deterministic undercoverage is that units lacking of certain features have no 

access to the non-probability survey, and the features are reflected in values of certain auxiliary variables. 

In practice, the first step for analyzing a non-probability survey dataset is to check the (unweighted) 

empirical marginal distributions of auxiliary variables which are potentially related to survey participation, 

and compare them to the weighted sample distributions of the variables using the reference probability 

sample. In particular, the observed range (or the support) of each auxiliary variable from the non-probability 

sample should be compared to those from the probability sample. 

Model-based prediction approach through mass imputation relies on a conditional model of y  given .x  

While the conditional moment structure ( | ) = ( , ),i i iE y m x x β  which is assumed for the target population, 

most likely holds for any samples, there are two problematic consequences with fitting the model using a 

sample which has a limited range in the observed auxiliary variables. The first is unreliable estimation of 

the model parameters with inflated variances for the estimators. The second is the danger of extrapolation 

in using the fitted model for prediction. These observations have been sufficiently documented in the 

existing literature on regression modelling and analysis. Tan (2007) expressed concerns on extrapolation in 

using a fitted outcome regression model with a biased sample in the construction of doubly robust estimators 

for missing data analysis and causal inference. 

If the non-probability sample includes all the important auxiliary variables which are required for 

characterizing the participation behaviour and the outcome regression, and if the observed ranges of the 

auxiliary variables are similar to those from the reference probability sample, a model-based prediction 

estimator may be preferred over the IPW estimator in the presence of deterministic undercoverage. The 

calibrated IPW estimator discussed in Section 4.1 is especially attractive under a linear regression model 
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since estimation of the model parameters β  is not needed and therefore the two issues with model-based 

prediction estimators, namely, the inflated variances for parameter estimates and the danger of extrapolation, 

become non-issues. 

 
4.3 The split population approach 
 

The conceptually defined two subpopulations 0U  and 1U  play a central role in the discussion of 

deterministic undercoverage. The non-probability sample AS  can be viewed as coming from 0U  and 

satisfying the positivity assumption. It is tempting to develop tools to separate units in the reference 

probability sample BS  that belong to 0U  or 1,U  and to further develop strategies for dealing with the split 

population. 

The accessibility function ( ) x  introduced in Section 3.2 is a useful tool for the task. Suppose that 

( ) x  is a convex function of x  and 0U  and 1U  are defined in (3.1) with an unknown threshold c  that 

separates units from the two subpopulations. Let kH  be the convex hull generated by { : }i kix U  for 

= 0,1.k  It follows that ( ) > c x  if 0x H  and ( ) c x  if 1.x H  There are no overlaps between 0H  and 

1.H  

Let AH  be the convex hull formed by { : }.i Aix S  We have 0A
H H  and the difference between the 

two becomes negligible when An  is large. Similarly, the convex hull BH  formed by { : }i Bix S  approxi-

mates 0 1H H  when Bn  is large since BS  represents the entire target population .U  The two subpopu-

lations 0U  and 1U  can be identified through a split among units in the reference probability sample =BS  

,0 ,1,B BS S  where  

  ,0 = andB B j Aj j xS S H   

and ,1 ,0= \ .B B BS S S  Note that verifying j Ax H  is equivalent to checking if there exists a sequence of 

constants 0ia   for AiS  such that  

 = 1
A

i
i

a


S

  and  = .
A

i i j
i

a

 x x
S

  

It can be done with existing computational packages. The sizes 0N  and 1N  of the two subpopulations 0U  

and 1U  can be estimated by  

 
,

ˆ = , = 0,1,
B k

B B
k i

i

N d k


S

  

which satisfy 0 1
ˆ ˆ ˆ= .B B BN N N  

Kim and Rao (2018) described an idea on splitting the population using a modified nearest neighbour 

method. They defined ,0BS  as the set of units in BS  which have a “close neighbour” in .AS  More formally, 

they define  

  ,0 = and < ,min
A

B B i j
i

j j


 x x ε
S

S S   



Survey Methodology, December 2023 507 

 

 
Statistics Canada, Catalogue No. 12-001-X 

where > 0ε  is a pre-specified tolerance measuring similarities in x  among units. Choosing a value for ,ε  

however, is difficult in practice and the idea has not been developed further in the literature. 

 
4.4 Estimation for the split population 
 

Estimation for the split population involves separate treatments for 0U  and 1.U  Note that 0 0=y yW    

1 1.yW   Estimation procedures developed under the assumptions A1-A4 can be applied directly for the 

estimation of 0y  by treating ,0BS  as the reference probability sample. Let 0 0 1 1
ˆ ˆˆ ˆ ˆ= ,y y yW W    where 

ˆ ˆ ˆ= B B
k kW N N  for = 0,1.k  The severity of the deterministic undercoverage from using 0

ˆ
y  as an estimator 

for y  is partially reflected by the value of 1
ˆ .W  When 1Ŵ  is small as compared to 0

ˆ ,W  we may ignore the 

issue with undercoverage and proceed with estimation under the assumption that > 0A
i  for all .i  

It is apparent that valid estimation of 1y  requires additional information on y  since the only relevant 

data in the two samples AS  and BS  on the subpopulation 1U  are the auxiliary information ,1{ , }i Bix S  from 

the split reference probability sample. In the absence of any additional information on y  for units in 1,U  

we propose a hybrid estimator of y  as follows. We first estimate the propensity scores under the assump-

tion that > 0A
i  for 0.iU  Let 0 0

ˆˆ = ( , )A
i i  x α  under a parametric propensity score model = ( , ),A

i i  x α  

where 0α̂  is the pseudo maximum likelihood estimator of .α  If a logistic regression model is used, then 0α̂  

is the solution to  

 
,0

( , ) = .B

A B

i i i i
i i

d 
 

 x x α x 0
S S

  

A calibration-based estimator of α  in the form of (4.2), with BS  replaced by ,0 ,BS  can also be used. In this 

latter case we have 1
0 0 0
ˆ ˆˆ= ( ) =

A

A A B
ii

N N 

 S
 if x  contains 1 as the first component. Let ˆˆ = ( , ),i im m x β  

where β̂  is an estimator of β  obtained by using suitable estimation method and the non-probability sample 

dataset {( , ), }i i Ay ix S  under the assumed outcome regression model ( | ) = ( , ).i i iE y m x x β  The doubly 

robust estimator of 0y  is computed as  

 
,0

0,DR

00 0

ˆ1 1
ˆ ˆ= .

ˆ ˆˆ
A B

Bi i
y i iAB B

i ii

y m
d m

N N


 


 

S S

 (4.4) 

Note that we used 0
ˆ BN  instead of 0

ˆ AN  in the first term. It leads to a simplified form of the hybrid estimator 

given below. Let  

 
,1

1,REG

1

1
ˆ ˆ=

ˆ
B

B
y i iB

i

d m
N




S

 (4.5) 

be the model-based prediction estimator for 1.y  A hybrid estimator of 0 0 1 1=y y yW W    is constructed 

by using the two estimators given in (4.4) and (4.5):  

 HYB 0 0, DR 1 1, REG

0

ˆ1 1ˆ ˆˆ ˆ ˆ ˆ= = .
ˆ ˆˆ

A B

Bi i
y y y i iAB B

i ii

y m
W W d m

N N
  

 


  

S S

 (4.6) 
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The form of HYB
ˆ

y  is similar to the doubly robust estimator DR
ˆ

y  given in (2.5), with the major difference 

of estimating the propensity scores through the split population. 

The hybrid estimator does not have the double robustness interpretation and has the risk of extrapolation 

in estimating 1y  using the model-based prediction estimator 1, REG
ˆ .y  Suppose that the split of BS  into ,0BS  

and ,1BS  using the convex hull formulation on 0U  and 1U  is done correctly, and the propensity score model 

on > 0A
i  for 0iU  is correctly specified, then the hybrid estimator HYB

ˆ
y  has the asymptotic expression  

 *
HYB 0 0 1 1

ˆ = (1),y y pW W m o      

where 
1

* 1 *
1 1= ( , )ii

m N m

 x β
U

 and *β  satisfies * 1 2ˆ = ( ),p AO nβ β  regardless of the correctness of the 

outcome regression model (Chen, 2020). The potential bias of the hybrid estimator depends largely on the 

model-based prediction estimator 1, REG
ˆ

y  for estimating 1,y  and the estimator has the advantage of the 

doubly robust estimator 0,DR
ˆ

y  for estimating 0.y  

Under ideal situations where it is possible to take a small subsample from ,1BS  and obtain measurements 

on y  for the selected units, a rigorous development on estimation methods for 1,y  and consequently for 

,y  can be carried out without much difficulties. Let 
(2)

2 ,1{( , ), }B

i i By d iS  be the additional dataset where 
(2)
,1BS  is a subsample from ,1BS  and 2

B
id  are the sampling weights for the subsample conditional on the given 

,1.BS  Let β  be the estimated parameters for the outcome regression model using the combined dataset 
(2)
,1{( , ), }.i i A By i x S S  Let = ( , ).i im m x β  A model-assisted difference estimator (Wu and Sitter, 2001) for 

the subpopulation mean 1y  can be constructed as  

 
( 2)

,1,1

1,SS 2
ˆ1 1

1 1
ˆ = ( ) ,

ˆ ˆ
BB

B B B
y i i i i i iB B

ii

d d y m d m
N N




   
SS

 (4.7) 

where the subscript “SS” indicates “subsample”. This estimator is approximately unbiased for 1y  under 

the survey designs for BS  and 
(2)
,1BS  regardless the correctness of the outcome regression model. The final 

estimator of y  can then be computed as SS 0 0, DR 1 1, SS
ˆ ˆˆ ˆ ˆ= .y y yW W    The estimator SS

ˆ
y  is doubly robust 

and is given by  

 
( 2)

,1

SS 2

0

1
ˆ = ( ) .

ˆ ˆ
A BB

B B Bi i
y i i i i i iAB

i iii

y m
d d y m d m

N


 

  
   

  
  


 

S SS

 (4.8) 

 
5. Simulation studies 
 

We evaluate the finite sample performances of several estimation strategies with deterministic under-

coverage. Additional simulation results under stochastic undercoverage can be found in Chen (2020). We 

consider a finite population of size =N 20,000, with three auxiliary variables 1,x 2x  and 3.x  Independent 

copies of 1 2 3( , , )i i ix x x  are generated from 1 (0,1),ix N∼ 2 Exp(1),ix ∼  and 3ix ∼ Bernoulli (0.5). The 

response variable iy  follows the regression model,  
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 2
1 2 3 1= 3 , =1, 2, , ,i i i i i iy x x x x i N      …  (5.1) 

where   is the coefficient for the high order term 2
1ix  with values representing the degree of departure from 

the standard linear regression model. The error terms i  are generated from (0,1)N  and the value of   is 

chosen to control the correlation coefficient   between the response iy  and the linear predictor 13 ix   
2

2 3 1.i i ix x x   The simulation results reported in this section correspond to = 0.5. The parameter of 

interest is the finite population mean .y  

The accessibility function ( ) x  is specified through an inverse logit function involving the three 

auxiliary variables,  

 1 2 3

( )
log = 1 0.6 0.5 0.8 , = 1, 2, , .

1 ( )
i

i i i

i

x x x i N
 

   
 

x

x
…   

Note that the inverse logit function is not a convex function. However, it can be shown that the function is 

convex within the subspace { : ( ) <0.5},x x  which is sufficient for our proposed split population approach 

with the choices = 0.00, 0.20 and 0.40 used in the simulation. Let ( )Q   be the th100  sample quantile of 

1 2{ ( ), ( ), , ( )}.
N

  x x x…  The deterministic split of the population is decided by the measure on accessi-

bilities. Let = {1, 2, , }N…U  and  

 0 = { |i iU U   and  1( ) ( )}, = { |i Q i i  x U U   and ( ) < ( )}.i Q  x   

We set = 0A
i  if 1,iU  and the size of the subpopulation 1U  is given by 1 =N N  (i.e., 1 = ).W   The size 

of the subpopulation 0U  is given by 0 1= .N N N  

The true propensity scores A
i  for 0iU  are generated from a logistic regression model,  

 1 2 3log = 0.3 0.3 0.5 ,
1

A
i

i i iA
i

x x x





 
   

 
  

where the intercept   is chosen such that 0

=1
= ,

N A
i Ai

n  where An  is the planned size of the non-probability 

survey sample .AS  We use the Poisson sampling method with inclusion probabilities 
A
i  to select units for 

AS  from the subpopulation 0.U  The actual sample size of AS  varies from sample to sample with An  as the 

expected size. 

The reference probability sample BS  with a fixed sample size Bn  is drawn from the entire finite 

population U  by the randomized systematic PPS sampling method; see Section 4.4.2 of Wu and Thompson 

(2020) for further detail. The inclusion probabilities 
B
i  are proportional to 2= ,i iz c x  where the constant 

c  is chosen to control the variation of the survey weights such that = 50.max min ii i iz z UU  

We consider six estimators of the population mean y  discussed in Sections 2 and 4, plus the naive 

estimator of the sample mean of the non-probability sample, and evaluate their performances through 

repeated simulation samples: 

(1) ˆ ,yA  the naive estimator of the sample mean of the non-probability sample ;AS  

(2) IPW
ˆ ,y  the IPW estimator given in (2.3);  
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(3) MI
ˆ ,y  the model-based prediction (mass imputation) estimator given in (2.4);  

(4) DR
ˆ ,y  the doubly robust estimator given in (2.5);  

(5) IPW
ˆ ,C

y  the calibrated IPW estimator described in Section 4.1;  

(6) HYB
ˆ ,y  the hybrid estimator given in (4.6) introduced in Section 4.4;  

(7) SS
ˆ ,y  the estimator specified in (4.8) using a subsample (2)

,1BS  from ,1.BS  

 

For each iteration of the simulation with samples AS  and ,BS  the working propensity score model for 

the estimators IPW
ˆ

y  and DR
ˆ

y  is chosen as 0 1 1 2 2 3 3log{ (1 )} = ,A A
i i i i ix x x          the working 

outcome regression model for MI
ˆ

y  and DR
ˆ

y  as well as HYB
ˆ

y  uses 0 1 1 2 2 3 3= .i i i i iy x x x      ε  The 

splitting of BS  into ,0BS  and ,1BS  is done through the convex hull method. The rates of correct identification 

of units belonging to 0U  and 1U  are higher than 97% for all the settings used in the simulation. The 

subsample (2)
,1BS  is selected from ,1BS  using simple random sampling without replacement and the sampling 

fraction is fixed at 20%. Noting that for =Bn 500 used in the simulation, the size of the subsample is around 

20 for 1= =W 0.2 and 40 for = 0.4. 

The amount of misspecification of the working regression model is reflected by the value of   used in 

the true model (5.1) for generating the finite population 1 2 3{( , , , ),i i i iy x x x = 1, 2, , }.i N…  The deterministic 

undercoverage is represented by the value of 1= .W  We consider 3 3 = 9  different settings for the 

simulation, with the true values of the population and the subpopulation means 0 1( , , )y y y    given in 

Table 5.1. The setting ( = 0.0, = 0.0) represents the ideal situation of no model misspecifications and no 

issues with undercoverage. 

 
Table 5.1 

Population and Subpopulation Means ,1 ,0( , , ).y y y    
 

  = 0.0 = 0.2 = 0.4 

= 0.0 (4.53, NA, NA) (4.53, 4.49, 4.72) (4.53, 4.53, 4.52)  

= 0.5 (4.03, NA, NA) (4.03, 4.06, 3.91) (4.03, 4.06, 3.97) 

= 1.0 (3.52, NA, NA) (3.52, 3.63, 3.11)  (3.52, 3.59, 3.42)  

 
The performance of an estimator ˆ y  is measured by the simulated Relative Bias (RB%, in percentage) 

and the simulated Mean Squared Error (MSE), which are computed as  

 RB%
( )

=1

ˆ1
= 100 ,

bB
y y

b yB

 



 
  
 
   MSE

( ) 2

=1

1
ˆ= ( ) ,

B
b

y y
bB

    

where 
( )ˆ b
y  is the estimator ˆ y  computed from the thb  simulation samples. Results for =An 1,000 and 

=Bn 500 based on =B 5,000 simulation runs are presented in Table 5.2. The values of MSE are multiplied 

by 100. 
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Table 5.2 

Simulated RB% and MSE 2( 10 )  of Seven Estimators of .y  
 

 Estimator = 0 = 0.2 = 0.4 

RB% MSE RB% MSE RB% MSE 
= 0.0 ˆ

yA  17.23 61.90 18.47 70.99 21.79 98.48 

IPW
ˆ

y  -0.09 1.67 0.00 1.39 0.66 1.64 

MI
ˆ

y  -0.03 1.55 -0.04 1.45 0.36 1.70 

DR
ˆ

y  -0.01 1.59 0.00 1.47 0.39 1.75 

IPW
ˆC

y  0.00 1.58 -0.01 1.49 0.49 2.37 

HYB
ˆ

y  0.00 1.59 0.04 1.48 0.42 1.72 

SS
ˆ

y  NA NA -0.03 4.83 0.08 7.14 

= 0.5 ˆ
yA  16.91 47.40 23.56 91.03 27.82 126.59 

IPW
ˆ

y  -0.13 2.19 3.44 3.60 4.16 4.77 

MI
ˆ

y  2.82 2.88 3.71 3.81 4.83 5.75 

DR
ˆ

y  -0.10 2.02 3.39 3.57 4.71 5.73 

IPW
ˆC

y  0.01 1.91 3.85 4.10 5.79 8.11 

HYB
ˆ

y  -0.02 2.03 2.14 2.57 3.66 4.31 

SS
ˆ

y  NA NA -1.10 6.61 -0.65 9.39 

= 1.0 ˆ
yA  16.53 35.44 30.17 114.40 35.68 159.43 

IPW
ˆ

y  -0.19 3.34 7.87 10.08 8.70 12.19 

MI
ˆ

y  6.48 7.58 8.53 11.14 10.63 16.81 

DR
ˆ

y  -0.23 3.35 7.76 9.84 10.35 16.39 

IPW
ˆC

y  0.03 2.83 8.82 11.99 12.69 23.80 

HYB
ˆ

y  -0.04 3.45 4.85 5.67 7.91 10.96 

SS
ˆ

y  NA NA -2.49 11.79 -1.60 16.17 

 
The simulation results can be summarized as follows. The naive estimator ˆ yA  using the sample mean 

from the non-probability sample is biased under all the settings and is not included in any further 

comparisons with other six estimators. (1) All five estimators (the sixth estimator SS
ˆ

y  using a subsample 

is not applicable) under the setting of no model misspecification and no undercoverage (i.e., = 0.0 and 

= 0.0) perform well with no biases and similar MSEs; (2) Without issues of undercoverage (i.e., = 0.0), 

the model-based prediction estimator MI
ˆ

y  starts to show biases as the outcome regression model is 

misspecified (e.g., RB% = 6.48 for = 1.0), while the other four estimators show no biases with similar 

small MSEs, including the hybrid estimator HYB
ˆ

y  under the split population approach; (3) The estimators 

MI
ˆ ,y DR

ˆ ,y HYB
ˆ

y  using the correctly specified outcome regression model (i.e., = 0.0) show no biases and 

similar small MSEs in the presence of undercoverage (i.e., = 0.2 or 0.4). The calibrated IPW estimator 

IPW
ˆ ,C

y  which requires a linear outcome regression model to justify, also shows no biases with 

undercoverage; (4) When the outcome regression model is misspecified (i.e., = 0.5 or 1.0) and there is an 

undercoverage problem (i.e., = 0.2 or 0.4), all five estimators (excluding the last one SS
ˆ ),y  which rely 

on the correctness of one of the two working models, demonstrate clear biases and deteriorated MSEs; (5) 
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The estimator SS
ˆ ,y  which uses additional information on y  through a subsample from ,1,BS  shows 

negligible biases for all scenarios but the values of MSE are larger than several other estimators. Part of the 

reasons is the very small size of the subsample (2)
,1BS  used in the simulation since the estimator SS

ˆ
y  involves 

the key component 1,SS
ˆ

y  given in (4.7), and the latter has variance depending on the size of (2)
,1 .BS  

 
6. Concluding remarks 
 

The undercoverage problem with non-probability survey samples is closely attached to issues with 

modelling on propensity scores, and parametric models usually fail without the positivity assumption. In 

practice, most non-probability samples do not represent the entire target population, rendering propensity 

score based weighting methods invalid under such scenarios. Model-based prediction approach is sensitive 

to model specification, and the quality of the model on the response variable y  depends largely on the 

auxiliary variables which are available in both the non-probability sample and the reference probability 

sample. If the analyst is confident with the prediction model, the model-based prediction approach can be 

reliable in dealing with undercoverage problems when the support (i.e., the range) of each auxiliary variable 

in the non-probability sample matches the one from the probability sample. Otherwise there is a risk of 

extrapolation leading to biased estimation. From the theoretical view point, the deterministic undercoverage 

is a consequence of the violation of the positivity assumption A2. It leads to issues with fitting the outcome 

regression model using the non-probability sample data since ( | , = 1) = ( | )E y R E yx x  implicitly requires 

( = 1) 0P R   even if A1 holds. This is why the calibrated IPW estimator may have some advantages under 

a linear outcome regression model since the estimation of the model parameters β  is not required. 

The undercoverage problem is intrinsically related to the sample selection and participation mechanism 

for non-probability samples, which can be further complicated by the so-called non-ignorable selection bias. 

Dealing with non-ignorable selection bias for non-probability samples is itself an active research topic and 

has been investigated in several recent publications; see, for instance, Andridge, West, Little, Boonstra and 

Alvarado-Leiton (2019), Boonstra, Little, West, Andridge and Alvarado-Leiton (2021), and West, Little, 

Andridge, Boonstra, Ware, Pandit and Alvarado-Leiton (2021), among others. Sensitive analysis and 

quantitative measures on selection bias developed in these papers can be valuable tools for dealing with 

undercoverage problems. 

The split population approach has been used in survey sampling to analyze and combine data from 

different sources; see, for instance, Zhang (2019) for further discuss and related references. Our proposed 

convex hull formulation in splitting the population into two subpopulations shows some potential in dealing 

with undercoverage problems, but a complete removal of biases in estimation after the split requires 

additional information on one of the subpopulations. The modified nearest neighbour method of Kim and 

Rao (2018) for splitting the target population seems to be a promising idea and may deserve some conscious 

efforts in future research. 
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Another important topic which is not addressed in the paper is on variance estimation under the strategies 

discussed in the paper. We are currently undertaking a separate research project on variance estimation and 

we hope to report our progresses in the near future. 

The literature on missing data and causal inference includes methodological developments in dealing 

with the impact of very small but positive estimated propensity scores on the estimation of the main 

parameters through inverse probability weighting. Some of these developments may be useful for addressing 

undercoverage problems with non-probability samples, such as the stable weights approach of Zubizarreta 

(2015). It is hoped that discussions presented in this paper will add insights to the growing field of data 

integration and combining data from multiple sources. 
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