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Bayesian small area models under inequality constraints 
with benchmarking and double shrinkage 

Balgobin Nandram, Nathan B. Cruze and Andreea L. Erciulescu1 

Abstract 

We present a novel methodology to benchmark county-level estimates of crop area totals to a preset state total 
subject to inequality constraints and random variances in the Fay-Herriot model. For planted area of the National 
Agricultural Statistics Service (NASS), an agency of the United States Department of Agriculture (USDA), it is 
necessary to incorporate the constraint that the estimated totals, derived from survey and other auxiliary data, are 
no smaller than administrative planted area totals prerecorded by other USDA agencies except NASS. These 
administrative totals are treated as fixed and known, and this additional coherence requirement adds to the 
complexity of benchmarking the county-level estimates. A fully Bayesian analysis of the Fay-Herriot model 
offers an appealing way to incorporate the inequality and benchmarking constraints, and to quantify the resulting 
uncertainties, but sampling from the posterior densities involves difficult integration, and reasonable approxi-
mations must be made. First, we describe a single-shrinkage model, shrinking the means while the variances are 
assumed known. Second, we extend this model to accommodate double shrinkage, borrowing strength across 
means and variances. This extended model has two sources of extra variation, but because we are shrinking both 
means and variances, it is expected that this second model should perform better in terms of goodness of fit 
(reliability) and possibly precision. The computations are challenging for both models, which are applied to 
simulated data sets with properties resembling the Illinois corn crop. 

 
Key Words: Devroye method; Fay-Herriot model; Grid method; Hierarchical Bayesian model; Metropolis sampler. 

 
 

1. Introduction 
 

For many problems in official statistics, it is necessary to incorporate constraints in model-based 

inference. For example, in small area estimation, there may be constraints on the model estimates, which 

are to be benchmarked to a target. These may be known lower (or upper) bounds for county estimates, which 

should “add up” to the state estimate, obtained earlier. One practical example is the estimation of planted 

acres for counties within states, with a state estimate obtained earlier, when there are survey data and 

administrative data that can provide lower bounds to the county estimates, which are required to add up to 

the state estimate. While we focus on an application in agriculture, we develop a methodology to solve the 

problem in which small area estimates are needed to satisfy certain lower bounds and these estimates are 

further benchmarked to an estimate at a higher level via the top down approach. 

In the United States, official county-level estimates of crop yield, total production, and total acreage 

published by National Agricultural Statistics Service (NASS), an agency of the United States Department 

of Agriculture (USDA) are important. These official estimates may determine the amount of payments to 

be made to farmers and ranchers enrolled in several programs administered by other USDA agencies 

including the Farm Service Agency (FSA) and the Risk Management Agency (RMA). Accordingly, NASS 

strives to improve the accuracy, reliability, and coverage of its official crop county estimates. As described 
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in a report titled Improving Crop County Estimates by Integrating Multiple Data Sources (National 

Academies of Sciences, Engineering, and Medicine, 2017), one way to do so is to use defensible models 

that include multiple sources of variability and other auxiliary data. The report highlighted many of the 

challenges faced by NASS and emphasized the role model-based inference can play in the publication of 

official county estimates. The findings of the report were further discussed in Cruze, Erciulescu, Nandram, 

Barboza and Young (2019), and the authors identified coherence of crop area estimates with known, same-

year administrative acreage totals as a significant need for the NASS crops county estimates program. 

Constraints on estimates may enter in the form of order or shape restrictions (e.g., Nandram, Sedransk 

and Smith, 1997; Silvapulle and Sen, 2005; Chen and Nandram, 2022) or in the form of inequality 

constraints (Sen and Silvapulle, 2002). The latter type of restriction is of particular interest as it relates to 

the coherence of tabulated crop estimates in the presence of available administrative data curated by USDA. 

Benchmarking estimates for smaller geographic domains to those of larger geographic areas is one common 

form of equality constraint encountered in official statistics. For example, several past NASS studies have 

achieved this by ratio adjustment (raking) made after model output analysis (e.g., Erciulescu, Cruze and 

Nandram, 2018, 2019, 2020); see also Steorts, Schmid and Tzavidis (2020) and the references therein for 

an informative review on benchmarking. While the emphasis of the present work is methodological, we 

note the recent NASS-authored case study and companion paper (Chen, Nandram and Cruze, 2022) on the 

constrained planted area problem, single shrinkage model. Also, we note that in the current paper our main 

contributions are on the inequality constraints; see also NASS’s RDD Research Report, Number RDD-22-

02 (Nandram, Cruze, Erciulescu and Chen, 2022). 

Non-probability data are not devoid of errors. First, it is understood that while participation in 

agricultural support programs is popular in the United States, the voluntary enrollment in FSA and RMA 

programs contributes to potential under-coverage (a downward bias) in these administrative acreage totals. 

Moreover, rates of participation in these support programs may differ each year, by commodity crop, by 

state, or even more locally within state. Other nonsampling errors, however, are believed to be minimized 

through FSA and RMA quality controls. For example, farmers certify their enrolled acreages with FSA 

agents on geolocated field boundaries, and farmers are subject to penalties for falsifying their reports. With 

these properties in mind, the available administrative totals are viewed by NASS and USDA as informative 

lower bounds and publication of coherent tabular data on planted area requires: 1) that county acreage totals 

sum to the state acreage totals that are published prior to the release of county estimates, and 2) that official 

county-level planted area estimates honor the lower bound constraint in each county. 

Additionally, we consider possible gains from double shrinkage by borrowing strength from means and 

variances simultaneously. Both frequentist and Bayesian model-based estimation techniques for the 

sampling variances have been considered in the literature for the area-level models. For example, see Wang 

and Fuller (2003); You and Chapman (2006); Gonzalez-Manteiga, Lombardia, Molina, Morales and 

SantaMaria (2010); Maiti, Ren and Sinha (2014); and Dass, Maiti, Ren and Sinha (2012). Recently, 

Erciulescu, Cruze and Nandram (2019) incorporated double shrinkage in estimates of unconstrained 

harvested area totals. 
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Let ˆ , =1, , ,i i …   denote the observed direct estimates of total acreage for   counties, and 2 , =is i  

1, , ,…   denote the corresponding observed variances for the   counties. The Fay-Herriot (area-level) 

model (Fay and Herriot, 1979; see also, Rao and Molina, 2015) is a standard model in small area estimation 

for the ˆ ,i  where, 

 
ind

2ˆ Normal( , ), = 1, , ,i i i is i   … ∼  (1.1) 

and at the second stage,  

  
ind

2 2, Normal , , = 1, , ,β x βi i i   … ∼  (1.2) 

where xi  is a p -vector of covariates with an intercept and β  is a p -vector of regression coefficients. In a 

full Bayesian analysis of this model, prior distributions of model parameters are assumed; a priori we take 
2 2( , ) = ( ) ( ),β β      where 2( )   is proper but ( ) = 1β  is improper. 

Procedurally, NASS state estimates of planted area (denote these state targets by the scalar )a  are 

determined and published prior to the publication of county-level estimates. Nandram, Erciulescu and Cruze 

(2019) developed a full Bayesian Fay-Herriot model incorporating the benchmarking constraint 
=1

=ii
a


 

directly into the model. This was achieved by deleting the last area to accommodate the benchmarking 

constraint. They empirically showed that, in practice, it does not really matter much which area is deleted 

in order to incorporate the benchmarking constraint. However, it is more convenient in the current paper to 

use an alternative approach, which does not use deletion. 

We now want to refine this model to accommodate benchmarking and inequality constraints on the .i  

In addition to the benchmarking constraint, we need to add the county-specific inequality constraints  

 , = 1, , ,i ic i  …   (1.3) 

where the ic  are fixed, known quantities that represent administrative values provided by FSA or RMA. (In 

practice, when both data sources are present, the larger of the two is used to establish the lower bound, .)ic  

In NASS planted acres data, some of the direct estimates of planted area totals may be more than one or two 

standard errors below their corresponding ,ic  thereby creating some difficulties for the model estimates to 

be larger than the .ic  It is worth noting that 
=1 =1

= .i ii i
a c c   

 
 That is, the estimation processes that 

generate state targets also respect the available administrative totals at state level, however, the bench-

marking constraint can create additional difficulties when the target is only slightly larger than ,c  i.e., as 

1c
a   from below. We need to add the inequality constraints to the Fay-Herriot model specified in (1.1), 

(1.2) and the priors to get the joint posterior density of , =1, , .i i …   In order to incorporate the inequality 

constraints into the Bayesian Fay-Herriot model, we propose the following simplification. In departure from 

Nandram, Erciulescu and Cruze (2019), we incorporate the inequality constraints directly while only 

partially incorporating the benchmarking constraint into the Bayesian Fay-Herriot model. That is, we will 

incorporate the constraints, , =1, , ,i ic i …   together with the restriction that 
=1 ii

a 


 into the model. 
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When the latter inequality is enforced, a raking of model estimates to the state total a  in an output analysis 

will still satisfy all individual county inequality constraints. Incorporating double shrinkage into the 

inequality-constrained model entails additional computational considerations. Therefore, our key contri-

butions are to provide small area estimates, which are subjected to inequality constraints, benchmarked to a 

target, and we describe a single shrinkage model (sample variances fixed) and two double shrinkage models 

(sample variances random). 

In this paper, we discuss a novel methodology to solve these dual problems by modifying the Bayesian 

Fay-Herriot model described in Nandram, Erciulescu and Cruze (2019) to accommodate both benchmarking 

and inequality constraints into the Bayesian area-level models of Equations (1.1) and (1.2). Additionally, 

we extend the model to accommodate double shrinkage of means and variances. In Section 2, we introduce 

the methodology for single-shrinkage model in the presence of inequality constrained totals. In Section 3, 

we describe the methodology for the double-shrinkage model, gamma regression, and the log-linear model 

is discussed in Appendix B; again double-shrinkage models incorporate inequality constrained totals. 

Special emphasis is given to the computation that facilitates these approaches. In Section 4, as 

confidentiality of USDA survey and administrative data is a concern, simulated data sets with properties 

resembling those of the Illinois corn crop are generated and used to fit and assess these models. We offer 

concluding remarks in Section 5, noting that constrained acreage methodologies were successfully 

incorporated in NASS official statistics beginning with the 2020 crop year. 

 
2. Methodology under the single shrinkage model 
 

In this section, we develop the methodologies and computational strategies to incorporate inequality 

constraints and benchmarking procedures into the Bayesian area-level models of Equations (1.1) and (1.2). 

This provides the single shrinkage model in which the sampling variances are assumed fixed and known. 

Our strategy is to use the composition rule (i.e., multiplication rule of probability) to draw samples from 

the posterior density  2 2ˆ ˆ, ,β θ σ   and then to draw samples from  2 2ˆ ˆ, , , .θ β θ σ   Both of these 

problems are difficult. In this section, we have used the shrinkage prior for 2  (i.e., 
2 2 2( ) =1 (1 ) ,    

2 0)   to avoid impropriety of the posterior density. Letting 
2=1 (1 ),   then Beta (1,1) ∼  (i.e., 

uniform). Note that if x  has a half Cauchy density, then the density of 2  after the transformation 
2=x   is the Cauchy-based prior, 

2 2

2 1

(1 )
( ) = ,

  
 


 which translates to Beta (0.5, 0.5). ∼  In addition, 

both densities are in the Snedecor’s f  distribution form, where the first density is a (2, 2)f  and the Cauchy 

version is a (1,1);f  the (2, 2)f  is mathematically a bit more convenient when we transform to (0,1).  

Let  =1
= : , =1, , , .θ i i ii

V c i a  


…   Here, this conditional posterior density,  2 2ˆ ˆ, , , ,θ β θ σ   

is subject to the inequality constraint and the constraint 
=1

,ii
a 


 where a  is the benchmarking target. 

Note that the inequality is strict because with the equality, one of the i  becomes redundant. This 

redundancy has to be taken into consideration when the model is fit (a much more difficult problem), but 

with the inequality constraint we do not need to do so (a much easier problem). That is, we need to draw 

1, , …  subject to the constraints , =1, ,i ic i  …   and 
=1

.ii
a 


 Note again that the benchmarking 
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constraint is only partially included in the Fay-Herriot model. We will use a Gibbs sampler to carry out this 

sampling procedure, and the benchmarking constraint will be fully incorporated in an output analysis from 

the Gibbs sampler using a raking procedure. 

The joint prior density is  

    
 

 
2 2 =1

=1

( )
, , = , , ,

( )
θ

x β
θ β β θ

x β θ

i ii

i iiV

V
d

  
   

  












  (2.1) 

where ( )   is the standard normal density. Indeed, this is a very awkward joint prior density with the 

normalization constant a function of 2( , ).β   Then, using Bayes’ theorem, the joint posterior density is  

    
 

 
 2 2 2 =1

=1
=1

( )
ˆ ˆ, , , , ( ) , .

( )
θ

x β
θ β θ s β θ

x β θ

i ii
i i i

ii iiV

s V
d

  
      

  


  
   

  









  (2.2) 

It is difficult to use Markov chain Monte Carlo methods to efficiently draw samples from 2 2ˆ( , , , )θ β θ s   

in (2.2). 

We now show how to draw samples from 2 2ˆ( , , , )θ β θ s   using numerical integration, the Gibbs 

sampler and the Metropolis sampler. [Note that in the discussion below, apart from 
=1

,ii
a 


 it does not 

matter whether we use “less than or equal” symbols because the i  are continuous random variables.] 

We first show how to draw the i  using the Gibbs sampler. For the constraints, we have , =i ic i  

1, , ,…   and 
=1

.ii
a 


 This means that 

=1 =1
,i ii i

c a  
 

 and so  =1 =1,
max ,i j j ij j j i

c c  


   
 

 

=1,
, = 1, , .jj j i

a i





…   Therefore, the support of the conditional posterior density of i  given ( ) =iθ  

1 1 1( , , , , , ) ,i i    


… …  is  

 
=1 =1, =1,

max , , =1, , .i j j i j
j j j i j j i

c c a i  
 

 
    

 
  
  

…    

It is easy to show that the conditional posterior density is  

  2 2 2 2 2 2
( )

ˆ ˆ, , , , Normal (1 ) , (1 ) , = ( ),θ β θ s x βi i i i i i i i is           ∼   

 
=1 =1, =1,

max , = , =1, , .i i j j i j i
j j j i j j i

u c c a v i  
 

 
     

 
  
  

…   (2.3) 

Now, we want to draw i  subject to the constraint, .i i iu v   To sample 
2Normal( , ),X  ∼  

,a X b   we have the following result (see Devroye, 1986),  

 1 (1 ) ,
a b

X U U
 

 
 

      
          

    
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where Uniform(0,1)U ∼  and ( )   and 1( )   are respectively the cdf and the inverse cdf of the standard 

normal density. We use the Gibbs sampler to draw a sample θ  in (2.3). This is obtained by drawing 

, =1, , ,i i iu v i n  …  each in turn. 

The final step is to rake up 1, , …  to the target a  for each iterate. So that the final iterates are  

 

=1

= , = 1, , ,i i

jj

a
i 




 …    

and posterior inference can be made about 1, , …  using these raked vectors of iterates. It is now clear 

why 
=1

.ii
a 


 Note again that this is a straight forward output analysis from the Gibbs sampler. 

We next show how to draw samples from 2 2ˆ( , , )β θ s   using numerical integration and the Metropolis 

sampler. The joint posterior density of 2( , )β   is  

 
   

 
=12 2 2

=1

ˆ( ) ( )
ˆ( , , ) ( , ) ,

( )
θ

x β θ
β θ s β

x β θ

i i i i iiV

i iiV

s d

d


     

   
  





 









   

which, by completing the squares, can be simplified to  

  2 2 2 2 2

=1

ˆ ˆ( , , ) ( , ) ( ) ( , ),β θ s β x β βi i i
i

R        
 

  
 



 (2.4) 

with  

 
 

 
=12

=1

( )
( , ) = ,

( )

θ

θ

θ
β

x β θ

i i iiV

i iiV

d
R

d

   


  














   

where ˆ= (1 ) x βi i i i i      and 
2 2= (1 ) ,i i   = 1, , .i …   We will use the Metropolis sampler to fit 

(2.4). There are two key issues, which are to construct an efficient proposal density and to compute the ratio, 
2( , ),βR   of the two integrals in (2.4). 

First, we consider how to construct a proposal density. We have samples of 
2( , )β   from the Fay-Herriot 

model. We can now transform 2  to 2
1 = log ( )p   and add it as the last component to get a new vector β  

with 1p   components. Now fit a multivariate normal density to the samples, 2ˆ ˆNormal( , ),β β  ∼  where 

β̂  and ̂  are the posterior mean and covariance matrix of the samples from the Fay-Herriot model, and 
2 Gamma( 2, 1 2)  ∼  to complete the ( 1)p  -variate Student’s t  density on   degrees of freedom, 

where   is a tuning constant. 

Second, we describe how to estimate the ratio of the integrals in (2.4). Let ={ : ,i iV c  θ  

= 1, , };i …   we have actually selected an upper bound for each .i  Note that ,V V   and perhaps V  is not 

much bigger than .V  Let ( ) =1θI V  if θ V  and ( ) = 0θI V  otherwise. Then,  

 
=12

=1

( ) {( ) }
( , ) = .

( ) {( ) }

θ

θ

θ θ
β

θ x β θ

i i iiV

i iiV

I V d
R

I V d

   


  





 

 











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Now, 2( , )βR   can be calculated using Monte Carlo methods. As an importance function, we use the 

conditional posterior densities of the , =1, , ,i i …   constrained on .V  That is,  

 
ind

2 2, Normal( , ), , = 1, , .βi i i i ic i       … ∼  (2.5) 

It is now easy to draw samples ( ) , 1, , ,θ h h M …  in (2.5), where M  1,000 or so; see Devroye (1986). 

Then, a Monte Carlo estimator of 2( , )βR   is  

 

 
 

( )

2 =1

( )

( )

( )=1 =1

( )
( , ) = .

( )
( )

( )

θ
β
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Note that for each ,h  once ( ) , =1, , ,h
i i …   are drawn from the proposal density, we simply need to check 

that ( )

=1
.h

ii
a 


 However, it is possible that this Monte Carlo estimator does not exist, and this clearly 

occurs when ( ) , =1, ,θ h V h M …  (all ),M  and in this case we use the modified estimator,  
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That is, we simply replace V  by V  to form an approximation in the case that the Monte Carlo estimator 

might not exist. In either case, we have drawn the i  as in (2.5), where 
ind

2 2, Normal( , ),i i i   β ∼  

, =1, , .i ic i   …   It is possible for some of the ( )θ h  to be in ,V  and in this case if the number of 
( )θ h V  is at least 2,M  we use the former estimator. 

Our procedure gives us 1,000 samples from the posterior density of 
2( , )β   using the Metropolis 

sampler. Then the more important samples of 1, , …  are obtained using the Gibbs sampler. For each of 

the 1,000 iterates of 
2( , )β   from the Metropolis sampler, we run the Gibbs sampler to say, 100 iterations 

or so, and pick the last set of 1, , . …  This is the so-called Gibbs-within-Metropolis sampler. This is not 

too expensive and it is reasonably efficient; we have seen similar difficulties in some of our projects (e.g., 

Nandram and Choi, 2010; Chen, Nandram and Cruze, 2022). 

In this method, it is not really necessary to monitor the Gibbs sampler for convergence because we need 

only one value but a “burn-in” is required. 

 
3. Methodology under the double shrinkage models 
 

Two double shrinkage models are introduced, where we model both the sample variances and the means. 

The inequality constraints are also included. Here borrowing of strength occurs via both the means and the 

variances. For the specification of variances, the first uses a gamma regression model and the second uses 

a log-linear model. In Section 3, we model the sample variances using gamma regression; Section 3.1 

describes the method and Section 3.2 describes the computation; further computations are shown in 

Appendix A. In Appendix B, we describe the second double shrinkage model for the sample variances using 
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the log-linear model. Even a full Bayesian treatment of the log-linear model offers remarkable 

computational advantages relative to the gamma regression model. 

We discuss the reasons for two double shrinkage models. The computations in both models are difficult. 

We prefer the gamma model because it is more accurate within MCMC standards. Unfortunately, the 

computations are too time-consuming and it is not operational at NASS. We thought that if we move to a 

log-linear model, we can make some mathematical approximations, which will allow the double-shrinkage 

procedure to be operationalized at NASS and many other government agencies. Within the log-linear model, 

we made two approximations, which allow the computations to go very fast (in seconds) with reasonable 

accuracy. It is mathematically more difficult to make approximations within the gamma model, but some 

researchers might still prefer it. 

 
3.1 Gamma regression model 
 

For   areas, we have the survey estimates ˆ ,i  their standard errors ,is  and the sample sizes 2in   

(sample sizes must be at least 2). We start with a convenient model that builds upon our work on the Fay-

Herriot model. We assume that  
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… 
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∼
  

where Gamma ( , )X a b∼  means that 
1( ) ( ), 0.a a bxf x b x e a x     Note that, given i  and 

2 ,i  we are 

assuming ˆi  and 
2
is  are independent. Under the first assumption, the i  and 

2
i  are not estimable, but the 

first and second assumptions together make i  and 
2
i  estimable. Here, the chi-square assumption is 

reasonable, but the degrees of freedom may be a little smaller than the original sample size because it should 

be the effective sample size. The effective sample size is not normally presented at NASS, and in fact, it is 

the number of reports with positive responses that is presented. So we have used the original sample size; 

see Erciulescu, Cruze and Nandram (2019) for a similar model without the inequality constraint, of course. 

A priori, we assume that  
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These assumptions on i  and 
2
i  provide double shrinkage (shrinking both means and variances). Here, we 

have assumed that the two sets of covariates are the same, but they can, of course, be different. 

It is worth noting that the prior for 
2
i  is conjugate providing some simplicity in the computations; see 

Nandram and Erhardt (2004) for similar specifications for the corresponding binomial and Poisson models. 

Our prior for the hyperparameters is  
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 2 2

2 2 2

1 1
( , , , ) , , 0.

(1 ) (1 )
β γ    

 
 

 
  

That is, flat priors are assumed for β  and ,γ  shrinkage priors (proper) are assumed on 2  and ,  and all 

parameters are independent. Note that 2  and   are nonnegative, and so we prefer to use a shrinkage prior. 

At this point, there are virtually no mathematical, computational or scientific benefits using other 

noninformative priors for .  

In our model, we include the inequality constraint, 
=1

, = 1, , , ,i i ii
c i a  


…   where a  is the target. 

Note again that we only partially include the benchmarking constraint. It is convenient that this is the same 

region as for single shrinkage model,  =1
= : , = 1, , , .θ i i ii

V c i a  


…   Therefore, the prior densities 

for the i  remain the same,  
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where ( )   is the standard normal density. It is convenient to define 2( , , , ).β γ    Then, the joint prior 

density is  
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 (3.1) 

By independence, the joint density of 2ˆ( , ),θ s  is  
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Finally, using Bayes’ theorem, the joint posterior density is proportional to the product of (3.1) and (3.2) 

and it can be shown to be  
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 (3.3) 

where 
2 2 2= ( ), 1, , .i i i     …   

It now follows from (3.3) that the conditional posterior densities of the i  are  
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  
ind

2 2 2ˆ ˆ, , , Normal (1 ) , (1 ) , 1, , , .σ θ s x β θi i i i i i i V         … ∼  (3.4) 

Now, one can integrate out the i  from (3.3) to get the joint conditional posterior density of 2 ,σ  
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Note that the term,  
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
 is not a function of the 2

i  and has been eliminated together 

with other such terms. 

Now, one can integrate out the 2
i  from (3.3) to get the joint posterior density of ,  
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where = ( 1) 2i ia n    and  2= ( 1) 2x γi

i i ib n s e    and IG ( , )c a b  is the inverse gamma density, 

which is given by  
11( ) = ( ) , 0.

aa b c
cf c b e a c

     

 

3.2 Computation for the gamma regression model 
 

Our strategy is to draw samples from the joint posterior density of   in (3.6). This is a difficult task, but 

once this is accomplished, we can use the multiplication rule to draw samples of the 
2
i  from (3.5) and then 

the i  from (3.4). This strategy is useful if there are a large number of counties; the state of Texas has 254 

counties. We draw the i  in the same manner as described in Section 2. It is more difficult to draw samples 

of 
2.i  We describe how to draw samples from   in (3.6). The basic strategy has two key steps. 

First, we fit the double shrinkage model without the inequality constraints and the benchmarking. This 

gives an approximate sample of size M  1,000 iterates from the posterior density of   that we obtained 

using a Metropolis sampler. The details of this first step are given in Appendix A. 

Second, we convert this approximate sample to a sample from the posterior density with the inequality 

constraint and the benchmarking. We use the M  iterates from the first step to construct a multivariate 

Student’s t  density for  2, log ( ), , log ( ) .β γ   At each of the iterate obtained from the first step, we run a 

Metropolis sampler with the multivariate Student’s t  density 100 times and picked the last one; see 

Nandram and Choi (2010) for a similar procedure. In this divide-and-conquer manner, we minimize the 
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chance of the Metropolis sampler getting stuck. We want the Metropolis sampler to move from the starting 

value at least once; no other monitoring is necessary; if it does not move at least once, we discard this run. 

It is good that this procedure gives a sample of M  independent iterates of .  However, this step is time-

consuming and for the current simulated data it took roughly sixteen hours. 

Now, we describe how to use the accept-reject algorithm to draw samples of 2.i  We can rewrite (3.5) as  

   

 2 2 2

2
=1

2

=1 2

2
=1

ˆ( (1 ) )ˆ, , (1 )
(1 )

ˆ( (1 ) )
(1 )

ˆ (1 )
( )

ˆ( (1 )

θ

θ

θ

x β
σ θ s θ

x β

x β
θ

x β

i i i i i
iV

i i

i i i i i
ii

ii i
i V

i i i i i i i

V

d

I V

  
   

 

  
  

 
 

    








    
   

  

    
 

           
        




 















  2 2

2

=1 2

( 1) 2 1 {( 1) } 22

=1

)
(1 )

(1 )

1 ,
x γ

θ

θ

ii
i i i

ii

i

n n s e
i

i

d

d

e
  

 
 


     

  
 

  











 (3.7) 

where V V  and V  is a larger rectangular set. 

Note that the first and third terms in (3.7) are probabilities. It is also true that the second term in (3.7) is 

a probability because  
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Therefore, we can use an accept-reject sampler to draw the 
2.i  

Note that, by construction, the first term in (3.7) is a product over 1, , .i  …   This is also true for the 

second term. So if we ignore the third term, we can independently draw 
ind
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(unrestricted distributions) and take it with probability,  
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to complete the accept-reject algorithm. It is possible that there are several rejections before an acceptance, 

but this rarely happens. If there are 25 rejections, we simply draw the 
2
i  from their unrestricted 

distributions, 
ind
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The remaining question then is how to calculate  
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A Monte Carlo estimator of C  is  
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However, the term,  ( )1
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M h
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I V  is difficult to incorporate into the accept-reject sampler. We 

have overcome the difficulty in the following manner. We have computed Ĉ  and found that more than 60% 

of the Ĉ  leads to acceptance of all the 2 , 1, , .i i  …   When the 2
i  are not accepted, we draw samples 

from their unrestricted distributions, 
ind
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4. Comparisons using simulated examples 
 

We compare our models using simulated examples. We are not performing a simulation study, where 

replication is important because the models are already complicated. We use the coefficient of variation as 

a measure of reliability for the comparisons. We also show graphically how the observations in the simulated 

data violate the lower bound constraints and how this problem is corrected by our models. 

Both NASS survey data and USDA administrative acreage data are subject to confidentiality protections, 

therefore, we describe a means of simulating data with similarity to Illinois corn crop data that have been 

used extensively in recent NASS studies on crop county estimates and we use it to show the key features of 

our benchmarking procedure with inequality constraints. As a practical matter, participation in farm support 

programs can vary by crop and by state. Some of the survey estimates may already satisfy the lower bound 

constraint, i.e., some ˆ ,i ic   so that the lower bound constraints imposed on model estimates for these areas 

may be loose or non-binding restrictions in those counties. However, in states with high rates of enrollment 

in farm support programs, like the corn crop in Illinois, administrative totals may capture large parts of the 

population, so that direct estimates, subject to sampling error, fall below to the administrative totals in many 

counties. The model estimates of the counties must be constrained by the lower bounds and the 

benchmarking target as well. 

In Section 4.1, we describe several simulated data sets. In Section 4.2, we present results under the single 

shrinkage model with the inequality constraints. In Section 4.3, we present results under the double 

shrinkage model for the gamma regression model and the log-linear model, again with the inequality 

constraints. At the same time, we have compared these models with the direct estimates (DE), the estimates 

from the Bayesian Fay-Herriot model (ME), without benchmarking or inequality constraints, and the 

Bayesian Fay-Herriot model with random benchmarking (MERB) at both the county level and at the level 

of agricultural statistic districts (discussed below). 

It is worth noting that all computations were performed on a machine with CentOS (version 6.10) 

operative system using an Intel CPU Xeon E5-2690 at 2.90GHz having 16 logical cores, 128GB of RAM, 

and the software was compiled with ifort version 11.1. 
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4.1 Description of the simulated data sets 
 

Nandram, Erciulescu and Cruze (2019) simulated a data set similar to the one in Battese, Harter and 

Fuller (1988); see also Toto and Nandram (2010) and Nandram, Toto and Choi (2011). These data are on 

planted acres of corn and soybeans for 37 segments with 12 counties in the state of Iowa and there are two 

covariates. (Like Illinois, Iowa is a large corn producing state in the United States.) A Bayesian version of 

the small area model of Battese, Harter and Fuller (1988) is described in Toto and Nandram (2010); see also 

Molina, Nandram and Rao (2014).  

By simulating from these data, we can create a data set with as many areas we please. In particular 

Illinois has = 102 counties grouped in 9 smaller-than-state regions called Agricultural Statistics Districts 

(ASDs). The data are processed to obtain the survey estimates and standard errors. In our simulated data, 

based on the actual sizes of the ASDs, we have taken the first set of counties to be in the first ASD, the 

second set to be in the second ASD and so on so that the first 12 counties correspond to the first ASD, the 

next 11 correspond to the second, and the remaining ASDs have 9, 11, 7, 13, 15, 12, 12 counties, 

respectively. In the process of simulating acreage data, we also added a random effect for each ASD. The 

sample sizes within the counties are chosen uniformly in (2, 74), a realistic range of sample sizes across the 

state comparable to actual Illinois corn data reported during the 2014 crop year (Erciulescu, Cruze and 

Nandram, 2018, 2019). Additionally, county-level coefficients of variation CVi  will be simulated uniformly 

from within the range of (0.08, 0.93); these extremes are comparable to values reported in Erciulescu, Cruze 

and Nandram (2020) in reference to the 2015 crop year. Given simulated survey estimates and coefficients 

of variation, computed standard errors are obtained ˆˆ CV .i i i    Thus, we have a data set with the survey 

estimates, ˆ ,i  survey standard error, ˆi  and sample sizes, in  for the thi  county, 1, , .i  …   

The last piece to be simulated is the data corresponding to the administrative acreage values, i.e., lower 

bounds, .ic  For simplicity, we call these the FSA values throughout the simulation. In order to reflect the 

relationship between the FSA values and the survey estimates for Illinois, we assume the following equation 

holds,  

 ˆ ˆ , 1, , ,i i i ic U i     …    

where 
iid

Uniform ( , )iU s s∼  and s  is taken to be a suitable value (e.g., s  0.10). However, the key 

problem is how to set the benchmarking target. In the real problem, we will know the target, but the target 

has to be larger than the sum of the lower bounds. Therefore, it is sensible to take the target to be = ,a c d  

where 
=1 ii

c c


 and specify 0 1.d   The completeness of the administrative data relative to the state 

total can vary by state and crop, but in Illinois, this value will often be close to 1. 

 
4.2 Results under the single shrinkage model 
 

In applying the methodology for an inequality-constrained model with fixed variances developed in 

Section 2, we specify a plausible value of =d 0.99 indicating the simulated administrative data embody 

99% of the state-level planted area total for corn in Illinois. In this first instance, we restrict the range of 
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coefficients of variation to (0.05, 0.25). Figure 4.1 shows the simulated survey estimates of ˆi  versus the 

FSA values ic  (top panel) and the posterior mean of i  versus the FSA values ic  under the Bayesian 

Fay-Herriot model with inequality constraint and benchmarking, not including double shrinkage (call this 

model MFSA-NDS). In the top panel, we can see many points are above or below the o45  straight line 

through the origin. (This resembles a realistic pattern shown in Figure 4.4 of Erciulescu, Cruze and Nandram 

(2020), as applied to the 2015 Illinois corn crop.) Where the survey estimates for many counties are below 

their corresponding FSA values, all points in the bottom are immediately above the o45  straight line through 

the origin, indicating that all MFSA-NDS estimates are no smaller than their corresponding FSA values. 

Moreover, the sum of the 102 MFSA is equal to the state total, satisfying the benchmarking requirement by 

raking to the state target. 

In Table 4.1, we present results for Illinois simulated data. We compare the results with our new model 

that incorporates the inequality constraints (FSA values are lower bounds of the model estimates). 

Specifically, we compare estimates from DE, ME and MERB and the single shrinkage Bayesian Fay-Herriot 

model with inequality constraint and benchmarking (MFSA-NDS). 

The minimum, median and maximum posterior coefficients of variation (expressed as percents, %) are 

smaller than the other two models (ME, MERB), even more so for the direct estimates (DE). Of course, as 

expected, the coefficients of variation for the ASDs are smaller than those for the counties; there is one 

exception (5.13 versus 5.31 in Table 4.1, but this is a minor difference). It is worth noting that county 

minimum and ASD minimum are not comparable as the county with the minimum CV is not necessarily 

nested in the ASD with the minimum CV. We note that, as expected, the coefficients of variation are in 

decreasing order (DE, ME, MERB, MFSA), and modeling appears beneficial, but more importantly we can 

accommodate the FSA values in our model (MFSA) and provide much smaller coefficients of variation. 

 
Table 4.1 

Coefficients of variation (%) for Illinois simulated data for 102 counties and 9 Agricultural Statistical Districts, 

fixed variances. 
 

Level Statistic DE ME MERB MFSA-NDS 
County min 5.13 4.76 4.79 0.57 

median 15.57 10.67 10.58 0.97 
max 24.93 15.80 15.34 5.22 

ASD min 5.31 2.54 2.39 0.24 
median 10.60 3.25 3.01 0.30 

max 14.81 3.92 3.51 0.42 
Notes: MFSA is the new benchmarking model with FSA values as lower bounds for the model estimates, CV(0.05 - 0.25) and =d 0.99. 

ASD = Agricultural Statistics Districts; CV = Coefficient of variation; DE = Direct estimates; FSA = Farm Service Agency; ME = Bayesian 

Fay-Herriot model; MERB = Bayesian Fay-Herriot model with random benchmarking; MFSA = Bayesian Fay-Herriot model with 
inequality constraint and benchmarking; NDS = Not including double shrinkage. 
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Figure 4.1 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-NDS for   

versus FSA values for Illinois and the simulated data, not double shrinkage, CV(0.05 - 0.25) and 
=d 0.99. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Notes: CV = Coefficient of variation; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality constraint and 
benchmarking; NDS = Not including double shrinkage. 
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4.3 Results under the double shrinkage model 
 

Fitting the double shrinkage model with the inequality constraints of Section 3 and denoting these 

estimates as MFSA-DS, we fit the model to the data already generated for Section 4.2. That is, data for 

which the simulated CVi  (0.05, 0.25) and =d 0.99. Summaries of the coefficients in variation for the 

MFSA-DS are given in Table 4.2, with the first four columns duplicated from Table 4.1. We notice a small 

difference between the double shrinkage model and the single shrinkage model. Over counties the maximum 

CV  under the double shrinkage model is a bit smaller than the one under the MFSA-NDS models, 3.58% 

versus 5.22% for the fixed-variances case, but over ASDs (aggregates of counties within) there are smaller 

differences between the two approaches. 

The top panel in Figure 4.2 once again plots the survey estimates versus FSA values (identical to top 

panel, Figure 4.1), and the lower panel is a plot of the posterior means versus the FSA values under the 

double shrinkage model with benchmarking and inequality constraints. The lower panel of Figure 4.2 is 

only slightly different from that of Figure 4.1, in part because the value =d 0.99 implies that there is little 

slack between the state target and the total of administrative data summed over all counties in the state. 

 
 
Table 4.2 

Coefficients of variation (%) for Illinois simulated data for 102 counties and 9 Agricultural Statistical Districts, 

double shrinkage, gamma model. 
 

Level Statistic DE ME MERB MFSA-NDS MFSA-DS 
County min 5.13 4.76 4.79 0.57 0.55 

median 15.57 10.67 10.58 0.97 1.01 
max 24.93 15.80 15.34 5.22 3.58 

ASD min 5.31 2.54 2.39 0.24 0.26 
median 10.60 3.25 3.01 0.30 0.34 

max 14.81 3.92 3.51 0.42 0.41 
Notes: MFSA is the new benchmarking model with FSA values as lower bounds for the model estimates. MFSA-DS refers to the double 

shrinkage model with benchmarking and inequality constraint, CV(0.05 - 0.25) and =d 0.99. 

ASD = Agricultural Statistics Districts; CV = Coefficient of variation; DE = Direct estimates; DS = Double shrinkage; FSA = Farm Service
Agency; ME = Bayesian Fay-Herriot model; MERB = Bayesian Fay-Herriot model with random benchmarking; MFSA = Bayesian Fay-
Herriot model with inequality constraint and benchmarking; NDS = Not including double shrinkage. 
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Figure 4.2 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS for   

versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression, 
CV(0.05 - 0.25) and =d 0.99. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: CV = Coefficient of variation; DS = Double shrinkage; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality 
constraint and benchmarking. 
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For the purposes of demonstrating the log-linear model, a second data set with slightly different features 

has been generated. Namely, we specify lower coverage of the FSA values ( = 0.95)d  and allow a higher 

range of values of survey coefficients of variation, (0.08, 0.93), comparable to the actual survey coefficients 

of variation observed during the 2015 crop year. We present summaries of the CVs in Table 4.3. Again we 

notice a small difference between the log-linear double shrinkage model and the single shrinkage model at 

the ASD level. Differences in coefficients of variation at the county level are minimal for the lower half of 

all counties, but the maximum county CV obtained from the double shrinkage model (23.94%) is 

substantially smaller than the maximum CV obtained under the single shrinkage model (fixed-variances 

case) (44.92%). Of course, as expected, the coefficients of variation for the ASDs are smaller than those for 

the counties; there is one exception for DE (8.57 versus 18.90 in Table 4.3). Again, it is worth noting that 

county minimum and ASD minimum are not comparable as the county with the minimum CV is not 

necessarily nested in the ASD with the minimum CV. Yet the models correct this problem. 

In its upper panel, Figure 4.3 depicts the new simulated survey estimates versus their corresponding FSA 

values, while the lower panel shows the posterior means of the log-linear MFSA-DS model versus the 

corresponding FSA values. In contrast to the =d 0.99 data set of the previous sections, the present =d

0.95 data set represents a looser lower-bound constraint. Accordingly, the resulting county acreage 

estimates, which also sum to the state total, are all visibly above the o45  line. For comparison, the MFSA-

DS estimates obtained under gamma regression are plotted in the lower panel of Figure 4.4. The two 

approaches to double shrinkage yield similar (not identical) point estimates given the same state target and 

administrative lower bound constraints. 

In contrast to the computationally expensive gamma regression which required in excess of 16 hours of 

run time, results of the log-linear model were obtained in a matter of minutes, and additional opportunities 

to speed up the process may be possible through approximate Bayesian computation described in 

Appendix B. 

 
Table 4.3 

Coefficients of variation (%) for Illinois simulated data for 102 counties and 9 Agricultural Statistical Districts, 

double shrinkage, log-linear model. 
 

Level Statistic DE ME MERB MFSA-NDS MFSA-DS 
County min 8.57 7.73 7.90 2.57 2.54 

median 52.90 17.83 17.16 4.56 4.92 
max 92.70 24.25 24.82 44.92 23.94 

ASD min 18.90 5.11 3.78 1.17 1.11 
median 37.70 6.15 4.71 1.83 1.43 

max 52.10 7.19 5.81 2.65 1.63 
Notes: MFSA is the new benchmarking model with FSA values as lower bounds for the model estimates. MFSA-DS refers to the double 

shrinkage model with benchmarking and inequality constraint, CV(0.08 - 0.93) and =d 0.95. 

ASD = Agricultural Statistics Districts; CV = Coefficient of variation; DE = Direct estimates; DS = Double shrinkage; FSA = Farm Service 
Agency; ME = Bayesian Fay-Herriot model; MERB = Bayesian Fay-Herriot model with random benchmarking; MFSA = Bayesian Fay-
Herriot model with inequality constraint and benchmarking; NDS = Not including double shrinkage. 
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Figure 4.3 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA for   versus 

FSA values for Illinois and the simulated data, double shrinkage, log-linear model; CV(0.08 - 0.93) 
and =d 0.95. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: CV = Coefficient of variation; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality constraint and 
benchmarking.  
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Figure 4.4 Plots of survey estimates (top panel) and posterior means (bottom panel) under MFSA-DS for   

versus FSA values for Illinois and the simulated data, double shrinkage, gamma regression, 
CV(0.08 - 0.93) and =d 0.95. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: CV = Coefficient of variation; DS = Double shrinkage; FSA = Farm Service Agency; MFSA = Bayesian Fay-Herriot model with inequality 

constraint and benchmarking.   
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5. Concluding remarks 
 

Beginning with the 2020 crop year, NASS successfully converted its county-estimates data product into 

a system model-based estimates of planted area, harvested area, total production, and yield per harvested 

acre. It is true that our methods can be applied to yield directly; only a small adjustment is needed in the 

benchmarking in the output analysis. The official estimates for 13 different commodity crops grown 

nationwide now include a benchmarking of county estimates to predetermined state targets, and lower bound 

constraints on planted area. Motivated by the needs of the NASS crop estimation program to produce 

coherent published tables across all parameters and with respect available administrative data, we have 

shown how to incorporate the area-specific inequality constraints and benchmarking into the Fay-Herriot 

model. Single shrinkage model and double shrinkage models are available. Because there are difficulties in 

performing full Metropolis samplers, we overcame these computational difficulties by making additional 

reasonable approximations in the double shrinkage model. 

It is possible to extend the hierarchical Bayesian model so that all the constraints are actually included 

in it. That is, θ  is in  =1
= : , = ,θ

n

i i ii
V c a    where a  is the benchmarking target and 1, , nc c…  are the 

FSA values. So that the hierarchical Bayesian model (i.e., extended version of the Bayesian Fay-Herriot 

model) has .θ V  We have attempted to do so for the simplest model, the Bayesian Fay-Herriot model, but 

the problem is extremely difficult. It requires the computation of orthant probabilities (e.g., Ridgway, 2016; 

Geweke, 1991; Genz, 1992) at each step of a Markov chain Monte Carlo sampler. There are no such 

problems mentioned in Rao and Molina (2015), although they have used the raking procedure for bench-

marking only, not the inequality constraints, where the ,i ic   the FSA problem. 

Nevertheless, incorporating the total constraint into the hierarchical Bayesian model will be beneficial 

because it will help protect against model failure so prominent in small area estimation, and one needs to be 

careful with this. Toto and Nandram (2010), Nandram and Sayit (2011) and Nandram, Toto and Choi (2011), 

Nandram, Erciulescu and Cruze (2019) and Janicki and Vesper (2017) were able to incorporate a much 

simpler constraint (i.e., 
=1

= )
n

ii
a  in a complete Bayesian analysis. But as is evident, it is much more 

difficult to incorporate the constraint ,θ V  and it is a problem we would like to solve in the future. We 

can add random effects on both means and variances to accommodate sub-areas (counties within ASDs). 

However, the computations are difficult and approximations beyond those based on Markov chain Monte 

Carlo methods need to be considered. Currently, we are doing research in this area. 

In Appendix C, we have comments on generalizion. It is possible to avoid the inequality constraint using 

a logarithmic transformation, but this method looses generality or it makes unnecessary approximation. Our 

solution remains strong for both the single shrinkage model and the double shrinkage model. 

 
Appendix 
 

A. Double-shrinkage model fitting ‒ Gamma regression 
 

Dropping the inequality constraint of the double shrinkage model (see (3.3)), the joint posterior density is  
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where 2 2 2= ( ), 1, , .i i i     …   Conditional on 2ˆ, , ,θ s  it is clear that 2( , )i i   are independent over 

1, , .i  …   This is the key difference between the double-shrinkage model with and without the inequality 

constraints. 

Our strategy is to first sample the posterior density  2ˆ , .θ s   Once this is done, we draw samples 

from the joint conditional posterior density of  2 2ˆ, , .σ θ s   Then, finally we obtain the required samples 

from  2 2ˆ, , , .θ σ θ s   Thus, after draws are obtained for ,  we use the multiplication rule to get the 2
i  

and i  (i.e., ,  the 2
i  and i  are drawn simultaneously). 

It follows from (A.1) that the conditional on 2 2ˆ, , , ,σ θ s  the i  are independent and  
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Conditional on 2ˆ, , ,θ s  the 
2
i  are independent. Therefore, integrating out the i  from (A.1), we have 

the conditional posterior density of 2
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= 1, , .i …   Note unnecessary constants are dropped (e.g., parameters conditioned on). 

Now, one can integrate out the i  and 
2
i  from (A.1) to get the joint posterior density of ,  
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    



 





 (A.4) 

where = ( 1) 2i ia n    and  2= ( 1) 2.x γi

i i ib n s e    Here, IG ( , )x a b  is the inverse gamma density 

and is given by  
1

1( ) = ( ) , 0.
aa b x

xf x b e a x
     

It is easy to sample the 
2
i  in (A.3) using the accept-reject sampler; simply draw 2 ˆ, ,i  θ  

2 IG ( , )i ia bS ∼  and take it with probability  2

ˆ
.x βi i

i
i



 
 


 Then, clearly the i  are easy to draw from (A.2). 

The main problem now is how to sample the joint posterior density of   in (A.4). We will use the 

Metropolis sampler to do so. 
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Once we obtain a sample from (A.4), we convert it to a sample from (3.6), our main objective. This is 

accommodated by another Metropolis sampler that we execute in a novel manner. We prefer to use proposal 

densities that will provide independent chains. This is obtained by taking draws from a multivariate 

Student’s t density (to be constructed). We will not use a long run because with a Metropolis sampler, the 

chain tends to get stuck a long time, introducing long-range dependence to the sample, thereby giving poor 

mixing that is inefficient. Instead we run several chains, say =M 1,000 chains. Each chain is run with a 

random start from an approximate density for 100 iterates, and the last one is taken. Only minor monitoring 

is needed to ensure reasonable jumping rates. If the chain does not move from the initial random start, it is 

not used in the final sample. In the end, we get a random sample of M  iterates from the required density in 

(A.4). 

We describe how to obtain samples from the posterior density of 2= ( , , , ).β γ   There are three steps. 

The first step obtains a sample of M  starting values, the second step is to obtain a proposal density for 

Metropolis sampler at each of the starting values, and the third step is to make a short run of 100 iterates of 

each of the Metropolis samplers in second step. 

First, we integrate out the i  and we replace the 
2
i  by 

2, =1, , .is i …   Given 2ˆ, ,θ s  then 
2( , )β   and 

( , )γ   are independent; so they can be sampled separately to get =M 1,000 independent starts. We have 

obtained these M  starts using simple approximations. 

Second, at each start, we run a Gibbs sampler to get 
2 , =1, , ,i i …   and .  This is done by drawing the 

2
i  from their exact conditional posterior densities using rejection sampling. Then, given 

2 2 2, , ( , )σ s β   and 

( , )γ   are again independent, and draws from their respective joint posterior densities are taken in a similar 

manner. It is worth noting that given 2 ,  the distribution of β  is multivariate normal and β  can be integrated 

out to get the conditional posterior density of 2  that can be sampled using a grid. However, this is not the 

case for ( , )γ   because the conditional posterior density of γ  given   is nonstandard (i.e., not multivariate 

normal). Thus, we approximate the posterior density of γ  using a multivariate normal density, and with this 

approximation, sampling of ( , )γ   takes place in the same manner as for 
2( , ).β   

Third, we run the second step 1,100 times with a “burn-in” of 100 runs and we use the =M 1,000 

samples to construct a multivariate Student’s t  density for 
2= ( , log( ), , log( )),β γa    which we use as a 

proposal density in a Metropolis sampler to sample the exact posterior density. This is performed 100 times 

and the last iterate is selected. Each random start contributes to the sample of =M 1,000 iterates of a  or 

  from the posterior density under the double shrinkage model without the inequality constraint and the 

benchmarking. 

To complete the entire procedure, for each ,a  we sample 
2
i  from their conditional posterior densities 

using rejection sampling to access the posterior densities more efficiently. Then, more importantly, the i  

are drawn from their conditional posterior densities (normal is this case). The entire procedure took roughly 

four hours, and the jumping rates are mostly larger than 5%. 
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B. Double shrinkage model fitting ‒ Log-linear model 
 

We describe the double shrinkage log-linear model and show how to fit. The main purpose is to show 

that there are additional gains in computational speed using approximate Bayesian computation. 

Our model is similar to the one in Section 3, where assuming that ˆi  and 2
is  are pairwise independent,  

 

ind
2 2

2 ind
2

2

ˆ , Normal ( , ), = 1, , ,

( 1) 1 1
Gamma , , = 1, , .

2 2

i i i i i

i i i
i

i

i

n s n
i

    




  
 
 

… 

… 

∼

∼

  

However, a priori, we assume that  

 
ind

2 2
1 1 1 1, Normal( , ), =1, , , ,β x β θi i i V   … ∼   

with the log-linear model on the 2,i  

 
ind

2 2 2
2 2 2 2ln ( ) , Normal( , ), =1, , ,β x βi i i   … ∼   

where we also assume that i  and 
2
i  are pairwise independent. Note that we also have the restriction .θ V  

Because we will use an approximate Gibbs sampler to fit the model, we assume that 2
1 2 1( , , , β β  

2 2
1 2

2 1 1
2 )

 
   (i.e., posterior propriety is not an issue provided that the design matrix is full rank). 

Then, letting 2ˆ= ( , ),θ sD  the joint posterior density of 
2 2 2

1 1 2 2, , , , ,θ σ β β   is given by  

 

 

 

2 2

2 2 2 2 2
2 2

ˆ 1 1( ) 22 2 2 =1
1 1 2 2 2

=1 1 1=1

( 1) 2

( 1) 2 (ln ( ) ) 2

2 2 2 2
=11 2 2

( )1
( , , , , , )

( )2

1 1 1 1
, .

2

i i i

i

i i i i i

i ii

i i ii iV

n

n si

i i

D e
d

n
e e V

  

  

  
  

  

   

 





   

   
  

  

   
   

   








θ

x β

x β
θ σ β β

x β θ

θ








  

Our strategy in the computation is to sample the exact conditional posterior density of , =1, , ,i i …   and 
2 , =1, , .i i …   However, we want to replace the conditional posterior densities of 

2
1 1,β   and 

2
2 2,β   by 

approximate posterior densities. The main issue now is how to do this latter task. 

We consider the two simpler models for ˆi  and 
2 ,is = 1, , .i …   These are  

 
ind

2 2 2 2
1 1 1 1 1 1 1

ˆ , Normal( , ), = 1, , , ( , ) 1 ,β x β βi i i      … ∼   

and  

 
ind

2 2 2 2 2
2 2 2 2 2 2 2ln ( ) , Normal( , ), = 1, , , ( , ) 1 .β x β βi is i     … ∼   
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Note that in the full model, we simply replace the i  by ˆi  and 2
i  by 2.is  Here, the posterior densities of 

2
1 1( , )β   and 2

2 2( , ),β   which are independent, have simple forms. Letting X  denote the n p  design 

matrix, then  

  
2

2 1 2 2 1=1
1 1 1 1 1

ˆ ˆ( )ˆ ˆ ˆ, Normal , ( ) , IG ,,
2 2

x
β θ θ

n

i iin pX X
        

 

∼ ∼   

where 1
1
ˆ ˆ= ( ) .θX X X    Therefore, the posterior density of 1β  is a multivariate Student’s t  density, and, in 

this case, it is easy to draw samples of 1β  and 2
1 .  In addition, letting 2ln ( ), 1, , ,i iz s i  …   then  

  
2

22 1 2 2 =1
2 2 2 2 2

ˆ( )
ˆ, Normal , ( ) , IG , ,

2 2

x
β z z

n

i ii
zn p

X X


   
  

  
  


∼ ∼   

where 1
2
ˆ ( ) .zX X X    Again, the posterior density of 2β  is a multivariate Student’s t  density, and it is 

easy to draw samples of 2β  and 
2
2 .  Our approximate Gibbs sampler runs by taking these posterior densities 

as the conditional posterior densities. We need to do so because the computation is difficult and time-

consuming. 

The joint density of 
2( , ), 1, , ,i i i   …   is  

 

 
 

 

2 2

2 2 2 2 2
2 2

ˆ 1 1( ) 22 2 2 =1
1 1 2 2 2
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( 1) 2 (ln ( ) ) 2
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 

 





   

   
  

  

   
   

   








θ

x β

x β
θ σ β β

x β θ

θ








  

Additional difficulties in the computation reside in this joint conditional posterior density. Observe that 

because ,θ V  the i  are not independent, the 
2
i  are not independent and i  and 

2
i  are not pairwise 

independent. However, note that the 
2
i  are independent in their joint conditional posterior density, but the 

i  are not independent in their joint conditional posterior density. The 
2
i  are drawn using the grid method 

with range  2 21
10 ,10 ,i is s  fairly wide, and the i  are drawn using Devroye’s method. 

For the Gibbs sampler, we used 2,500 iterates as a burn-in and took every third iterate to get a random 

sample of 1,000 iterates. We found that the Geweke tests for all the i  and the 
2
i  are not significant and 

the effective sample sizes are all near the actual sample size of 1,000 (mostly all of them are 1,000). 

Therefore, we have an efficient Gibbs sampler and amazingly the computation took less than 20 seconds. 

Next, we describe a slightly different computational method from the one described above. However, 

we just need to say how to draw samples from the conditional posterior densities of 
2

1 1( , )β   and 
2

2 2( , ).β   

The conditional posterior density of 
2

2 2( , )β   is straight forward (i.e., we simply need to replace 
2
is  by 

2).i  So that, letting 
2= ln( ),i iz   
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  
 

2

2=12 1 2 2
2 2 2 2 2

ˆ
ˆ, Normal , ( ) , IG , .

2 2

x
β z z

n

i ii
zn p

X X


   

  
  

 
 


∼ ∼   

It is more difficult to sample the conditional posterior density of 2
1 1( , ),β   

  
 

 
1 12 2 2 =1

1 1 2 2 2
1 1 1=1

( )1
, , , , .

( )
θ

x β
β θ σ β

x β θ

i ii

i iiV

D
d

  
  

   












   

We started by using the Metropolis sampler. After we have used two different proposal densities, we found 

long-range dependence with low jumping rates, so we abandoned the Metropolis sampler. We decided to 

use grid samplers as follows. We fit the simpler model, where letting X  denote the n p  design matrix,  

  
2

2 1 2 2 1=1
1 1 1 1 1

ˆ ˆ( )ˆ ˆ ˆ, Normal , ( ) , IG ,,
2 2

x
β θ θ

n

i iin pX X
        

 

∼ ∼   

with 1
1
ˆ ˆ= ( ) .θX X X    Therefore, we can now sample 1β  and 

2
1  using the multiplication rule. Then, we 

find the posterior means (PM) and standard deviations (PSD) of each component of 1β  and 
2

1 ;  we choose 

their supports to be PM 6 * PSD  with the lower bound for 
2

1  being max (0, PM 6*PSD).  [Almost the 

entire support of a unimodal density is within this range; actually we have found the procedure to be 

nonsensitive to the choice of 6 to inference about the 1].  We now run the grid method within the Gibbs 

sampler to draw 1β  and 
2

1  with the supports mentioned above for β  and 
2

1 .  

For the Gibbs sampler, we used 3,500 iterates as a burn-in and took every fourth iterate to get a random 

sample of 1,000 iterates. We found that the Geweke tests for all the i  and the 
2
i  are not significant and 

the effective sample sizes are all near the actual sample size of 1,000 (mostly all of them are 1,000). 

Therefore, we have an efficient Gibbs sampler and amazingly the computation took less than 40 seconds. 

This is double the time (still fast) for the approximate Gibbs sampler above. 

 
C. Discussions on generalization 
 

We show that the problem is more ubiquitous than we have stated in this paper. Then, we discuss issues 

with standard solutions using the logarithmic transformation. Recall that our problem is to provide estimates 

subjected to the lower bound inequality constraints and an equality benchmarking constraint. We discuss 

mainly the inequality constraint. 

The Fay-Herriot model is  

 
ind

2ˆ Normal( , ),i i i is  ∼   

 
ind

2 2, Normal( , ), =1, , ,β x βi i i   … ∼   

with prior 
2( , ).β   This is subjected to the inequality constraint, , 1, , ,i ic i   …   and the benchmarking 

constraint, 
=1

= ,ii
a


 where a  is the target. Letting ˆ ˆ= , =1, , ,i i ic i   …   and 

=1
= .ii

c c


 Then,  
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ind

2ˆ Normal( , ),i i i is  ∼  (C.1) 

 
ind

2 2, Normal( , ), 0, =1, , ,β x βi i i i     … ∼  (C.2) 

with 
=1

= ;ii
a c 


 note that there is a change in the regression coefficients. Therefore, we have a general 

problem with positivity constraints and a benchmarking constraint, and the problem is not specific to 

agriculture. The solution of problem remains the same as we have done in this paper, but we can use the 

logarithmic transformation to avoid the positivity constraint. 

There are two ways to proceed without the positivity constraints. 

a) Transform the ˆ ,i  replacing ˆi  by ˆlog( )i  in (C.1). Note that some of the ˆi  can be negative, 

thereby loosing some generality. For the case when they are positive, we can approximate the 

means and the variances of the normal distribution in (C.1) using a first-order Taylor’s series 

approximation. That is,  2

2

ind

ˆ
ˆlog ( ) Normal log ( ), .i

i

s

i i i 
  ∼  One can proceed in (C.2) with either 

a log-normal regression or another distribution for positive size data (e.g., gamma regression).  

b) Transform the ,i  replacing i  by ie


 in (C.1). This introduces non-conjugacy with (C.2), thereby 

creating difficulties in computation.  
 

Note again that benchmarking is done in an output analysis as we have done in this paper, and both single 

shrinkage models and double shrinkage models can be done. When the logarithmic transformation is used, 

back transformation to the original i  is problematic (e.g., Manandhar and Nandram, 2021). However, the 

methodology in this paper provides our front line solution. 
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