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Small area prediction of general small area parameters for 
unit-level count data 

Emily Berg1 

Abstract 

We investigate small area prediction of general parameters based on two models for unit-level counts. We 
construct predictors of parameters, such as quartiles, that may be nonlinear functions of the model response 
variable. We first develop a procedure to construct empirical best predictors and mean square error estimators of 
general parameters under a unit-level gamma-Poisson model. We then use a sampling importance resampling 
algorithm to develop predictors for a generalized linear mixed model (GLMM) with a Poisson response 
distribution. We compare the two models through simulation and an analysis of data from the Iowa Seat-Belt 
Use Survey. 

 
Key Words: Poisson; Bootstrap; Small area estimation. 

 
 

1. Introduction 
 

Small area estimation is the problem of constructing estimators for domains where sample sizes are too 

small to support reliable direct estimators. The standard approach to small area estimation is to use model-

based estimators instead of direct estimators. Model-based estimators garner efficiency gains for small area 

estimation through restrictions that different areas share common distributional properties and through the 

incorporation of population-level auxiliary information. Extensive reviews of small area models are 

available in Rao and Molina (2015), Jiang and Lahiri (2006), and Pfeffermann (2013). More recent reviews 

include Ghosh (2020) and Molina, Corral and Nguyen (2022). The small area literature has focused heavily 

on the situation in which the parameter of interest is a small area mean. Many small area parameters are not 

simple means but are nonlinear functions of the model response variable. Molina and Rao (2010) develops 

a simulation-based procedure for constructing predictors of small area parameters that may be nonlinear 

functions of the model response variable. We refer to the types of parameters of interest in Molina and Rao 

(2010) as “general parameters”. Molina, Nandram and Rao (2014), Hobza, Marhuenda and Morales (2020), 

Rojas-Perilla, Pannier, Schmid and Tzavidis (2020), Marhuenda, Molina, Morales and Rao (2017) and 

Guadarrama, Molina and Rao (2018) extend Molina and Rao (2010) to Bayesian inference, generalized 

linear mixed models, data transformations, two-fold models, and complex sampling. We develop predictors 

of general small area parameters for unit-level count data. 

The two primary small area models for count data are (1) the gamma-Poisson model and (2) the Poisson 

generalized linear mixed model (GLMM). In the context of the area-level model, Reluga, Lombardía and 

Sperlich (2021) and Boubeta, Lombardía and Morales (2016) develop small area prediction procedures for 

the gamma-Poisson model and the Poisson GLMM, respectively. We focus on unit-level models. Tzavidis, 

Ranalli, Salvati, Dreassi and Chambers (2015) develops an M-quantile based procedure for prediction of 
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small area means for unit-level count data. As demonstrated in Tzavidis et al. (2015), this procedure is less 

efficient than model-based methods if the model assumptions hold. Jiang and Lahiri (2006) develops an 

empirical best predictor of the mean for a unit-level Poisson GLMM. Berg (2022) develops empirical best 

predictors of the mean under a unit-level gamma-Poisson model. We refer to Berg (2022) for a more 

complete review of unit-level models and area-level models for count data. Jiang and Lahiri (2006), Tzavidis 

et al. (2015), and Berg (2022) emphasize prediction of means. We develop procedures that are applicable 

to nonlinear parameters, such as quantiles. 

We propose empirical best predictors of general parameters under two unit-level models. The first is a 

unit-level gamma-Poisson model. The second is a unit-level Poisson GLMM. We establish a common 

notation that we use for both models. Let = 1, ,i D…  index the small areas, and let =1, , ij N…  index the 

units in the population for small area .i  Let ijy  be the observed count for unit j  in small area ,i  where 

{0,1, 2, }.ijy  …  Let 1= ( , , )ij ij ijpx x x …  be a vector of covariates that does not include an intercept. We 

consider prediction of a general parameter defined as  

 1= ( ) = ( , , ),
ii i i i iNQ y y  y …  (1.1) 

where ( )Q   is a real-valued, measurable function, and 1= ( , , ) .y
ii i iNy y …  Common choices of ( )Q   are the 

finite population mean or quantile. Molina and Rao (2010) gives several examples of the function ( ).Q   

Assume ijy  is observed only for the elements in the sample. The covariate ijx  is required for every element 

of the population. In this probabilistic framework, the population U  is partitioned into two parts as 

= ,U A R  where A  is the index set of the sample and R  is the index set of the non-sampled elements. 

We partition A  and R  as =1= D
i iA A  and =1= ,D

i iR R  where iA  is the index set of sampled elements for 

area ,i  and iR  is the index set of non-sampled elements in area .i  Without loss of generality, it can be 

assumed that = {1, , },i iA n…  and = { 1, , }.i i iR n N …  With this convention, = ( , ) ,y y yi is ir
    where 

1= ( , , ) ,y
iis i iny y …  and 1= ( , , ) .y

i iir in iNy y
…  

We compare the predictors of i  and corresponding MSE estimators based on the gamma-Poisson model 

to the predictors and MSE estimators based on the Poisson GLMM through simulation. We simulate data 

from both the Poisson GLMM and the gamma-Poisson model. For each simulation model, we calculate the 

predictors and MSE estimators based on both the Poisson GLMM and the gamma-Poisson model. This 

allows us to evaluate the properties of the procedures for situations where the model is correctly specified 

and under model misspecification. 

We illustrate the methods using a subset of data collected in the 2018 Iowa Seat-Belt Use survey. Berg 

(2022) constructs predictors of county-level means using this same data set. We extend the analysis of Berg 

(2022) to include predictors of the median and the inter-quartile range (IQR), using the gamma-Poisson 

model as well as the Poisson GLMM. The data analysis is somewhat contrived to suit our interest in count 

data. The actual parameters of interest are proportions of belted occupants. In Berg (2023a), we conduct a 

more extensive analysis of the data that is geared toward the practical needs of the seat-belt use survey. That 

analysis motivated our interest in developing methodology for small area models for counts. The analysis 
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in this paper allows us to effectively illustrate the proposed methodology. The methods that we propose are 

of practical interest beyond the illustrative application. Count data appear frequently in the small area 

estimation literature (Tzavidis et al., 2015). Applications often benefit from estimates of parameters that are 

more general than the mean (Molina and Rao, 2010; Hobza et al., 2020). The method that we propose 

uniquely provides estimates of a broad range of parameters for count data. 

Our primary contribution is the development of predictors of nonlinear small area parameters, such as 

those considered in Molina and Rao (2010), for a situation in which the response variable is a count. The 

models in this paper are not new, but to our knowledge, the proposed prediction algorithms are novel. Our 

development of predictors of nonlinear parameters builds on work in Hobza et al. (2020). The methods of 

Hobza et al. (2020) apply to a general GLMM specification, but their simulations and data analysis focus 

on the gamma response distribution. We provide detailed steps to construct predictors of nonlinear 

parameters for count data. Also, Hobza et al. (2020) restricts attention to additive parameters of the form 
1

=1
( )iN

i ijj
N q y   for a specified function .q  The class of nonlinear parameters that we define in (1.1) is more 

general than the class of additive parameters discussed in Hobza et al. (2020). The class of parameters that 

we define is broad enough to encompass quantiles. It also includes other parameters of practical importance, 

such as the small area skewness and kurtotsis. The method of Hobza et al. (2020) is not immediately 

applicable to estimation of non-additive parameters, such as quantiles, the skewness, and the kurtosis. While 

the mean provides an indication of the central tendency within a small area, estimates of the quantiles and 

higher moments provide a more complete picture of the distribution of the characteristic at the small area 

level. 

Our approach has two limitations which are important to assert. First, we assume that the sample design 

is noninformative for the specified model. If the sampling weights are correlated with the model response 

variable, after conditioning on model covariates then the design is informative. The methods that we propose 

will render biased inferences under informative sampling. In ongoing work, Berg and Eideh (2023) extend 

the proposed methods to a complex sample design. We refer the reader to Parker, Janicki and Holan (2019) 

for a comprehensive review of small area estimation under informative sampling. A second limitation is 

that we require the covariate for every unit in the population. In many applications, it may be difficult to 

satisfy this assumption. If only area-level covariates are available, then area-level models may be preferable. 

The rest of this manuscript is organized as follows. In Section 2, we develop empirical best predictors 

of nonlinear parameters for the unit-level gamma-Poisson model. In Section 3, we develop empirical best 

predictors of nonlinear parameters for a GLMM with a Poisson response distribution. In Section 4, we 

compare the two procedures through simulation. In Section 5, we apply both procedures to the seat-belt 

survey data. We conclude with a discussion highlighting the strengths and weaknesses of the two models 

Section 6. 

 
2. Unit-level gamma Poisson model and predictor 
 

We define the unit-level gamma-Poisson model as in Berg (2022). Assume  
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ind

Poisson ( ), = 1, , ; = 1, , ,ij ij ij iy i D j N  … …∼  (2.1) 

where = ,ij ij iu   
iid

Gamma ( , ),iu  ∼  = ( ),x γij ijg   1= ( , , )γ p  …  is a fixed vector of regression coeffi-

cients, and ( )g   is a specified link function. We let ( ) = exp ( ).x γ x γij ijg    The notation Gamma ( , )a b  

denotes a gamma distribution with shape parameter a  and rate parameter b  such that [ ] = .iE u    

We develop an empirical best predictor of .i  As in Berg (2022), the assumptions of the model (2.1) 

imply that the conditional distribution of iu  given the observed data satisfies,  

 
ind

. .Gamma ( , ),i is i iu y    y ∼  (2.2) 

where . =1
= in

i ijj
y y  and . =1

= .in

i ijj
   Note that (2.2) holds exactly for any sample size and does not require 

approximations. The conditional distribution (2.2) is the crux of the development of the empirical best 

predictors. The conditional distribution (2.2) depends on the unknown ,  ,  and .γ  To operate with the 

conditional distribution, we use the maximum likelihood estimators of these fixed parameters. As demon-

strated in Berg (2022), the log likelihood for ,  ,  γ  is of the form ( , , ) =γ   
=1

log ( , , ) ,γ
D

ii
L    

where  

 
.

=1 .

.
=1

( )
( , , ) = .

( )( ) !
γ

i ij

i i

n y

ijj i
i n y

iijj

y
L

y





  
 

 


 
  





  

Define the maximum likelihood estimator by  

 ( , , )
ˆˆ ˆ( , , ) argmax ( , , ).γ γ          

Berg (2022) discusses the theoretical properties of the maximum likelihood estimator for the gamma-

Poisson model. 

The known conditional distribution for iu  in (2.2), combined with the maximum likelihood estimator, 

motivates a computationally simple procedure for predicting .i  The procedure is an application of the 

general method of Molina and Rao (2010) to the gamma-Poisson model (2.1). The best predictor of i  under 

squared error loss is = , , , .γ yi i sE     
  By mutual independence of 1 , , ,y ys Ds…  the best predictor 

simplifies as = ( , , , ) = , , , ,γ y γ yi i is i isE        
   where  

  
1 0 =0

= , , , ( ) ; , , ,γ y y y y γ
in iNi i

i i is i i ir is
y y

E f      


 



         

and  

  
 
   

.

1

=1= 1 .

= 1 =1
=1

( )
; , , .

!
y y γ

ii ij
i

i

Nii i ijji
i

NN y
y

ijij jj n i
ir is N n yN

ij ijj n j
ijj

y
f

y y
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The notation ( , , , )γ yi is    emphasizes dependence of the best predictor on the unknown , ,   and .γ  An 

empirical best predictor is obtained by substitution of the unknown parameters defining the best predictor 

with the maximum likelihood estimators. That is, the empirical best predictor is defined as  

  
1=0 =0

ˆ ˆ ˆˆ ˆ ˆ ˆ, , , = ( ) ; , , .γ y y y y γ
in iNi i

i i is i i ir is
y y

E f      


 

       (2.3) 

The infinite sum defining the empirical best predictor is analytically intractable. We define a Monte Carlo 

(MC) approximation for the empirical best predictor of ,i  as in Molina and Rao (2010). 

We define L  simulated populations. For = 1, , ,L …  we set ( ) =ij ijy y  for =1, , .ij n…  For non-sampled 

elements, = 1, , ,i ij n N …  we generate ( )
ijy   as  ( ) ( ) ( )Poisson ,ij ij ijy    ∼  where  

 
 

 

( ) ( )

( )
. .

ˆ= exp ,

ˆ ˆˆGamma , ,

ij ij i

i i i

u

u y



  



 

x 

 ∼


  

and  . =1
ˆ ˆ= exp .x γin

i ijj
   An MC approximation for the empirical best predictor of i  is then  

   1 ( )
, ,

=1

ˆ ˆ ˆˆ ˆ= , , , = ,γ y
L

i L i L is iL      



 (2.4) 

where  ( ) ( ) ( )
1= , , .

ii i iNQ y y   …  We express the predictor ,
ˆ
i L  as a function of ˆ ,  ˆ,  ˆ ,γ  and isy  to emphasize 

dependence of the predictor on the parameter estimators and the observed counts for the area. 

 

2.1 MSE Estimation 
 

We use the bootstrap method of González-Manteiga, Lombardía, Molina, Morales and Santamaría 

(2007) and Molina and Rao (2010) to estimate the MSE of ,
ˆ .i L  For = 1, , ,b B…  we repeat the following 

steps:   

1. For = 1, , ,i D…  generate 
*( ) *( )
1{ , , }

i

b b
i iNy y…  from the model in (2.1) with parameters equal to the 

maximum likelihood estimate ˆˆ ˆ( , , ) .γ    Define a bootstrap version of the population parameter 

by  *( ) *( ) *( )
1= , , .

i

b b b
i i iNQ y y …  Let *( ) *( ) *( )

1= ( , , ) .y
i

b b b
is i iny y …  The bootstrap sample is then *( ){ : =b

is iy  

1, , }.D…  

2. Use the bootstrap sample,  *( ) : = 1, , ,y b
is i D…  to obtain a maximum likelihood estimator denoted 

as  *( ) *( ) *( )ˆ .ˆ ˆ, , ( )γb b b 


  Specifically,  *( ) *( ) *( )ˆˆ ˆ, , ( )γb b b 


  satisfies  

  *( ) *( ) *( ) *( )
( , , )

ˆˆ ˆ, , argmax ( , , ),γ γ
b b b b

    
   

 
   

where  

   *( ) *( )

=1

( , , ) log , , ,γ γ
D

b b
i

i

L       
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*( )

*( )
.

*( )
=1 .*( )

*( )
.=1

( , , ) = ,
( )( ) !

γ

b
i ij

b
i i

n y
b

ijj ib
i n yb

iijj

y
L

y





  
 

  

 
  






  

and *( ) *( )
. =1

= .inb b
i ijj

y y  

3. Construct the MC approximation for the empirical best predictor using the bootstrap sample and 

the bootstrap maximum likelihood estimator. Denote the bootstrap version of the empirical best 

predictor by  *( ) *( ) *( ) *( ) *( )
,
ˆ ˆ ˆˆ ˆ= , , , .γ yb b b b b
i L i is     We construct *( )

,
ˆ b
i L  as follows. We define L  

simulated populations. For = 1, , ,L …  we set ( ) *( )= b
ij ijy y  for =1, , .ij n…  For non-sampled 

elements, = 1, , ,i ij n N …  we generate ( * )b
ijy   as  ( * ) ( * ) ( * )Poisson ,b b b

ij ij ijy    ∼  where  

 
( * ) *( ) ( * )

( * ) *( ) *( ) *( ) *( )
. .

ˆ= exp( ) ,

ˆ ˆˆGamma ( , ),

x γb b b
ij ij i

b b b b b
i i i

u

u y



  



 

 

 ∼
  

*( ) *( )
. =1

= ,inb b
i ijj

y y  and *( ) *( )
. =1
ˆ ˆ= exp( ).x γinb b
i ijj
   We then define *( ) *( ) *( ) *( )

, ,
ˆ ˆ ˆˆ ˆ= ( , , ,γb b b b
i L i L     

*( ) 1 ( * )

=1
) = ,y

Lb b
is iL   


 where 

( * ) ( * ) ( * )
1= ( , , ).

i

b b b
i i iNQ y y   …  

 

Define a bootstrap estimator of the MSE by  

   
2

*( ) *( )
,

=1

1 ˆ ˆMSE = .
B

b b
i i L i

bB
   (2.5) 

 

3. Poisson GLMM 
 

We next define an empirical best prediction procedure for a GLMM with a Poisson response distribution. 

The Poisson GLMM assumes that  

 
ind

Poisson ( ), = 1, , ; = 1, , ,ij ij ij iy i D j N  … …∼  (3.1) 

 0 1( ) = ,x βij ij ih b      

and 
iid

2(0, )i bb N ∼  for = 1, , .i D…  The function ( )ijh   is a specified link function. We assume that 

( ) = log ( ).ij ijh    

We estimate the parameters of the Poisson GLMM using the method of Schall (1991). This method is 

applicable to a very general GLMM. The method of Schall (1991) is used in the context of binomial data in 

González-Manteiga et al. (2007). The supplementary material of Berg (2022) describes the steps of the 

Schall (1991) procedure for the specific Poisson GLMM. Because the method has the form of an iteratively 

reweighted least squares (IRLS) procedure, we refer to the algorithm of Schall (1991) as the IRLS algorithm. 

Let 0
ˆ ,  1

ˆ ,β  ˆib  and 
2ˆ
b  be the estimators and predictors obtained upon completion of the IRLS algorithm. 

 

Remark: The R function glmer is a widely used alternative to the IRLS algorithm. We emphasize the IRLS 

algorithm in the main document because the IRLS algorithm is reproducible in programming languages 

other than R. We present results using glmer in Section 2 of the supplementary material (Berg, 2023b). 
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3.1 Empirical best predictor for Poisson GLMM 
 

The best predictor of i  under squared error loss is  

  
1

2
0 1

=0 =0

; , , ( ) ,y β y y y
in iNi i

i is b i i ir is
y y

E f   


 

        

where  

 

   

 
 

 

= 1

=1

=1

= exp( ) ! ,

exp( ) !
= ,

exp( ) !

i

ij

i

i ij

i ij

N
y

ir is ij ij ij i is i
j n

n y

ij ij ij i b bj

i is n y

ij ij ij i b b ij

f y f b db

y b
f b

y b db

 

    

    










 
 

 

 
 

 
 







y y y

y

  

and   is the pdf of a standard normal distribution. The empirical best predictor is then 
2

0 1
ˆ ˆ ˆ; , , .y βi is bE    

   

The conditional distribution of ib  given the data does not have a known form for the GLMM. We 

therefore require a Monte Carlo procedure to approximate this conditional distribution. We use a method 

called sampling importance resampling (SIR) to obtain a Monte Carlo approximation for the empirical best 

predictor of (1.1) under the assumptions of the model (3.1). The SIR algorithm is traditionally used to sample 

from posterior distributions in a Bayesian context (Smith and Gelfand, 1992). We use SIR for the purpose 

of obtaining an MC approximation for the empirical best predictor. The SIR algorithm involves simulating 

from a proposal distribution and then accepting a proposed value with probability proportional to the ratio 

of the target and proposal distributions. The SIR algorithm is a general algorithm, and the details of 

implementation depend on the context. We describe how we implement the SIR algorithm for the specific 

Poisson GLMM in steps 1-2 below. 

For = 1, , ,l L…  repeat the following steps:   

1. Generate 
iid

( ,1) ( , ) 2ˆ ˆ, , ( , )T
i i i bb b N b  … ∼  for = 1, , .i D…  

2. Define  

 
 

 

( , )

( , ) ( , ) ( , )
1 1 ( , )

=1

ˆ1
= exp ,

ˆ ˆ( )

tT
i bt t t

i i i t
t i i b

b
p

T b b

 

 

 
  

   
    




  


    

where  

 
( , ) ( , )

( , )
1

=1

exp( )
= log ,

!

i
t tn

ij ijt
i

j ijy

    
      


 

   

and 
( , ) ( , )

0 1
ˆ ˆlog( ) = .x βt t

ij ij ib    
 Set  
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( , )

( , )

( , )

=1

.
t

t i
i T t

it

p
p

p







   

Set ( ) ( , )= t
i ib b   with probability ( , )t

ip   for = 1, , .i D…  

3. Generate  ( ) ( )Poisson ,ij ijy  ∼  where  ( ) ( )
0 1
ˆ ˆlog = β x βij ij ib     for = 1, , ,i D…  and = ij n   

1, , .iN…  Set ( ) =ij ijy y  for = 1, , .ij n…  

4. Define  ( )GLMM ( ) ( )
1= , , .

ii i iNQ y y   …  
 

Finally, define the predictor of i  by  

  GLMM GLMM 2 1 ( )GLMM
0 1

=1

ˆ ˆ ˆ ˆ ˆ, , , = .β y
L

i i b is iL      



 (3.2) 

 
3.2 Bootstrap MSE estimator for Poisson GLMM 
 

We use the parametric bootstrap for MSE estimation. The bootstrap procedure is essentially that of 

Molina and Rao (2010) and González-Manteiga et al. (2007), applied to the Poisson GLMM. For =b  

1, , ,B…  repeat the following steps: 

1. Generate a bootstrap population from the model (3.1), with parameters equal to the estimated 

parameters. Specifically, for = 1, , ,i D…  and =1, , ,ij N…  generate  

 ( ) ( ) ( )Poisson ( ),b b b
ij ij ijy  ∼   

where ( ) ( )
0 1
ˆ ˆlog ( ) = ,x βb b

ij ij ib     and 
iid

( ) ( ) 2
1

ˆ, , (0, ).b b
D bb b N … ∼  Define the bootstrap version of 

the population parameter by 
*( ) *( ) *( )

1= ( , , ).
i

b b b
i i iNQ y y …  

2. Let 
*( ) *( ) *( )

1= ( , , )y
i

b b b
is i iny y…  denote the generated values for the index set in the sample. We call 

*( ) *( )
1{ , , }y yb b

s Ds…  the bootstrap sample. 

3. Apply the IRLS method of Schall (1991), described above, to the bootstrap sample, *( )
1{ , ,b

sy …  
*( )},b
Dsy  to obtain bootstrap versions of the parameter estimates. Denote the estimates obtained 

from the bootstrap sample by *( ) *( ) *( )2
0 1
ˆ ˆ ˆ( , ( ) , ) .βb b b

b    

4. Implement the procedure of Section 3.1 with the bootstrap sample and the bootstrap estimates 
*( ) *( ) *( )2
0 1
ˆ ˆ ˆ( , ( ) , )βb b b

b    to obtain a bootstrap version of the predictor. The bootstrap version of the 

predictor is 
*( )GLMM GLMM *( ) *( ) *( )2 *( )

0 1
ˆ ˆ ˆ ˆ ˆ= ( , , , ).β yb b b b b
i i b is     

 

Define the bootstrap MSE estimator by  

   
2GLMM

*( )GLMM *( )

=1

1 ˆMSE = .
B

b b
i i i

bB
   (3.3) 
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4. Simulations 
 

The simulation study has primary and secondary objectives. The primary objectives of the simulation 

study are two-fold. The first is to evaluate the performance of the small area predictors based on the gamma-

Poisson model relative to the small area predictors based on the Poisson-GLMM. The second goal is to 

evaluate the quality of the proposed bootstrap MSE estimators. The two secondary goals of the simulation 

study are (1) to evaluate the computational time of the alternative procedures, and (2) to assess the choice 

of T  for the SIR algorithm. We present output related to the primary objectives of the simulation in this 

main document. We relegate further discussion of the secondary objectives of the simulation to the 

supplementary material (Berg, 2023b). We refer the reader to Berg (2022) for a study of the properties of 

the estimators of the fixed parameters.  

We generate data from both the gamma-Poisson model defined in (2.1) and from the unit-level Poisson 

GLMM defined in (3.1). For each simulation model, we calculate predictors based on the gamma-Poisson 

model and the GLMM. This permits an evaluation of the procedures under model misspecification. We 

simulate a univariate covariate as 
iid

(0.5,1)ijx N∼  for = 1, , ,i D…  and =1, , ,ij N…  where =100iN  for 

= 1, , ,i D…  and =100.D  The covariate is held fixed across simulation runs. We simulate a population 

from either the gamma-Poisson model (2.1) or the GLMM (3.1). For the gamma-Poisson model, we set 

=1  and = 2.  We use two values of   for the gamma-Poisson model. We first use = 5.  We then 

generate a more skewed distribution by setting = 0.5. For the GLMM, we set 0 = 0.5 and 1 = 0.5. We 

use 0.5 and 1.5 as the two values for 2
b  for the GLMM. The combination of two model forms (gamma-

Poisson and GLMM) with two values for each of 2
b  and   results in a total of four data generating models. 

We select a simple random sample from each area with a common sampling rate of 5%. The use of a constant 

sampling rate is fairly unrealistic but is chosen intentionally for two reasons. The first is simplicity. The 

second is to construct a situation with sample sizes that are small enough to reflect the challenges in real 

small area problems. We construct predictors of three small area parameters of interest: the area mean, the 

area median, and the area inter-quartile range (IQR). The area IQR is defined as the difference between the 

75-percentile and the 25-percentile for the area.  

We construct the two main proposed predictors of each parameter. We use Gam-Pois to denote the 

empirical best predictor for the gamma-Poisson model. The Gam-Pois predictor is defined in (2.4), where 

it is denoted as ,
ˆ .i L  We use GLMM to denote the empirical best predictor for the Poisson-GLMM. The 

GLMM predictor is denoted GLMMˆ
i  where it is defined in (3.2). When implementing the GLMM procedure, 

we use = 200T  for the Monte Carlo SIR algorithm. The choice of T  is discussed in the supplementary 

material (Berg, 2023b). For both the GLMM and Gam-Pois predictors, we use =L 1,000. The choice of L  

is based on a comparison of =100L  to =L 1,000. The results for =100L  are presented in Section 5 of the 

supplementary material (Berg, 2023b).  

We also compute a direct estimator of each parameter. The direct estimator of the mean is the sample 

mean for the area. The direct estimator of the median is the sample median. The direct estimator of the IQR 

is calculated as the difference between the sample 75-percentile and the sample 25-percentile for the area. 
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For the GLMM, we further define plug-in (PI) predictors. The PI predictor of the mean is defined as  

 PI PI

=1

1ˆ ˆ= ,
iN

i ij
ji

y y
N
  (4.1) 

where PIˆ =ij ijy y  for =1, , ,ij n…   PI
0 1

ˆˆ ˆˆ = expij ij iy x b    for = 1, , ,i ij n N …  and  0 1
ˆˆ ˆ, , ib   is 

obtained from the IRLS algorithm used for the GLMM model (3.1). We define a PI predictor of the median 

as the median of  PIˆ : = 1, , .ij iy j N…  We define the PI predictor of the IQR as the difference between the 

75-percentile of  PIˆ : = 1, ,ij iy j N…  and the 25-percentile of  PIˆ : =1, , .ij iy j N…  A PI predictor of the form 

(4.1) is compared to the M-quantile predictor in Tzavidis et al. (2015). 

For the mean, we also calculate the closed form expression for the empirical best predictor based on the 

gamma-Poisson model. This predictor is defined in Berg (2022). We refer to the predictor of Berg (2022) 

as Gam-Pois-Alt in the tables below. 

The procedures for the median and the IQR require calculating percentiles of a set of numbers. Many 

procedures to calculate percentiles exist. We calculate all percentiles using the default method in the R 

function quantile. 

 

4.1 Comparison of efficiency of alternative predictors 
 

We compare the predictors using two criteria. To define the criteria, let ( )ˆ m
i  and ( ) ,m

i  respectively, 

denote a predictor of i  and corresponding population parameter obtained in MC simulation ,m  where 

= 1, , .m M…  The first criterion is the average relative root mean square error defined by  

 
=1

1
%RRMSE = 100 RMSE ,

D

i
iD
  (4.2) 

where 
1

( )1
MC =1

RMSE MSE ,
M m

i i iM m



 
   and  

  
2

1 ( ) ( )
MC

=1

ˆMSE .
M

m m
i i i

m

M     (4.3) 

The second criterion is the percent average absolute relative bias defined by  

 
=1

1
%RB = 100 RB ,

D

i
iD
  (4.4) 

where 
1

1 ( ) ( ) 1 ( )

=1 =1
ˆRB = ( ) .

M Mm m m
i i i im m

M M  


  
    We report the %RRMSE and %RB. We use a 

Monte Carlo (MC) simulation size of = 500.M  

We first simulate data from the gamma-Poisson model defined in (2.1). Table 4.1 contains the %RRMSE 

and %RB of the alternative predictors when the data are generated from the model (2.1). The direct estimator 

is very inefficient for this simulation because the area sample size is only 5. For this configuration, the 

gamma-Poisson model is the true model, so it is not surprising that the Gam-Pois-Alt predictor has the 

smallest %RRMSE for the mean. Likewise, the Gam-Pois predictor is the most efficient predictor for the 
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median and IQR. Unlike the Gam-Pois-Alt predictor, the Gam-Pois predictor is constructed from L  

simulated samples and is therefore subject to an extra layer of Monte Carlo variability. The difference 

between the Gam-Pois predictor and the Gam-Pois-Alt predictor shows the effect of the Monte Carlo error 

from the L  simulated samples on the efficiency of the Gam-Pois predictor. Even though the GLMM is mis-

specified, the loss of efficiency from using the GLMM for the IQR and the median is much less than the 

loss from using the direct estimator. The PI predictor is a poor predictor of the median and the IQR. For the 

median and the IQR, the %RRMSE of the PI predictor exceeds the %RRMSE of the GLMM and Gam-Pois 

predictors. The bias makes an important contribution to the MSE for the PI predictor of the median and the 

IQR. The bias is negligible for the Gam-Pois and GLMM predictors, indicating that for these predictors, the 

contribution from the variance to the MSE is more important than the contribution from the bias. 

Second, we simulate data from the GLMM defined in (3.1). Table 4.2 contains the %RRMSE and %RB 

when the true model is the Poisson GLMM defined in (3.1). The direct estimator is inefficient, compared to 

the model-based predictors. The PI predictor is efficient for the mean when 2 =b 0.5, and the GLMM 

predictor has the smallest %RRMSE when 2 =b 1.5. The GLMM predictor has smaller %RRMSE than the 

Gam-Pois and Gam-Pois-Alt predictors. This is not surprising because the GLMM is the true model for the 

simulation used to construct Table 4.2. Even though the Gam-Pois model is incorrectly specified, the loss 

of efficiency from using the Gam-Pois predictor is much smaller than the loss of efficiency from using the 

direct estimator, relative to the predictors based on the GLMM. For the GLMM and Gam-Pois predictors, 

the %RB is negligible compared to the %RRMSE, indicating that the contribution from the variance to the 

overall MSE of the predictor is more important than the contribution from the bias. The PI predictor is less 

efficient than the Gam-Pois predictor or the GLMM predictor for the median and for the IQR. The PI 

predictor has a severe bias for predicting the median and the IQR. 

The comparison of predictors leads to three main conclusions. First, the relative efficiencies of the 

predictors depend on the data generating model. If the gamma-Poisson model is true, then the Gam-Pois-

Alt predictor is most efficient for the mean, and the Gam-Pois predictor is most efficient for nonlinear 

parameters. When the GLMM is true, the PI/GLMM predictors are most efficient. Second, the Gam-Pois 

and GLMM predictors appear to have reasonable efficiency, even under model mis-specification. When the 

Gam-Pois model is correctly specified, the loss of efficiency from incorrect use of the GLMM predictor is 

slight. Similarly, the ratio of the %RRMSE of the Gam-Pois predictor to the %RRMSE of the GLMM 

predictor when the GLMM is true is usually about 1.01. The loss of efficiency from use of the Gam-Pois 

predictor when the GLMM is true is greater than the loss from the use of the GLMM when the Gam-Pois is 

true, but not by much. The third conclusion concerns the properties of the PI predictor. The PI predictor is 

not an estimator of an optimal predictor but nonetheless has good properties for predicting the mean in our 

simulations. For predicting the median and the IQR, the PI predictor has a substantial enough bias that the 

PI predictor is less efficient than the GLMM or Gam-Pois predictor. Given our interest in a broad range of 

parameters, we prefer the GLMM predictor over the PI predictor. 
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Table 4.1 

%RB and %RRMSE of alternative predictors when the true model is the gamma-Poisson model and =L 1,000. 
 

2
b  Mean Med. IQR 

%RRMSE %RB %RRMSE %RB %RRMSE %RB 

Gam-Pois 5.000 17.362 0.667 20.263 0.798 19.406 0.764 

Gam-Pois-Alt 5.000 17.355 0.670     

GLMM 5.000 17.452 0.711 20.340 0.877 19.473 0.782 

PI 5.000 17.450 0.718 20.837 3.209 23.004 10.676 

Direct 5.000 60.966 2.026 79.232 15.558 78.220 16.629 

Gam-Pois 0.500 55.451 1.882 109.729 3.929 64.552 2.145 

Gam-Pois-Alt 0.500 55.431 1.888     

GLMM 0.500 56.584 2.850 110.644 4.558 65.023 2.332 

PI 0.500 56.508 2.222 121.632 45.899 79.661 26.730 

Direct 0.500 106.654 3.906 237.870 38.205 127.712 17.089 

Notes: Gam-Pois = gamma-Poisson; GLMM = Generalized linear mixed model; IQR = Inter-quartile range; PI = Plug-in;

RB = Relative biases; RRMSE = Relative root mean square error. 

 
Table 4.2 

%RB and %RRMSE of alternative predictors when the true model is the Poisson-GLMM model and =L 1,000. 
 

  2
b  Mean Med. IQR 

%RRMSE %RB %RRMSE %RB %RRMSE %RB 

Gam-Pois 0.500 24.571 0.816 29.014 1.014 25.128 0.977 

Gam-Pois-Alt 0.500 24.555 0.810     

GLMM 0.500 24.249 0.847 28.688 1.036 24.900 0.967 

PI 0.500 24.239 0.820 29.306 4.696 42.980 34.347 

Direct 0.500 38.820 1.399 53.578 4.722 64.172 24.574 

Gam-Pois 1.500 19.995 0.624 22.728 0.758 24.107 0.825 

Gam-Pois-Alt 1.500 19.971 0.627     

GLMM 1.500 19.781 0.642 22.526 0.747 23.940 0.827 

PI 1.500 19.788 0.609 23.140 3.220 35.215 23.591 

Direct 1.500 52.486 1.938 67.632 4.636 95.293 24.036 

Notes: Gam-Pois = gamma-Poisson; GLMM = Generalized linear mixed model; IQR = Inter-quartile range; PI = Plug-in;

RB = Relative biases; RRMSE = Relative root mean square error. 

 
4.2 Properties of bootstrap MSE estimator 
 

We next consider the properties of the MSE estimators for the gamma-Poisson and GLMM models. The 

MSE estimator is defined in (2.5) for the gamma-Poisson model and in (3.3) for the GLMM. We calculate 

both MSE estimates under each data generating model. This allows us to evaluate the properties of the MSE 

estimates under model misspecification and when the model is correctly specified. The bootstrap sample 

size is = 200.B  The choice of = 200B  follows from a recommendation in Hobza et al. (2020) that the 

bootstrap sample size be at least 200. To reduce the computational requirements, we use =100L  for the 

simulations in this section. To evaluate the MSE estimators, we conduct a simulation with = 250M  

simulated samples using the same ijx  used for the first simulation. We calculate the relative bias of the MSE 

estimator as well as empirical coverages of normal theory 95% prediction intervals. 
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We first define the relative bias of the MSE estimator. Let 
( )

MSE
m

i  denote an MSE estimate from 

simulated sample m  for = 1, , ,m M…  where = 250.M  We then define the % relative bias of the MSE 

estimator for area i  by  

 
 ( )

1

=1

MC

MSE
RB 100 1

MSE

mM
iM m

i

i

 
  
 
 


  

where MCMSE i  is defined in (4.3) and is based a separate simulation with =M 5,000. We use the output 

from a separate simulation with =M 5,000 to define the denominator of the RBi  to reduce the variance of 

RB .i  

Figure 4.1 contains box-plots of the relative biases for the four simulation configurations and the three 

parameters. The relative biases of the bootstrap MSE estimator (depicted in Figure 4.1) depend on the 

simulation model and the parameters. We first consider the Gam-Pois model with = 5.  For this 

configuration, the Gam-Pois MSE estimator has a slight negative bias, but the relative bias is usually 

between -10% and 10%. The GLMM MSE estimator is nearly unbiased for the MSE of the GLMM predictor 

in the sense that the relative biases for the GLMM MSE estimator are symmetric around zero and are usually 

between -10% and 10%. It is interesting that the GLMM MSE estimator performs well for this simulation 

configuration because the GLMM model is incorrectly specified. We next consider the Gam-Pois model 

with = 0.5. The Gam-Pois MSE estimator remains nearly unbiased, in the sense that the median relative 

bias is close to zero and the relative biases are usually below 10% in absolute value. The GLMM MSE 

estimator for the GLMM predictor tends to have a positive bias under the Gam-Pois model with = 0.5. 

We next consider the GLMM simulation model with 2 =b 0.5. The GLMM MSE estimator for the GLMM 

predictor is nearly unbiased, with most relative biases between -10% and 10%. The Gam-Pois MSE 

estimator tends to underestimate the MSE of the Gam-Pois predictor for the GLMM simulation 

configuration with 2 =b 0.5. The relative bias of the Gam-Pois MSE estimator is only about -5% for this 

configuration. Increasing 2
b  to 1.5 has little impact on the properties of the GLMM MSE estimator for the 

GLMM predictors. For the GLMM simulation model with 2 =b 1.5, the Gam-Pois MSE estimator can 

exhibit extreme values. 

We define the relative root mean square error of the MSE estimator as  

 

 
2( )

1
MC=1

MC

MSE MSE
RRMSEMSE .

MSE

mM
i im

i

i

M  



  

Figure 4.2 contains boxplots of the RRMSEMSE .i  The two MSE estimators have consistently similar 

relative root mean square errors. The biases observed for certain simulation configurations seem to have a 

negligible effect on the MSE of the MSE estimator.  



560 Berg: Small area prediction of general small area parameters for unit-level count data 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Figure 4.1 Relative biases (RB )i  of MSE estimators for four simulation configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: GLMM = Generalized linear mixed model; GP = gamma-Poisson; IQR = Inter-quartile range; MSE = Mean square error. 

 
Figure 4.2 Boxplots of relative root mean square errors of mean square error estimators (RRMSEMSEi) for 

four simulation configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: GLMM = Generalized linear mixed model; GP = gamma-Poisson; IQR = Inter-quartile range. 
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We define the empirical coverage of prediction intervals for area i  by  

  ( ) ( )

=1

1
CR CI ,

M
m m

i i i
m

I
M

    

where  ( ) ( )
( ) ( ) ( )ˆ ˆCI 1.96 MSE , 1.96 MSE .

m m
m m m

i ii i i 
 

      The empirical coverages of the nominal 95% 

prediction intervals are depicted in Figure 4.3. A surprising result is that the GLMM procedure tends to 

produce superior coverage rates than the Gam-Pois procedure under the Gam-Pois configuration with =

0.5. Generally, the departures of the coverage rates from the nominal level are not severe. The empirical 

coverages of prediction intervals tend to fall between 92% and 98%. 

In summary, the gamma-Poisson MSE estimator has reasonable properties when the gamma-Poisson 

model is the true model, and likewise, the GLMM MSE estimator has reasonable properties when the 

GLMM model is the true model. The properties of the MSE estimator under model misspecification depend 

on the parameter configuration. The GLMM MSE estimator is approximately unbiased under the Gam-Pois 

configuration when = 5  but has positive bias when = 0.5. The Gam-Pois MSE estimator tends to have 

a median relative bias of about -5% under the GLMM configuration when 2 =b 0.5 and can be erratic when 
2 =b 1.5. 

 
Figure 4.3 Empirical coverages of nominal 95% prediction intervals (CR )i  for four simulation configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: GLMM = Generalized linear mixed model; GP = gamma-Poisson; IQR = Inter-quartile range. 
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5. Illustration with modeling observed vehicle occupants 
 

We apply both the GLMM predictor and the Gam-Pois predictor to data from the 2018 Iowa Seat-Belt 

use survey. This is the same data set used in Berg (2022). While Berg (2022) only constructs predictors of 

means, we construct predictors of more general small area parameters. 

The population consists of =N 65,313 road segments in Iowa. The road segments are nested in =15D  

counties that define the small areas. The area sample sizes are = 5in  road segments for all but one county 

in which =14in  such that the total sample size is = 84.n  Due to the small county sample sizes, this is 

clearly a small area estimation problem. Each road segment in the sample is observed for 45 minutes, and 

the response variable is defined as  

 =ijy number of vehicle occupants observed during the 45-minute period on road segment j  of county .i   

Two covariates are available for every road segment in the population from the sampling frame. The 

first is the road type of the road segment, where the three road types are primary, secondary, and local. The 

second is the vehicle miles traveled. As in Berg (2022), we define the model to contain indicators for road 

type as well as interactions between road type and VMT. We refer to Berg (2022) for estimates of the fixed 

model parameters. 

For this analysis, our objective is to compare the two models. In practice, however, an analyst may need 

to select one of the two models. We recommend diagnosing the goodness of fit of the two models using 

standardized residuals. We define a residual for the Gam-Pois model by  
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Note that ˆiu  is an estimate of i isE u  y  (Berg, 2022). The standardized residual for the GLMM is defined 

as  

 

PI
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y y

y


  

Figure 5.1 contains plots of the standardized residuals against the predicted values for the Gam-Pois and 

GLMM models. The residuals for the two models are strikingly similar. The standardized residuals do not 

exhibit systematic trends, and the variance of the residuals remains constant as the mean increases. The 

residuals clearly do not have a standard normal distribution; however, normality is not one of the model 
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assumptions. It is possible that the residuals indicate that the data are over-dispersed relative to the specified 

Poisson models. Incorporating over-dispersion in the proposed framework is a possible direction for future 

research. 

 

Figure 5.1 Standardized residuals against predicted values for gamma-Poisson (gam-Pois) and generalized 
linear mixed models (GLMM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

We consider three county-level parameters of interest: the mean number of occupants per road segment, 

the median number of occupants, and the interquartile range of the number of occupants per road segment. 

We apply the methods of Sections 2 and 3 to obtain predictors and associated estimates of the mean square 

error. Because we are interested in parameters other than the mean, we use the predictor (2.4) for the gamma-

Poisson model. We use the predictor (3.2) for the GLMM. We report the predictors and the coefficients of 

variation for each procedure. The coefficient of variation is the ratio of the square root of the estimated mean 

square error to the predictor. The MSE estimators are defined in (2.5) and (3.3), respectively, for the gamma-

Poisson and GLMM models. We use a bootstrap sample size of = 200.B  Table 5.1 contains the county 

level predictors and corresponding coefficients of variation based on the gamma-Poisson and GLMM 

models. 

The two models produce consistently similar predictors. The predictors based on the gamma-Poisson 

model are nearly the same as the predictors based on the GLMM model. This empirical result is consistent 

with the finding in the simulation that both predictors tend to perform well, regardless of the true data 

generating model. For the data analysis, we do not know the “true” data generating model. Therefore, it is 

reassuring that the predictors based on the two models are similar.  
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Table 5.1 

County predictors (pred) and coefficients of variation (cv) based on gamma-Poisson (Gam-Pois) and GLMM 

models. 
 

 Mean Median IQR 
 Gam-Pois GLMM Gam-Pois GLMM Gam-Pois GLMM 

County pred cv pred cv pred cv pred cv pred cv pred cv 
1 60.37 0.46 59.99 0.49 34.71 1.38 34.27 1.46 104.8 0.26 103.56 0.28 
2 60.29 0.04 60.18 0.04 26.31 0.05 26.54 0.10 57.86 0.14 58.40 0.14 
3 62.97 0.1 63.01 0.09 24.54 0.11 24.53 0.08 63.58 0.55 63.70 0.56 
4 87.82 0.45 87.60 0.45 46.34 1.25 46.31 1.26 163.53 0.3 163.52 0.31 
5 54.67 0.24 54.91 0.23 24.5 1.05 24.39 1.03 60.26 0.76 59.94 0.76 
6 77.08 0.17 77.47 0.17 31.23 0.99 31.50 0.97 136.85 0.07 137.57 0.08 
7 65.79 0.15 66.03 0.13 30.27 0.34 30.20 0.30 67.68 0.63 67.32 0.61 
8 99.65 0.02 99.34 0.03 41.53 0.05 41.56 0.05 118.65 0.21 118.05 0.23 
9 68.12 0.17 68.19 0.16 25.98 0.2 26.07 0.17 73.11 0.36 73.14 0.37 

10 97.24 0.27 97.29 0.27 41.26 0.42 41.40 0.40 153.54 0.36 154.04 0.38 
11 96.99 0.06 96.83 0.05 41.9 0.09 42.02 0.07 91 0.18 91.07 0.18 
12 55.73 0.05 56.14 0.05 24.39 0.3 24.47 0.26 97.05 0.1 97.15 0.10 
13 53.43 0.04 53.09 0.05 18.36 0.07 18.19 0.13 53.52 0.22 53.12 0.23 
14 122.55 0.16 123.69 0.15 47.28 0.17 47.78 0.15 131.63 0.38 132.73 0.39 
15 96.98 0.09 96.89 0.09 48.34 0.52 48.28 0.53 91.33 0.41 91.40 0.42 

Notes: GLMM = Generalized linear mixed model; IQR = Inter-quartile range. 

 
The coefficients of variation based on the two models are also strikingly similar. This also reflects the 

results of the simulation in that the two procedures tend to produce reasonable means square error estimates, 

even under model misspecification. The coefficients of variation are not uniformly below 20%, a common 

threshold for determining an acceptable level of precision. Several of the coefficients of variation for the 

median and interquartile range exceed 30%. The coefficients of variation can exceed 100% for the median. 

For both the gamma-Poisson model and the GLMM, the effect of the variance due to estimating the fixed 

parameters on the mean square error of the small area predictors is substantial. This data set only has 15 

counties. This leads to substantial variation in 0
ˆ ,  2ˆ ,b  ˆ ,  and ˆ.  

 
6. Discussion 
 

We develop predictors of nonlinear parameters based on two unit level models for count data. We first 

define procedures for a gamma-Poisson model with unit-level covariates. We compare the gamma-Poisson 

model to a standard generalized linear mixed model. We use standard parametric bootstrap procedures for 

both models. 

A limitation of the bootstrap procedure that we employ is that the bootstrap MSE estimator is not second-

order unbiased. One can use the double bootstrap to construct a bias-corrected MSE estimator (Hall and 

Maiti, 2006a,b; Erciulescu and Fuller, 2014). We do not pursue the double bootstrap in this work because 

the proposed MSE estimator has adequate properties for the simulation configurations that we considered. 

We study the empirical properties of the small area predictors when the model is correctly specified and 

under model misspecification. The main conclusion from the simulations is that the empirical best predictor 
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for the gamma-Poisson model is superior when the gamma-Poisson model is true, and the PI and GLMM 

predictors are superior when the GLMM is true, as expected. This illustrates the importance of validating 

the model assumptions in model-based small area estimation. However, an interesting result is that the loss 

of efficiency from using the GLMM or gamma-Poisson predictor when the other model is true is consistently 

small. The MSE estimators exhibit more bias when the model is incorrectly specified than when the model 

is correctly specified. Nonetheless, the relative biases of the MSE estimators are usually between -20% and 

20%, regardless of which model is the true model. The coverage rates of confidence intervals do not exhibit 

severe and systematic over-coverage or under-coverage, even under model misspecification. The PI 

predictor has reasonable properties for the mean but is inefficient for nonlinear parameters.  

The data analysis re-affirms the results of the simulation study. The gamma-Poisson and GLMM 

procedures lead to similar predictors in the data analysis. This result echoes an empirical finding of Clayton 

and Kaldor (1987) that estimates of lung cancer rates based on gamma-Poisson and Poisson-lognormal 

models are similar. 

The gamma-Poisson model has two main strengths relative to the Poisson GLMM. An important benefit 

of the gamma-Poisson procedure is computational simplicity. Maximum likelihood estimation is easy for 

the gamma-Poisson model because calculation of the marginal likelihood does not require numerical 

integration. We do not use maximum likelihood estimation for the GLMM model. Instead, we use an IRLS 

algorithm (Schall, 1991) for computational simplicity. A formal comparison of maximum likelihood 

estimation to the IRLS algorithm for the purpose of small area estimation of count data is a possible future 

research direction. We present output using the glmer R function in Section 2 of the supplementary 

material (Berg, 2023b). Given estimates of the fixed parameters, the predictors are easier to calculate for 

the gamma-Poisson model than for the Poisson GLMM. The computing time to implement the gamma-

Poisson predictor is roughly half the time required to implement the GLMM predictor (see Section 4 of the 

supplementary material (Berg, 2023b) for further detail). A second strength of the gamma-Poisson 

procedure is that the estimators of fixed model parameters are consistent. In contrast, the IRLS estimators 

for the Poisson GLMM are known to be inconsistent. The bootstrap procedure for the GLMM relies on 

consistency of the model parameter estimators, an assumption that does not hold for our estimation 

procedure. The procedures for the GLMM model require approximations, and we evaluate the validity of 

these approximations through simulation.  

The GLMM exhibits different strengths, relative to the gamma-Poisson procedure. The loss of efficiency 

from incorrect use of the GLMM is slightly below the loss from incorrect use of the Gam-Pois model. The 

coverage rates of confidence intervals for the GLMM predictor are somewhat closer to 95% than the 

coverage rates for the Gam-Pois model for certain parameters and configurations. 

In practice, the analyst may need to choose one of the two models. We propose to use residuals to 

diagnose the goodness of fit of the models. Our experience is that it can be very difficult to distinguish 

between the two models. The two models differ only with respect to the distribution of the random effect 

and generate very similar types of data. Fortunately, the analysis in this paper suggests that the proposed 
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methods are fairly robust to specification of the incorrect distributional form. The methods for the gamma-

Poisson model work well when the Poisson GLMM is true and vice versa. Our analysis suggests that both 

the gamma-Poisson and Poisson GLMM will lead to similar results for many parameter configurations. We 

expect the conclusions for a specific application to be fairly insensitive to the choice of model. We 

encourage the analyst to consider the strengths and weaknesses of the two models for particular applications 

when selecting one of them in practice. We also note that an alternative to model selection is model 

averaging (Aitkin, Liu and Chadwick, 2009). An investigation of model averaging for the two models 

proposed here is a possible direction for future research.  

Based on this analysis, we prefer the gamma-Poisson model for computational simplicity. The conjugate 

form of the model makes the predictor and MSE estimator straightforward to calculate. If one is only 

interested in the mean, then we recommend the closed-form predictor and MSE estimator of Berg (2022). 

For prediction of general parameters, we recommend the simulation-based predictor defined as ,
ˆ
i L  in (2.4). 

The gamma-Poisson predictor is straightforward to implement and has acceptable efficiency, even if the 

GLMM true. 
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