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A method for estimating the effect of classification errors on 
statistics for two domains 

Yanzhe Li, Sander Scholtus and Arnout van Delden1 

Abstract 

Being able to quantify the accuracy (bias, variance) of published output is crucial in official statistics. Output in 
official statistics is nearly always divided into subpopulations according to some classification variable, such as 
mean income by categories of educational level. Such output is also referred to as domain statistics. In the current 
paper, we limit ourselves to binary classification variables. In practice, misclassifications occur and these 
contribute to the bias and variance of domain statistics. Existing analytical and numerical methods to estimate 
this effect have two disadvantages. The first disadvantage is that they require that the misclassification 
probabilities are known beforehand and the second is that the bias and variance estimates are biased themselves. 
In the current paper we present a new method, a Gaussian mixture model estimated by an Expectation-
Maximisation (EM) algorithm combined with a bootstrap, referred to as the EM bootstrap method. This new 
method does not require that the misclassification probabilities are known beforehand, although it is more 
efficient when a small audit sample is used that yields a starting value for the misclassification probabilities in 
the EM algorithm. We compared the performance of the new method with currently available numerical methods: 
the bootstrap method and the SIMEX method. Previous research has shown that for non-linear parameters the 
bootstrap outperforms the analytical expressions. For nearly all conditions tested, the bias and variance estimates 
that are obtained by the EM bootstrap method are closer to their true values than those obtained by the bootstrap 
and SIMEX methods. We end this paper by discussing the results and possible future extensions of the method. 

 
Key Words: Bias; Variance; Misclassification; Binary classifier; Gaussian mixture model; EM algorithm. 

 
 

1. Introduction 
 

Accurate published output is crucial, especially in official statistics (Eurostat, 2009, page 32), where 

most outcomes are used for policy making. One of the important errors affecting the accuracy of output are 

measurement errors in the variable that is used to group output into subpopulations. The simplest type of 

estimator for which the effect of misclassifications has been studied are proportions in contingency tables. 

Bross (1954) gave an expression for the bias of an estimated proportion of a binary variable in the case of 

misclassifications, which is a special case of expression (C.1) in Appendix C. A more complicated situation 

concerns the accuracy of level estimators (totals, means) and ratios thereof as affected by misclassifications. 

For instance, one may be interested in the average risk of poverty for working persons by categories of 

educational level (Eurostat, 2022), while part of those education values are misclassified. Estimating 

population parameters of a continuous variable in each class is referred to as domain statistics. The current 

study focuses on estimation of the bias and variance of totals or means as affected by misclassifications. 

There is a large amount of literature on misclassifications, for instance Buonaccorsi (2010), Keogh, Shaw, 

Gustafson, Carroll, Deffner, Dodd, Küchenhoff, Tooze, Wallace, Kipnis and Freedman (2020) and Shaw, 

Gustafson, Carroll, Deffner, Dodd, Keogh, Kipnis, Tooze, Wallace, Küchenhoff and Freedman (2020). 

Van den Hout and Van der Heijden (2002) provide an extensive overview of literature on bias and variance 
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in the case of misclassifications. These references underline that quantifying the effect of misclassifications 

on population estimates is relevant for a wide range of disciplines, including medicine, epidemiology, 

statistical astronomy, sociology, land cover mapping, randomised response studies and data confidentiality. 

The latter two cases are special in the sense that their misclassifications are deliberately added to the data 

by a known mechanism. 

Official statistics often make use of statistical registers to identify their target population and divide it 

into subpopulations. One example is a statistical business register containing a list of statistical units over 

time, with background variables such as economic activity and size class to stratify them into subpopulations 

(United Nations, 2015). Another example is a population register, with background variables such as date 

of birth, gender, place of residence and highest attained level of education (Bakker, Van Rooijen and 

Van Toor, 2014). These registers are often created with one or more administrative sources. Errors in the 

classification variables can occur due to errors during registration into those administrative sources, 

administrative delays, errors in the linkage of the administrative sources or changes in circumstances of the 

units which are not reported. Another source of error are differences between concepts used by register 

owners and those used in official statistics (Magnusson, Palm, Branden and Mörner, 2017). Sometimes 

classification variables are derived by applying machine learning algorithms [see, e.g., Meertens, Diks, 

Van den Herik and Takes (2020)] and errors made by those algorithms subsequently lead to misclassifi-

cations. 

In practical situations where output is produced for official statistics, one tries to reduce the number of 

misclassifications for instance by automatic or manual editing. In the case of business statistics, economic 

activity codes are known to be prone to errors. In that case, manual editing is applied which is usually limited 

to the most influential units – the largest enterprises – while the remaining units are left uncorrected. One 

often hopes that errors in the smaller units do not have a large impact on the published figures. 

Unfortunately, this need not be true. Van Delden, Scholtus and Burger (2016) showed that in a particular 

case study, observed levels of misclassification in smaller and medium-sized enterprises resulted in 

considerable bias of turnover totals for some publication cells. The reason for this bias was that the inflow 

of turnover from units unjustly classified into the target class was not balanced by the outflow of turnover 

from units unjustly not classified into the target class. In the context of contingency tables, Schwartz (1985) 

underlined the importance of misclassifications on output accuracy by framing it as “a neglected problem”. 

Analytical expressions for the bias and variance of means or totals of subpopulations as affected by 

misclassifications have been published by Selén (1986) and Van Delden et al. (2016). Furthermore, the bias 

and variance of totals of subpopulations were discussed by Kooiman, Willenborg and Gouweleeuw (1997) 

in the context of data confidentiality. These analytical expressions have two disadvantages. The first 

disadvantage is that they rely on the assumption that the probabilities of all types of misclassification are 

known, or that they have been accurately estimated by means of a sample. In the context of data 

confidentiality these probabilities are known, because misclassifications are applied on purpose to avoid 

disclosure (Kooiman et al., 1997). In most applications, however, the probabilities of misclassification are 
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unknown. Estimated classification error probabilities are often obtained from previous knowledge or a 

comparable dataset (Edwards, Bakoyannis, Yiannoutsos, Mburu and Cole, 2019; Edwards, Cole and Fox, 

2020), or from an audit sample (Gravel and Platt, 2018). Accurately estimating these probabilities using 

sufficiently large sample sizes requires a considerable amount of manual labour. The second disadvantage 

is that the bias and variance estimates based on those analytical expressions are biased themselves. This is 

mentioned by Kooiman et al. (1997) and worked out in more detail by Van Delden et al. (2016). The main 

reason is that the expressions for the bias and variance depend on true population totals which are unknown. 

When estimating the bias and variance, these true population totals are replaced by their biased estimators 

of the population totals, leading to biased estimates of the bias and (to a lesser extent) of the variance of the 

totals. In the special case that one is only interested to estimate a proportion without a numerical variable, 

different methods to correct for bias can be found in Kloos, Meertens, Scholtus and Karch (2021). 

As an alternative to the use of analytical expressions, numerical approaches have been developed. The 

bootstrap approach may be used to estimate output accuracy in the case of misclassifications. Zhang (2011) 

used the bootstrap method to measure the variance of observed totals of subpopulations caused by 

misclassification of households. Van Delden et al. (2016) presented a bootstrap approach to estimate the 

bias and variance of means or totals of subpopulations. The bootstrap approach is very flexible and can be 

adapted to many estimators. Unfortunately, the bootstrap approach has the same two disadvantages as the 

analytical approach: it requires that the probabilities of misclassification are accurately known and, in 

general, it leads to biased estimates of bias and variance. In fact, for simple domain parameters such as totals 

and proportions, the bootstrap method and the analytical expressions lead to near-identical results; see for 

instance Van Delden et al. (2016). For non-linear domain parameters such as ratios, the bootstrap results are 

generally more accurate in the case of skewed distributions because some underlying assumptions of the 

approximation used in the analytical bias and variance expressions might be violated; see Van Delden, 

Scholtus, Burger and Meertens (2023). 

Another numerical method that has been proposed for misclassifications is the SIMEX (“SIMulation and 

Extrapolation”) method, which was first introduced by Cook and Stefanski (1994). It was developed to 

estimate the impact of measurement errors and is adapted in the field of misclassification by Küchenhoff, 

Mwalili and Lesaffre (2006) and Hopkins and King (2010). Similarly to the bootstrap approach, the SIMEX 

method starts with applying misclassifications to the observed data after which the estimators (totals, means) 

are recalculated. Additionally, the SIMEX method applies a simulation process that introduces multiple sets 

of extra errors to estimate the effect of misclassifications. Finally, one extrapolates the estimates to the error-

free condition. Here we have applied the ideas behind this SIMEX procedure to test whether it can be used 

to overcome the bias in the estimates of the bias and variance of means and totals by misclassifications. 

In the current study, we present a new method that uses a mixture model to estimate the bias and variance 

of means and totals by misclassifications. An Expectation-Maximisation (EM) algorithm is used to estimate 

the mixture model. Since the true classes of units are unknown in the case of misclassifications, these true 

classes can be regarded as an unobserved (“latent”) variable in the mixture model. We model the numerical 
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target variable in each class as a mixture of different normal distributions (a Gaussian mixture), which can 

also accommodate target variables that do not have a normal distribution; see McLachlan and Peel (2000). 

The method is referred to as “the EM bootstrap method”. In the current study we limit ourselves to a binary 

classification variable. Our approach can be extended to a situation with multiple classes, which is further 

treated in the discussion. 

The new method performs better with respect to the two mentioned disadvantages than the bootstrap and 

the SIMEX method. First of all, it does not require an estimate of the misclassification probabilities 

beforehand, although in more complicated cases it is computationally efficient to have a rough estimate of 

the misclassification rates since it can be used as an informed start for the EM algorithm. Second, we will 

show that – at least in the binary case – the new method leads to more accurate estimates of the bias and 

variance of means and totals affected by misclassifications than the bootstrap and the SIMEX method. 

In the current paper we evaluate the accuracy of bias and variance estimates under misclassification, by 

comparing the proposed EM bootstrap method with the bootstrap method and with the adapted SIMEX 

method (referred to as “the SIMEX bootstrap method”) in a simulation study and in a case study. In both 

studies, the proportions of two classes are varied as well as the misclassification rates. In the simulation 

study the data distribution in each class is a Gaussian mixture. The case study uses empirical distributions 

from a dataset with log turnover per enterprise in the Netherlands. For the empirical data we use a Gaussian 

mixture model in which the optimal number of components has to be estimated. In both studies we compare 

true bias and variance values with their estimates. 

The remainder of this paper is organised as follows. Section 2 describes the details of the three methods. 

The evaluation of the methods for the simulation study is given in Section 3 and for the case study in 

Section 4. Section 5 discusses the results of our study and proposes future directions. Furthermore, 

Appendices A, B and C provide additional material. Appendix A discusses three different extrapolation 

functions in the SIMEX method. Appendix B compares the difference of using BIC and sBIC as a criterion 

for selecting the optimal number of components in the case study. Appendix C includes some theoretical 

properties of the bootstrap and the EM bootstrap method. R code that implements the methods used in this 

study can be found at https://github.com/Yanzhee/EM-bootstrapping. 

 
2. Methodology 
 

2.1 General settings 
 

We consider a situation where a population of N  units is classified into two classes. The indicator 

variable for the true membership of one of these classes is denoted as {0,1}.z  For convenience, from now 

on we will refer to the classes of interest as class 1 and class 0 and use the indicator z  interchangeably with 

the classification itself. The values of z  are assumed to contain no classification errors and are considered 

to be fixed for the population of interest. In practice, we do not know the true classes of all units. We can 
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only infer them through, for example, manual checking by experts, automatic classification from multiple 

machine-learning algorithms, etc. The true proportion of class 1 in the population is denoted by 1;  the true 

proportion of class 0 is 11 .  

The observed classification variable is denoted as ˆ {0,1}.z  In practice, the observed classes of units 

contain classification errors. The classification errors can be from misunderstandings of class definition, 

miscommunication or simply typos. 

In practice, one is often interested in estimating population parameters of a continuous variable y  in 

each class, referred to as domain statistics. For example, when y  represents turnover of enterprises in 

various industries, the total turnover of each industry will be an interesting indicator. We use   to denote a 

true population parameter, based on y  and the true classification variable .z  In what follows, the continuous 

variable y  is assumed to be error-free. 

Examples of common domain parameters   that are included in our study are: the total sum of y  for 

class 1 1( ),T  the proportion of class 1 1( ),  and the standard deviation of y  for class 1 1( ).  Table 2.1 lists 

the formulas for   given variables y  and .z  Since our study is under the setting of a binary classifier, the 

accuracy of domain statistics in class 0 is directly related to the accuracy of the corresponding estimates in 

class 1. 

 
Table 2.1 

List of formulas for examples of domain parameters .  
 

Statistics of Interest Notation Formula given y  and z  

Total sum of y  for class 1 1T  
i ii

z y  

Proportion of class 1 1  
ii

z N  

Standard deviation of y  for class 1 1  
2

1

1
( )i ii

ii

z y
z




 

Notes: 1. i  stands for a unit in the population. 

 2. 1 1 1= = ( )i i ii i
z y z T N    is the mean of y  for class 1. 

 3. By replacing iz  with ˆiz  in the formulas, 1
ˆ ,T 1

ˆ ,  and 1̂  can be calculated.  

 
The parameter   requires the true values of z  and therefore cannot be computed in practice. An obvious 

estimator is obtained by replacing the unknown true z  with the observed ẑ  in the expressions for ;  this 

yields the domain statistic ˆ.  For example, by replacing iz  with îz  in Table 2.1, formulas are obtained for 

the domain statistics 1
ˆ ,T 1

ˆ ,  and 1
ˆ .  Note that the hat in ̂  signifies an estimator, whereas in îz  it has no 

meaning other than to distinguish the observed indicator from the true indicator .iz  

Our study uses bias and variance to measure the effects that classification errors bring to ˆ.  Bias is 

defined as the difference between the expected values of the estimated output and the true value of domain 

parameters. Variance is a measure of the expected amount that the estimated domain statistics will change 

if different classification variables with the same error distribution are used. Mathematically, we define:  
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  2

ˆ= E( ),

ˆ ˆ ˆ= Var( ) = E E( ) .

Bias

Variance

 

  




 (2.1) 

Besides classification errors, for simplicity we assume that no other errors occur. In line with a common 

type of application in official statistics, we are interested here in bias and variance due to classification 

errors for a fixed finite population. That is to say, in (2.1) we implicitly condition on the realised values of 

1, , Nz z…  and 1, , .Ny y…  

 
2.2 Mixture model 
 

2.2.1 Model setup 
 

Our proposed new method to estimate the bias and variance of ̂  requires a model for the observed 

values 1, , Ny y…  and 1̂ ˆ, , .Nz z…  Here, we propose to use a mixture model, where the distributions in class 

= 1z  and class = 0z  may be different. For simplicity, we assume that the values of units =1, ,i N…  are 

drawn independently of each other. In addition, we assume that classification errors in îz  occur with the 

same probabilities for all units, which also means that they are independent of the continuous variable .iy  

The latter assumption allows us to model the observed values iy  and îz  separately, since it implies that, 

within each true class, the joint density of iy  and îz  is factorised as follows:  

 ˆ ˆ( , = | = ) = ( | = ) ( = | = )i i i i i i if y z b z a f y z a P z b z a  (2.2) 

for all = 1, , ,i N…  with , {0,1}.a b  Here, ˆ( = | = )P z b z a  denotes a classification error probability and 

( | = )f y z a  denotes the density of the continuous variable in class .a  We will now describe these two parts 

of the model in more detail. 
 

Probability matrix. The probabilities of classification errors are modelled by a 2 2  transition matrix P  

(Formula 2.3). It describes the relationship between the true classes z  (rows) and the observed classes ẑ  

(columns).  

 
11 11

00 00

1
= .

1

p p

p p

 
 
 

P  (2.3) 

The value abp  indicates the probability of observing a unit in class b  when its true class is .a  Thus, for unit 

,i  if its true class is 1, its probability to be observed in class 1 is 11ˆ( =1| =1) = ,i iP z z p  and its probability 

to be observed in class 0 is 11ˆ( = 0 | =1) =1 ;i iP z z p  similarly, for a unit in true class 0, ˆ( = 0 | = 0) =i iP z z  

00p  and 00ˆ( =1| = 0) =1 .i iP z z p  For reasonable classifiers, the values of 11p  and 00p  should be above 0.5. 
 

Gaussian mixture model. We assume that the distribution of y  for each class z  follows a Gaussian 

mixture model. The number of Gaussian components in class 1 is 1,q  and the number in class 0 is 0.q  Note 

that this means that the overall model for y  can be seen as a “mixture of mixtures”, with the first mixing 
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level given by the true class z  and the second mixing level by the Gaussian mixture components within a 

true class. 

For better explanation, a component variable m  is defined to identify which component of the Gaussian 

mixture model each unit belongs to. The variable m  is unobserved. The distribution of iy  depends on the 

class it belongs to (the value of )iz  and also which component in this class it belongs to (the value of );im  

we make the conventional assumption that each unit i  belongs to a unique class-component pair ( , ).i iz m  

By the law of total probability, the density of iy  conditional on iz  is:  

  
   

   

1

0

=1

=1

 = | = 1 | = 1, = ,  if = 1,

| = =

 = | = 0 | = 0, = ,  if = 0,

q

i i i i i
j

i i q

i i i i i
k

P m j z f y z m j a

f y z a

P m k z f y z m k a






 





  

where  = | =1P m j z  is the mixture weight of a component in class 1, denoted as 1 j  1( {1, , });j q …  

 = | = 0P m k z  is the mixture weight of a component in class 0, denoted as 0k  0( {1, , }).k q …  These 

mixture weights satisfy 1

1=1
= 1

q

jj
  and 

0

0=1
= 1.

q

kk
  

In a Gaussian mixture, it is assumed that each component follows a normal distribution. Hence, in this 

case we obtain:  

  
 

 

1

0

2
1 1 1

=1

2
0 0 0

=1

 ; , ,  if = 1,

| = =

 ; , ,  if = 0,

q

j i j j
j

i i q

k i k k
k

y a

f y z a

y a

   

   






 





 (2.4) 

where 1 j  is the mean of component j  in class 1 and 1 j  is its standard deviation; 0k  is the mean of 

component k  in class 0 and 0k  is its standard deviation;  2 1 1 2 2 2( ; , ) = (2 ) exp ( ) (2 )y y           

denotes the density of a normal distribution with parameters   and 2.  

Let 
1 1 1 0 0 01 11 00 11 11 11 1 1 1 01 01 01 0 0 0= ( , , , , , , , , , , , , , , , , )θ q q q q q qp p             … …  denote the vector of 

unknown parameters of the Gaussian mixture model. The identification of all parameters in θ  requires that 

the order of the components in each class is fixed. For simplicity, we assume here that 11 1< < < <j … …  

11q  and 
001 0 0< < < < .k q  … …  

In practice, the appropriate numbers of components in the Gaussian mixture models for class 1 and class 

0, 1q  and 0 ,q  are not known and need to be determined from the observed data. Here, the main purpose of 

the mixture model is to provide a flexible way to model the distribution of y  in each class. For this type of 

application, a commonly-used approach is to fit several mixture models to the data with different numbers 

of components and use the Bayesian information criterion (BIC) to select the optimal number of components 

(McLachlan and Peel, 2000, page 175 and pages 209-210). However, more recent research suggests that 

when the components in a mixture model have a very similar mean and variance, the Fisher information 

matrix may become singular and the BIC is no longer justified as a criterion (Drton and Plummer, 2017). 
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For such situations, Drton and Plummer (2017) proposed a modified BIC, referred to as the sBIC. In the 

case study to be discussed in Section 4, we compare the optimal number of components according to the 

BIC and sBIC criteria. 

 
2.2.2 EM algorithm 
 

Maximum likelihood estimation of the above Gaussian mixture model can be achieved using an EM 

algorithm (Dempster, Laird and Rubin, 1977; Little and Rubin, 2002). This type of algorithm is often applied 

when there are unobserved variables in statistical models. As illustrated by its name, it contains two steps: 

an E step and an M step. The E step builds the expected value of the complete-data log-likelihood function, 

conditional on the observed data. The M step then estimates the model parameters, which in turn provide 

input for the next E step. The algorithm proceeds in an iterative way until convergence. 

It should be noted that the EM algorithm can estimate all parameters of the mixture model (including the 

matrix )P  from a data set of observations ˆ( , );i iz y  thus, it is not necessary to have observed the true class 

iz  for any unit. Loosely stated, this is possible because, on the one hand, the probability that an observation 

ˆ( , )i iz y  belongs to class 1 or class 0 can be predicted based on differences in the distribution of y  for class 

1 and class 0 (which is done during the E step) and, on the other hand, the distributions of y  and ẑ  within 

each true class can be estimated based on these predicted probabilities (which is done during the M step). 

Technically, estimation is possible because (under normal circumstances) there exists a unique set of 

parameter values for θ  for which the complete-data log-likelihood function achieves its global maximum. 

In other words: the model is identified; see McLachlan and Peel (2000) for more details. 

To derive the complete-data log-likelihood function, we note from expressions (2.2), (2.3), and (2.4) that  

 
01

( ) ( )(1 )

1 0
=1 =1

ˆ( , , , ; ) = ,
1 1

θ i m j i m ki i

qq
z z

i i i i ji ki
j k

f z m z y   

    

where  

  
 

2

ˆ1 11ˆ

1 1 11 11 2
11

1 exp ,
22

ii
z i jjz

ji

jj

y
p p


 

 


  

  
  

   

    
 

2
ˆ ˆ1 00

0 1 00 00 2
00

1 1 exp ,
22

i i
z z i kk

ki

kk

y
p p


 

 


  

   
  

   

and the indicator functions for im  are defined as: 

 ( = ) ( = )

1 = 1 = ,
= ; = .

0 0i i

i i

m j m k

i i

m j m k

m j m k

 
 

  
1 1   

Note that 
1

( = )=1
=1

i

q

i m j ij
z z  and 

0

( = )=1
(1 ) =11

i

q

i m k ik
z z   for all units .i  
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It follows that the complete-data log-likelihood of the Gaussian mixture model can be written as:  

 
01

( = ) 1 ( = ) 0
=1 =1 =1 =1

ˆLL( ) = log ( , , , ; ) = log (1 ) log ,θ θ 1 1
i i

qqN N

i i i i i m j ji i m k ki
i i j k

f z m z y z z 
 

  
 

     (2.5) 

where we used the assumption that the units are drawn independently of each other. 
 

E step. In the E step of the algorithm, the unobserved quantities ( = )1
ii m jz  and   ( = )1 1

ii m kz  in (2.5) are 

replaced by their conditional expectations, given the observed values îz  and :iy  

    
1 0

1

( = ) 1

1 0=1 =1

ˆ ˆ ˆ ˆE = , = = = 1, = = , = = ;1
i

ji

i m j i i i i i i jiq q

ji kij k

z z z y y P z m j z z y y A


  
   

    
1 0

0
( = ) 0

1 0=1 =1

ˆ ˆ ˆ ˆE (1 ) = , = = = 0, = = , = = .1
i

ki
i m k i i i i i i kiq q

ji kij k

z z z y y P z m k z z y y A


 


 
   

During iteration t  of the algorithm, these expressions are evaluated using the current parameter estimates 
( 1)ˆ ,t  yielding the values 

( )
1

t
jiA  and ( )

0 .t
kiA  

 

M step. In the M step of the algorithm, the log-likelihood function (2.5) is maximised with respect to the 

model parameters, with the unobserved quantities replaced by 
( )
1

t
jiA  and ( )

0
t
kiA  from the most recent E step. 

By setting the first-order partial derivatives of this expected log-likelihood equal to zero, the following 

formulas are obtained to update the model parameters: 
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As noted above, the EM algorithm can be used to estimate the mixture model even when the true class 

iz  is never observed in the available data. In general, however, the EM algorithm will merely converge to 
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a local maximum of the log-likelihood function. To ensure that the global maximum is found, it may be 

necessary to run the algorithm multiple times using different (randomly chosen) starting values and retain 

the best solution. For general suggestions on how to choose suitable random starting values for mixture 

models, see McLachlan and Peel (2000, Section 2.12). 

Alternatively, observations ˆ( , , )i i iz z y  including the true class may have been obtained for a random 

subsample of the data (an audit sample). If available, an audit sample can be used to improve the conver-

gence of the EM algorithm to the global maximum of the likelihood function, reducing the need for re-runs 

with different starting values. First, the parameters 1, 11p  and 00p  can be estimated directly from the audit 

sample to provide reasonable starting values for the EM algorithm. In addition, improved starting values for 

the other parameters (related to the components of the Gaussian mixture inside each class) could be obtained 

by applying a k -means clustering algorithm to each true class in the audit sample (Li, 2020b). Finally, for 

observations from the audit sample, 1 jiA  and 0kiA  can be replaced during the E step by more narrowly 

defined expected values:  

    
1

1

( = ) 1

1=1

ˆ ˆ ˆ ˆE = 1, = , = = = = 1, = , = = ;1
i

ji

i m j i i i i i i i jiq

jij

z z z z y y P m j z z z y y Q
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0
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i

ki
i m k i i i i i i i kiq
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whereas    ( = ) ( = )ˆ ˆ ˆ ˆE = 0, = , = = E (1 ) = 1, = , = = 0.
i ii m j i i i i m k i i iz z z z y y z z z z y y1 1  

 
2.3 Methods 
 

In this study we will compare three methods that try to estimate the bias and variance of a domain statistic 

̂  as defined in (2.1): the bootstrap method, the EM bootstrap method and the SIMEX bootstrap method. 

We did not compare the outcomes with analytical expressions, since we already know that for domain 

statistics those expressions yield results that are either similar to those of the bootstrap method or less 

accurate (see Introduction). 

As noted at the end of Section 2.1, we are interested here in bias and variance due to classification errors 

for a finite population, conditional on the values 1, , Nz z…  and 1, , .Ny y…  Due to assumption (2.2), this 

means that the bias and variance of interest are completely determined by the random process described by 

the matrix ,P  applied to the fixed values 1, , .Nz z…  

An important practical consideration is that the bootstrap and SIMEX bootstrap methods assume that (an 

estimate of) the matrix P  is available beforehand, whereas an estimate of P  is obtained as part of the EM 

bootstrap method. For the other methods, P  could be estimated in practice from an audit sample or by 

running the EM algorithm separately. In our study to be discussed in Sections 3 and 4, we used the estimated 

P  from the EM algorithm as input for the bootstrap and SIMEX bootstrap methods. 
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2.3.1 Bootstrap method 
 

The bootstrap method as applied here originates from Van Delden et al. (2016). It is summarised in 

Algorithm 1. The classification matrix P  is applied to the observed class ẑ  and bootstrapped classes *z  are 

obtained. The probability that the bootstrapped class is 1 given the observed class 1 is *
11ˆ( =1 =1) =i iP z z p  

and given the observed class 0 is *
00ˆ( =1 = 0) =1 .i iP z z p  Through bootstrapping, random classification 

errors are introduced to observed classes. As a result, estimated bias is computed by comparing bootstrapped 

statistics *  to the observed statistic ˆ,  and the variance of the bootstrapped statistics *  is an estimate of 

the variance of the observed domain statistic ˆ.  In practice, the theoretical bootstrap bias and variance are 

usually approximated using a finite number ( )S  of bootstrap samples. For certain simple statistics such as 

1  and 1,T  it is also possible to derive an exact formula for the theoretical bootstrap bias and variance 

(Van Delden et al., 2016). 

 
Algorithm 1  The bootstrap method 

Input: Observations ˆ( , )i iy z  for =1, , ,i N…  matrix P  and .S  

1: for = 1s S…  do 

2: Generate *
iz  by ,P  conditional on ˆ ,iz  for every unit i  in the data set 

3: Calculate the corresponding *  based on *( , )i iy z  instead of ˆ( , )i iy z  

4: end for 

5: Calculate * ˆˆ= E( ) ,z bootBias
* ˆ= Var( )zbootVar  based on S  simulations 

Output: bootBias  and bootVar  

 
It is known that, in general, the bias and variance estimates from Algorithm 1 are biased, due to the fact 

that the observed classes îz  are used as a starting point for the bootstrap. This problem is illustrated in 

Appendix C.1 using the parameter 1= ,T  for which an exact analysis is possible. The next two methods 

attempt to correct for this bias. 
 

2.3.2 EM bootstrap method 
 

In the EM bootstrap method, the observed data ˆ( , )y z  are assumed to follow the Gaussian mixture model 

from Section 2.2. The EM algorithm estimates the parameters θ  of the model, which include the 

classification probabilities 11p  and 00.p  Then we apply a nested simulation process; see Algorithm 2. The 

purpose of the first level of simulation is to restore (in expectation) an error-free status. It generates classes 

z  from ˆˆ( | , ; ),P z y z θ  leading to unbiased statistics .  [Note that the required probabilities are available 

directly from the EM algorithm, since 
1

1=1
ˆˆ( = 1| , ; ) =θ

q

i i i jij
P z y z A  and 

0

0=1
ˆˆ( = 0 | , ; ) = .]

q

i i i kik
P z y z Aθ  

After that, classes 
*z  are generated by a bootstrapping process with matrix ,P  which leads to bias and 

variance estimation similar to Algorithm 1. Finally, the results of this inner bootstrap simulation are 

averaged over the first level of simulation, to reduce the effect of noise due to drawing z  from a probability 

distribution.  
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Algorithm 2  The EM bootstrap method 

Input: Observations ˆ( , )i iy z  for =1, ,i N…  and 1 2, .S S  

1: Estimate model parameters ,θ  including 11p  and 00 ,p  from the EM algorithm, conditional on ẑ  and y  

2: Calculate ˆˆ( | , ; )i i iP z y z θ  for every unit i  in the data set 

3: for 1 1= 1, ,s S…  do 

4: Generate iz  by ˆˆ( | , ; )i i iP z y z θ  for every unit i  in the data set 

5: Calculate the corresponding   based on ( , )i iy z  instead of ˆ( , )i iy z  

6: for 2 2=1, ,s S…  do 

7: Generate *
iz  by ,P  conditional on ,iz  for every unit i  in the data set 

8: Calculate the corresponding *  based on *( , )i iy z  instead of ˆ( , )i iy z  

9: end for 

10: end for 

11: Calculate * ˆ ˆ= E (E( | , ) | )z z z z combBias 
   and * ˆ ˆ= E (Var( | , ) | )z z z zcombVar 

   based on 1S  and 2S  

simulations 

Output: ,combBias combVar  and estimated matrix P  

 
It is shown in Appendix C.2 that, for 1 2, ,S S   Algorithm 2 indeed yields approximately unbiased 

bias and variance estimators in the special cases 1= T  and 1= ,   provided that the observed data follow 

the assumed mixture model. For other, non-linear parameters such as 1= ,   no exact proof is available, 

but we will investigate the behaviour of Algorithm 2 in a simulation study. 

 
2.3.3 SIMEX bootstrap method 
 

SIMEX was introduced by Cook and Stefanski (1994) for numerical variables. It uses a bootstrapping 

process to add various extra errors, through which a sequence of estimates under different error-included 

conditions is obtained. Then a function is applied to extrapolate the sequence back to the estimate without 

error. Here, we use an extension of the SIMEX method to categorical variables that was introduced by 

Küchenhoff et al. (2006). 

Traditionally, the SIMEX method would be applied to obtain a bias-corrected estimate of the target 

parameter itself (  in our notation). Here, we use it to obtain bias-corrected bootstrap estimates of the bias 

and variance of ˆ.  We will refer to this approach as the SIMEX bootstrap method. 

The SIMEX bootstrap method simulates multiple conditions where classification errors are added to the 

data according to the matrix P  [with P  given by (2.3)], for different values of 0.   For each value of 

,  the bootstrap method of Algorithm 1 is applied to the adjusted data to obtain bias and variance estimates. 

Finally, the SIMEX bias and variance estimates are obtained by extrapolating the sequence of bias and 

variance estimates as functions of   to the value = 1.   This can be understood as follows. The available 

observed data can be viewed as one realisation of applying the matrix P  to the true data. So, starting from 

the observed data at = 0  we want to extrapolate the sequence of bias and variance estimates back to what 
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would have been found at the unobserved point of zero misclassifications, which corresponds to = 1.   

The SIMEX bootstrap method is summarised in Algorithm 3. 

 
Algorithm 3  The SIMEX bootstrap method 

Input: Observations ˆ( , )i iy z  for =1, , ,i N…  matrix P  and 1 2, .S S  

1: for   ranging from 0 to 5 with increments of 0.5 do 

2: Calculate P  

3: for 1 1= 1, ,s S…  do 

4:  Generate ( )
iz   by ,P  conditional on ˆ ,iz  for every unit i  in the data set 

5:  Calculate the corresponding ( )  based on ( )( , )i iy z   instead of ˆ( , )i iy z   

6:  for 2 2=1, ,s S…  do 

7:     Generate ( )ˆ
iz   by ,P  conditional on ( ) ,iz   for every unit i  in the data set 

8:     Calculate the corresponding ( )ˆ   based on ( )ˆ( , )i iy z   instead of ˆ( , )i iy z  

9:  end for 

10: end for 

11: Calculate ( )

( ) ( ) ( )ˆ ˆ ˆ= E (E ( | , ) | )
z

z z z

   ( )
simexBias   and ( )

( ) ( )ˆ ˆ ˆ= E (Var ( | , ) | )
z

z z z

 ( )
simexVar   based on 1S  and 2S

simulations 

12: end for 

13: Extrapolate ( )
simexBias   and ( )

simexVar   to = 1   to get simexBias  and simexVar  

Output: ,simexBias simexVar  

 
Calculate P .  When = 0, 0P  is an identity matrix. In this special case, no additional classification errors 

are introduced in line 4 of the SIMEX bootstrap algorithm. For any real-valued > 0, P  can be computed 

using the eigenvalue decomposition of .P  Through it, we get 1= ,P QAQ  where A  is a diagonal matrix 

of eigenvalues and Q  is a matrix of eigenvectors of .P  Then P  is calculated by 
1= .  P QA Q  The 

corresponding probabilities ( )
11p   and ( )

00p   are obtained:  

 
( ) ( )
11 11

( ) ( )
00 00

1
= ,

1
P

p p

p p

 


 

 
 
 

  

where ( )
11p   is the probability of ( ) =1z   when ˆ =1,z  and ( )

00p   is the probability of ( ) = 0z   when ˆ = 0.z  

These probabilities are used to draw ( ) ,iz   given ˆ ,iz  in line 4 of the algorithm. Note that this procedure 

works only if P  is a true probability matrix in the sense that ( ) ( )
11 000 , 1.p p    For 0,   this is guaranteed 

provided that 11 00 >1p p  (Küchenhoff et al., 2006). For < 0  this property does not hold; hence, 

extrapolation is a necessary step of the SIMEX method. 
 

Extrapolation functions. A SIMEX method yields a consistent estimator of a parameter of interest (in our 

case: bias and variance of ˆ)  when the extrapolation function, which describes how the uncorrected 

estimator varies as a function of ,  is correctly specified; see Küchenhoff et al. (2006) for more details. In 
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the literature on SIMEX, extrapolation functions that have been suggested include: local linear regression 

(LOESS) on   (Hopkins and King, 2010) and standard regression on a quadratic or cubic polynomial of   

(Küchenhoff et al., 2006). We have compared all three approaches in the simulation study of Section 3. 

 
3. Simulation study 
 

3.1 Settings 
 

We simulated a population of size =N 2,000 with two classes. For target variable y  we used the 

following Gaussian mixture distribution: Class 0 has one component with 0 =15, 0 = 3;  class 1 has two 

components with 11 12( , ) =  (0.5, 0.5), 11 12( , ) =  (2, 4), and 11 12( , ) =  (1, 2). 

With respect to the true classification variable ,z  we tested two different proportions of class 1: 1  is 

0.3 or 0.5. The observed classification variable ẑ  was generated from z  by using the transition matrix P  

given in equation (2.3). In the simulation study, values of 11p  and 00p  were set at 0.6, 0.75, or 0.9. For each 

setting of 1, 11p  and 00 ,p  we used 0 =S 100 implying that 100 sets of ẑ  were generated from .z  In each 

set 0s , 5% of the units from the population (so 100 in total) were randomly selected as an audit sample 

which was used to obtain the starting values for the EM algorithm of 11
ˆ ,p 00p̂  and the other class-level 

parameters. The starting values of the component-level parameters were obtained by k-means; see Li 

(2020b) for more details. In a preliminary study, we have also tested the EM algorithm without an audit 

sample (see Section 3.3). 

For each set 0 ,s  the bootstrap method, the SIMEX bootstrap method and the EM bootstrap method were 

applied to estimate the corresponding bias and variance of the estimated domain parameters ̂  that are 

given in Table 2.1: the total sum for class 1 1( ),T  the proportion of class 1 1( )  and the standard deviation 

for class 1 1( ).  The bias and variance estimates are given here as the average over the 0S  sets. 

With respect to the SIMEX bootstrap method, we tested the above settings of the simulation study for 

three different extrapolation functions, as noted in Section 2.3.3; see also Appendix A. The estimates of the 

bias and of the standard error of the LOESS function and of the third order polynomial were closer to the 

true values than those of the second order polynomial. Since the LOESS function was used in a previous 

study on misclassifications (see Hopkins and King (2010)) we used this extrapolation function in the 

remainder of this paper. 

The EM algorithm was stopped either when none of the parameter estimates changed by more than 0.001 

between two iterations, or after 5,000 iterations. In practice, both in this simulation study and in the case 

study of Section 4, this maximum number of iterations was never reached. For about 1% of the simulated 

data sets, the EM algorithm did not converge properly due to numerical issues. These were caused by an 

unfortunate choice of starting values estimated from the audit sample, for instance a starting value of 11p  

exactly equal to 1. In principle, this problem could be avoided easily by a slight change of starting values. 

However, as this issue only affected a small number of cases, for convenience we ignored these cases in the 

results below. 
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The number of iterations in the methods, ,S 1S  and 2S  were all set at 100. To obtain a benchmark for 

the true bias and variance of the estimated domain parameters ˆ,  1,000 sets of ẑ  were simulated. 

 
3.2 Results 
 

Bias estimation. Figure 3.1 shows the bias of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3 (row 1, 3 and 5 respectively) and 

for 1 = 0.5 (row 2, 4 and 6 respectively). Each column shows results under the three 11p  settings. In each 

subplot, the horizontal axis indicates values of 00 ,p  the vertical axis defines the estimates under different 

conditions and methods. Furthermore, the different methods are given by different symbols: the true values 

(•), the bootstrap ( ),  the SIMEX bootstrap ( )  and the EM bootstrap method ( ).  Figure 3.2 shows the 

standard error (square root of the variance) of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3 and 1 = 0.5 for the same settings. 

Overall, for a given value of 11,p  the bias of 1
ˆ ,T 1̂  and 1̂  decreased with a larger value of 00.p  For a 

given value of 00 ,p  the bias increased with a larger value of 11.p  This result can be understood as follows. 

In the case of the total, an analytical expression for the bias of 1T̂  is given by (C.1). Normally, this expression 

cannot directly be computed since 0T  and 1T  are unknown in real situations, but in the simulations we know 

their values. In our example, at 1 = 0.3 one finds that 0 =15 (1 0.3) 2,000 = 21,000T     and 1 = (0.5 2T    

0.5 4) (0.3) 2,000 =1,800.    An increase of 00p  from 0.6 to 0.9 for a given value of 11p  reduces the bias 

since the contribution 00 0(1 )p T  drops from 8,400 to 2,100. This refers to units with true class 0 that are 

erroneously observed as class 1 (overestimation). Conversely, an increase of 11p  from 0.6 to 0.9 for a given 

value of 00p  leads to a small increase of the bias due to an increase in the contribution 11 1( 1)p T  from 

720  to 180.  This contribution refers to units with true class 1 that erroneously have an observed class 0 

(underestimation). Generally, for a given value of 11p  the bias of the statistics of interest 1
ˆ( ,T 1̂  and 1

ˆ )  

decreases with a larger value of 00p  because their overestimation decreases. Conversely, for a given value 

of 00p  the bias of the statistics increases with a larger value of 11p  because its underestimation decreases. 

With respect to the three estimation methods (see Figure 3.1), we found that the bias estimates for the 

statistics of interest from the EM bootstrap method were closest to the true values. The bias estimates from 

the SIMEX method were closer to the true values than the estimates from the bootstrap method, but they 

still had a considerable distance to the true bias. Furthermore, we found that the bias estimates from all three 

methods were closer to their true bias for 1T  and 1  when the misclassification probabilities were reduced 

11( p  or 00p  values closer to 1). When 11p  and 00p  were equal to 0.9, bias estimates from the bootstrap 

method and the SIMEX bootstrap method even overlapped with the corresponding true bias. Finally note 

that when 1 = 0.5 and 00 11= ,p p  then the true bias of 1̂  equals 0 and all three methods estimated this bias 

correctly. 
 

Variance estimation. Figure 3.2 shows the true and estimated standard error of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3 

(row 1, 3 and 5 respectively) and for 1 = 0.5 (row 2, 4 and 6 respectively). The true standard errors of 1T̂  

and of 1̂  were reduced with less misclassifications with 00p  and 11p  going from 0.6 to 0.9. This result 

follows from the analytical expression (C.2) for the variance of 1
ˆ .T  
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Figure 3.1  Bias estimation in the simulation study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Rows represent different domain parameters 1( ,T 1, 1)  for two settings of 1: 1 = 0.3 and 1 = 0.5. Columns represent different 11p  

values, within each column different 00p  values are given. 

 
  

8,000 
 

6,000 
 

4,000 
 

2,000 
 

6,000 
 

4,000 
 

2,000 
 

0 
 

0.2 
 

0.1 
 

0.0 
 
 

0.1 
 

0.0 
 

-0.1 
 

5 
4 
3 
2 
1 
0 

 
4  
3  
2  
1  
0 

     0.6             0.75             0.9                   0.6              0.75             0.9                   0.6             0.75             0.9 
                                                                                       p00 

                      p11 = 0.6                                                    0.75                                                         0.9   

     T
1 , α

1  =
 0

.3
           T

1 , α
1  =

 0.5            α
1 , α

1  =
 0.3          α

1 , α
1  =

 0.5             σ
1 , α

1  =
 0

.3
            σ

1 , α
1  =

 0.5         

B
ia

s 

  Estimators 
            Bias_true 
 
            Bias_boot 
 
            Bias_simex 
 
            Bias_em 



Survey Methodology, December 2023 585 

 

 
Statistics Canada, Catalogue No. 12-001-X 

Figure 3.2  Standard error estimation in the simulation study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 3.1. 
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from 0.6 to 0.9. Furthermore, there was a very small reduction of this standard error for a given value of 
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replicates this concerns outlying values compared to the true distribution in class 1. When the number of 

units from class 0 increases 00( =p 0.75), this variation in turnover values of the replicates decreases and 

thus the standard error of 1̂  decreases. Since turnover values of class 0 are larger than those of class 1, the 

impact of varying values of 00p  is larger than for 11.p  

 
 

250 

 
200 

 
250  
225 

 
200 

 
175 

 
150 

 
0.011 

 
0.010  
0.009 

 
0.008 

 
0.007  
0.011  
0.010  
0.009  
0.008 

 
0.007 

 
0.15 

 
0.12 

 
0.09 

 
0.06 

 
0.03 

 
0.15  
0.12 

 
0.09  
0.06  
0.03 

     0.6             0.75             0.9                   0.6              0.75             0.9                   0.6             0.75             0.9 
                                                                                       p00 

                      p11 = 0.6                                                    0.75                                                         0.9   

     T
1 , α

1  =
 0

.3
           T

1 , α
1  =

 0.5            α
1 , α

1  =
 0.3          α

1 , α
1  =

 0.5             σ
1 , α

1  =
 0

.3
            σ

1 , α
1  =

 0.5         

S
ta

nd
ar

d
 E

rr
o

r 

  Estimators 
            SE_true 
 
            SE_boot 
 
            SE_simex 
 
            SE_em 



586 Li, Scholtus and van Delden: A method for estimating the effect of classification errors on statistics for two domains 

 

 
Statistics Canada, Catalogue No. 12-001-X 

With respect to the three estimation methods (see Figure 3.2) we found, similar as with the bias, that the 

standard error estimates for the statistics of interest from the EM bootstrap method were closest to the true 

values. For 1T̂  and 1
ˆ ,  the standard error estimates from all three methods were almost equally good in most 

conditions. In the other conditions, the bootstrap method estimates were least accurate, followed by those 

of the SIMEX bootstrap method which were close to the true values. The estimated standard errors of 1̂  

were close to their true values in the case of the EM bootstrap method, much closer than for the other two 

methods. Larger values of the standard error of 1̂  lead to larger estimation differences among the three 

methods. 
 

3.3 Additional simulation studies 
 

Below we summarise the results of three additional simulation studies. 
 

Audit sample. In a preliminary study we have compared the estimation of bias and standard error with and 

without an audit sample (Li, 2020a). We tested 00p  and 11p  values of 0.6, 0.75 and 0.9, N  2,000, 1  

equal to 0.1, 0.3, 0.5, 0.7 and 0.9; a single Gaussian component in each class, with 1  values of 2, 10, 12 

and 15, 0  fixed at 15, 1  1 and 0  2. In situations without an audit sample, different starting values 

were tested for the EM algorithm. For 00p  and 11,p  starting values of 0.6, 0.75 and 0.9 were used, leading 

to nine combinations for the pair 00( ,p 11).p  By choosing different values for 00p  and 11,p  the starting 

points can be seen as representative in the parameter space. The starting value of 1  was set according to 

1 11 00 00ˆ= (3 ) (1 )iz N p p p       which is an unbiased estimate of 1  (Kloos et al., 2021). Means and 

variances were started by robust statistics obtained from observed classes, where g  for the two classes 

was initialised at the median of the corresponding target variable, and g  started with k  MAD where 
1= 1 (3 4)k   1.48 and MAD is the median absolute deviation; see Rousseeuw and Croux (1993). 

We found that the estimated bias of the statistics of interest using the EM bootstrap with and without an 

audit sample yielded nearly the same results, except for difficult estimation conditions. These difficult 

conditions were when 0 1=   combined with lower values for 1  and smaller 00p  and 11p  values (not 

shown). Under those conditions the bias estimates were less accurate, but the true (relative) bias was small. 

The bias estimates were close to zero while the true relative bias was up to 0.03. For the standard error of 

the statistics of interest, the EM bootstrap with and without an audit sample yielded nearly the same results 

under all tested conditions. 
 

Results for 1.  Besides the estimated bias and standard error of 1
ˆ ,T 1̂  and 1̂  for 1 = 0.3, we have also 

computed them for 1
ˆ .  Note that 1 1 1

ˆ ˆˆ = ( ),T N    so results for 1̂  follow from those of 1T̂  and 1
ˆ .  With 

respect to the comparison of the three methods, we concluded that the true bias and standard error were 

estimated most accurately by the EM bootstrap method. The specific results can be found in Li (2020a). 
 

Confidence intervals. So far, we have presented the results as averaged over 0 =S 100 sets of ẑ  that were 

generated from .z  In a practical situation one would have only a single set of ẑ  values. This raises the 

question whether the EM bootstrap method also leads to more accurate bias estimates than the other two 
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methods in the case of a single sample or only on average. To that end, we estimated a 95% confidence 

interval for the bias estimates of the statistics of interest for the three methods using the 0 =S 100 replicates. 

This interval was estimated as 1.96 times the standard error of the estimated bias which in turn was derived 

from the 0 =S 100 bias estimates. 

From Section 3.2 we have already concluded that in some settings all three methods yielded accurate 

bias estimates for 1T̂  and 1
ˆ ,  but otherwise the bias estimate by the EM bootstrap method was clearly closer 

to the true value than that of the SIMEX bootstrap and bootstrap method, as averaged over 0S  replicates. 

Since the 95% confidence intervals were very small for all three methods (see Figure 3.3), in most settings 

also for a single set of ẑ  values, the EM bootstrap estimate of the bias was closer to the true bias than the 

estimates from the SIMEX bootstrap and bootstrap method. 

 
Figure 3.3  Bias estimation in the simulation study with 95% confidence interval. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Notes: For row and column settings see in Figure 3.1. 
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4. Case study 
 
4.1 Data 
 

In order to assess the performance of our methods in real applications, a case study was conducted. In 

the case study, the bias and variance of the estimated domain statistics 1
ˆ ,T 1̂  and 1̂  were estimated, using 

the same methods as in the simulation study. 

For the case study, we started with a data set that contains the logarithm of the yearly turnover for a 

population of enterprises for which we know their website address; see Oosterveen (2020). The enterprises 

are classified by economic activity codes, according to the European NACE rev. 2 classification (Eurostat, 

2008). The enterprises, their NACE codes and the website addresses were obtained from a statistical 

business register (SBR). For some enterprises we obtained the website address from a data set with URLs 

that we retrieved from an external company DataProvider. 

These NACE code values are prone to classification errors. NACE codes of larger and more complex 

enterprises are checked manually and corrected if needed. For the case study we therefore limited ourselves 

to the simpler enterprises, that are composed of three legal units or fewer, since those are the enterprises 

whose NACE codes are the most prone to misclassification in practice. Furthermore, we started with a 

shortlist of 25 economic activities; the NACE codes are given in Figure 4.1. This shortlist contains a few 

groups of NACE codes with similar classes within a group, such as wholesale of clothes and retail trade of 

clothes, and dissimilar to others, such as taxi operation. 

Similar to the simulation study, in the case study we wanted to start with a data set that was free of 

misclassifications, and then introduce the misclassifications on purpose in order to test the performance of 

the three methods. However, the data that we extracted from the SBR concerned observed NACE codes that 

could already contain misclassifications. We therefore did not use all smaller enterprises with a website 

(76,270 enterprises), but we used a selection of enterprises that had a relatively high probability of having 

the correct NACE code. This selection was made by predicting the NACE code of the enterprises based on 

the text of the main page of the website of the enterprise. These texts were scraped and preprocessed; see 

Oosterveen (2020) on how this was done. Three different machine learning algorithms (Naïve Bayes, 

Support Vector Machine and Random Forest) were trained to predict the NACE code, using a ten fold cross-

validation procedure. In each fold, the model was trained on 90% of the data and the fitted model was used 

to predict the remaining 10% of the data. An observed NACE code was considered to be correct when the 

fitted models of all three algorithms predicted the same code or when it was predicted by two of the 

algorithms and the prediction confidence of the models was relatively high; see Oosterveen (2020) for a 

more detailed description of the selection. This selection led to 45,965 enterprises. 

In the present paper we limit ourselves to binary misclassifications. We therefore made a further selection 

of pairs of two NACE codes out of the shortlist of 25 NACE codes. We selected different pairs, where each 

selected pair is referred to as a “case”. The pairs differed in the extent of overlap between the log-turnover 

distributions and in the shapes of the distributions. Furthermore, we ensured that the two group sizes were 
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not too small and not too unbalanced, which meant that 1  was not close to 0 or 1. The full set of tests that 

we did can be found in Li (2020b). Here we present only the results for the two most interesting pairs which 

are given in Table 4.1. 

 
Figure 4.1  Density distribution of log turnover for all groups.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: The labels refer to NACE codes. NACE = Nomenclature générale des activités économiques dans les Communautés européennes. 
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Table 4.2 describes the true domain statistics   of each class. 
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Table 4.1 

The selected groups and their allocations in the case study. 
 

NACE Code Description of Economic Activity Case Class 
56101 Restaurants Case 1 Class 1 
96022 Beauty treatment, pedicures and manicures, make-up and image consulting Case 1 Class 0 
4932 Taxi operation Case 2 Class 1 
8121 General cleaning of buildings Case 2 Class 0 

Note: NACE = Nomenclature générale des activités économiques dans les Communautés européennes. 

 
4.2 Settings 
 

In contrast to the simulation study, here the number of components in the Gaussian mixture model is not 

known, and needs to be determined. To that end, we fitted a standard Gausian mixture model (i.e. without 

a misclassification component) for each class per case separately. We then determined the BIC and sBIC of 

these fitted models, since those measures could be used to select the number of components, see Section 2.2. 

For convenience, we fitted this Gausian mixture model to the true data rather than to the generated data with 

misclassifications, thereby avoiding that we had to run it for 100 0( )S  sets times nine misclassification 

conditions (see below). In practice, one has to fit the standard Gaussian mixture model to observed data 

containing misclassifications, which is expected to result in slightly more components than when the model 

is run on true data. In Appendix B, the estimated optimal number of components for case 1 and 2 are shown 

according to the BIC and sBIC criteria. The optimal number of components in class 0 of case 2 was two 

using sBIC and one using BIC. For the other three classes no differences in the optimal number of 

components were found. For the remainder, we used the number of components according to the sBIC 

criterion, shown in Table 4.2. 

Similar to the set up of the simulation study (Section 3.1), the observed classification variable ẑ  was 

generated from z  by using P  (equation 2.3) with values of 11p  and 00p  of 0.6, 0.75, or 0.9. For each setting 

of 11p  and 00 ,p  we generated 0 =S 100 sets of ẑ  from .z  In each set 0 ,s  5% units from the population 

were randomly selected as the audit sample, which was used to estimate 11p̂  and 00
ˆ .p  These estimates were 

used as starting values for the EM algorithm. The final estimates of 11p̂  and 00p̂  by the EM algorithm were 

input for the bootstrap and SIMEX bootstrap methods. The number of iterations ,S 1S  and 2S  was 100. The 

overall bias and variance estimates of the three methods were computed as the average over 0S  bias and 

variance estimates. As before, the estimated true bias and variance of the estimated domain parameters were 

based on 1,000 sets of ˆ.z  

 
Table 4.2 

Domain statistics for each class in the case study. 
 

Case Class Number of 
Components 

Size Total Mean Standard 
Deviation 

Case 1 
Class 1 1 3,076 17,415 5.66 0.358 
Class 0 2 6,993 30,377 4.34 0.501 

Case 2 
Class 1 2 642 3,294 5.13 0.597 
Class 0 2 1,067 5,847 5.48 0.687 
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4.3 Results 
 

The pattern of the bias (see Figures 4.2 and 4.3) and of the standard error (Figures 4.4 and 4.5) as a 

function of 00p  and 11p  is the same as has been found previously in the simulation study. For most settings 

tested, the estimation of the bias of 1
ˆ ,T 1̂  and 1̂  was most accurate by the EM bootstrap method, followed 

by the SIMEX bootstrap method, while the bootstrap led to the least accurate results. An exception occurred 

in case 2, 00 =p 0.9 for 1̂  where the SIMEX bootstrap method was most accurate followed by the EM 

bootstrap method. In some of the settings with 00 =p 0.75 the EM bootstrap method and the SIMEX 

bootstrap method yielded near-identical results for the bias. 

The bias estimates by the EM bootstrap method almost overlapped with the corresponding true values. 

Only in case 2, the bias estimates of 1̂  showed some distance from the true values, while the bias for 1T̂  

and 1̂  remained accurate. It is seen in Figure 4.1 that the true distribution of y  in class 1 in this case 

(NACE code 4932) is more right-skewed than the other distributions considered in this study. This may 

particularly affect the statistic 1
ˆ ,  which is relatively sensitive to values in the right tail of the distribution. 

A follow-up analysis showed that the EM bootstrap method performed somewhat better in this example 

when the number of components per class was increased from two to three (see Figures B.1 and B.2 in 

Appendix B). This suggests that it may be beneficial to choose a relatively large number of mixture 

components if the distribution is known to be asymmetrical and if non-linear, non-robust parameters such 

as 1  are of interest. Note, however, that the statistic 1̂  is not directly published as output in official 

statistics. Overall, the results suggest that the EM bootstrap method usually has accurate performance even 

in difficult situations, when the two classes contain fewer units and their distributions overlap. 

 
Figure 4.2  Bias estimation in case 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: Rows represent different domain parameters 1( ,T 1, 1).  Columns represent different 11p  values, within each column different 00p  

values are given.  
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Figure 4.3  Bias estimation in case 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 4.2. 

 
Figure 4.4  Standard error estimation in case 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 4.2. 
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Figure 4.5  Standard error estimation in case 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure 4.2. 

 

Differences among the three methods with respect to the accuracy of the estimated standard error of 1
ˆ ,T  

1̂  and 1̂  were smaller than for the estimated bias. In settings where the estimates of the three methods 

were clearly different, most of the times the standard error estimate by the EM bootstrap method was closest 

to its true value, followed by the SIMEX bootstrap while the bootstrap method was the least accurate. 

Sometimes the estimated standard error of the SIMEX bootstrap was closest to the true standard error, for 

instance for case 1, 00 =p 0.6, 11 =p 0.9 and target statistic 1
ˆ ,T 1̂  but differences with the EM bootstrap 

method were small. 

 
5. Discussion 
 

In this paper, we have proposed an EM bootstrap method for estimating the accuracy of domain statistics, 

in terms of bias and variance, in the presence of misclassifications. The use of an EM algorithm is not new 

in studies where classification errors occur. For instance, Sinclair and Hooker (2017) and Kosinski and 

Flanders (1999) both aim to estimate parameters of a model in the presence of classification errors in one 

or more of its variables. Our EM bootstrap method assumes a Gaussian mixture model. In our study, we do 
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use it to estimate the accuracy of a given estimator. The main reason is that National Statistical Institutes 

tend to avoid using model-based estimators directly for output, particularly if assumptions of the model are 

not verifiable (Van den Brakel and Bethlehem, 2008). However, using models to estimate the quality of 
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(directly) improve the accuracy is that the performance needed for the former is less than for the latter. Once 
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the bias and variance of the (given) estimates are obtained, one either concludes that those estimates are 

sufficiently accurate and publishes them, or one aims to first improve the accuracy of the estimates. In the 

latter case one might apply data editing first to reduce the rate of misclassifications. Alternatively, the 

mixture model could then be used to construct an improved estimate, if the model is considered sufficiently 

trustworthy. 

We compared how well one can estimate the bias and variance of statistics in the presence of 

misclassification with the EM bootstrap method, the bootstrap method and the SIMEX bootstrap method 

using simulated data sets and real applications. The simulated data concerned (mixtures of) normal 

distributions whereas the real data concerned empirical distributions. For most of the conditions tested, we 

found that the EM bootstrap method outperformed the bootstrap and the SIMEX bootstrap method. The 

estimated bias of statistics from the EM bootstrap method was closer to the true bias than for the bootstrap 

and the SIMEX bootstrap method. The estimated variance of statistics based on the EM bootstrap method 

was also more accurate than for the other methods, but here the relative differences between the estimated 

values of the three methods were smaller than for the bias. Only in situations where the means of the two 

distributions were very close together, and populations were small the 1̂  statistic was better estimated with 

SIMEX, but still the bias estimate of the total remained accurate. 

Based on the results obtained we expect that the EM bootstrap outperforms the bootstrap for a binary 

variable as long as the model parameters are well estimated and the distribution of y  is captured well. We 

found that the EM algorithm only had difficulties in estimating the model parameters well when the two 

distributions had means that were close together while the population size was small. Still, under those 

difficult conditions the bias of the total was estimated well. We expect that the combination of similar class 

means and large standard deviations is also more problematic. The SIMEX method only works well when 

the parameter of interest is a smooth function of   that can be extrapolated well. Since our estimation 

method does not depend on these conditions we expect it to perform better than SIMEX for binary 

classification variables. When the distribution of y  is very skewed and contains a number of outliers, then 

the SIMEX algorithm might outperform the EM algorithm. 

The above results were obtained by averaging over 100 simulation runs. By comparing the 95% 

confidence intervals of the bias estimated in the simulation study, we showed that even in a practical 

situation where there is only one single set of ˆ,z  the EM bootstrap method leads to better bias estimates 

than the bootstrap method and the SIMEX bootstrap method. We obtained these results, by using the 

classification error probabilities as estimated by the EM algorithm as input for the bootstrap and SIMEX 

bootstrap. That way, we gave the bootstrap and SIMEX bootstrap the best possible starting position to 

compete with the EM bootstrap. As an alternative, we also used estimated probabilities from an audit sample 

as input to the bootstrap and SIMEX bootstrap methods, which resulted in poorer results than before (not 

shown here). 

Besides giving more accurate bias and variance estimates, the EM bootstrap method has two further 

advantages over the bootstrap and the SIMEX bootstrap method. The first advantage is that the EM bootstrap 

does not require that classification error probabilities 11p  and 00p  are accurately estimated beforehand; in 

fact, the EM algorithm provides estimates of these probabilities as part of its output. In previous studies 

these misclassification probabilities could only be obtained from audit samples (Van Delden et al., 2016). 
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The results of Li (2020a) and Li (2020b) suggest that the EM bootstrap also works well without an audit 

sample, except in some extreme cases (where two classes had the same mean). When there is no audit 

sample available, one should use multiple starting values to avoid finding a local maximum. If an audit 

sample is available, it is useful to incorporate it into the EM algorithm (Li, 2020a). In our study, the starting 

values obtained from the audit sample were sufficient to obtain accurate bias and variance estimates. The 

second advantage of the EM bootstrap method is that its output includes unit-specific probabilities 
1

1=1
ˆˆ( = 1| , ; ) =θ

q

i i i jij
P z y z A  and 0

0=1
ˆˆ( = 0 | , ; ) = ,

q

i i i kik
P z y z Aθ  which could be used to predict the 

probability of a classification error in îz  for each unit in the data set. That outcome could subsequently be 

used to manually check and correct units with a potentially incorrect code, in an efficient way. This might 

save considerable time and effort compared to simply checking all units in a (sub)population based on 11p  

and 00.p  

There are two points of attention with respect to the practical use of the EM bootstrap method. First, the 

EM bootstrap method assumes that the actual distribution can be described with a Gaussian mixture model. 

According to McLachlan and Peel (2000) a Gaussian mixture model can accommodate various distributions 

for the continuous variable. In the case studies we found that the empirical distributions could already be 

approximated with 2-3 components. We do not expect that the Gaussian mixture assumption will pose great 

limits to its application in practice, although a caveat should be made that we did not test our method in 

situations that require more than three Gaussian components per class. Furthermore, in our case studies the 

number of components per class was determined using sBIC on the true data, whereas in practice it would 

have to be determined on data with misclassifications. The results in Section 4.3 suggest that, for skewed 

data, it could be beneficial in practice to err on the side of including too many components rather than too 

few. These matters could be investigated further. 

Second, the number of iterations of the two loops will need to be determined with care since it will 

influence the accuracy of the bias and variance estimates of the EM bootstrap method. (This similarly holds 

for the other two methods.) In our study, we used a fixed number of iterations for the experiments. Based 

on the results, we judged that we had performed enough iterations to draw valid conclusions. In practice 

though, the number of iterations should be adjusted according to properties of the data sets, such as size, 

distribution of each class, distance between the two classes, etc. Efron and Tibshirani (1993) provide some 

theoretical considerations to take into account when choosing the number of iterations in a bootstrap 

algorithm; for instance, more iterations are usually needed for a smaller population size (op. cit., 

Section 6.4). In addition, it has been shown for similar nested algorithms that the number of iterations in the 

outer for-loop has the strongest effect on convergence (Chang and Hall, 2015), which suggests that 

increasing 1S  in Algorithm 2 is more beneficial than increasing 2.S  However, as each application is 

different, it is good practice to examine the convergence of bootstrap estimates, e.g., by plotting intermediate 

results against the number of iterations to check when they become sufficiently stable. Finally, when one is 

only interested to estimate the bias, and not the variance, then the inner bootstrap loop within the EM 

bootstrap method is not needed, which saves computation time; see the “EM method” in Li (2020b). 

In a future study, a number of extensions of our approach would be useful. A first, important, extension 

would be to generalise the bias and variance estimation to a situation with a classification variable with 

2D   classes. With D  classes, the probabilities of misclassification will be given by a D D  matrix P  



596 Li, Scholtus and van Delden: A method for estimating the effect of classification errors on statistics for two domains 

 

 
Statistics Canada, Catalogue No. 12-001-X 

with ( 1)D D   probabilities that are to be estimated. For each additional domain {1, , },d D …  the number 

of other parameters in the mixture model increases linearly according to ( 1) 2 1= 3d d dq q q    where dq  

is the number of components per additional domain .d  Because the number of parameters increases with 

the number of domains the audit sample becomes more important to give the model reasonable starting 

values. It is also important to test whether such a D  class EM bootstrap converges well. Furthermore, it 

needs to be tested whether the mixture model performs better than the existing SIMEX and bootstrap 

methods for > 2.D  

A second extension would be to account for sample data rather than census data. In that case output 

quality is affected by both classification error and sampling error. In the case of simple random sampling 

the estimated bias will not be affected by the sampling error. For the variance one could use two approaches. 

One approach is that the sampling procedure is also bootstrapped by including it in the EM bootstrap 

procedure. Alternatively, a hybrid approach could be used in which the EM bootstrap estimate is used for 

the classification errors while an analytical expression is used for the sampling error. 

A third extension would be to relax the assumptions for the probabilities of classification errors. In our 

study, the probabilities of making classification errors, 11p  and 00 ,p  were assumed independent of the 

continuous variable. However, in real situations, this assumption does not always hold, at least not without 

conditioning on other covariates. It would therefore be interesting to make an extension in which the 

misclassification probabilities depend on covariates. 

A fourth extension would be to use multiple numerical target variables, such as height and weight of 

patients in medical records. Then there will be more than one target variable in the general model. A 

multivariate Gaussian mixture model can be a suitable model for this case (McLachlan and Peel, 2000). A 

fifth possible extension is to take missing values in the target variable(s) into account. 

Finally, we note that Algorithm 1 in our study is a standard, single bootstrap method. In the literature, 

double and higher-order bootstraps have also been proposed as a way of correcting for bias in the bias and 

variance estimators from a single bootstrap (Chang and Hall, 2015; Hall and Martin, 1988). These methods 

do not require an explicit model for the data but, like the single bootstrap, they do require (an estimate of) 

the matrix P  as input. It would be interesting to compare the performance of the EM bootstrap method and 

a double bootstrap in a future study, in particular for the extended problem with 2D  classes and/or 

several numerical target variables, for which estimating a Gaussian mixture model may become challenging. 
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Appendix 
 

A. Extrapolation function in the SIMEX bootstrap method 
 

In this appendix, three extrapolation functions used in the SIMEX bootstrap method are compared: a 

local polynomial regression (LOESS), a second order polynomial regression (poly2) and a third order 
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polynomial regression (poly3). For the LOESS function we used default settings of the loess function in R 

(span = 0.75 and nls.control(maxiter = 1000)). 

The bias and standard error estimates from the LOESS function and of the third order polynomial 

regression were similar, see Figures A.1 and A.2. The estimates of both models were closer to the true values 

than those of the second order polynomial regression. Considering that the LOESS function had been used 

in a previous study on misclassifications (Hopkins and King, 2010), we decided to apply the LOESS 

function in the present paper. 

 
Figure A.1  Comparison of the bias estimation performance of the three extrapolation functions in the SIMEX 

bootstrap method.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes:  Rows represent different domain parameters 1( ,T 1, 1, 1)  for two settings of 1: 1 = 0.3 and 1 = 0.5. Columns represent different 

11p  values, within each column different 00p  values are given. 
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Figure A.2  Comparison of the standard error estimation performance of the three extrapolation functions in 
the SIMEX bootstrap method.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Notes: For row and column settings see Figure A.1. 
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mixture model have very similar means and variance; see Section 2.2.1. 

Table B.1 shows the optimal number of components selected by the BIC and sBIC criteria. The two 

criteria led to the same number of components for both classes of case 1 and for class 1 of case 2. For class 

0 of case 2, the optimal number of components selected by sBIC was two and by BIC it was one. Hence, 
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only for case 2, we compared the bias and the standard error estimates, using two (sBIC) or one (BIC) 

component for class 0. 

 
Table B.1 

The optimal number of components selected by BIC and sBIC. 
 

Case No. Class Optimal Number 
BIC sBIC 

Case 1 
Class 1 1 1 
Class 0 2 2 

Case 2 
Class 1 2 2 
Class 0 1 2 

 
Using two components for class 0 led to more accurate bias estimates than using one component; see 

Figure B.1. For some of the settings the standard error estimates based on two components were also more 

accurate than those based on one component, see Figure B.2, although the accuracy differences were smaller 

for the standard error than for the bias. We therefore decided to use the sBIC in our case study to estimate 

the optimal number of components. 

For case 2, we also tried a model with three components in both classes instead of two. The resulting 

bias estimates and standard errors are also shown in Figures B.1 and B.2 (“comp3”). As mentioned in 

Section 4.3, it is seen that increasing the number of components to three led to more accurate results. 

 
Figure B.1  Bias estimation using BIC vs. sBIC in case 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure A.1. 
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Figure B.2  Standard error estimation using BIC vs. sBIC in case 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: For row and column settings see Figure A.1. 

 
 

C. Theoretical properties of Algorithms 1 and 2 
 
C.1 Algorithm 1: The bootstrap method 
 

In general, Algorithm 1 yields biased estimates of the bias and variance of ˆ.  We will illustrate this 

using the estimated domain total 1T̂  as an example. Note that the results below also apply to 1
ˆ ,  since it is 

obtained as a special case of 1T̂  with 1 .iy N  

For 1
ˆ ,T  it can be derived that its true bias equals  

 1 00 0 11 1
ˆBias( ) = (1 ) ( 1) ,T p T p T    (C.1) 

whereas, for ,S   the bootstrap bias estimator from Algorithm 1 converges to 00 0 11 1
ˆ ˆ(1 ) ( 1) ;p T p T    

see, e.g., Burger, van Delden and Scholtus (2015). Thus, in general, the bootstrap bias estimator is biased 

unless 1T̂  itself happens to be an unbiased estimator of 1.T  The latter situation occurs only for particular 

combinations of 11 00( , )p p  (Kloos et al., 2021). 

Similarly, it can be derived that the true variance of 1T̂  is  

 1 00 00 0 11 11 1
ˆVar( ) = (1 ) (1 ) ,T p p K p p K    (C.2) 

with 2
1 =1

=
N

i ii
K z y  and 2

0 =1
= (1 ) ,

N

i ii
K z y  whereas the bootstrap variance estimator converges to the 

same expression with 1K  and 0K  replaced by 2
1 =1
ˆ ˆ=

N

i ii
K z y  and 2

0 =1
ˆ ˆ= (1 ) ,

N

i ii
K z y  respectively 
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(Burger et al., 2015). Note that, in general when 1 1= ,T   the conditions under which the bootstrap bias 

estimator and bootstrap variance estimator are unbiased are not equivalent. 

 
C.2 Algorithm 2: The EM bootstrap method 
 

As suggested in Section 2.3.2, the purpose of generating 0-1-values iz  in the outer for-loop of 

Algorithm 2, with 1

1=1
ˆ ˆˆ ˆ( = 1| , ; ) = ( = 1| , ; ) = ,

q

i i i i i i jij
P z y z P z y z Aθ θ  is to correct the bootstrap bias and 

variance estimators for the bias that occurs in Algorithm 1. To illustrate the underlying idea, we will show 

here that in the case of the estimated domain total 1
ˆ ,T  for which exact analytical expressions are available, 

bias correction is indeed achieved by both combBias  and combVar  provided that the assumed mixture model 

holds. A simplified version of the derivation below can be given for the estimated proportion 1
ˆ .  

Denote 1 =1
=

N

i ii
T z y   and 0 =1

= (1 ) ;
N

i ii
T z y   also denote * *

1 =1
=

N

i ii
T z y   and * *

0 =1
= (1 ) .

N

i ii
T z y   It 

can be derived analogously to (C.1) that *
1 1 00 0 11 1ˆE ( | , ) = (1 ) ( 1) .T T z z p T p T        Hence, for 1 2, ,S S   

the expected value of the bias estimator in the EM bootstrap method is  

      1 00 0 11 1
ˆ ˆ ˆE ( ) = (1 ) E E ( | ) ( 1) E E ( | ) .combBias z zT p T z p T z   

   (C.3) 

Furthermore, it is seen that  

 
1 1

1 1 1 1 1
=1 =1 =1 =1 =1

ˆ ˆˆ ˆˆ ˆ ˆE ( | ) = E( | ) = ( =1| , ; ) = = ,
q qN N N

z i i i i i i i ji i j j
i i i j j

T z z z y P z y z y A y N     
    

where the last expression follows from the formulas applied during the M step of the EM algorithm (see 

Section 2.2.2). Under the assumption that the mixture model holds, it follows that  

  
1 1

1 1 1 1 1 1 1 1 1 1
=1 =1

ˆˆ ˆˆE E ( | ) = E = = ;
q q

z j j j j
j j

T z N N N T       
 

 
 

 
   

cf. note 2 at Table 2.1 for the final two equalities. Similarly, it can be shown that  0 0
ˆE E ( | )z T z T

  if the 

model holds. Substituting both results into (C.3) and recalling (C.1), we conclude that 1
ˆE{ ( )}T combBias  

1
ˆBias( ).T  

For the variance estimator, we can proceed in a similar fashion. Denote 2
1 =1

=
N

i ii
K z y   and 0 =K  

2

=1
(1 ) .

N

i ii
z y   Analogously to (C.2) it can be shown that *

1 00 00 0 11 11 1ˆVar ( | , ) = (1 ) (1 ) .T z z p p K p p K      

Hence, for 1 2, ,S S   

      1 00 00 0 11 11 1
ˆ ˆ ˆE ( ) = (1 ) E E ( | ) (1 ) E E ( | ) .combVar z zT p p K z p p K z   

   (C.4) 

From the formulas applied during the EM algorithm, it follows that  

 
1 1

2 2 2 2 2
1 1 1 1 1 1

=1 =1 =1 =1 =1

ˆ ˆˆ ˆ ˆˆ ˆ ˆE ( | ) = E( | ) = ( =1| , ; ) = = ( ).θ
q qN N N

z i i i i i i i ji i j j j
i i i j j

K z z z y P z y z y A y N      
    

Hence, assuming that the mixture model holds, we obtain:  



602 Li, Scholtus and van Delden: A method for estimating the effect of classification errors on statistics for two domains 

 

 
Statistics Canada, Catalogue No. 12-001-X 

  
1

2 2 2 2
1 1 1 1 1 1 1 1 1

=1

ˆE E ( | ) ( ) = ( ) = .
q

z j j j
j

K z N N K        
   

In the same way, it can be derived that 0 0ˆE{E ( | )} .z K z K
  Thus, it is seen using (C.2) that 1

ˆE{ ( )}T combVar  

1
ˆVar( )T  if the mixture model holds. 
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