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Model-based stratification of payment populations in 
Medicare integrity investigations 

Don Edwards, Piaomu Liu and Alexandria Delage1 

Abstract 

When a Medicare healthcare provider is suspected of billing abuse, a population of payments X  made to that 
provider over a fixed timeframe is isolated. A certified medical reviewer, in a time-consuming process, can 
determine the overpayment =Y X   (amount justified by the evidence) associated with each payment. 
Typically, there are too many payments in the population to examine each with care, so a probability sample is 
selected. The sample overpayments are then used to calculate a 90% lower confidence bound for the total 
population overpayment. This bound is the amount demanded for recovery from the provider. Unfortunately, 
classical methods for calculating this bound sometimes fail to provide the 90% confidence level, especially when 
using a stratified sample. 

 

In this paper, 166 redacted samples from Medicare integrity investigations are displayed and described, along 
with 156 associated payment populations. The 7,588 examined  ,Y X  sample pairs show (1) Medicare audits 
have high error rates: more than 76% of these payments were considered to have been paid in error; and (2) the 
patterns in these samples support an “All-or-Nothing” mixture model for  ,Y X  previously defined in the 
literature. Model-based Monte Carlo testing procedures for Medicare sampling plans are discussed, as well as 
stratification methods based on anticipated model moments. In terms of viability (achieving the 90% confidence 
level) a new stratification method defined here is competitive with the best of the many existing methods tested 
and seems less sensitive to choice of operating parameters. In terms of overpayment recovery (equivalent to 
precision) the new method is also comparable to the best of the many existing methods tested. Unfortunately, no 
stratification algorithm tested was ever viable for more than about half of the 104 test populations. 

 
Key Words: Medicare fraud; All-or-nothing mixture model; Dalenius-Hodges stratification; Anticipated moments; 

Neyman allocation. 

 
 

1. Introduction 
 

According to the U.S. Centers for Medicare and Medicaid Services (CMS) 2022 Trustees Report 

(https://www.cms.gov/files/document/2022-medicare-trustees-report.pdf), the Medicare Trust Fund Hospi-

tal Insurance trust is estimated to be depleted by 2028. In an effort to extend the depletion date, over the last 

decade the CMS and the legislatures have focused efforts on eliminating fraud, improving quality and 

reducing overall cost of care (Huffman, 2021; Salmond and Echevarria, 2017). The CMS uses the 

Comprehensive Error Rate Testing (CERT, https://www.cms.gov/Research-Statistics-Data-and-Systems/ 

Monitoring-Programs/Improper-Payment-Measurement-Programs/CERT) program to estimate the Medicare 

Fee-for-Service (FFS) program’s improper payment rate each year by sampling claims to determine whether 

they were paid properly under Medicare coverage, coding and payment rules. In 2022, the improper payment 

rate was estimated at 7.46 percent, representing $31.46 billion in improper payments. It is clear that even 

with the focused effort on eliminating fraud, waste, and abuse from the Medicare FFS program that there 

are still program integrity concerns related to improperly paid claims, and that these will continue 

(Clemente, McGrady, Repass, Paul III and Coustasse, 2018). 
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In this paper, a “provider” is any entity that bills Medicare: physicians, home health providers, hospitals, 

hospice providers, durable medical goods providers, ambulance services, etc. The CMS uses contractors at 

multiple levels to investigate providers suspected of abusing the system. The current guidelines governing 

the investigation process are given in the Medicare Program Integrity Manual (MPIM), Chapter 8: 

https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/pim83c08.pdf 

When there is reason to suspect that a provider is billing improperly to Medicare FFS, a Unified Program 

Integrity Contractor (UPIC), often a subsidiary of an insurance company, conducts a sampling investigation. 

First, the UPIC obtains detailed information on all Medicare claims paid to that provider for a specified 

period, usually 1-2 years: a population of payments. A sampling unit is chosen and a probability sample is 

designed and implemented. A Certified Medical Reviewer then examines the evidence in support of each 

sampled payment, obtaining the overpayment amount Y as  

 =Y overpayment = (amount paid X) – (amount justified by the evidence).  

Note that since the amount justified by the evidence is non-negative, the overpayment amount is bounded 

above by the payment amount. The medical review usually requires several months for a sample of moderate 

size such as those displayed in Section 2. The UPIC then uses the overpayment amounts to “extrapolate”: 

the UPIC calculates a 90% lower confidence bound for the total overpayment made to the provider over the 

specified time period. This lower bound is the amount demanded for recovery from the provider. (If the 

point estimate achieves “high precision”, it can be used as the demand amount. This is very rare).  

The sampling unit in these investigations is usually either the paid claim or all claims paid for services 

to a particular beneficiary (more precisely, to a Medicare identification number, formerly called a Health 

Insurance Claim Number HICN). The sampling plans are nearly always simple random samples or stratified 

random samples with strata determined by payment amounts. The extrapolation method is usually the “mean 

per unit” approximate method based on the finite population Central Limit Theorem (Hájek, 1964; Li and 

Ding, 2017). 

Specifically, consider a stratified random sample with L strata, denote stratum sizes by lN  and sample 

sizes by ,ln  for = 1, 2, , .l L…  Let 
=1

=
L

ll
N N  and 

=1
= .

L

ll
n n  For each ,l  let =l lW N N  and let lY  and 

lS  be the sample mean and standard deviation of stratum l  overpayments, respectively. The CLT-based 

extrapolation has the form  

 
2

2

=1 =1

1
L L

l l
l l l

l l l l

S n
N W Y t N W

n N


   
    

   
   (1.1) 

where t  is the 90th percentile of Student’s t-distribution with   degrees of freedom. Some contractors use 

the approximate degrees of freedom due to Satterthwaite (1946), though some use the less conservative 

choices  n L  or infinite degrees of freedom (i.e., the standard Normal percentile point). The Satterthwaite 

degrees of freedom are at most  ,n L  so it is the most conservative of the three choices. For simple 

random sampling, equation (1.1), suppressing subscript ,l  reduces to  
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 (1.2) 

The provider has the right to appeal the reviewer’s overpayment determinations and the sampling 

methods employed by the UPIC. In this event, an independent Medicare Administrative Contractor (MAC) 

conducts a review of the sampling plan and overpayment determinations as the first level of appeal. If the 

provider further appeals the MAC’s decision, a Qualified Independent Contractor conducts another review 

as the second level of appeal. If the provider is still unsatisfied, the matter can be appealed to the third level 

and heard in a formal Administrative Law Judge hearing. Further appeals are also possible. At any level of 

appeal, the provider may submit additional documentation to support payment on their claims. 

Section 2 of this paper examines the raw data for 166 redacted samples examined by a single reviewer 

at a MAC during the period 2013-2020. This data motivates a statistical model for Medicare sample 

overpayments, discussed in Section 3. Section 4 discusses appropriate Monte Carlo testing methods for 

sampling plans given the model. Section 5 reviews existing methods for stratifying populations and 

proposes a new class of stratification methods. Section 6 gives the results of a Monte Carlo efficiency study 

comparing these stratification methods, conducted using 104 of the payment populations. 

 
2. Honor the data: An exploration of 166 Medicare samples 
 

The redacted samples, in rough chronological order 2013-2020, are numerically summarized and 

graphically displayed using scatterplots of overpayment versus payment amount at: https://drive.google. 

com/drive/folders/1CIzQKzN4-RIIY38WonSAU7ydICwb76wh. The reader is encouraged to take a few 

minutes to page through the plots to form his/her own opinions on patterns in the data. The investigations 

summarized here were conducted by four different program integrity contractors. Sixty-eight percent (113) 

of the samples were simple random samples and the remaining 32% (53) were stratified by payment amount. 

Total sample sizes varied between 25 and 159 with 90% of the samples having between 30 and 70 total 

payments. Seventy-five percent (124) of these samples were from home health providers, 16% (27) were 

from hospice providers, and the remaining 9% (15) included physicians, skilled nursing facilities, ambu-

lance services, etc. Nine of the samples used the beneficiary’s HICN as the sampling unit, 149 used the paid 

claim, and 8 were drawn and analyzed as pennysamples (Edwards, Gilliland, Ward-Besser and Lasecki, 

2015). 

Define the “taint” for a sample payment as the ratio of overpayment to payment. Figure 2.1 provides a 

schematic classifying the 7,588 sample points from the 166 samples into four zones based on taint value: 

Zone 1 (taint   0.95), Zone 0 (0   taint   0.05), the Negative Zone (taint <  0), and the Partial Zone. Some 

observations:   

1. More than 76% of these payments were adjudged to have been paid either partially or totally in 

error. The conventional “wisdom” that auditing error rates are typically low does not apply to 

Medicare investigations.  
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2. Only one negative overpayment occurred in 7,588 reviewed payments.  

3. Except for “complete error” samples (overpayment equals payment, 24 samples), overpayment 

amount is not linearly related to payment amount in any of these samples, though the two 

variables are sometimes highly correlated (the important distinction between “correlated” and 

“linearly related”, so eloquently sung by Anscombe’s (1973) quartet, is unfortunately blurred at 

times in the literature, and by some data analysts). A handful of samples have numerous partial 

overpayments, in which case the overpayment-payment relationship is essentially formless 

within the triangle formed by Zones 0 and 1. For the majority of these samples, though, the 

relationship is best described as approximately bilinear, with a horizontal line in Zone 0, a 45º 

line in Zone 1, and possibly a handful of partial overpayments in between. 

4. It is less obvious to the naked eye, but there is no evidence in this data that larger payments are 

more likely to have larger taints. Figure 2.2, admittedly crowded, shows a plot of taint versus the 

logarithm base 10 of payment amount, showing no obvious monotone trend. Figure 2.3 displays 

the results of a generalized additive model fit of taint on 10log (payment) using a separate intercept 

for each sample and a common smooth function for the taint vs. 10log (payment) relationship. 

The figure includes Scheffé-style simultaneous 95% confidence bands for the true regression 

function; these bands include a horizontal line. Analogous results were obtained using payment 

amounts instead of 10log (payment amounts) as regressor.  

 
Figure 2.1 A classification of the 7,588 overpayment-payment pairs in the 166 samples. 
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Figure 2.2 Taint versus log10 (Payment amount) for 7,588 sample points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.3 Graphical summary of a generalized additive model analysis of taint vs. log10 (payment). Gray 

shading is a 95% Scheffé-style confidence region for the true nonparametric regression function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3. A model for Medicare sample data 
 

The patterns in the 166 samples suggest a simple mixture model for Medicare sample data. This model 

has previously been discussed by several authors, including King (1996), Edwards, Ward-Besser, Lasecki, 

Parker, Wieduwilt, Wu and Moorhead (2003), and King and Madansky (2013). The population payments 
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with probability 1 EP  the overpayment is zero. The majority of the 166 samples discussed in Section 2 

conform to this model with negligible numbers of partial or negative overpayments. 

Let X  and 2
X  denote the known population mean and variance of payment amounts. Under the AN

 EP  model it is straightforward to derive the mean and variance of overpayment Y for a randomly selected 

X (King, 1996):  

 
2 2 2

( ) = =

Var ( ) = = (1 ) .
Y E X

Y X E E E X

E Y P

Y P P P

 

   
 (3.1) 

Note that the variance of the overpayment amounts can be dramatically different from the variance of the 

payment amounts. To illustrate, Figure 3.1 shows histograms of three payment populations. We include 0 

on the horizontal axis of these histograms in order to help envision the shape of the corresponding 

overpayment population under a given error rate ,EP  as explained below. For population B, for values of 

EP  near 1 2,  the variance of overpayment amounts 2
Y  is more than 800 times the variance of payment 

amounts 
2 .X  For populations C and A the ratio 

2 2
Y X   reaches a maximum of 4.7 and 1.5 respectively. 

Hence, the common practice of using the variance of payment amounts as an estimate of the variance of 

overpayment amounts in sample-size determination formulas has no relevance except when EP  is very near 

to 1.  

 

Figure 3.1 Example payment populations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: (A) N = 59,804 hospice HICN payments; (B) N = 249 power wheelchair claim payments; (C) N = 570 hospice claim payments. 
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4. Monte Carlo testing of sample designs under the AN model 
 

Consider a sampling-and-extrapolation plan proposed for a particular payment population. The  AN EP  

model motivates a simple Monte Carlo testing procedure for the plan, implemented by the freely-distributed 

R (R Core Team, 2021) function samptest available from the authors. The testing proceeds as follows: for 

each choice of EP  on a grid spanning the interval (0,1], 

1. A plausible overpayment population is created by randomly choosing a proportion EP  to have 

overpayment = payment, leaving the remaining proportion 1 EP  to have zero overpayment.  

2. The sampling plan is applied to the created overpayment population. The extrapolation is 

computed and compared to the total overpayment for the population.  
 

Steps 1 and 2 are repeated independently a large number of times, enough to estimate achieved confidence 

level to high accuracy. The plan investigated can be a simple random sample or a stratified random sample. 

The function summarizes the testing with plots of the estimated achieved confidence level, and the average 

percent of overpayment recovery for the plan, versus error rate EP  (the latter quantity is equivalent to 

average precision, as explained in Section 6). For most payment populations, the samptest results are 

returned in a few seconds, even using a computer of modest computing power. 

For example, Figure 4.1 shows samptest results on achieved confidence levels for a simple random 

sample of 30 payments using the standard extrapolation (1.2) applied to the Figure 3.1 payment populations. 

The plot tells us that this modest sampling plan provides confidence level above or near the MPIM-required 

90% level for population A for all error rates, but for populations B and C it fails to provide the 90% 

confidence level if the error rate EP  exceeds 0.6. 

 
Figure 4.1 Achieved confidence levels (%) versus error rate for the Figure 3.1 populations, using a simple 

random sample of 30 payments with the standard extrapolation (1.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Estimates are accurate to 1%  with 95% confidence. 
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These results illustrate the strong effect of skewness in the overpayment population on the achieved 

confidence level of the bound (1.2). Cochran (1977, pages 39-44) noted that a right-skewed population 

yielded a conservative lower bound and a liberal upper bound for a two-sided confidence interval for the 

population mean. Using this “principle of skew”, which in our experience is pervasive, the conservatism of 

the lower bound (1.2) for Population A at all error rates can be anticipated: at any error rate EP  the over-

payment population has a “spike” of zeros of (approximate) size  N 1 ,EP  with the remaining N EP  

overpayments having the same shape as the payment population. Hence at any error rate the overpayment 

population for population A is also right skewed; hence the bound (1.2) is conservative. At any error rate 

,EP  overpayment population B has two spikes, with  N 1 EP  zeros and N EP  payments near $4,000. For 

values of EP  above 1 2  the spike at 0 is the shorter of the two, hence the overpayment population is left-

skewed, hence the bound (1.2) is liberal. Finally, payment population C is left-skewed. For small values of 

EP  the large spike at 0 in the overpayment population will counterbalance this left skew and yield a 

conservative lower bound, but the spike at 0 gradually disappears as EP  grows, yielding a liberal lower 

bound at high error rates. 

If problems with the achieved confidence level occur using extrapolation (1.2) they invariably occur at 

high error rates due to left skew in the overpayment population. For this reason, the presence of partial 

overpayments improves the achieved confidence level: at any particular > 1 2,EP  partial overpayments 

reduce the severity of any left skew. This has been repeatedly confirmed in our experience using samptest, 

which has the capability to flexibly model the occurrence of partial overpayments. We conjecture that any 

sampling plan which achieves the 90% confidence level under the  AN EP  model for a given error rate EP  

will also achieve it in the presence of partial overpayments at that value. That is, the presence of partial 

overpayments tends to improve the confidence level of the bound (1.2). This effect is usually modest since 

the frequency of partial overpayments is usually modest. 

Right-skewed payment populations such as Population A occur frequently in Medicare investigations. 

For such a population, a simple random sample will usually achieve confidence level above 90% for all 

error rates. This conservatism signals the potential for improving the sampling plan via stratification. Care 

must be taken, however, for in a sample stratified by payment amount the effects of skew are mixed. For 

example, particularly for 3,L   stratification by payment amount creates payment subpopulations similar 

in shape to that shown in Figure 3.1B. These strata give rise to left-skewed overpayment strata at high error 

rates, which will not preserve the confidence level. King and Madansky (2013) say it well: “it is quite 

possible to destroy the achieved confidence level by stratifying carelessly. We therefore underscore the 

cautionary note that a misapplication of stratification (e.g., not using the appropriate stratification 

boundaries) will do more than invalidate the precision of the bounds; it can invalidate the normal confidence 

coefficient as well”. Any stratification scheme must be tested using Monte Carlo. 

Note that in some situations a transformation (e.g., the log transformation) may normalize the 

distribution well enough to provide a viable 90% confidence bound for the population mean of log(Y), but 

this cannot be back-transformed to obtain a confidence bound for the population mean of Y: the mean of 
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the logs is not the log of the mean. If the transformation symmetrizes the distribution, the back-transformed 

lower bound is a confidence bound for the population median of Y, not the population mean, and when 

multiplied by N does not provide a bound for the population total, but something much smaller. The same 

argument applies to other non-linear transformations, e.g., the square root transformation, inverse 

transformation, etc.  

 
5. Methods for constructing strata using an auxiliary variable X 
 

Assume that X  is known for all sampling units. In Medicare investigations, X  is usually the total paid 

amount for the sampling unit. This section reviews some existing methods for stratifying the population 

using X  and defines a new method. 

In some designs, a few of the largest payment amounts are examined in their entirety in a “take all” or 

“certainty” stratum. This reduces the severity of right skew in the remaining population. If such a certainty 

stratum is used, the question remains as to how one should stratify the remaining population, and that is our 

focus here. 

It should be stated at the outset that there is no need to use an algorithm from the peer-reviewed literature 

to determine values of X  (“cutpoints”), 1 2 1< < < LXC XC XC …  defining the 2L   strata. In practice, any 

a priori choice achieving confidence level very near to or above 90% for all error rates is viable, regardless 

of how it was obtained. The time required to find such cutpoints by trial and error, testing each choice using 

Monte Carlo, may be prohibitive, however. Also, it is sometimes useful to cite the use of an existing 

algorithm from the peer-reviewed literature when creating a stratified design.  

 
5.1 Existing methods 
 

Several popular methods to determine cut points or stratum boundaries using X exist. With Y  the 

measured variable of interest, Tschuprow (1923) and Neyman (1934) proved that the variance of the linear 

population mean estimator 
=1

=
L

s l ll
y W y  is minimized for a fixed total sample size n  when the sample 

size ln  in stratum l  is proportional to the product of stratum size lN  and stratum standard deviation 

, =1, 2, , .Yl l L …  This “Neyman allocation” is the goal for several stratification algorithms under various 

assumptions. Methodological research in this area dates back to Dalenius and Gurney (1951) and Cochran 

(1977, Chapter 5A). Relevant literature is extensive, including Ekman (1959), Serfling (1968), Singh 

(1971), Wang and Aggarwal (1984), Hidiroglou and Srinath (1993), Hidiroglou (1994), Hedlin (2000), 

Kozak and Verma (2006), Jurina and Gligorova (2017), Hidiroglou and Kozak (2018) and Reddy and Khan 

(2019). 

When the auxiliary variable X  is linearly related to ,Y  and highly correlated with ,Y  the well-known 

Dalenius and Hodges (1959) method can achieve approximate Neyman allocation. The method begins with 

a frequency distribution f  for .X  Under the additional assumption that the distribution of X  within the 
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frequency distribution cells is approximately uniform, choosing stratum boundaries that equate the cumu-

lative f  between strata achieves approximate Neyman allocation for equal stratum sample sizes. 

Lavallée and Hidiroglou (1988) take an iterative approach to choosing stratum cutpoints to minimize the 

total sample size n  given a specified relative coefficient of variation for the point estimator of the population 

total; this problem is equivalent to minimizing the relative coefficient of variation for fixed ,n  which is our 

goal. Their approach assumes that the auxiliary variable X  is “closely related to” ,Y  and they warn that 

their method will not achieve desired efficiency if X  and Y  are not “highly correlated”. The iterative 

algorithm they use, due to Sethi (1963), was improved by Kozak (2004). 

For sampling plans where the stratification variable X  is not linearly related to the survey variable ,Y  

the “anticipated moments” under a model (for example, Dayal (1985), Sigman and Monsour (1995) and 

Sweet and Sigman (1995)) is a critical concept. Generalizing the algorithm in Lavallée and Hidiroglou 

(1988) and using “anticipated moments” of Y  given ,X  Rivest (1999, 2002) proposed stratification 

algorithms and models that account for discrepancies between Y  and ,X  in particular (1) a Log-Linear 

(LL) model, i.e., log( )Y  is linearly related to log( )X  and (2) a “random replacement” model. The latter 

models =Y X  with high probability, but otherwise Y  is equal to a randomly selected value of .X  The 

algorithms in Rivest (1999, 2002) choose sample size to achieve a pre-specified level of precision, or to 

maximize precision for a fixed sample size, allowing for different sample allocation rules. The statistical 

models and anticipated moment approach in Rivest (1999, 2002) provide a very general and flexible method 

covering a wide range of survey scenarios. 

Baillargeon and Rivest (2009) extend the Log-Linear (LL) model in Rivest (2002) to include a survival 

probability that models the probability of survey variable Y  taking on value 0 (equation (5.1)). The survival 

probability can be specified to vary by stratum. This model is particularly helpful for business surveys where 

a business is no longer in operation when the survey takes place but the X  variable has been collected 

resulting in a zero value for .Y  Let lp  denote survival probability for the thl  stratum; assuming 
2(0, ),N ε∼  the LL model is 

 
exp( log ), with probability

=
0, with probability 1 .

l

l

X p
Y

p

  




ε
 (5.1) 

For business surveys, the lp  values typically increases with ,X  which means a greater chance of business 

survival or Y being non-zero when the value of X  is large. When a constant survival probability is specified 

across all strata, the probability of Y  being zero is the same for all sampling units. In this case, if 
2= 0, = 0,   the model in equation (5.1) is equivalent to the All-or-Nothing model in Section 2 of this 

paper. This is a testimony to the generality of the models proposed by Rivest (1999, 2002) and Baillargeon 

and Rivest (2009). 

A simpler method for determining cut points of stratification for right-skewed populations is due to 

Gunning and Horgan (2004) and Gunning, Horgan and Yancey (2004). The method is based on an 

observation of Cochran (1961) that the coefficients of variation across different strata are comparable in 
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near-optimum stratification. Assuming the coefficient of variation is constant across all strata, boundary 

points can be written as terms in a geometric series. Once the minimum and maximum values of the set of 

cut points are specified, the geometric relationship produces cutpoints for all strata. Gunning and Horgan 

state that their method assumes that Y  is “highly correlated with” .X  It also assumes that distributions 

within strata are uniform for efficiency. 

 

5.2 Sample allocations 
 

For a given sample size n  or a precision level, values of the boundary points are affected by the sample 

allocation scheme (Lavallée and Hidiroglou, 1988; Hidiroglou and Srinath, 1993; Horgan, 2006). Common 

allocation schemes include but are not limited to the power allocations, such as the Y-proportional and N-

proportional power allocations (Lavallée and Hidiroglou, 1988; Hidiroglou and Kozak, 2018). A general 

expression of allocation schemes is described in equation (5.2) below, which is included in the R package 

stratification. For stratum ,l  the sample size is = .l ln na  Combinations of parameters 1 2,q q  and 3q  produce 

different sample allocations, where 1 20 2 1, 0 2 1q q     and 30 2 1.q   ,l lN Y  and lS  are the size, mean 

and standard deviation of stratum ,l  respectively. 

 
31 2

31 2

22 2

22 2

=1

= .
qq q

l l l
l L qq q

l l ll

N Y S
a

N Y S
 (5.2) 

For instance, using the Dalenius-Hodges method where equal sample size achieves the goal of 

approximating the Neyman allocation, setting 1 2 3= = = 0q q q  imples allocating an equal number of 

observations across the strata. For a power allocation where the power is 0.7, one specifies 1 2= =q q 0.35 

and 3 = 0.q  For a Y-proportional power allocation, the combination of parameters 1 3= = 0,q q  and 2 =q

0.35 yields a power of 0.7. 

To implement the aforementioned stratification methods under various sample allocation schemes, 

the R package stratification (see Baillargeon and Rivest, 2011) provides functions strata.cumrootf(), 

strata.LH() and strata.geo() to implement the Dalenius-Hodges, Lavallée-Hidiroglou, and Gunning-Horgan 

methods to produce cut points for a specified number of strata, respectively. The package also implements 

the alternatives studied by Rivest (2002) and Baillargeon and Rivest (2009). 

 

5.3 A simple new method using anticipated AN-model moments and equal 
sample sizes  

 

The well-known stratification method due to Dalenius and Hodges, under the model Y X,  chooses 

stratum cutpoints to achieve near-equality of the quantities .l YlN   In that case, using equal sample sizes 

corresponds to Neyman allocation. The relatively simple new method described in this section mimics this 

approach using the AN model at a particular value .EP  For a given value ,EP  the  ESS EP  algorithm 

determines cutpoints by nearly equalizing the quantities l YlN   determined by the AN-model moments (3.1). 
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Thus, for equal sample sizes and this value of ,EP  the  ESS EP  method provides Neyman allocation, 

maximizing precision for a given .n  

For example, when = 2,L  a specified cutpoint 1XC  determines 1N  and 2N  as well as 2
1 1 2, ,X X X    

and 2
2 .X  Specifying ,EP  we then use equation (3.1) to compute 2

1Y  and 2
2 .Y  The final cutpoint is found 

by iterating on 1XC  until 2
1 1 2 2( )Y YN N   is minimized. For general L, our algorithm (available from the 

second author) uses a nonlinear search through the R function optimize for univariate optimization when 

= 2,L  and constrOptim for higher-dimensional optimization when 3,L   to find cut points to minimize 

the corrected sum of squares for the quantities .l lYN   Exhaustive searches are available but computationally 

feasible only for 3.L   

The question remains: how does one choose ?EP  Fortunately, as will be seen in the next section, the 

operating characteristics of  ESS EP  seem rather robust to the choice. An idea worth exploring, suggested 

by the Associate Editor, is to initially choose EP  to maximize (3.1). We recommend exploring the properties 

of a grid of choices using Monte Carlo prior to making the final choice. 

 
6. Efficiency comparisons for the stratification methods 
 

Equations (1.1) and (1.2) can be written informally as  

 (overpayment recovery) = (point estimate) – (margin of error). (6.1) 

The precision of a sample is defined to be its margin of error expressed as a percentage of its point estimate, 

with precision being considered “high” if this percentage is small. Some would not define precision to 

include the t  critical point; the gist of what is said below (that the average percent of overpayment recovered 

is inversely related to average precision) still holds under different definitions of precision. Traditionally, 

analysts seek to create a sample design having high average precision. Averaging (6.1) over all possible 

samples, and using the fact that the point estimator is unbiased, we obtain  

 (Average overpayment recovery) = (true totol overpayment) – (average margin of error).  

Dividing both sides of the above by true total overpayment and multiplying by 100%, we obtain  

 (Average overpayment recovery percent) = 100% – (average precision),  

Therefore, seeking a design with high average precision is equivalent to seeking a design with high average 

overpayment recovery. For example, a sample design with 10% average precision has 90% average 

overpayment recovery. For any sample design, both quantities will vary dramatically depending on the error 

rate .EP  

We prefer quantifying the efficiency of a design in terms of the average overpayment recovery as 

opposed to average precision. This facilitates determination of the cost-effectiveness of certain design 

decisions, such as increasing sample size or paying an analyst to spend an extra hour searching for efficient 

stratification schemes. In this section, we compare the efficiency of the major stratification algorithms 

discussed in Section 5. 
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Of the 166 samples discussed in Section 2, a total of 156 payment populations, matched by number, were 

available for study. These populations are numerically summarized and graphically depicted at https://drive. 

google.com/drive/folders/1-7M-4R3KPcCgfPmPWOo24Qc5AOAdOfV7?usp=sharing. Of these, 104 payment 

populations were selected as candidates for stratification. For these 104 test populations, simple random samples 

(SRS) of size 30 achieved estimated confidence level above 89% across all 7 tested error rates EP  0.10, 

0.30, 0.50, 0.70, 0.9, 0.95, and 1.0 using 10,000 generated overpayment populations, each with its sample 

and extrapolation. It is assumed without loss of generality that, if a certainty (or “take-all”) stratum is to be 

used that these few largest payments have already been removed, to be examined in their entirety. 

Stratification strategies apply only to the remaining payments 

In our testing, designs with total sample sizes 30, 60, or 90 were considered, with L = 2, 3, or 4 strata, 

for a total of 104*9 = 936 test cases. The stratification methods due to Delanius-Hodges (DH), Lavallée-

Hidiroglou (LH), Gunning-Horgan (Geo) and the Log-Linear (LL) models were tested using the R package 

stratification to generate cutpoints. Three sample allocations were tested for the LH, Geo and LL methods: 

Y-proportional and N-proportional power allocations with power =p 0.7 as well as a power allocation 

where 1 2= =q q 0.35, 3 = 0q  are specified in equation (5.2). The stratum sample sizes were determined by 

the R functions that generated the cutpoints. For the other methods, stratum sample sizes were taken to be 

equal, except when = 4L  and = 30n  or 90, where slight inequalities occurred. 

To fully define an ESS stratification method, we must choose a value for .EP  Hopefully the choice will 

be viable and have good recovery properties regardless of the true value of ,EP  and that is what the 

simulation testing is meant to answer. In this study, the ESS cutpoint algorithm was tested at EP  0.2 

(ESS20), EP  0.5 (ESS50), EP  0.8 (ESS80). The LL models are also tested with survival probabilities 

0.2, 0.5 and 0.8. The Monte Carlo testing for all cases and methods with 10,000 iterations at each error rate 

required approximately 27 hours on Bentley University’s High Performance Computing cluster. The 

conservative Satterthwaite (1946) degrees of freedom were used for all methods. 

For each of the 936 test cases, a stratification method was considered viable if it achieved estimated 

confidence above 89% for all 7 tested error rates. Table 6.1 shows, for each of the nine sample size ‒ number 

of strata combinations, the number of test populations for which each method produced a viable stratification 

scheme. Only simulation results from the Y-proportional power allocation are reported as these allocation 

methods yielded better viability than the other two sample allocations. The table shows that stratification is 

more likely to be viable for small L  and large .n  The Geo method is viable more often than any other 

stratification method; unfortunately, it will also be seen that it is usually less efficient than a simple random 

sample of the same size. Of the other stratification methods, the LL20 method, the ESS20 and the ESS50 

methods were comparable in terms of viability and noticeably better in this respect than the other methods 

tested (see the last column of Table 6.1). Notably, these three methods were viable almost twice as often as 

the Dalenius-Hodges method, and almost three times as often as the Lavallée-Hidiroglou method. 

Unfortunately, in no case did any algorithm (except Geo) achieve viability for more than about half of the 

test populations. 

In order to measure the efficiency of (for example) the Dalenius-Hodges method relative to simple 

random sampling, for each sample size, L-value, and population for which the DH method was viable, the 
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difference in average overpayment recovery in the order DH-SRS was computed for each error rate. 

Analogous differences were computed for the other stratification methods. Figure 6.1 shows boxplots of 

these differences. It is evident from this graphic that the Geo method improved on SRS for less than half of 

the cases for which it was viable. Additionally, when the DH, LH, LL and ESS methods were viable, they 

improved the overpayment recovery compared to SRS by a median amount of 4-6%. In more than a few 

cases they improved the recovery dramatically, by 10-22%. However, the recovery using DH can sometimes 

be worse than SRS by more than 9%. In contrast, SRS was never better than any LL method by more than 

1.5%, and never better than any ESS method by more than 3%. Both the LL and ESS methods can improve 

on SRS by up to 22%. 

 
Table 6.1 

Method viability: number of test populations for which a stratification method (see text) achieved estimated 

confidence at least 89% over all tested error rates, versus number of strata L  and total sample size n  under Y-

proportional power allocation with power value 0.7. 
 

Methods L = 2 L = 3 L = 4 Total viability frequency 
 n = 30 n = 60 n = 90 n = 30 n = 60 n = 90 n = 30 n = 60 n = 90  

DH 22 30 37 5 8 10 1 3 4 120 
LH 19 22 25 4 5 5 0 0 0 80 
Geo 90 91 83 52 62 61 5 15 23 482 

LL20 31 43 57 19 19 26 9 12 15 231 
LL50 28 42 47 14 18 20 5 11 10 195 
LL80 21 28 36 7 9 14 2 4 5 126 
ESS20 33 41 51 17 22 27 10 13 13 227 
ESS50 33 44 45 18 23 24 8 8 12 215 
ESS80 30 33 44 11 13 17 5 5 6 164 
SRS 104 104 104 104 104 104 104 104 104 936 

Notes: DH = Dalenius-Hodges; ESS = Equal sample sizes; Geo = Gunning-Horgan; LH = Lavallée-Hidiroglou; LL = Log-linear; 
SRS = Simple random samples. 

 
Figure 6.1 Improvement in overpayment recovery versus a simple random sample of the same size for each 

viable method (see text for details). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Notes: DH = Dalenius-Hodges; ESS = Equal sample sizes; Geo = Gunning-Horgan; LH = Lavallée-Hidiroglou; LL = Log-linear. 
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The top three algorithms were further compared via calculating differences in the order ESS50-ESS20, 

ESS50-LL20, and ESS20-LL20 whenever the differenced algorithms were both viable, for all error rates 

and test cases. These differences are displayed in Figure 6.2. The figure shows that the ESS50 and ESS20 

methods had similar efficiency, suggesting that choice of EP  in this range is not of critical importance for 

efficiency. Overall, the ESS methods and LL20 yielded similar expected overpayment recovery. On 

average, the ESS methods produced slightly higher medians than those of the LL20. However, the LL20 

method had slightly higher mean expected overpayment recovery. In some cases, the ESS methods 

outperformed the LL20 method by over 4% while in other cases they were worse-off than the LL20 method 

by a little bit over 6%. 

 
Figure 6.2 Relative efficiency of the ESS50, ESS20 and LL20 methods (see text for details). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: ESS = Equal sample sizes; LL = Log-linear. 

 
7. Discussion and conclusion 
 

This paper’s major accomplishment is its unprecedented sharing of raw data from Medicare investi-

gations. Despite this, these 166 shared samples cannot be considered representative of all such investi-

gations. In particular these samples are taken from the first level of appeal; error rates tend to decrease at 

higher levels of appeal as providers challenge the overpayment determinations. The samples displayed here 

are also primarily from home health or hospice providers, a major shortcoming. 

We see no reason why similar sharing of thoroughly redacted sample and payment population data could 

not be done by all MACs and at higher levels of appeal. If this was done, say, on a triannual basis, the 

anonymity of the individual providers and UPICs would be protected. More data sharing would allow for 

further refinement of models for the overpayment ‒ payment relationship. It would also be very useful to 

know if negative overpayments are as rare and negligible at other levels of appeal, and for other provider 

lines of business, as they were for our samples. 
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Our data showed 24 “complete error” samples, i.e., samples where every overpayment equaled its 

payment. Use of the bounds (1.1) or (1.2) based on the finite population Central Limit Theorem can be 

problematic in these cases: at very high error rates, it is not unusual for these lower confidence bounds for 

total overpayment to exceed the total payment amount, which renders the bound indefensible. The bounds 

(1.1) and (1.2) can also fail to provide confidence level at least 90% at high error rates for payment 

populations similar to populations B and C in Figure 3.1. Alternative extrapolation methods based on the 

hypergeometric probability distribution (Edwards et al., 2003; Gilliland and Feng, 2010; Edwards et al., 

2015) have been developed for situations where the bounds (1.1) and (1.2) tend to fail. These alternative 

methods always provide lower 90% confidence bounds less than the total payment amount. They are 

mathematically conservative ‒ guaranteed to provide confidence level at least 90% ‒ as long as negative 

overpayments do not occur with any great frequency or severity. More sharing of data is needed to shed 

light on the safety of this assumption. 

With Medicare data, the frequency for which extrapolations using (1.1) and (1.2) are not viable is 

disappointing, to say the least. Alternative approaches using empirical likelihood confidence bounds (Chen, 

Chen and Rao, 2003; Rao and Wu, 2009) hold great promise. Unfortunately, simulation studies on empirical 

likelihood methods to date have not included error rates greater than 40%, which are the norm for Medicare 

samples. A comprehensive study of empirical likelihood approaches using Medicare data is beyond the 

scope of this paper but is the focus for an ongoing project by the authors. 

This paper proposes a new stratification method as a special case of the anticipated moment method 

based on the All-or-Nothing model. The efficiency study provided here found this new ESS method to be 

competitive with the best of the many existing methods tested from the R package stratification. 

Specifically, the Log-Linear model with survival probability of 0.2 (LL20) under the Y-proportional power 

allocation ( p  0.7) showed a slight advantage in viability over the best ESS methods. Finding this 

particular choice of operating parameters in the wide range available in stratification required the advice of 

an expert and hours of testing, however. In contrast, the near-equivalent ESS choices ( EP  0.2 or 0.5) were 

among the first methods we tested. However, no one method dominated all other methods in all situations. 

And, for every choice of n  and ,L  there were many test populations for which no stratification algorithm 

was viable. 

As is often the case, these results lead to new questions. Are there aspects of the payment population that 

can provide clues as to when stratification will lead to improved efficiency? Are there aspects of the payment 

population that can provide clues as to which method is the best choice? The authors will be pursuing these 

and other questions and invite collaboration from others. 
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