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Sampling with adaptive drawing probabilities 

Bardia Panahbehagh, Yves Tillé and Azad Khanzadi1 

Abstract 

In this paper, with and without-replacement versions of adaptive proportional to size sampling are presented. 
Unbiased estimators are developed for these methods and their properties are studied. In the two versions, the 
drawing probabilities are adapted during the sampling process based on the observations already selected. To 
this end, in the version with-replacement, after each draw and observation of the variable of interest, the vector 
of the auxiliary variable will be updated using the observed values of the variable of interest to approximate the 
exact selection probability proportional to size. For the without-replacement version, first, using an initial 
sample, we model the relationship between the variable of interest and the auxiliary variable. Then, utilizing 
this relationship, we estimate the unknown (unobserved) population units. Finally, on these estimated 
population units, we select a new sample proportional to size without-replacement. These approaches can 
significantly improve the efficiency of designs not only in the case of a positive linear relationship, but also in 
the case of a non-linear or negative linear relationship between the variables. We investigate the efficiencies of 
the designs through simulations and real case studies on medicinal flowers, social and economic data. 

 
Key Words: Adaptive sampling; Efficiency; Regression models; Sampling design. 

 
 

1. Introduction 
 

In probability proportional to size sampling (PS), the sample units are selected proportional to size of 

an auxiliary variable. The sampling design with unequal probabilities with-replacement, PPS, is first 

introduced by Hansen and Hurwitz (1943). Madow (1949), Narain (1951) and Horvitz and Thompson 

(1952) proposed without-replacement versions of PPS as PS.  Many different schemes have been 

proposed for PS  of which 50 of them are listed in Brewer and Hanif (1983) and Tillé (2006, 2020). 

Almost all of these methods use the  -estimator (Narain, 1951; Horvitz and Thompson, 1952) to derive 

an unbiased estimator of the population total and its variance estimator. Generally PS  is more efficient 

than PPS, however PPS offers advantages over PS  with respect to simplicity of the sample selection 

and the variance estimator calculations. 

Our goal is to improve PPS and PS  designs based on an adaptive approach. The word “adaptive” 

refers to the use of information from sampled units in the sampling process (Seber and Salehi, 2013). In 

adaptive designs, it is not possible to select the final sample before starting the sampling process. The 

concept of an adaptive design is to use the information from the observed sample units to obtain as much 

information as possible about the population. The proposed approaches are easy to implement. In 

Section 2, adaptive PPS and, in Section 3, adaptive PS  sampling are presented. Section 4 and 5 contain 

simulations and real case studies to evaluate the effectiveness of PPS sampling and PS  sampling, 

respectively. Conclusions are drawn in Section 6. 
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2. Adaptive PPS (APPS) sampling 
 

Assume that we have a finite population whose set of labels is denoted by  1, , , , .U k N … …  The 

variable of interest is  1, , , ,k Ny y yy … …
T

 and the auxiliary variable is  1, , , , .k Nx x xx … …
T

 Both 

variables are assumed to be positive and non-zero, i.e., 0, .N
y x   Suppose that the parameter of interest 

is the total of the variable of interest,  

 .y k
k U

t y


    

The total of the auxiliary variable is denoted by  

 .x k
k U

t x


    

Also, for any subset A  of U  with cardinality ,AN  we define  

 
1

, and = .yA k A k xA k
k A k A k AA

t y y y t x
N  

      

The basic idea behind APPS is to update the vector of auxiliary variables based on the information of the 

observed variable of interest after each draw. To take an APPS sample of size ,n  we proceed as described 

in Algorithm 1. 

 
Algorithm 1. Adaptive PPS (APPS) 

Define  

   1
1 11 1 1, , , , , , , , .k N

k N

x x x x

x xx
p p p

t t t t

 
    

 

x
p … … … …

T

T
 (2.1) 

Define  
0s   

For 1, ,i n …  do   

• Select a unit (say )j  in U  with probabilities  1, , , , .i i ik iNp p pp … …
T

  

• Define  1 .i is s j   

• Compute       1 1 1 1 1
, , , , ,i i i k i N

p p p   
p … …

T
 where  

  1

1

if
, for all .

if

i

i

k xs

i

x ysi k

k i

y t
k s

t tp k U

p k s






 




 (2.2) 
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In Algorithm 1, the first two units are selected with-replacement using 1p  and  2 1p p  respectively 

and we observe their y  values. Indeed, according to (2.2) in Algorithm 1, after observing the y  value of 

the first sample unit (say )j  we have  

 
1

2

1

if
, for all ,

if

j j j

j

x j xk

k

y x x
p k j

t y tp k U

p k j


  

 
 

  

or briefly 2 1.p p  Therefore at least the y  values of two different units are required to update the 

drawing probabilities vector  .p  For the third unit onwards, based on the observed y  values, we update 

the vector of drawing probabilities. Each unit is then selected using a different drawing probabilities 

vector.  

 

Result 1. In APPS, for each =1, , ,i n…  

                                                       1,ik
k U

p


   

and  

                                 
APPS

1

1ˆ i

i

n
k

i ik

y
t

n p

   

is an unbiased estimator of yt  with variance  

  
2

2APPS
1 1

1ˆ .
n N

k
y ik

i k ik

y
V t E t p

n p 

  
   
   

   

An unbiased estimator of the variance is given by:  

           

2

APPS APPS
1

1ˆ ˆ ˆ ,
1

i

i

n
k

i ik

y
V t t

n n p

 
  

   
   

where 
iikp  is th

ik  unit of  1 2, , , .i i i iNp p pp …
T

 

For the proof of Result 1, see Appendix A. 

Setting the drawing probabilities exactly proportional to size of ,y  i.e., ,k k yp y t  will lead to an 

unbiased estimator for yt  with zero variance,  

        
APPS

1 =1

1 1ˆ .i

i

n n
k ki

y
i iik k yi

y y
t t

n p n y t

      

By following the procedure of Algorithm 1 step by step, the drawing probability for unit k  approaches 

the ideal probability proportional to size based on .y  As evidence, consider that if units k  and   have 
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been selected at least once in steps up to and including ,i  then in all the steps after step ,i  the ratio of their 

drawing probabilities is equal to ,ky y  which is the same as the ideal case,  

 

1

, .j j

j j

xs k xsjk k y

j x ys x ys y

y t y tp y t
j i

p t t t t y t


 
   
 
 



 

  

 
3. Adaptive PS  (A PS)  sampling 
 

In general, without-replacement designs are more efficient than with-replacement designs of the same 

size due to the inclusion of unduplicated information. A PS  is a kind of adaptive version of PS.  To 

take a A PS  sample of size ,n  we proceed as described in Algorithm 2. 

 
Algorithm 2. Adaptive PS  (A PS)  

1. Based on a conventional design (like Simple Random Sampling without-replacement 

(SRSWOR) or PS)  an initial sample 0s  of size 0n  will be selected.  

2. Using 0 ,s  y  is modeled, for example, by a polynomial of order M  of x  to detect the 

potentially non-linear relationship between x  and .y  In other words, we assume a 

superpopulation model as  

 2
0 1 2 , ,M

k k k M k ky x x x k U          …   

where k  is a random variable independent of kx  with   0kE    and then  

 2 *
0 1 2 0
ˆ ˆ ˆ ˆˆ , \ ,M

k k k M ky x x x k U U s         …   

where ˆ , 1, , ,m m M  …  can be estimated using the least square method in finite population 

sampling. If ˆky  is negative or null, it is replaced by a small positive value of the ,y  so as not 

to have zero inclusion probabilities.  

3. Based on *ˆ ,ky k U  we select a PS  of size *
0 ,n n n   say *.s  

 
In Algorithm 2, one can obviously use any parametric or non-parametric model instead of a linear 

model to obtain a forecast of .ky  Our sampling method will be all the more efficient if the prediction of 

ky  is accurate. The predicted values must be positive. With an A PS  sampling design, we can estimate 

the population total by  

 
*

0

*PS
ˆ ,k

kA
k sk s k

y
t y
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with 

 
   

 
*

* *
0

* * *

ˆmin ,1 ,

ˆwhere constant is defined by min ,1 ,

k k k

k

k U

E I s c y

c c y n


  


 

(3.1)
 

where kI  is an indicator function which takes 1 if unit k  is selected as a unit of *.s  With inclusion 

probabilities exactly proportional to the size of y  as in (3.1), provided that  

 
*

*
*0 1, for all ,k

yU

n y
k U

t
     

we will have  

 
*

*
* *, for all ,k
k

yU

n y
k U

t
     

which will lead to an unbiased estimator for yt  with zero variance,  

 *
0

* * *0 0

* *PS
ˆ .k k

k k ys yyUA
k s k sk s k sk k yU

y y
t y y t t t

n y t
  

      


      

Then, if we can estimate the y  values with high accuracy based on Algorithm 2 and using initial sample 

0 ,s  we can estimate yt  with high efficiency. 

 

Result 2. In ,A PS  

 
*

0

*PS
ˆ ,k

kA
k sk s k

y
t y




 


    

is an unbiased estimator of yt  with variance  

         
* *

*

* *PS
ˆ ,k

kA
k U U k

y y
V t E


 

 
     

  


 

  

and provided that all the *
k   are strictly positive (which depends on the sampling design used in * ,U )  an 

unbiased estimator of variance is 

                
* *

*

* * *PS

ˆ ˆ ,k k

A
k s s k k

y y
V t


 




  
  

  

  

where * * * *
k k k         and  *

0 .k kE I I s    

For the proof of Result 2, see Appendix B. 
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In 
PS

ˆ ,
A

t


 for extreme cases where the size of *s  is too small, we may exaggerate the role of *s  in 

estimation relative to 0 .s  Then we can adjust the estimator by adding a weighting parameter, say 0 1   

as follows:  

                 
*

0

*PS
0 0

1 1ˆ 1 .k
kA

k sk s k

y
t N y

N n n
 




 
   

   
    

 

Result 3. In PS ,A   if we select 0s  by SRSWOR, then   

(i) 
PS PS

ˆ ˆ ,
A A

t t
 
  for  0 ,N n N    

(ii) 
PS

ˆ
A

t


 is unbiased,  PS
ˆ ,yA

E t t


  

(iii) with the following variance  

   

 
  * *

2
2 *

2 * *PS
0

2

2 20

0 0

ˆ

1
1 ,

1

k
kA

k U U k

y

y y
V t N E

N n

f
N S

f n








 

 
      

   
    

   

  


 
  

where 0 0 ,f n N  

(iv) and an unbiased estimator of the variance, provided that all the *
k   are strictly positive, is  

 
  * *

*2
2

2 * * *PS
0

2

2 20
0

0 0

ˆ ˆ

1
1 ,

1

k k

A
k s s k k

y

y y
V t N

N n

f
N s

f n








 




  

   
    

   

  

  

  

where  

                                                  
0

0

2 22 2
0

0

1 1
,

1 1
y k y k sU

k U k s

S y y and s y y
N n 

   
 
    

 

(v) The optimal value for   to minimize the variance of the estimator is  

                                 
 

0

0

0
2 * ** *

0

1 2

*
0

1* 21
1 .

k

k

f

yn

y fy

k ynN k U U

S
f

E S






  

 
   




 (3.2) 

 
4. Simulations for APPS Sampling 
 

In order to evaluate the designs, we have run simulations on real data. All the simulations in Section 4 

and Section 5 have been implemented using Monte Carlo methods with 2,000 iterations. We use a real 
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case study of medicinal flowers and real data from the statistical center of Iran between 2015-2016 

(https://www.amar.org.ir) to evaluate the results of Section 2. To compare the designs, the efficiency is 

defined by  

 
 
 

Efficiency ,
ˆ

sV N y
F

V t




   (4.1) 

where sy  is the sample mean in Simple Random Sampling with-replacement (SRSWR) with size n  and 

t̂  indicates the Hansen-Hurwitz estimator in PPS, APPS with n  draws or  -estimator in PS.  In each 

case, we indicate the variable of interest and the auxiliary variable. Drawing probabilities for PPS and 

APPS are calculated based on (2.1) and (2.2) respectively. Also inclusion probabilities for PS  are 

calculated based on the auxiliary variable using (3.1). For inclusion probabilities in (3.1) we used U  and 

m  instead of *U  and *n  respectively. As APPS and PS  are with and without-replacement designs 

respectively, in order to have a fair comparison, the cost of the sample needs to be as equal as possible for 

all of the designs. For this purpose, in each iteration an APPS is implemented first, and then for PS,  the 

sample size, is set to the number of distinct units obtained with n  draws in APPS. To implement the PS  

in this section we used the eliminatory method based on UPtille function available in the R package 

sampling (Tillé and Matei, 2015). 

For the simulations, we considered two kinds of data:   

1. Medicinal Flowers: The data come from a real case study on chamomile flower (Panahbehagh, 

Bruggemann, Parvardeh, Salehi and Sabzalian, 2018) as the medicinal use of flowers. The 

population mean of the “Essence” is the parameter of interest with 44.4yt   and 60.N   In 

practice, the variable of interest is not know prior to sampling so we use four readily available 

auxiliary variables with various correlations with the variable of interest. The four auxiliary 

variables and correlations are “Flower fresh weight” with 0.33, “Flower dry weight” with 0.59, 

“Stem height” with 0.53 and “Number of petals” with 0.71. The results are presented in 

Figure 4.1, where the correlations are denoted by .r  

2. Social Data: These data are from the Statistical Center of Iran gathered from 31 provinces of 

Iran in 2015-2016 (www.amar.org.ir). Marriage-Divorce and Academic degrees data are 

official statistics covering all target populations, based on the “National Organization for Civil 

Registration” and the “Ministry of Science, Research and Technology” respectively. In 

addition, the provincial population sizes are based on the 2016 census in Iran. We considered 

four situations having an auxiliary and a variable of interest:   

‒ The registered number of “Divorce less than 1 year” and “Marriage” as the variable of 

interest and the auxiliary variable respectively,  

‒ The registered number of “Divorce less than 1 year” and “Divorce” as the variable of 

interest and the auxiliary variable respectively,  
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‒ The registered number of “Bachelors” and “Diplomas” as the variable of interest and the 

auxiliary variable respectively,  

‒ The registered number of “Masters and higher” and “Diplomas” as the variable of interest 

and the auxiliary variable respectively.  
 

The results are presented in Figure 4.2.  
 

As can be seen in Figure 4.1, comparing the vertical axis, generally the higher the correlation, the 

higher the efficiency. By comparing Figure 4.2 and Figure 4.1, the efficiency increases dramatically for 

the social data compare to the medicinal flowers, which was predictable given the correlations of more 

than 0.90 in the former. A positive relationship between correlation and efficiency was expected because 

when the correlation is high, the drawing probabilities vector approximates the exact sampling probability 

proportional to size more accurately. 

 
Figure 4.1 Efficiencies of PS,  APPS and PPS relative to SRSWR for the medicinal flowers data with 

different auxiliary variables. m  is the size of PS  which is the Monte Carlo expectation of the 
number of distinct units in the respective with-replacement designs (PPS and APPS) of size .n  At 
the top-left of each plot, the variable of interest and the auxiliary variable are indicated, with the 
respective Pearson correlation, indicated by .r  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Note : Simple random sampling with-replacement (SRSWR); Proportional to size (PS); Adaptive probability proportional to size 

sampling (APPS); Probability proportional to size sampling (PPS). 
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Figure 4.2 Efficiencies of PS,  APPS and PPS relative to SRSWR for the social data with different 
auxiliary variables and different correlations. m  is the size of PS  which is the Monte Carlo 
expectation of the number of distinct units in the respective with-replacement designs (PPS and 
APPS) of size .n  At the top-left of each plot, the variable of interest and the auxiliary variable are 
indicated, with the respective Pearson correlation, indicated by .r  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Note : Simple random sampling with-replacement (SRSWR); Proportional to size (PS); Adaptive probability proportional to size 
sampling (APPS); Probability proportional to size sampling (PPS). 

 

In Figure 4.1, for the medicinal flowers data, APPS is more efficient than PPS in all cases. The 

efficiency of PPS fluctuates slightly with the variation of ,n  which shows that increasing the sample size, 

improves both SRSWR and PPS at the same level. But at the same time, the efficiency of APPS generally 
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5. Simulations for A PS  
 

Following the notation used in (4.1), “ ”  indicates the particular strategy, PS,  A PS  or A PS  

and sy  is the sample mean in SRSWOR with size .n  Regarding the note in step 2 of Algorithm 2 related 

to negative values of ˆ ,y  we replace them with 0.0001 in the simulations. 

Also for PS  and step 3 of Algorithm 2 in A PS,  we used the maximum entropy design based on 

UPmaxentropy function available in the R package sampling (Tillé and Matei, 2015). 

 

5.1 Boston data 
 

In this subsection, we analyze a dataset for the city of Boston (see Figure 5.1). Three different housing 

value variables for suburbs of Boston (Harrison and Rubinfeld, 1978; Belsley, Kuh and Welsch, 1980) are 

available in R package MASS as:   

• rm: Average number of rooms per dwelling,  

• lstat: Percentage of population in weak and deprived economic situation in Boston Suburbs,  

• medv: Median value of owner-occupied homes in 1,000$s.  

 
Figure 5.1 The relationship among three variables of interest, rm, lstat and medv, for the Boston data. In this 

3 3  matrix of plots, the lower off-diagonal draws scatter plots with fitted linear least squares 
regressions, the diagonal represents histograms with the name of the variables and the upper off-
diagonal reports the Pearson correlations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note : rm: Average number of rooms per dwelling; lstat: Percentage of population in weak and deprived economic situation in Boston 
Suburbs; medv: Median value of owner-occupied homes in 1,000$s.  
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In urban and residential areas, the larger the dimensions of a house, the more rooms one can expect to 

have. Also, the larger the dimensions of the house, the higher the value of the house. Therefore, there is a 

positive relationship between the dimensions of houses and the average number of rooms in each house 

and a positive relationship between the average number of rooms and the value of the house. In addition, 

economically disadvantaged people typically live in smaller houses, so the higher the proportion of 

disadvantaged people in a residential area, the greater the demand for small houses, and therefore the 

average number of rooms per house in that area will be lower. It follows that in a residential area there 

will be a negative relationship between the proportion of disadvantaged people and the average number of 

rooms in each house. 

To model the variable of interest y  on the auxiliary variable ,x  we used  

 2 3
0 1 2 3
ˆ ˆ ˆ ˆˆ ,k k k ky x x x        (5.1) 

where the coefficients are estimated based on the least squares error method. Here based on Result 3, the 

estimator of the optimal value of   given in (3.2) is used, where 2 2
0

ˆ
y yS s  and  

 
* * * *

*
*

* * * * *
ˆ .k k k

k

k U U k s sk k k

y yy y
E

   

  
        

     


   

  

The results of the simulations on the Boston data are presented in Table 5.1. In all cases, A PS  is 

better than A PS  and, in almost all cases, is more efficient than SRSWOR (except for some cases with 

small n  and 0 ).n  Also, for A PS  and A PS  the efficiency generally increases with increasing n  and 

0.n  In each model, the 2’sR  for different cases fluctuated slightly around a certain value, and predictably, 

the values appear to be independent of the initial sample size. Then, we have only reported the median 

values of the 2’sR  for different cases in the table. 

As expected, the higher the absolute value of the correlation between x  and ,y  the higher the 2 .R  

Consequently, as A PS  and A PS  use the regression model to predict y  values, the higher the 2 ,R  

the higher the efficiencies of A PS  and A PS .  Furthermore, PS  is better than SRSWOR only for 

rm-medv, which has a positive and almost linear relationship with some outliers, and PS  is less 

efficient than SRSWOR for the other two models with a negative (albeit strong) correlations. Due to the 

use of a regression model, A PS  and A PS  are not affected by the sign of the correlations. In the rm-

medv model, PS  is better than the others but for large sample size, A PS  could approach PS.  

Looking into Monte Carlo’s results in detail, A PS,  by exaggerating the role of *s  (as discussed in 

Section 3) in certain iterations, results in very biased estimates for the parameter. Since, it cannot be as 

efficient as SRSWOR for medv-rm and lstat-rm model, in the next simulation on economic data, we 

simply compare the efficiencies of A PS  and PS  designs.  
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Table 5.1 

Efficiencies of PS,  A PS  and A PS  with 3M   for Boston data. For each case, the variable of 

interest y  and the auxiliary variable x  are specified. Initial and final sample sizes are denoted by 0n  and n  

respectively, F  indicates efficiency and 2R  is R-squared of model 2 3
0 1 2 3
ˆ ˆ ˆ ˆˆ

k k k ky x x x        
 

 n  
0n  2R  PS

F


 
PSA

F


 
PSA

F


 

x = medv, y = rm, N = 506 50 15 0.63 1.65 0.59 0.83 
20   0.70 1.05 
25   0.62 1.22 

75 20  1.65 0.81 1.01 
30   0.84 1.27 
40   0.89 1.43 

100 25  1.50 0.96 1.15 
30   0.78 1.34 
50   0.89 1.36 

x = stat, y = rm, N = 506 50 15 0.49 0.72 0.62 0.91 
20   0.40 1.03 
25   0.63 1.05 

75 20  0.71 0.77 0.97 
30   0.77 1.10 
40   0.71 1.19 

100 25  0.76 0.93 1.15 
30   0.86 1.23 
50   0.79 1.18 

x = medv, y = lstat, N = 506 50 15 0.70 0.11 1.20 1.51 
20   1.12 1.51 
25   1.08 1.64 

75 20  0.11 1.43 1.78 
30   1.41 1.93 
40   1.23 1.76 

100 25  0.10 1.40 1.91 
30   1.42 1.79 
50   1.41 1.93 

Note : rm: Average number of rooms per dwelling; lstat: Percentage of population in weak and deprived economic situation in Boston Suburbs; 

medv: Median value of owner-occupied homes in 1,000$s. 

 
5.2 Economic data 
 

Data from four different economic variables for 180 countries, partially available from 1980 to 2006, 

were used to evaluate the results of Section 3. The data are collected on the website of the World Bank 

(2021). The four variables considered in this simulation are:   

• GDP: Gross domestic product per capita based on purchasing power parity. GDP is gross 

domestic product converted to international dollars using purchasing power parity rates. An 

international dollar has the same purchasing power over GDP as the U.S. dollar has in the 

United States. GDP at purchaser’s prices is the sum of gross value added by all resident 

producers in the economy plus any product taxes and minus any subsidies not included in the 

value of the products. It is calculated without making deductions for depreciation of fabricated 

assets or for depletion and degradation of natural resources. Data are in constant 2,000 

international dollars.  

• MRI: Mortality rate of infants per 1,000 births is the number of infants dying before reaching 

one year of age.  
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• LEX: Life expectancy at birth indicates the number of years a newborn infant would live if 

prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.  

• YSC: Average schooling years in the total population aged over 25.  

 

One of the factors of production is human resources, and the higher the quality and quantity of human 

resources, the higher the productivity and output of the economy. The quality of human resources can be 

enhanced by improving their health and well-being. Improving healthcare leads to increased life 

expectancy and reduced mortality. In addition, the training of human resources leads to their promotion in 

the fields of science and technology. Therefore, live expectancy and average years of schooling have a 

positive relationship with GDP per capita, and mortality rate has a negative relationship with GDP per 

capita. 

The relationship among the four variables are presented in Figure 5.2. The population size N  varies 

for different pairs due to the exclusion of missing data. 

 
Figure 5.2 The relationship among the four variables in economic data. Scatter plots for the variables are 

shown with the Pearson correlations for the two variables at the top of each plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note : Mortality rate of infants (MRI); Life expectancy at birth (LEX); Average schooling years (YSC); Gross domestic product 
(GDP). 
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The results presented in Table 5.2 can be summarized as follows:   

• A PS  is more efficient than SRSWOR in all cases, but PS  is very inefficient for cases 

with non-linear or negative relationships. In all cases, except for model YSC-GDP, A PS  is 

more efficient than  PS.  

• MRI-GDP and LEX-GDP show almost the same pattern but with different signs. A PS  is 

efficient in both of them and is more efficient in the model with higher absolute correlation. But 

PS  is efficient for the positive relationship (LEX-GDP) and very inefficient in the negative 

relationship (MRI-GDP).  

• For YSC-LEX, although the relationship is positive and almost linear (with 2 20.82 0.67R    

for 0 1
ˆ ˆˆ = ),k ky x   but contrary to A PS  which is an efficient design, PS  is very 

inefficient compared to SRSWOR.  

• The correlations in both models YSC-LEX and MRI-YSC are the same, but according to 2 ,R  it 

seems that regression equation (5.1) can predict ŷ  in the latter model better than the former 

model. Therefore the mean of the efficiencies in model MRI-YSC (2.93) is higher than model 

YSC-LEX (2.47).  

• MRI-LEX has the highest 2 ,R  and for large initial and final sample sizes, the efficiency of 

A PS  is the highest compared to other relationships with the same initial and final sample 

sizes.  

• In general, increasing the sample size leads to an increase in the efficiency of A PS .  

• For A PS ,  in all cases (except model MRI-GDP), the highest efficiency (on average) is for 

the largest sample size  150 .n   

 
Table 5.2 

Efficiencies of PS  and A PS  with = 3M  for Economic data. For each case, the variable of interest y  and 

the auxiliary variable x  are specified. Initial and final sample sizes are denoted by 0n  and n  respectively, F  

indicates efficiency and 
2R  is R-squared of model 2 3

0 1 2 3
ˆ ˆ ˆ ˆˆ = .k k k ky x x x       The population size ,N  is 

different for different pairs due to the exclusion of missing data 
 

 n  0n  
2R  

PS
F


 

PSA
F


 

x = MRI, y = GDP, N = 1,522 80 20 0.70 0.07 2.18 
30   2.30 
40   2.35 

100 30  0.08 2.39 
40   2.12 
50   2.13 

150 40  0.07 1.88 
60   1.94 
80   2.22 

x = MRI, y = LEX, N = 1,619 80 20 0.85 0.01 1.32 
30   2.67 
40   2.94 

100 30  0.01 2.02 
40   2.81 
50   2.89 

150 40  0.01 2.62 
60   4.17 
80   3.22 

Note : Mortality rate of infants (MRI); Gross domestic product (GDP); Life expectancy at birth (LEX); Average schooling years (YSC). 
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Table 5.2 (continued) 

Efficiencies of PS  and A PS  with = 3M  for Economic data. For each case, the variable of interest y  and 

the auxiliary variable x  are specified. Initial and final sample sizes are denoted by 0n  and n  respectively, F  

indicates efficiency and 2R  is R-squared of model 2 3
0 1 2 3
ˆ ˆ ˆ ˆˆ = .k k k ky x x x       The population size ,N  is 

different for different pairs due to the exclusion of missing data 
 

 n  0n  2R  
PS

F


 
PSA

F


 

x = LEX, y = GDP, N = 2,357 80 20 0.76 1.31 2.46 
30   2.68 
40   2.38 

100 30  1.29 2.63 
40   2.57 
50   2.14 

150 40  1.41 2.86 
60   2.58 
80   2.51 

x = YSC, y = LEX, N = 452 80 20 0.75 0.08 2.29 
30   2.71 
40   2.30 

100 30  0.08 2.66 
40   2.34 
50   2.50 

150 40  0.07 2.82 
60   2.54 
80   2.10 

x = YSC, y = GDP, N = 487 80 20 0.71 3.46 2.30 
30   2.33 
40   2.23 

100 30  4.10 2.87 
40   2.97 
50   2.72 

150 40  7.04 4.49 
60   3.88 
80   2.99 

x = MRI, y = YSC, N = 428 80 20 0.78 0.05 2.82 
30   2.89 
40   2.56 

100 30  0.04 2.73 
40   2.94 
50   2.63 

150 40  0.04 3.65 
60   3.26 
80   2.90 

Note : Mortality rate of infants (MRI); Gross domestic product (GDP); Life expectancy at birth (LEX); Average schooling years (YSC). 

 
6. Conclusions 
 

Two adaptive versions of PS, with- and without- replacement have been presented. Both versions are 

based on information observed in the process of sampling, and help the sampler to obtain a more efficient 

sample, leading to more accurate estimates. Compared to the conventional versions, these adaptive 

versions of PS require no additional information and only need time to analyze the initial sample to decide 

on the next steps in the sampling process. 

APPS is easy to implement, more efficient than its conventional version, PPS, and sometimes more 

efficient than PS.  The simulations show that APPS is always more efficient than the PPS. In addition, 

increasing the sample size gives APPS the ability to update more units of the auxiliary variable, resulting 
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in increased efficiency. Besides these advantages, APPS has two weaknesses: the design is with-

replacement and the sample units must be selected one by one in order. 

On the other hand, A PS  is a without-replacement design that must be implemented in two phases. In 

the first phase, an initial sample is selected and y  is modeled on x  and in the second phase, the final 

sample is selected based on the predicted y  values. The relationship between x  and y  is modeled using 

the sample information based on Taylor expansion theory in the first phase of sampling. Next a 

proportional to size scheme is used in the second phase of sampling. The simulations confirm that A PS  

is an efficient and reliable design. 
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Proof of Result 1 
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and therefore  
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and  
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Appendix B 
 
Proof of Result 2 
 

To prove 
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respectively. Note that * ,U  *
k  and *

k   are random based on the design. 

Also, to prove that  PS

ˆ ˆ
A

V t


 is an unbiased estimator of the variance, we have  
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Appendix C 
 
Proof of Result 3 
 

(i) This part of Result 3 will be easily proved by replacing   with  0 .N n N  
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(iii) For calculating the variance of 
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(iv) The proof of this part is the same as Result 2 and the fact that in SRSWOR,  2 2
0 .y yE s S  
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Thus  
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In order to show that the calculated   minimizes the variance, it is easy to show that the 

second derivative of  PS
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 given 0 1f   and 2 0,yS   is strictly positive:  
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