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Combining data from surveys and related sources 

Dexter Cahoy and Joseph Sedransk1 

Abstract 

To improve the precision of inferences and reduce costs there is considerable interest in combining data from 
several sources such as sample surveys and administrative data. Appropriate methodology is required to ensure 
satisfactory inferences since the target populations and methods for acquiring data may be quite different. To 
provide improved inferences we use methodology that has a more general structure than the ones in current 
practice. We start with the case where the analyst has only summary statistics from each of the sources. In our 
primary method, uncertain pooling, it is assumed that the analyst can regard one source, survey r, as the single 
best choice for inference. This method starts with the data from survey r and adds data from those other sources 
that are shown to form clusters that include survey r. We also consider Dirichlet process mixtures, one of the 
most popular nonparametric Bayesian methods. We use analytical expressions and the results from numerical 
studies to show properties of the methodology. 

 
Key Words: Administrative data; Bayesian methods; Clustering; Dirichlet process mixture; Pooling data; Survey 

sampling. 

 
 

1. Introduction 
 

With substantially reduced response rates and limited budgets there has been an increased emphasis on 

efficient use of all of the information available to the survey analyst. Specifically, one may be able to 

improve inferences by using results from several sample surveys and related sources such as 

administrative records. The methodology that we use to combine information has more structure than the 

methods currently used in survey sampling, so should lead to better inferences. Starting with the data from 

the survey that is the best choice for inference, these data are augmented with other, concordant, data. We 

use analytical expressions and the results from numerical studies to show properties of the methodology. 

This research was motivated by a study (Ha and Sedransk, 2019) of health insurance coverage in 

Florida’s counties where the authors noted very different estimates from three surveys. Correspondingly, 

we could have estimates from a well established probability survey and two non-probability surveys. In 

either case there is the question about how to make better inferences. 

In the sequel we refer to the collection of studies as “surveys”, recognizing that these may be 

probability surveys, non-probability surveys, administrative records and other sources. We consider the 

case where the analyst has only a point estimate and associated standard error from each survey. This is 

common, as noted in Section 7 of the review paper, Lohr and Raghunathan (2017). In the motivating 

example, and in many other cases, there are not any covariates that can be used to improve inferences. Our 

methodology extends to cases where the inferential objectives and models are more complex. 

With survey estimates,  ˆ : =1, , ,iY i L…  it is commonly assumed that the ˆiY  are independent 

  ˆ ~ ,i i iY N V  (1.1) 
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where the iV  are assumed to be known. 

A common prior distribution expressing similarity among  1, , L …  is  

  2 2, ~ ,i N      (1.2) 

independently for each ,i  and   and   are assigned locally uniform prior distributions. 

The resulting posterior expected value of i  is a convex combination of the estimate, ˆ ,iY  for that 

survey, and a weighted average of  1
ˆ ˆ, , .LY Y…  The weakness of this approach is that the prior distribution 

in (1.2) assumes independent sampling of the i  from a common distribution. The posterior mean is  

    1
ˆ ˆ ˆ ˆ,..., = 1i L i i i wE Y Y Y Y     (1.3) 

where  2 2=i iV     and 
=1 1

ˆ ˆ= .
L L

w i i ii i
Y Y 

   This may lead to unsatisfactory inferences when, 

e.g., 1, , b …  are each close to *  while 1, ,b L  …  are each close to **  and * **.   Here, 

estimation of 1  would include, perhaps inappropriately, a large contribution from 1
ˆ ˆ, , .b LY Y …  The 

difficulty is that the prior distribution is not sufficiently flexible. Here we use more flexible prior 

distributions that permit the amount and nature of the pooling to be determined by the sample data. 

The specification in (1.1) and (1.2) is common in meta-analyses and in situations where inferences for 

small subpopulations and geographical areas are desired. For example, the U.S. Census Bureau uses such 

models (augmented by terms to accommodate covariates) to make inference for U.S. county level poverty 

rates: see example 6.1.2 in Rao and Molina (2015). However, as just noted, the assumptions in (1.1) and 

(1.2) of full exchangeability may not be appropriate, especially for combining the information from L  

surveys. 

The theory for our principal method, uncertain pooling, was developed by Malec and Sedransk (1992) 

and Evans and Sedransk (2001) with further work in Evans and Sedransk (1999) and Yan and Sedransk 

(2011). To our knowledge this methodology has not been used in a survey sampling application: the 

comprehensive review paper, Lohr and Raghunathan (2017), makes no reference to any technique similar 

to ours. We also modify (1.1) and (1.2) by using a Dirichlet process mixture (DPM) as, e.g., employed by 

Polettini (2017) for small area inference. 

In this paper we describe the methodology for both uncertain pooling and DPM, and use them to 

analyze data from Ha and Sedransk (2019). Then we modified these data to exhibit properties of the 

methods. Finally, there is a simulation study to establish sampling properties. Clearly, the results from this 

evaluation will apply equally if the three sources were, e.g., a well established probability survey and two 

non-probability surveys or other choices. 

We assume that the sample variances  1, , LV V…  are specified. In our context none of the alternatives 

given in the literature for making inferences for the  1, , ,LV V…  all based on inferences for small areas, is 

fully satisfactory. In Section 4 we discuss this challenging problem of making inferences for the sample 

variances. 
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Both uncertain pooling and DPM have a more general structure than that in the common specification, 

(1.1) and (1.2). This should lead to improved inferences. As seen in Section 2 the uncertain pooling model 

is the natural extension of (1.1) and (1.2); i.e., the model in (1.1) and (1.2) is a special case. Moreover, the 

output from uncertain pooling includes the posterior probabilities associated with the possible clustering 

of the L  surveys. 

Finally, note that we address only one of the many aspects of “combining survey data”, well 

summarized by Lohr and Raghunathan (2017). Their Section 7, “Hierarchical models for combining data 

sources”, gives additional examples where our methodology may be useful. 

The methodology that we use is outlined in Section 2, and the results from our numerical studies are 

summarized in Section 3. A brief summary and discussion are in Section 4. 

 
2. Methodology 
 

As in Section 1 assume that there are L  survey estimates, 1
ˆ ˆ, , ,LY Y…  with  

  
indˆ ~ ,i i iY N V  (2.1) 

where the iV  are assumed to be known. 

 

2.1 Uncertain pooling 
 

The uncertain pooling method is based on Malec and Sedransk (1992) and Evans and Sedransk (2001). 

They showed that a prior for  1 2= , , ,
t

L   …  can be selected to reflect the beliefs that there are 

subsets of   such that the i  in each subset are “similar”, and that there is uncertainty about the 

composition of such subsets of .  Let G  be the total number of partitions of the set  = 1, , ,L…L g  be 

a particular partition  = 1, , ,g G…  d g  be the number of subsets of L  in the thg  partition 

  1 ,d g L   and  kS g  be the set of survey labels in subset   =1, , .k k d g…  For example, for 

= 3,L  there are = 5G  partitions:     = 1 ~ 123 ,g       = 2 ~ 13 , 2 ,g       = 3 ~ 12 , 3 ,g  

      = 4 ~ 23 , 1 ,g         =5 ~ 1 , 2 , 3 .g  Then,     
1 = 2 = 13 ,S g     

2 = 2 = 2 ,S g  1 = 2 = 2d g  

and  2 = 2 =1.d g  

To specify a prior for ,  first condition on .g  Malec and Sedransk (1992) and Evans and Sedransk 

(2001) assume that there is independence between subsets, and within  kS g  the i  are independent with 

                             2~ , , .i k k k kg N g g i S g      (2.2) 

Also, the  k g  are mutually independent with  

                                                            2~ ,k k k kg g N g g     (2.3) 

where the  k g  and the  2
k g  are hyperparameters. The definition in (2.3) is the first step in obtaining 

a reference prior for the   ,k g  i.e., one that is dominated by the likelihood. This will include letting the 
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 2 ,k g   but is considerably more complicated, as described below. The  2
k g  are also 

hyperparameters, to be assigned a prior distribution. 

The formal definition in (2.3) is included as the first step in obtaining a reference prior for the   ,k g  

i.e., one that is dominated by the likelihood, as described below in the evaluation of  2, .f g y  

Conditioning on the  2
k g  and  2

k g  (but suppressing them in our notation), and letting  2
k g   

leads to the following expected results for the posterior moments conditional on the partition .g  As 

discussed below, additional care is needed to obtain the posterior distribution of .g  

Defining  1
ˆ ˆ= , , ,

t

Ly Y Y…  letting     2 2= : =1, , ; =1, ,k g k d g g G … …  and writing ˆˆ =i iY  

                                      2 ˆ ˆ, , = 1 ,i i i i k kE y g g g g i S g         (2.4) 

and  
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2 2
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k i jj S g
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g g
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 (2.6) 

Note that  2, ,iE y g   has the familiar form of a weighted average of ˆi  and  ˆ ,k g  but, here, 

 ˆ
k g  is restricted to the surveys in  .kS g  

Assuming the basic model in (1.1) and (1.2) corresponds, here, to the “pool-all” partition,  = 1 ,g  

where all of the L  surveys comprise a single cluster. Thus, for  =1g  the moments in (2.4), (2.5) and 

(2.6) are those that would be obtained by an analysis using (1.1) and (1.2). An analysis based on (1.1) and 

(1.2) is a special case of an analysis based on the uncertain pooling specification. 

Inference about   includes uncertainty about the value of ,g  i.e.,  

      2 2 2= , , ,f y f y g f g y dgd      (2.7) 

where the notation is simplified by using integration rather than summation for .g  Using the “most likely” 

partition 
*g  (i.e.,    * : = 1, , )p g y p g y g G …  to make inference would understate the overall 

precision. 

To evaluate (2.7) we need  2, .f g y  However, when evaluating  2 ,f g y  one must be careful 

about specifying the rate at which the  2 :k g   a natural choice leads to an expression for 
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 2 ,f g y  that is not invariant to changes in the scale of ;Y  see Section 4 of Malec and Sedransk 

(1992). Malec and Sedransk (1992) provided a solution by using an empirical Bayes argument. Here we 

use a fully Bayesian alternative, described in Section 5 of Evans and Sedransk (2001). It postulates little 

prior, relative to sample, information about the   ,k g  and is invariant to changes in the scale of .Y  Let 

        1= , ,
t

d g
g g g  …  and       1 2,K f g f g y   be the Kullback-Leibler information 

about  .g  With prior      2 2, =f g f g f   and letting the  2
k g    subject to    1 ,K f g  

  2 constant,f g y   

 

     
   

 

  

 

 

 
 

  

1 22 2

=1

2

2
=1

, exp 1
2

1
ˆ ˆexp .

2

k

k

d g

i
k i S g

d g
i

i k
k i S g k

d g
f g y f f g g

g
g

g




 







 
    

 

   
    

    

 

 
 

(2.8)

 

The term in the exponent,  

   
 

 

 
 

  
2

2
=1

ˆ ˆ= ,
k

d g
i

i k
k i S g k

g
Q d g g

g


 



  
 

  
   (2.9) 

is likely to decrease as  d g  increases, for example for a new partition of  
 

1

d g

kk
S g

∪  obtained by 

creating subsets of the existing   .kS g  Since  2,f g y  increases as   Q d g  decreases, it is 

helpful to have the second term,  exp ( ) 2 ,d g  that penalizes partitions with larger values of  .d g  

For our analysis we take  2 2=k g   and write    2 2= .i ig V     Inference for   is made using 

(2.7) and (2.8) with  

     2 2 2, , ~ , , , , ,y g N E y g V y g       (2.10) 

where the conditional posterior moments of   are given in (2.4) and (2.5). 

We assume that  f g  is constant, i.e., that all partitions are equally likely, a priori, and take the 

Inverse Beta prior for 
2 ,  i.e., 

    2 2 2 21 1 , 0 .f          (2.11) 

Inference for   is made using (2.7). To start, evaluate the right side of (2.8) for  

  2 ,grid po f: = 1, , ; ints org g G R …  (2.12) 

then standardize by dividing the individual terms in the grid by their sum. This provides an approximation 

for  2, .f g y  Then select a random sample of size B  from the RG  normalized values of 

 2, .f g y  For each selection,  2
* *, ,g   sample   from  2

* *, , .f y g   Here, we generated =B  

5,000 values of .  Finally, note that approximations for the marginal posterior distributions, i.e.,  f g y  

and  2 ,f y  can be obtained directly from the grid approximation of  2, .f g y  
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Assuming that survey r  is the single best choice for inference we can consider the posterior 

distribution corresponding to survey r  to be the object of inference. In a common contemporary 

application there will be data from a well established probability survey (the single best choice) and data 

from other sources such as non-probability surveys, administrative records, etc. In other settings it is likely 

that there will be a preference for one of the surveys. 

Then, using the posterior expected value for illustration,  

    2

2

,
= , ,r rg y

E y E E y g


    (2.13) 

where  2, ,rE y g   is defined in (2.4). Thus, inference for r  is a function of ˆr  together with data 

from the other 1L   studies as determined by the form of (2.4), and, critically, by the likelihood 

associated with the set of subsets,   ,kS g  containing study .r  See Evans and Sedransk (2001) for 

additional details and an application to a notable study of the effect of using aspirin by patients following 

a myocardial infarction. 

The model given by Chakraborty, Datta and Mandal (2014) has a superficial resemblance to the one in 

(2.1), (2.2), and (2.3). Taking ix  to be the scalar with value 1, the model in (2.1) of Chakraborty et al. 

(2014) is  

 ˆ = , = 1, ,i i iY e i L  …  (2.14) 

where   1 2= 1i i i i i ie         with 1 2, , ,i i i ie     independent,    1 1= 1 = 1 , ~ 0,i ip p p N A   

and  2 2~ 0, .i N A  Finally,  ~ 0,i ie N V  with iV  known. Thus, unlike the uncertain pooling method, 

there is only a single focal point, .  This permits appropriate treatment of outliers, but does not take 

advantage of possible clustering of the .i  This can also be seen in (2.4) of Chakraborty et al. (2014) 

where  

    1 2
ˆ ˆ, , , , =i i i iE A A p y Y Y      (2.15) 

and i  is a function of  1 2 1 2, , , = 0 , , , ,i iV A A p A A p y   with  1
ˆ ˆ= , , .

t

Ly Y Y…  Chakraborty et al. 

(2014) show that if survey i  is an outlier,  1 2
ˆ, , , , ,i iE A A p y Y    as desired. Now suppose that 

surveys  1, , b…  and  1, ,b L …  form two distinct clusters with a very large separation between them. 

Then inference for 1,  say, will not, in general, use the data in an appropriate manner. In (2.15) there 

should be two values of ,  i.e., corresponding to the two subsets. And appropriate use of information 

about subsets is the essence of the uncertain pooling method. 

 
2.2 Dirichlet process mixture 
 

An alternative to the uncertain pooling method is to use a Dirichlet process mixture (DPM), one of the 

most popular nonparametric Bayesian methods. This methodology is presented in detail in Sections 2.1 

and 2.2 of Muller, Quintana, Jara and Hanson (2015). For our analyses we have used the R function 
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DPmeta from the package DPpackage: see Jara, Hanson, Quintana, Muller and Rosner (2011) for details. 

The model in DPmeta is  

 
iid
~i i i

y f  (2.16) 

and  

 
iid
~i H H  (2.17) 

with  0~ DP , .H M H  

In (2.16) and (2.17) ˆ= , = ,
ii i i iy Y f   is the pdf of a  ,i iN V  random variable with iV  fixed, and 

 2
0 = , .H N    

The (independent) hyperparameters are  

  0 0 0 0, ~ Gamma ,M a b a b   

                       , ~ ,b b b bS N S     

            2
1 2 1 2, ~ Gamma 2, 2 .      (2.18) 

Polettini (2017) has proposed using a DPM of this nature for inference about small area parameters. As 

in Section 2.1 of our paper Polettini (2017) indicates the value of extending the typical random effects 

model (e.g., the well known Fay-Herriot model) that assumes full exchangeability of the set of small area 

parameters. 

The uncertain pooling method requires only that one specify a prior distribution for g  and 2 .  By 

contrast DPmeta requires substantial prior input, i.e., values for 0 0 1, , , ,b ba b S   and 2.  Without strong 

prior information we can’t make proper inferences for these quantities with only = 3L  surveys. So, we 

have omitted the specification  0 0 0 0, ~ Gamma ,M a b a b  and made inference for a selected set of values 

of M  as suggested by Escobar (1994). Also, we replaced 1, ,b bS   and 2  with their maximum 

a posteriori probability estimates. 

 
3. Results 
 

Ha and Sedransk (2019) made inference for the proportion of adults without health insurance in each 

of the 67 Florida counties, and compared these estimates with those from two other sources. Some of the 

differences were striking, motivating us to consider methodology to make appropriate inferences in such 

cases. We use these data, and modifications of these data, to show the benefits of using the methodology 

outlined in Section 2. One source is the Small Area Health Insurance Estimates Program (SAHIE, 

hereafter survey 1). The SAHIE program uses point estimates from the American Community Survey 

(ACS) together with administrative data such as Federal income tax returns and Medicaid/Children’s 
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Health Insurance Program (CHIP) participation rates. There is detailed area level modelling. The principal 

ones are models of ACS estimates of the proportions in income groups and the proportions insured. There 

are additional models such as ones modelling the number of persons enrolled in Medicaid or CHIP, 

Supplementary Nutrition Assistance Program (SNAP) participation, and Internal Revenue Service (IRS) 

tax exemptions. For a full understanding of this program see the twenty-two page technical report, Bauder, 

Luery and Szelepka (2018). We have added a non-technical summary in the Appendix. 

The analyses using both survey 2, denoted by HS, based on Ha and Sedransk (2019), and survey 3 

denoted by CDC (Centers for Disease Control and Prevention) use unit level models based on 2010 data 

from the Behavioral Risk Factor Surveillance System (BRFSS), obtained through telephone interviews. 

While the sample designs differ somewhat over states, the one in Florida was typical, i.e., a 

disproportionate stratified sample design. In Florida, the set of telephone numbers were divided into two 

strata (high and medium density) that were sampled separately. In addition there was a stratification by 

area codes, i.e., three geographic strata and a fourth stratum consisting of area codes with large estimated 

Hispanic populations. For additional, general information see http://www.cdc.gov/brfss/annual_data/ 

annual_2010.htm while for technical details see Pierannunzi, Xu, Wallace, Garvin, Greenlund, Bartoli, 

Ford, Eke and Town (2016) and Ha and Sedransk (2019). Both use, essentially, the same covariates but 

the modeling in HS is more detailed. Moreover, Pierannunzi et al. (2016) give only point estimates, noting 

that standard errors were being developed. A further complication is that the CDC analysis is frequentist 

while the SAHIE and HS analyses are Bayesian. Thus, we have an (empirical) Bayes posterior standard 

deviation for SAHIE, none for CDC and an estimated SE for HS obtained by taking the 95% credible 

interval for a county proportion and dividing by 3.92. While the limitations just noted preclude definitive 

conclusions from these data they illustrate the methodology. Moreover, conditions where standard errors 

are missing or unreliable are, at least, fairly common for non-probability samples, a focus of this paper. 

The first set of analyses is based on the observed data. To show other properties of the methodology a 

second set of analyses is based on modifications of these data. Finally, to show sampling properties there 

is a simulation study. Note that each of our analyses is based only on data from a single county. Additional 

research is needed to permit inference using data from all of the sources and counties. See Section 4 for 

discussion. 

 
3.1 Data-based analyses 
 

Using the uncertain pooling methodology a summary of the results for Dixie county is presented in 

Table 3.1. These are typical of most of the county-based analyses that we have done. Throughout, SE 

denotes the sample standard error. There are three panels, corresponding to choices of the CDC SE, taken 

equal to 0.5, 1.0, 2.0 times the HS SE. For each panel the column headings are the observed proportion, 

posterior mean of the county proportion, estimated SE of the observed proportion, posterior standard 

deviation and lower and upper bounds of the 95% credible interval for the county proportion. At the 

bottom of each panel there are the values of  p g y  with   0.001p g y   where     = 1 ~ 123 ,g  
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      = 2 ~ 13 , 2 ,g       = 3 ~ 12 , 3 ,g       = 4 ~ 2, 3 , 1 ,g         = 5 ~ 1 , 2 , 3 ,g  and summaries 

corresponding to  1 ,g   labelled “pool-all”. 

We first analyze these data using the uncertain pooling methodology, then compare them with those 

from DPmeta. 

A common way to summarize a set of sample proportions is to assume that the corresponding set of 

true proportions come from a common source, i.e.,  = 1 = 1.p g  However, for each of the three cases in 

Table 3.1,  = 1 0.001.p g y   Thus, there is very little support for pooling all of the data from the three 

surveys. For further investigation of the effect of assuming a common source, assume = 1.g  Then, as in 

(1.1) and (1.2), 

  
indˆ ~ ,i i iY N V   

                       iid 2~ , , = 1, , .i N i L   …  (3.1) 

With a locally uniform prior on   and the Inverse Beta prior on 2  in (2.11)  

      2 2 2= ,f y f y f y d      (3.2) 

where the posterior distribution of   given 2  is normal with    

 

2

=1

2

=1

ˆ
2

1
, =

L

i ii
L

ii

Y V

V
E y




 








 and 

    
112 2

=1
Var , = .

L

ii
y V  


   

For panel 1 in Table 3.1,   = 0.313,E v y  SD = 0.017v y  and the 95% credible interval is 

(0.290, 0.340). Inferences based on the posterior distribution of   are not consistent with the notion that 

any one of the three surveys is the nominal “gold standard”. If, for example, survey 1 is taken as the “gold 

standard”, the posterior mean of 1,  0.254, is substantially smaller than the posterior mean of ,  0.313. 

Moreover, 0.254 is not included in the 95% interval for ,  (0.290, 0.340). The conclusions from panels 2 

and 3 are essentially the same. Finally, recall that  = 1 0.001,p g y   indicating very little support for 

pooling all of the data. 

In the following assume, for illustration, that one prefers the HS methodology. Then there may be 

substantial gains in precision (measured by the posterior standard deviation) by using the uncertain 

pooling methodology. The gain in precision is measured by comparing the posterior standard deviation 

from the uncertain pooling methodology with that obtained by using only the data from the specific 

survey, here HS (survey 2). For the latter and a locally uniform prior for 2 ,  the posterior distribution of 

2  is normal with posterior mean equal to the observed proportion and posterior standard deviation equal 

to the estimated SE. If we take CDC SE (HS SE)k  for = 0.5,1, 2,k  then the reductions in the posterior 

standard deviation for HS (survey 2), and corresponding to = 0.5,1, 2,k  are 29, 18 and 7%. (For example, 

from panel 1 of Table 3.1, i.e., = 0.5,k  the percent reduction in the posterior SD for HS is 

100 (0.028 0.020) 0.028% 29%.)   Note that the relatively small SEs for each of the surveys means 

that the “all singletons” partition, i.e.,  = 5 ,g  has a relatively large posterior probability (about 0.38). 
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The corresponding reductions in the posterior standard deviation (uncertain pooling vs. no pooling) for 

CDC (survey 3) are 7, 18 and 14%. 

 
Table 3.1 

Observed proportions, standard errors and posterior summaries from Dixie County, Florida using uncertain 

pooling 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Int 
CDC SE = 0.5   HS SE 1 0.254 0.254 0.014 0.014 (0.225, 0.283) 

2 0.361 0.360 0.028 0.020 (0.317, 0.403) 
3 0.359 0.359 0.014 0.013 (0.333, 0.385) 

pool-all  0.313  0.017 (0.290, 0.340) 

 = 3 =P g y 0.002;  = 4 =P g y 0.621;  = 5 =P g y 0.377. 

CDC SE = HS SE 1 0.254 0.254 0.014 0.014 (0.225, 0.283) 
2 0.361 0.360 0.028 0.023 (0.313, 0.406) 
3 0.359 0.359 0.028 0.023 (0.312, 0.404) 

pool-all  0.290  0.011 (0.268, 0.312) 

 = 2 =P g y 0.002;  = 3 =P g y 0.002;  = 4 =P g y 0.619;  = 5 =P g y 0.376. 

CDC SE = 2   HS SE 1 0.254 0.254 0.014 0.014 (0.226, 0.284) 
2 0.361 0.360 0.028 0.026 (0.307, 0.412) 
3 0.359 0.349 0.056 0.048 (0.256, 0.303) 

pool-all  0.279  0.012 (0.255, 0.305) 

 =1 =P g y 0.001;  =2 =P g y 0.107;  =3 =P g y 0.002;  = 4 =P g y 0.554;  =5 =P g y 0.336. 

Note: Centers for Disease Control and Prevention (CDC); Standard error (SE); Ha and Sedransk (HS); Standard 
deviation (SD). 

 
As noted in Section 2, a complete specification of DPmeta requires specifying the values of many 

hyperparameters, and we have no prior information to make informed choices. So, we have replaced 

1, ,b bS   and 2  with their maximum a posteriori probability (MAP) estimates. We have followed 

Escobar (1994) by considering    1 0 1 2, , , = 1 3,1, 3, 9 .M L L L L  

From (2.10) in Muller et al. (2015) the prior probability of k  clusters is a function of .M  Let 

 1 2 3= , ,M M M Mp p p p  where kMp  is the prior probability of k  clusters with precision .M  Then kMp  can 

be calculated using the probability associated with any partition, i.e., 

 
 

     

1

=1

1 2 1

kk
jj

M L

M M M L

 

   




 (3.3) 

where jL  is the number of surveys in cluster j  with 
=1

= .
k

jj
L L  Then  1 3 = 18 28, 9 28,1 28 ,p  

 1 = 2 6, 3 6,1 6 ,p  3 = 2 20, 9 20, 9 20p  and  9 = 2 110, 27 110, 81 110 .p  Since 1 3p  and 9p  are 

too extreme we have emphasized =1M  and = 3.M  The results corresponding to =1M  and = 3M  are 

very close, so only the latter are presented in Table 3.2, which has the same format as Table 3.1. 

Comparing the results from the uncertain pooling method with those from DPmeta it is apparent that, 

in general, there is close agreement. For the posterior mean they are similar except in panel 3 where there 

is greater shrinkage for surveys 2 and 3. The results for the posterior SD are also close except for a larger 
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value for survey 2 in panel 3. There are only small differences in the intervals except for panel 3 where the 

DPmeta intervals for surveys 2 and 3 are wider. 

 
Table 3.2 

Observed proportions, standard errors and posterior summaries from Dixie County, Florida using DPmeta 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Interval 
CDC SE = 0.5   HS SE 1 0.254 0.254 0.014 0.014 (0.227, 0.282) 

2 0.361 0.359 0.028 0.013 (0.334, 0.384) 
3 0.359 0.360 0.014 0.012 (0.335, 0.384) 

CDC SE = HS SE 1 0.254 0.256 0.014 0.016 (0.227, 0.290) 
2 0.361 0.357 0.028 0.024 (0.291, 0.399) 
3 0.359 0.357 0.028 0.025 (0.290, 0.399) 

CDC SE = 2   HS SE 1 0.254 0.264 0.014 0.018 (0.230, 0.287) 
2 0.361 0.332 0.028 0.044 (0.261, 0.406) 
3 0.359 0.321 0.056 0.048 (0.249, 0.402) 

Note: Centers for Disease Control and Prevention (CDC); Standard error (SE); Ha and Sedransk (HS); Standard deviation (SD). 

 
The small value of the SAHIE SE seen in almost all counties limits the scope of our evaluation. Thus, 

we have used modified data sets based on the original data. Here, as before, we take the CDC SE to be 

0.5, 1 and 2 times the HS SE, but also take the SAHIE SE to be 2, 5 and 10 times the HS SE. Table 3.3, 

with the same format as Table 3.1, shows, for uncertain pooling, the results for Orange county with the 

CDC SE = 0.5(HS SE). These results are typical of our analyses for a sizeable number of FL counties. 

Recall, though, that each analysis is based only on the data from the specific county. For panel 1 in 

Table 3.3,   ˆ : = 1, , = 0.199,iE Y i L …   ˆSD : = 1, , = 0.008iY i L …  and the 95% credible interval 

is (0.184, 0.215). Inferences based on the posterior distribution of   are inappropriate if one regards any 

one of the three surveys as the “gold standard”. For example, the posterior mean of 1,  0.278, is outside 

the 95% credible interval for .  As in Table 3.1,  = 1 0.001,p g y   indicating very little support for 

pooling all of the data. 

The percent reductions in the posterior standard deviation of 1,  i.e., for SAHIE (survey 1), are 11, 26 

and 44%, corresponding to the three panels in Table 3.3. As the value of the SAHIE SE is increased, there 

is, as expected, additional pooling of the SAHIE observed proportion with the CDC observed proportion. 

Noting that the observed proportion for SAHIE is 0.294, the posterior means for 1  decrease from 0.278 

(panel 1) to 0.240 (panel 3). One reason for this can be seen by comparing the posterior distributions of ,g  

i.e.,   , : = 1, , 5 ,g p g y g …  given at the bottom of each panel. For example,  = 2p g y  increases 

from 0.006 to 0.339 while  = 5p g y  decreases from 0.479 to 0.253. These results show that the 

uncertain pooling methodology is taking proper account of the increased variability associated with the 

SAHIE estimates, i.e., increasing the likelihood of pooling the data from surveys 1 and 3. 

Comparing the results from the uncertain pooling method in Table 3.3 with those from DPmeta in 

Table 3.4 it is apparent that there are greater differences than those seen in Tables 3.1 and 3.2. For the 

posterior means it is notable that for survey 1 the posterior mean from DPmeta is somewhat smaller than 

that from uncertain pooling. This reflects greater pooling of the data from survey 1 with that from survey 
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3. For surveys 2 and 3 the two sets of posterior means are similar. The most notable difference is for the 

posterior SDs where, for survey 1 (panels 2 and 3) the values are very much smaller from DPmeta than 

from uncertain pooling. For the other seven cases, the two sets of posterior SDs are similar. 

Correspondingly, for survey 1 the intervals from DPmeta are much shorter than those from uncertain 

pooling while those for surveys 2 and 3 are only a little wider. From Table 3.4 and for survey 1 the percent 

reductions in the posterior SD (relative to the ObsSEs) are (42%, 55%, 75%). There are increases, though, 

for survey 2 in panels 2 and 3. 

 
Table 3.3 

Observed proportions, standard deviations and posterior summaries from Orange County, Florida, where 

CDC SE = 0.5   HS SE using uncertain pooling 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Int 
SAHIE SE = 2   HS SE 1 0.294 0.278 0.036 0.032 (0.227, 0.352) 

2 0.257 0.261 0.018 0.017 (0.226, 0.294) 
3 0.179 0.179 0.009 0.009 (0.162, 0.197) 

pool-all  0.199  0.008 (0.184, 0.215) 

 = 2 =P g y 0.006;  = 3 =P g y 0.514;  = 5 =P g y 0.479. 

SAHIE SE = 5   HS SE 1 0.294 0.251 0.089 0.066 (0.162, 0.417) 
2 0.257 0.258 0.018 0.018 (0.223, 0.293) 
3 0.179 0.179 0.009 0.009 (0.162, 0.197) 

pool-all  0.195  0.008 (0.180, 0.211) 

 = 2 =P g y 0.224;  = 3 =P g y 0.468;  = 5 =P g y 0.308. 

SAHIE SE = 10   HS SE 1 0.294 0.240 0.179 0.101 (0.059, 0.520) 
2 0.257 0.257 0.018 0.018 (0.222, 0.292) 
3 0.179 0.179 0.009 0.009 (0.162, 0.197) 

pool-all  0.195  0.008 (0.179, 0.211) 

 = 2 =P g y 0.339;  = 3 =P g y 0.408;  = 5 =P g y 0.253. 

Note: Small Area Health Insurance Estimates (SAHIE); Centers for Disease Control and Prevention (CDC); Standard 
error (SE); Ha and Sedransk (HS); Standard deviation (SD). 

 

Table 3.4 

Observed proportions, standard errors and posterior summaries from Orange County, Florida using DPmeta 
 

 Survey ObsProp PostMean ObsSE PostSD 95% Cred Interval 
SAHIE SE = 2   HS SE 1 0.294 0.262 0.036 0.021 (0.202, 0.297) 
 2 0.257 0.263 0.018 0.018 (0.222, 0.296) 
 3 0.179 0.180 0.009 0.009 (0.162, 0.199) 
SAHIE SE = 5   HS SE 1 0.294 0.226 0.089 0.040 (0.168, 0.290) 

2 0.257 0.246 0.018 0.023 (0.186, 0.291) 
3 0.179 0.182 0.009 0.011 (0.163, 0.205) 

SAHIE SE = 10   HS SE 1 0.294 0.217 0.179 0.044 (0.166, 0.288) 
2 0.257 0.243 0.018 0.031 (0.185, 0.290) 
3 0.179 0.183 0.009 0.011 (0.162, 0.205) 

Note: Small Area Health Insurance Estimates (SAHIE); Standard error (SE); Ha and Sedransk (HS); Standard deviation (SD). 

 
3.2 Results from simulation study 
 

To evaluate properties such as bias and coverage of the credible interval we have carried out a 

simulation study based on several modifications of the Orange county data. Specifically, we generate 

 ˆ : = 1, 2, 3iY i  from 
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  1 1 1
ˆ ~ ,Y N V   

  2 1 2
ˆ ~ ,Y N V   

          3 2 2
ˆ ~ ,Y N V    (3.4) 

where 1  and 2  are from the third panel of Table 3.3; 1  is the average of the observed proportions 

from surveys 1 and 2 while 2  is the observed proportion from survey 3 (CDC). Also, we took 1V  to be 

much larger than 2.V  These choices were made to represent a common situation where survey 1 is a 

probability sample, with relatively large sample variance while surveys 2 and 3 are non-probability 

samples with much smaller sample variances. Finally,     0, 4 0.0193 = 0.0772, 8 0.0193 = 0.1544 .  

Table 3.5 gives the values of 1 2 1, ,V   and 2V  in the footnote. There are three rows, corresponding to 

= 0, 0.0772, 0.1544.  In each row there are the medians over 500 replications of   : =p g y g  

   1, , 5 , : = 1, 2, 3iE y i…  and   SD : = 1, 2, 3 ,i y i  together with the estimated coverages. 

 

Table 3.5 

Simulation results from 500 replications of (3.4) 
 

Inc Size 
 dataP g  Coverage PostMean PostSD 

: 1g  2 3 4 5 : 1i  2 3 : 1i  2 3 : 1i  2 3 

= 0  0 0.148 0.462 0 0.332 0.973 0.958 0.960 0.262 0.275 0.179 0.050 0.006 0.006 

= 0.0772 0.032 0.292 0.303 0.033 0.249 0.984 0.941 0.939 0.269 0.275 0.257 0.039 0.006 0.006 

= 0.1544 0 0.280 0.401 0 0.300 0.971 0.958 0.952 0.292 0.275 0.333 0.044 0.006 0.006 

1 = 0.276, 2 = 0.179, 2
1 =0.06 ,V  2

2 =0.006 .V  

Note: Standard deviation (SD). 

 

The principal findings are: (a) the medians of the posterior means are close to the values used to 

generate the data, i.e., 1  and 2 ,  (b) the coverages are close to the nominal 95%, and (c) there are 

significant reductions in the posterior standard deviation for survey 1 (SAHIE), i.e., 16.7%, 35.0% and 

26.7% corresponding to = 0, 0.0772  and 0.1544. There are no reductions in the posterior standard 

deviations for surveys 2 and 3. 

For = 0.1544  note that  = 2 = 0.280p g y  while  = 4 = 0.p g y  That is, we pool data from 

surveys 1(SAHIE) and 3(CDC),  = 2 ,g  because of the relatively large SE for survey 1(SAHIE). 

However, we do not pool data from surveys 2(HS) and 3(CDC),  = 4 ,g  because of the relatively small 

SEs for survey 2(HS) and survey 3 (CDC). Of course, we pool data from surveys 1 and 2,  = 3 ,g  

because they have the same mean, 1.  

 
4. Discussion and summary 
 

With reduced response rates and diminished resources there is considerable interest in combining data 

from several sources such as sample surveys and administrative data. Currently there is special interest 
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when the sources include non-probability surveys. Appropriate methodology is required to ensure 

satisfactory inferences since the target populations and data acquisition methods may be quite different. 

There are many situations where it may be beneficial to combine such data, as shown in the review 

paper by Lohr and Raghunathan (2017). Here, we have investigated the case where the analyst has only 

summary statistics from each of the sources, and where one can think of one source, ,r  as the single best 

source for inference. While it is often beneficial to use the data from related sources to improve inferences 

from ,r  it is essential that the data that are combined be concordant with the data from .r  The 

methodology in this paper can also be used in settings where the data are not limited to summary statistics 

and inferential objectives and models are more complex. As seen in this paper, failure to consider biases 

due to pooling “unlike” data may lead to poor inference. Using analytical expressions and examples we 

have shown that both the uncertain pooling and DPM methods provide appropriate inferences. However, 

our analyses based on uncertain pooling are fully Bayes while those from DPmeta are empirical Bayes – 

due to the need to specify values for many hyperparameters. Moreover, the uncertain pooling method 

provides additional information in the form of the posterior probabilities for the partitions, .g  

The methods can be implemented. For DPmeta there is an R package, DPpackage (Jara et al., 2011) 

while an R package is being developed for the uncertain pooling method. When completed it will be 

submitted to The Comprehensive R Archive Network. It contains functions that allow Bayesian analyses 

of the type described in this paper (a) with user-supplied point estimates and associated variances, or (b) 

with binomial data, cases  y  and total counts  .n  Case (b) provides an analysis based on the logit 

transformation of the sample proportion. We have implemented the latter when there are eleven surveys. 

Making inference for the sample variances, 1, , LV V…  is a very challenging problem. Polettini (2017) 

provides an extensive discussion of methods that have been proposed. Of particular interest are solutions 

proposed by You and Chapman (2006), Sugasawa, Tamae and Kubokawa (2017) and Polettini (2017). 

However, these solutions are posed in the context of small area inference, not when the objective is 

combining data from surveys and related sources. 

While the discussion below is in the context of extending the DPM method (Section 2.2), the ideas are 

also relevant for the uncertain pooling method (Section 2.1). Polettini (2017) augments the DPM model in 

Section 2.2 with 

     
ind2 2~ , = 1, ,i i i i

S V i L  …  (4.1) 

and  

  
iid1

1 1~ Gamma ,iV a b  (4.2) 

where 
2
iS  is the sampling variance and i  is a measure of the degrees of freedom. 

As noted by Polettini (2017) the assumption of the 
2  distribution in (4.1) is questionable, surely so 

when there is a complex survey design. With only a single sample one cannot verify the sampling 

distribution of 
2 ,iS  a point also made by Polettini (2017) on page 731. Moreover, in survey sampling the 
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form of 2
iS  is likely to be a complex function of the values of the variable of interest, ,Y  and survey 

weights. Thus, it is unlikely that the distribution of the observed ’sY  can be used to infer a reasonable 

approximation for the distribution of 2 .iS  

The assumption of constant population parameters in (4.2) is problematic for our case, i.e., combining 

data. We expect considerable differences among the surveys, e.g., for a collection of probability and non-

probability samples. You and Chapman (2006) generalize by replacing (4.2) with  

        
ind
~ Inverse Gamma , .i i iV a b  (4.3) 

This requires values for  , ,i ia b  a difficult choice without prior information. Moreover, Gelman (2006) 

shows that selecting both ia  and ib  very small, a natural choice (and one made by You and Chapman 

(2006)), may lead to poor inferences. Sugasawa et al. (2017) provide an alternative to You and Chapman 

(2006) by assuming  

          
ind
~ Inverse Gamma , ,i i iV a b   (4.4) 

with a prior on ,  but this, too, requires specifying values for ia  and .ib  Clearly, making better inference 

for the sample variances is an important topic for future research. 

There has been an increased interest in making inference for small subpopulations, i.e., “small area” 

inference, when there are several data sources; see, e.g., Manzi, Spiegelhalter, Turner, Flowers and 

Thompson (2011) and Nandram, Berg and Barboza (2014). While further research is needed to extend the 

uncertain pooling methodology to this case the approach is clear. Let j  denote a small area, e.g., a US 

county, and i  denote a data source where = 1, ,j J…  and =1, , .i L…  As above g  denotes a generic 

partition with generic subset  kS g  for  = 1, , .k d g…  Define   = : = 1, , ; = 1, , .ij j J i L… …G  Then 

for fixed ,g   kS g  is a subset of G  with     =k mS g S g ∩  for k m  and  
 

=1
= .

d g

kk
S g∪ G  For 

example, let = 2J  and = 3.L  Then each partition is a collection of the disjoint subsets of 

            = 11 , 12 , 21 , 22 , 31 , 32G  whose union is .G  By analogy with the discussion in Section 2, 

there would be a single best source for each small area, identified as   ,j i j  for some i  in small area .j  

Then the following model, analogous to the one in Section 2, is 

                                                                 
indˆ ~ , .ij ij ijY N V  (4.5) 

By analogy with (2.2)  

                             
ind 2~ , , .ij k k kN g g ij S g     (4.6) 

If the same (limit) assumptions are made about the  2
k g  and  2 2= ,k g   the expressions for 

posterior inference for the ij  will be the same as in Section 2. However, the assumption of constant 2  

may not be reasonable. Since there will be a very large number of partitions computation will be 

challenging, especially since it is expected that many  p g y  will be very small. 

The premise of our work is that one should include the possibility that the parameters associated with 

different surveys may not be exchangeable. (With a probability sample and several non-probability 
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samples this may be especially important.) Similarly, it is natural to generalize so that the parameters 

associated with the small areas are not assumed to be exchangeable. However, if exchangeability across 

both surveys and small areas can be assumed, the model in Section 2.1 of Kim, Park and Kim (2015) 

(possibly modified to accommodate Bayesian inference) should be easier to implement. 

Although the very large number of partitions of G  may pose an obstacle to implementation, one may 

be able to apply DPmeta when there are data from a set of small areas and several data sources. One 

problem is the specification in DPmeta of a common distribution for the ,ij  i.e., over small areas and 

surveys, which is unlikely to be appropriate. The possibilities include an ANOVA model (Section 4.4.2) 

or nested model (Section 7.3.1) of Muller et al. (2015), although the ANOVA model has no interaction 

terms and our model is a cross-classified one. 

Future research should include making inference for the sample variances, as noted above. Also, we 

need improved methodology to handle the extension to small area inference when there are data from 

several surveys. In some cases one may be able to simplify the model for the .ij  Using a grid-based 

method for sampling g  and 2  is difficult to implement when G  is extremely large. So, using a standard 

MCMC approach, possibly with an informative prior on ,g  may be a better way to make inference. For 

example, see Dahl, Day and Tsai (2017). 

Other approaches could also be explored. For example, Park, Kim and Stukel (2017) suggest a 

different approach for combining data from two surveys. Here, there are covariates, ,X  observed in each 

survey while 1,Y  the study variable of interest, is observed only in survey 1 and 2Y  is observed only in 

survey 2. Inference for the population mean of 1Y  is desired, given data from both surveys. The densities 

that they use are    1 1 1 2 2 1 2, , , ,f Y X f Y X Y   and, for identifiability, it is assumed that  2 2 1, =f Y X Y  

 2 2 1 .f Y Y  For a Bayesian analysis an extension to more than two surveys would be needed, together with 

specification of appropriate prior distributions for the parameters. It does not seem to be straightforward to 

model the distribution of 2Y  given 1.Y  
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Appendix 
 

Small Area Health Insurance Estimates (SAHIE) Program 
 

The following summary paraphrases relevant parts of US Census Bureau (2021). To avoid distortion of 

the authors’ meaning we have retained the first-person text. 

The SAHIE program produces model-based estimates of health insurance coverage for demographic 

groups within counties and states. We publish county estimates by sex, age and income. The income 
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groups are defined by the income-to-poverty ratio (IPR) – the ratio of family income to the appropriate 

federal poverty level. 

For estimation, SAHIE uses models that combine survey data from the American Community Survey 

(ACS) with administrative records data and Census data. The models are “area-level” models because we 

use survey estimates and administrative data at certain levels of aggregation, rather than individual survey 

and administrative records. Our modeling approach is similar to that of common models developed for 

small area estimation, but with additional complexities. 

The published estimates are based on aggregates of modeled demographic groups. For counties, we 

model at a base level defined by age, sex and income groups. 

We use estimates from the Census Bureau’s Population Estimates Program for the population in 

groups defined for county by age and sex. We treat these populations as known. Within each of these 

groups, the number with health insurance coverage in any of the income categories is given by that 

population multiplied by two unknown proportions to be estimated: the proportion in the income category 

and the proportion insured within that income category. The models have two largely distinct parts – an 

“income part” and an “insurance part” – that correspond to these proportions. We use survey estimates of 

the proportions in the income groups and of the proportions insured within those groups. We assume these 

survey estimates are unbiased and follow known distributions. We also assume functional forms for the 

variances of the survey estimates that involve parameters that are estimated. We treat supplemental 

variables that predict one or both of unknown income and insurance proportions in one of two ways: 

Some of these variables are used as fixed predictors in a regression model. There is a regression 

component in both the income and insurance parts of the model. In each case, a transformation of the 

proportion is predicted by a linear combination of fixed predictors. Some of these predictors are 

categorical variables that define the demographic groups we model. Others are continuous. The 

continuous fixed predictors include variables regarding employment, educational attainment, and 

demographic population. 

We also utilize random continuous predictors, which include data from 5-year ACS, Internal Revenue 

Service, Supplemental Nutrition Assistance Program, and Medicaid/Children’s Health Insurance Program. 

These are not fixed predictors in the model. Instead, we treat them as random, in a way similar to survey 

estimates, but not as unbiased estimators of the numbers. Instead, we assume that their expectations are 

linear functions of the number in an income group or the number insured within an income group. We 

typically assume they are normally distributed with variances that depend on unknown parameters. 

We formulate the model in a Bayesian framework and report the posterior means as the point 

estimates. We use the posterior means and variances together with a normal approximation to calculate 

symmetric 90-percent confidence intervals, and report their half-widths as the margins of error. 

We control the estimates to be consistent with specified national totals. 
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