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One-sided testing of population domain means in surveys 

Xiaoming Xu and Mary C. Meyer1 

Abstract 

Recent work in survey domain estimation allows for estimation of population domain means under a priori 
assumptions expressed in terms of linear inequality constraints. For example, it might be known that the 
population means are non-decreasing along ordered domains. Imposing the constraints has been shown to 
provide estimators with smaller variance and tighter confidence intervals. In this paper we consider a formal 
test of the null hypothesis that all the constraints are binding, versus the alternative that at least one constraint is 
non-binding. The test of constant versus increasing domain means is a special case. The power of the test is 
substantially better than the test with the same null hypothesis and an unconstrained alternative. The new test is 
used with data from the National Survey of College Graduates, to show that salaries are positively related to the 
subject’s father’s educational level, across fields of study and over several years of cohorts. 

 
Key Words: Survey domain; Order constraints; Monotone; Block monotone. 

 
 

1. Introduction 
 

Methods for estimation of population domain means under a priori assumptions in the form of linear 

inequality constraints have been recently established. Suppose interest is in estimating ,D
U y R  a vector 

of population domain means, where D  is the number of domains. Wu, Meyer and Opsomer (2016) 

derived an isotonic survey estimator of ,Uy  where it is assumed that 
1

.
DU Uy y …  They showed that the 

constrained estimator is equivalent to a “pooled” estimator, where weighted averages of adjacent sample 

domain means are used to form an isotonic vector of domain mean estimates. Advantages to the ordered 

mean estimates are that they “make sense” in terms of satisfying the assumptions, and the confidence 

intervals for the estimates are typically reduced in length. Oliva-Aviles, Meyer and Opsomer (2019) 

proposed an information criterion to check the validity of the monotone assumption; that is, determining 

whether the domain means are ordered or unordered. 

Oliva-Aviles, Meyer and Opsomer (2020) proposed a framework for estimation and inference with 

more general shape and order constraints in survey contexts. Examples include block orderings, and 

orderings of domain means arranged in grids. For example, average cholesterol level may be assumed to 

be increasing in age category and body mass index (BMI) level, but decreasing in exercise category. In 

another context, suppose average salary is to be estimated by job rank, job type, and location, with average 

salary assumed to be increasing with rank, and block orderings imposed on job type and location. More 

recently, Xu, Meyer and Opsomer (2021) formulated a mixture covariance matrix for constrained 

estimation that was shown to improve coverage of confidence intervals while retaining the smaller 

lengths. 
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The desired linear inequality constraints may be formulated using an M D  constraint matrix ,A  

where the assumption is .U Ay 0  For the isotonic domain means, 1,M D   and the nonzero elements 

of the constraint matrix are   , 1m m  A  and   , 1 1.m m A  For block orderings, where domains are 

grouped by ordered blocks, each domain in block one, for example, is assumed to have a population mean 

not larger than each domain in block two, and in block two, each population domain mean does not 

exceed any of those in block three, etc. Here the number of constraints is 
1

=1 = 1
,

B B

b bb b b
M D D 




   where 

B  is the number of blocks and bD  is the number of domains in the thb  block, 1, , .b B …  For example, 

suppose interest is in mean salaries at an institution, where the domains are four “fields”, and it is assumed 

that fields 3 and 4 have higher salaries than fields 1 and 2. In this case 2,B  1 2 2,D D   and the 

constraint matrix is  

 

1 0 1 0

1 0 0 1
.

0 1 1 0

0 1 0 1

 
 
 
 
 

 

A   

For a third example, consider domains arranged in a grid; for a context suppose the population units are 

lakes in a state, and iy  is the level of a certain pollutant in lake .i  We are interested in average levels by 

county and by distance from an industrial plant. If there are 60 counties and 5 categories of distance, there 

are 300 domains. If we know that the level of pollutant is non-increasing in the distance variable, then 

there are 60 4 240   constraints, formulated as antitonic within each county. 

We propose a test where the null hypothesis is that ,U Ay 0  versus the alternative ,U Ay 0  and UAy  

has at least one positive element. The simplest example is the null hypothesis of constant domain means, 

versus the alternative of increasing domain means. (Note that these hypotheses are different from the 

alternatives in Oliva-Aviles, Meyer and Opsomer (2019), who were deciding between monotone and non-

monotone domain means.) For the industrial plant example above, we can test the null hypothesis that, 

within each county, the domain means are constant in distance. Using the constraints for a one-sided 

alternative results in improved power over the equivalent two-sided test. 

This test has been widely studied outside of the survey context; see Bartholomew (1959); Bartholomew 

(1961); Chacko (1963); McDermott and Mudholkar (1993); Robertson, Wright and Dykstra (1988); 

Meyer (2003); Silvapulle and Sen (2005); Sen and Meyer (2017) and others. The null distribution of the 

likelihood-ratio test statistic for the one-sided test has been derived based on the normal-errors model. In 

brief, when the error terms are independently and identically distributed with known model variance, the 

null distribution of the likelihood ratio statistic is shown to be a mixture of chi-square distributions, while 

for the unknown model variance, the test statistic has the null distribution of a mixture of beta 

distributions. If the error terms are not independently and identically distributed, the results, based on 

principles of generalized least squares, still hold provided the covariance structure for the error terms is 

available. Similar results for the one-sided likelihood ratio test were obtained by Perlman (1969) where 
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the completely unknown covariance matrix was considered. Meyer and Wang (2012) formally proved that 

the one-sided test will provide higher power than the test using the unconstrained alternative. 

In this paper we extend the one-sided test to the survey context. In the Section 2, the test is derived, 

and in Section 3 some large sample theory is given. Simulations in Section 4 show that the test performs 

well compared to the test with the unconstrained alternative, with better power and a test size closer to the 

target. In Section 5 the methods are applied to the National Survey of College Graduates (NSCG), to test 

whether salaries are higher for people whose father’s education level is higher, controlling for field of 

study, highest degree attained, and year of degree. The test is available in the R package csurvey. 

 
2. Formulation of the test statistic 
 

To establish the notation, let  1, 2, ,U N …  be the finite population. A sample s U  of size n  is to 

be drawn based on a probability sampling design ,p  where  p s  is the probability of drawing the sample 

.s  The first order inclusion probability    Pri i s
i s p s


    and the second order inclusion 

probability    
,

Pr , ,ij i j s
i j s p s


    determined by the sampling design, are both assumed to be 

positive. The assumed positive i  and ij  ensure that the design-based estimator of the population 

parameter and the associated design-based variance estimator can be obtained, respectively. In terms of 

the domains of interest, let  : 1, ,dU d D …  be a partition of the population U  and dN  be the 

population size of domain ,d  where D  is the number of domains. We denote by ds  the intersection of s  

and ,dU  and let dn  be the sample size for .ds  Sample size dn  arises from a random sampling procedure 

and thus is not fixed in general. 

Let y  be the variable of interest and denote by iy  the value for the thi  unit in the population. The 

population domain means are  
1
, , ,

DU U Uy yy …
T

 and 
dUy  is given by:  

 1, , .d

d

ii U

U

d

y
y d D

N


 


…   

Two common design-based estimators of the population means are the Horvitz-Thompson (HT) 

estimator (Horvitz and Thompson, 1952) or the Hájek estimator (Hájek, 1971); because the Hájek 

estimator 
dsy  does not require information about the population domain size dN  and has other advantages 

in practice, we will focus on the Hájek estimator. The results for the Horvitz-Thompson estimator, 

however, can be derived analogously. The Hájek estimator for domain means is  
1
, , ,

Ds s sy yy  …  where 

                   
ˆ
d

d

i ii s

s

d

y
y

N







   

and ˆ 1 .
d

d ii s
N 


  

We are concerned with testing:  
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 0 1: versus : \U UH V H V y y C  (2.1) 

where  :V  y Ay 0  is the null space of A  and the alternative set is the convex cone  : y Ay 0C  

excluding the set .V  A set C  is a convex cone if for any 1  and 2  in ,C 1 1 2 2    is in C  for any 

non-negative 1  and 2 .  

We start with a brief review of the properties of the unconstrained estimator .sy  By the Taylor 

expansion, we can linearize the sy  as follows:  

      center 1ˆ
s U pO n   y y y   

where  

 
   

1

1

center

1

1 1
ˆ , , .D

D

i U i U

i s i si D i

y y y y

N N  

   
  
 
 

 y …

T

  

The properties of s Uy y  can be approximated by centerŷ  and we have that  centerˆE 0y  and the variance 

of centerŷ  is ,Σ  where the thdd  element of Σ  is:  

                         
   1

, , 1, 2, ,
d d

d d

i U j U

dd ij
i U j Ud i jd

y y y y
d d D

N N  




  

 
   Σ …   

where  cov ,ij i j ij i jI I        and iI  is the indicator variable of whether unit i  is selected by 

sampling design. By the design normal assumption (A5) in the appendix, we have 1 2 centerˆ Σ y
D

 

 , ,N 0 I  hence:  

      1 2 1 2 centerˆ 1 , .s U po N    Σ y y Σ y 0 I
D

  

We denote by Σ̂  a consistent estimator of ,Σ  in the sense that    ˆ 1 .pn o Σ Σ  For testing (2.1), we 

propose the following weighted least squares test statistic:  

         

   
0 1

0

1 1
0 0 1 1

1
0 0

ˆ ˆmin min
.

ˆmin

V s s s s

V s s

T
 

 




    


 

θ θ

θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

   

 

C

T T

T
  

Assuming the second order inclusion probability ij  to be known, the thdd  element of the design 

based consistent estimator Σ̂  has the following expression:  

                       
   1ˆ , , 1, 2, , .

ˆ ˆ
d d

d d

i s j s
ij

dd

i s j s ij i jd d

y y y y
d d D

N N   





  

    Σ
 

…  (2.2) 

See Särndal, Swensson and Wretman (1992) Chapter 5 on page 185 for more details. Particularly, under a 

fixed size design, the Sen-Yates-Grundy variance estimator, derived as an alternative form of (2.2), can 
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also be used. In addition, under many complex survey designs, the second order inclusion probability ij  

might be zero or unknown so that the design based covariance estimator Σ̂  cannot be obtained. In such 

cases, the use of consistent replication-based variance estimators (such as Jackknife estimator, bootstrap 

estimator) can be considered, since the calculation of replication variance estimator does not involve the 

second order inclusion probabilities. As long as the replication-based variance estimators are good 

approximation for ,Σ  the asymptotic properties of ˆ,T  which will be developed shortly, would hold. 

We will reject 0H  if T̂  is large. This is similar in structure to the classical test (as was presented in, 

for example, Silvapulle and Sen (2005) Chapter 3). If sy  were normal with   ˆcov ,s y Σ  then T̂  would 

be distributed as a mixture of beta random variables, under the null hypothesis. In the survey context, we 

approximate the distribution of ˆ.T  

 
3. Asymptotic distribution of the test statistic 
 

The assumptions needed to derive an approximate distribution of T̂  are listed in Appendix, and are 

similar to those in Xu et al. (2021). 

To derive the asymptotic null distribution of ˆ,T  we first show the following result.  
 

Lemma 1. The test statistic T̂  can be written as:  

               

       

   

       

   
 

0 1

0

0 1

0

1 1
0 0 1 1

1
0 0

1 1
0 0 1 1

1
0 0

ˆ ˆmin min
ˆ

ˆmin

min min
= 1 .

min

V s s s s

V s s

V s s s s

p

V s s

T

o

 
 




 
 




    


 

    


 

θ θ

θ

θ θ

θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

   

 

   

 

C

C

T T

T

T T

T

  

 

Proof. Let 1 2ˆ ˆ ,A AΣ 1 2ˆ ˆ ,s s
Z Σ y 1 2

0 0
ˆ ˆ ,θ Σ θ 1 2

1 1
ˆ ˆ ,θ Σ θ  0 0

ˆ ˆ ˆˆ : 0 V θ Aθ  and  1 1
ˆ ˆ ˆ ˆ: 0 .θ AθC =  

Then by a transformation, we have:  

 

        

   

       

   

   

   

0 1

0

0 1

0

1

0

1 1
0 0 1 1

1
0 0

ˆ ˆˆ ˆ0 0 1 1

ˆ ˆ 0 0

ˆˆ 1 1

ˆ ˆ 0 0

ˆ ˆmin min

ˆmin

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆmin min

ˆ ˆˆ ˆmin

ˆ ˆˆ ˆmin
1

ˆ ˆˆ ˆmin

V s s s s

V s s

s s s sV

s sV

s s

s sV

T
 

 




 







    


 

    


 

 
 

 

θ θ

θ

θ θ

θ

θ

θ

y θ Σ y θ y θ Σ y θ

y θ Σ y θ

Z θ Z θ Z θ Z θ

Z θ Z θ

Z θ Z θ

Z θ Z θ

   

 

C

C

C

T T

T

T T

T

T

T
.

  

Let V̂   be the linear space of vectors in DR  that are orthogonal to vectors in ˆ.V  Note that 

   
0
ˆ ˆ 0 0

ˆ ˆˆ ˆmin s sV
 

θ
Z θ Z θ

T

 is the squared length of the projection of ˆ sZ  onto V̂   and the projection of 
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ˆ
sZ  onto V̂  has the explicit expression   *

0
ˆ ˆ ˆ ˆ ˆ ˆ ,s



 θ I A AA A ZT T  where  ˆ ˆ


AAT  is the generalized 

inverse of ˆ ˆ .AAT  Hence, by the consistency of ˆ ,Σ  we have the following:  

             

       

    

 

 

   

     

0

0

* *
0 0 0 0ˆ ˆ

1
0 0

1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆmin

1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ

1 ˆ ˆ ˆ ˆˆ ˆ

1 ˆ

1

1
min 1 .

s s s s
V

s s

s s

s s

s s p

s s p
V

n n

n

n

n

n o

o
n



 











    







 

   

θ

θ

Z θ Z θ Z θ Z θ

A AA AZ A AA AZ

Z A AA AZ

y A AΣA Ay

y A A ΣA Ay

y θ Σ y θ

 

 

 

T T

T
T T T T

T T T

T T T

T T T

T

 

(3.1) 

By (3.1) and the result that          
11

1 11 1
1 1 1 1

ˆmin 1mins s s s pn n
o 

      θθ y θ Σ y θ y θ Σ y θ   CC

T T
 

by Lemma 4 in the Appendix, we get  

                   

   

   

   

   
 

1

0

1

0

11
1 1

11
0 0

11
1 1

11
0 0

ˆmin
ˆ 1

ˆmin

min
1 1

min

s sn

V s sn

s sn

p

V s sn

T

o













 
 

 

 
  

 

θ

θ

θ

θ

y θ Σ y θ

y θ Σ y θ

y θ Σ y θ

y θ Σ y θ

 

 

 

 

C

C

T

T

T

T

  

the proof is complete.  

The denominator in above expression must be bounded away from zero in probability, which is indeed 

the case because it can be shown that the      
0

1

0 0min V s sn


  θ y θ Σ y θ 
T

 has, asymptotically, 

 2 M  distribution under the null and design normal assumption. 

Next, let 1 2 1 2 1 2 1 2
0 0 1 1, , ,s s U U

      Z Σ y Z Σ y θ Σ θ θ Σ θ    and define    : 0 , : 0 ,V    θ Aθ θ Aθ      C  

where 1 2.A AΣ  Then, we have the following main result of the paper.  
 

Theorem 1. Define  

            0 1

0

2 2

0 1

2

0

min min

min

V

V

T
 



 




θ θ

θ

Z θ Z θ

Z θ

  

 

 



C
  

where  ~ , .NZ 0 I  Then under the null, T̂  converges in distribution to .T  That is,  

 ˆ .T T
D
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Proof. According to the transformation above, we can express T̂  as:  

 

 

 

0 1

0

0 1

0

0 1

0

2 2

0 1

2

0

2 2

0 1

2

0

2 2
center center

0 1
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where center ,s U Z Z Z  and recall that under 0 ,H ,U VZ   so that, in the above expression, minimizing 

over 0θ
  is equivalent to minimizing over 0 ,U Z θ  and similarly for minimizing over 1.θ  

Then, we have ˆ .T T
D

 This follows from the Lipschitz continuity of the projection of Z  onto a 

convex cone; that is, if θ̂  is the projection of Z  onto the cone ,C  then θ̂  is a continuous function of ;Z  

see Proposition 1 and its proof in Meyer and Woodroofe (2000). 

The random variable T  defined in Theorem 1 has been shown to be distributed as a mixture of beta 

random variables under 0.H  See Robertson et al. (1988) in Chapter 2 and Meyer (2003) for more details. 

Also, the mixing distribution can be found (to within a desired precision) via simulation. Specifically, if 

0M M  is the rank of the constraint matrix ,A  

  
0

0

0

Pr Pr Be , ,
2 2

M

m
m

M m m
T c c p



  
    

  
   

where the mixing probabilities 
00 , , Mp p…  are approximated through simulations, and  Be ,   

represents a Beta random variable with parameters   and ,  respectively. By convention,  Be 0, 0   

and  Be , 0 1.   

If m  is the dimension of the space spanned by the rows of A  that represent binding constraints, then 

each mp  represents the probability that m  constraints are binding, 00, , .m M …  Each row of Â  

represents a constraint, and we say that the thj  constraint is binding if the thj  element of ˆ ˆAθ  is zero. The 

quantity ,D m  where m  is the number of binding constraints, can be thought of as the observed degrees 

of freedom of the fit. For more information about this mixing distribution, see Silvapulle and Sen (2005), 

Chapter 3. The mixing probabilities are approximated as follows:   

(1) Generate Z  from a standard multivariate normal distribution  , .N 0 I  

(2) Project the generated Z  onto the convex cone  ˆ ˆ: 0 θ AθC  to obtain the J  set, where 
1 2ˆ ˆ .A AΣ  Specifically, let θ̂  be the projection of Z  onto the ˆ,C  then  ˆ ˆ: 0 ,jJ j A θ  

where ˆ jA  is the 
thj  row of ˆ .A  That is, J  indexes the set of “binding constraints”. The R 
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package coneproj (Liao and Meyer (2014)) finds θ̂  given the generated Z  and ˆ ,A  and also 

returns the set of binding constraints .J   

(3) Repeat the previous steps R  times (say 1,000).R   

(4) Estimate mp  by the proportion of times that the set J  has m  elements, 00,1, , .m M …  When 

the matrix A  has more constraints than dimensions, then, the cone projection routine in 

coneproj can always find a minimal unique J  set. (See Meyer (2013) for details.)  

 
3.1 The properties of asymptotic power of the test  
 

In this section, we prove consistency and monotonicity of the power function of this test. First, we 

show that if the alternative hypothesis is true, then the probability of rejecting the null hypothesis 

increases to one as N  and n  increase without bound.  

 

Theorem 2. Let   be the test size and c  be the corresponding critical value of the test. Then, the power 

of the test converges to 1 under the alternative. That is: 
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under the the alternative. For the numerator, we have  
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where we use the fact that  1 2
s U pO n  y y  and  1ˆ

pO n Σ  element-wise. For the denominator, we 

have:  
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Hence, we have:  
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because sy  and Σ̂  are consistent for Uy  and Σ  respectively. Therefore, under the alternative, T̂  goes to 

1 asymptotically.  

 
4. Simulation studies 
 

The simulations involve one or two dimensional grids, with several constraints and population domain 

means. We present the results in table form from three scenarios: for each, we record the proportions of 

times the null is rejected in various cases, with different sample sizes, significance levels and the variances 

for generating the study variables. In each case, we generate a population of size ,N  then we draw 10,000 

samples from the population according to a sampling design. For each sample, we compute the test 

statistic value and the estimated covariance matrix. We compare the test statistic with the critical values 

under different significance levels, where the critical values are obtained from the asymptotic null 

distribution of the test statistics. Further, we compare the power of this one-sided test with that of 

ANOVA F test using the unconstrained alternative. That is,  

 0 2: versus : .U UH H Ay 0 Ay 0   

Here, we use svyglm function in survey package to fit the ANOVA model and compute the P-values 

of the ANOVA F test by applying the anova function in survey package. 

 
4.1 Monotonicity in one variable 
 

As in Xu et al. (2021) and Oliva-Aviles et al. (2020), the limiting domain means for generating the 

study variables are given by the functions as follows:  
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for 1, 2, , ,d D …  where 12D   is the number of domains. The study variables 1, , Ny y…  are generated 

by adding independent and identically distributed  20, iN   1, 2i   errors to the d  values from above 

three functions, respectively, with 1 1   and 2 1.5.   We compare the test size and power for the test of 

constant versus increasing domain means, with the standard ANOVA test of constant versus non-constant 

domain means. Notice that under 
      0 0 0

1 , , ,D μ …
T

 the null hypothesis is true, while under 
 0 μ  

    1 1
1 , , D …

T

 and 
      2 2 2

1 , , ,D μ …
T

 the population domain means have increasing order and thus 

the alternative is true, with 
 2μ  having larger effect size. 

We draw the samples from a stratified random sampling design without replacement, with 4H   

strata that cut across the D  domains. The strata are determined using an auxiliary variable ,z  which is 

correlated with study variable .y  The values of z  are created by adding i.i.d. standard normal errors to 

 .d D  By ranking the values of ,z  we can create 4 blocks of N H  elements. Then, the stratum 

membership of the population element is determined by the corresponding ranked .z  Finally, the 

population sizes are set to be 9,600,N  19,200,N  57,600N   and 76,800N   with population 

domain size dN N D  for 1, , .d D …  The total sample sizes 200,n  400,n  1,200n   and n   1,600 

are assigned to the 4 strata with sample size (25, 50, 50, 75), (50, 100, 100, 150), (150, 300, 300, 450), 

(200, 400, 400, 600) in each stratum, respectively. 

The results in Table 4.1 show that the test size for the proposed one-sided test is closer to the target, 

while the two-sided test size is somewhat inflated even for the larger sample sizes. For the simulations 

where the alternative hypothesis is true, the one-sided test has substantially higher power. 

 
Table 4.1 

Monotonicity in one variable: the proportions of times null is rejected under various settings and power 

comparison between the constrained one-sided test (top half) and the unconstrained test (bottom half) 
 

 
  n 

 0.1  0.05  0.01 
(0)  (1)  (2)  (0)  (1)  (2)  (0)  (1)  (2)  

One-
sided test 

  1 n = 200 0.0996 0.4689 0.6686 0.0533 0.3218 0.5055 0.0134 0.1194 0.2230 
n = 400 0.0840 0.6352 0.8529 0.0403 0.4780 0.7268 0.0085 0.2028 0.4054 

n = 1,200 0.1039 0.9657 0.9986 0.0537 0.9027 0.9941 0.0121 0.6444 0.9133 
n = 1,600 0.0981 0.9867 0.9999 0.0489 0.9550 0.9988 0.0110 0.7533 0.9654 

  1.5 n = 200 0.0994 0.3128 0.4370 0.0528 0.2008 0.2938 0.0133 0.0625 0.1056 
n = 400 0.0839 0.4101 0.5946 0.0402 0.2740 0.4338 0.0084 0.0873 0.1770 

n = 1,200 0.1037 0.7838 0.9461 0.0532 0.6327 0.8679 0.0120 0.3142 0.5773 
n = 1,600 0.0980 0.8544 0.9751 0.0488 0.7253 0.9334 0.0109 0.3900 0.6928 

ANOVA 
F test 

  1 n = 200 0.1412 0.2677 0.4017 0.0746 0.1627 0.2685 0.0147 0.0457 0.0973 
n = 400 0.1280 0.3618 0.6034 0.0658 0.2385 0.4627 0.0147 0.0835 0.2259 

n = 1,200 0.1123 0.8139 0.9854 0.0590 0.7121 0.9694 0.0117 0.4736 0.8943 
n = 1,600 0.1111 0.9253 0.9986 0.0576 0.8633 0.9964 0.0126 0.6868 0.9814 

  1.5 n = 200 0.1412 0.1909 0.2502 0.0746 0.1087 0.1495 0.0147 0.0261 0.0408 
n = 400 0.1280 0.2195 0.3278 0.0658 0.1296 0.2094 0.0147 0.0313 0.0661 

n = 1,200 0.1123 0.4670 0.7538 0.0590 0.3320 0.6361 0.0117 0.1397 0.3902 
n = 1,600 0.1111 0.5947 0.8795 0.0576 0.4602 0.8014 0.0126 0.2367 0.5932 
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4.2 Block monotonic in one variable 
 

In “block monotonic” ordering case, we assume the population means are ordered among blocks, but 

there is no ordering imposed within the blocks. Specifically, we organize the limiting domain means in 

four blocks of three domains as following:  

   
   0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05μ   

 
   1 0.06 0 0.06 0.12 0.06 0.18 0.18 0.24 0.30 0.30 0.36 0.30 μ   

 
   2 0.08 0 0.08 0.16 0.08 0.24 0.24 0.32 0.40 0.40 0.48 0.40 μ   

where the blocks are separated by the vertical lines. Hence, under the alternative, we expect the population 

mean for each of the domains in block b  would be at least as large as those in block 1,b   for 2, 3, 4.b   

The effect size of 
 2
Uy  generated from 

 2μ  would be larger than that of 
 1
Uy  from 

 1 .μ  We use the same 

stratified simple random sampling design as in the previous example. 

The results in Table 4.2 show again that one-sided test has substantially higher power for simulations 

where the alternative is true, and for simulations under the null hypothesis, the test size is approximately 

correct for the one-sided test and the two-sided ANOVA test has inflated test size.   

 
Table 4.2 

Block monotonicity in one variable: the proportions of times null is rejected under various settings and power 

comparison between the constrained one-sided test (top half) and the unconstrained test (bottom half) 
 

   n 
1  0.1 2  0.05 3  0.01 

(0)  (1)  (2)  (0)  (1)  (2)  (0)  (1)  (2)  

One-
sided test 

  1 n = 200 0.1013 0.5114 0.6795 0.0568 0.3590 0.5216 0.0119 0.1397 0.2391 
n = 400 0.1036 0.7368 0.8856 0.0534 0.5838 0.7878 0.0109 0.2840 0.4722 

n = 1,200 0.0964 0.9718 0.9978 0.0487 0.9224 0.9880 0.0089 0.6671 0.8801 
n = 1,600 0.0976 0.9877 0.9998 0.0492 0.9635 0.9958 0.0098 0.7668 0.9339 

  1.5 n = 200 0.1014 0.3421 0.4535 0.0567 0.2191 0.3124 0.0117 0.0731 0.1144 
n = 400 0.1031 0.4992 0.6616 0.0534 0.3544 0.5028 0.0109 0.1335 0.2235 

n = 1,200 0.0965 0.8187 0.9422 0.0485 0.6794 0.8672 0.0091 0.3474 0.5661 
n = 1,600 0.0974 0.8830 0.9743 0.0497 0.7652 0.9232 0.0099 0.4367 0.6746 

ANOVA 
F test 

  1 n = 200 0.1412 0.2941 0.4368 0.0746 0.1847 0.2951 0.0147 0.0551 0.1155 
n = 400 0.1280 0.4220 0.6556 0.0658 0.2912 0.5231 0.0147 0.1123 0.2712 

n = 1,200 0.1123 0.8940 0.9921 0.0590 0.8177 0.9840 0.0117 0.6099 0.9363 
n = 1,600 0.1111 0.9678 0.9995 0.0576 0.9293 0.9986 0.0126 0.8094 0.9911 

  1.5 n = 200 0.1412 0.2052 0.2611 0.0746 0.1173 0.1583 0.0147 0.0281 0.0431 
n = 400 0.1280 0.2445 0.3543 0.0658 0.1457 0.2333 0.0147 0.0389 0.0787 

n = 1,200 0.1123 0.5399 0.8012 0.0590 0.4099 0.6932 0.0117 0.1926 0.4549 
n = 1,600 0.1111 0.6799 0.9091 0.0576 0.5539 0.8468 0.0126 0.3153 0.6589 

 
4.3 Monotonicity in two variables 
 

Here we take into consideration a grid of domains, which represent two variables. The null hypothesis 

is that the population domain means are constant in one of the variables, and the alternative is that the 
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population means are increasing in that variable, while the domain means unconstrained in the other 

variable. In other words, we test for monotonicity in one variable while “controlling for” the effects of the 

other. In particular, we set the limiting domain means as follows:  

 
 0

0.01 0.01 0.01 0.01 0.01

0.02 0.02 0.02 0.02 0.02
,

0.03 0.03 0.03 0.03 0.03

0.04 0.04 0.04 0.04 0.04

 
 
 
 
 
 

μ   

while  

 
   1 2

0 0.04 0.16 0.24 0.28 0 0.05 0.20 0.30 0.35

0.04 0.08 0.20 0.32 0.40 0.05 0.10 0.25 0.40 0.50
, and .

0.04 0.12 0.12 0.20 0.28 0.05 0.15 0.15 0.25 0.35

0.04 0.04 0.12 0.24 0.28 0.05 0.05 0.15 0.30 0.35

   
   
    
   
   
   

μ μ   

The sampling mechanism and the way we generate the study variable y  are the same as that in one 

dimensional case. However, because there are more domains in this case, we set the sample size to be 

400,n  800,n  1,200n   and 2,000,n   respectively, corresponding to the population size 8,000,N   

16,000,N  24,000N   and 40,000,N   where the sample sizes are divided among the strata as 

 50,100,100,150 ,  100, 200, 200, 300 ,  150, 300, 300, 450  and  250, 500, 500, 750 ,  respectively. The 

simulation results in Table 4.3 demonstrate similar properties as those in the previous scenarios: the tests 

have higher power as sample size gets larger and the effect size of the population domain means is larger. 

 
Table 4.3 

Monotonicity in two variables: the proportions of times null is rejected under various settings and power 

comparison between the constrained one-sided test (top half) and the unconstrained test (bottom half) 
 

 
  n 

1  0.1 2  0.05 3  0.01 

(0)  (1)  (2)  (0)  (1)  (2)  (0)  (1)  (2)  

One-sided 
test 

  1 n = 400 0.1770 0.7738 0.8755 0.1000 0.6415 0.7757 0.0255 0.3460 0.4907 
n = 800 0.1203 0.8732 0.9576 0.0590 0.7677 0.8975 0.0129 0.4706 0.6598 

n = 1,200 0.1097 0.9571 0.9921 0.0562 0.8972 0.9762 0.0102 0.6556 0.8523 
n = 2,000 0.1093 0.9929 0.9994 0.0558 0.9794 0.9975 0.0103 0.8661 0.9700 

  1.5 n = 400 0.1778 0.5837 0.6840 0.1006 0.4301 0.5382 0.0255 0.1844 0.2586 
n = 800 0.1210 0.6512 0.7783 0.0594 0.4967 0.6399 0.0133 0.2257 0.3421 

n = 1,200 0.1098 0.7701 0.8908 0.0565 0.6247 0.7881 0.0100 0.3235 0.4909 
n = 2,000 0.1089 0.9019 0.9725 0.0560 0.8040 0.9292 0.0103 0.5150 0.7236 

ANOVA 
F test 

  1 n = 400 0.1584 0.4337 0.5642 0.0828 0.3005 0.4255 0.0184 0.1075 0.1886 
n = 800 0.1338 0.5817 0.7748 0.0703 0.4407 0.6600 0.0154 0.2165 0.4058 

n = 1,200 0.1273 0.7028 0.8922 0.0662 0.5773 0.8149 0.0140 0.3224 0.6055 
n = 2,000 0.1289 0.9174 0.9912 0.0697 0.8577 0.9789 0.0149 0.6664 0.9198 

  1.5 n = 400 0.1584 0.2899 0.3578 0.0828 0.1759 0.2285 0.0184 0.0510 0.0732 
n = 800 0.1338 0.3283 0.4443 0.0703 0.2138 0.3133 0.0154 0.0717 0.1274 

n = 1,200 0.1273 0.3803 0.5358 0.0662 0.2606 0.4009 0.0140 0.1014 0.1883 
n = 2,000 0.1289 0.5759 0.7811 0.0697 0.4434 0.6683 0.0149 0.2148 0.4215 
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5. Application to NSCG 2019 data 
 

To demonstrate the utility of the proposed one-sided test procedure in real survey data, we consider the 

2019 National Survey of College Graduates, which is conducted by the U.S. Census Bureau. NSCG is a 

repeated cross-sectional biennial complex survey that provides data on the characteristics of the nation’s 

college graduates, with a focus on those in the science and engineering workforce. In all survey cycles, 

NSCG used a stratified sampling design to select its sample from the eligible sampling frame, which is the 

American Community Survey (ACS). Specifically, sample cases were selected from the returning sample 

members in 2013 NSCG (originally selected from the 2011 ACS), 2015 NSCG (originally selected from 

the 2013 ACS), 2017 NSCG (originally selected from the 2015 ACS) and the 2017 ACS. Within the 

sampling strata, probability proportional to size (PPS) or systematic random sampling techniques was 

used to select the NSCG sample. Due to its various complexities, NSCG implemented replication based 

approach to variance estimation. The variance-covariance matrix is computed by using the 2019 NSCG 

replicate weights, which are based on Successive Difference and Jackknife replication methods. The 

number of replicate weights is 320, which is a decent number to provide a stable variance estimate. Both 

the replicate weights and replicate adjustment factors were calculated by NSCG and are available upon 

request. The public use files and relevant documentation are available to the public on the NCSES website 

(https://www.nsf.gov/statistics/srvygrads/). 

The annual salary is the study variable (denoted by SALARY in the dataset), restricted to observations 

with an annual salary between $30,000 and $900,000. As the annual salary variable distribution is skewed, 

a log transformation is implemented. Four variables are considered:   

• Field (denoted by NDGMEMG in the dataset): This nominal variable defines the field of study 

for the highest degree. There are six levels: (1) Computer and mathematical sciences; (2) 

Biological, agricultural and environmental life sciences; (3) Physical and related sciences; (4) 

Social and related sciences; (5) Engineering; (6) Other.  

• Father’s education level (denoted by EDDAD in the dataset): This ordinal variable denotes the 

highest level of education completed by the respondents’ father (or male guardian). The six 

levels are: (1) Less than high school completed; (2) High school diploma or equivalent; (3) 

Some college, vocational, or trade school (including 2-year degrees); (4) Bachelors degree (e.g., 

BS, BA, AB); (5) Masters degree (e.g., MS, MA, MBA); (6) Professional degree (e.g., JD, 

LLB, MD, DDS, etc.) and Doctorate (e.g., PhD, DSc, EdD, etc.).  

• Academic year of award for the highest degree (denoted by HDACYR). 

• Highest degree type (denoted by DGRDG): The four levels are: (1) Bachelor’s; (2) Master’s; 

(3) Doctorate; (4) Professional.  

 

Suppose interest is in the question: for wage-earners whose highest degree is a bachelor’s, does the 

father’s education level influence the salary, when controlling for field of study and time since degree? To 

answer this, we perform separate tests for cohorts in years that the degree was attained, as in Table 5.1. 
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Within each cohort, there are 36 domains, with six levels each of field and father’s education level. The 

sample sizes for the five cohorts in Table 5.1 are 2,021; 4,032; 5,259; 2,969 and 1,813, respectively. So, 

the domain sample sizes are generally not small within each cohort. We test the null hypothesis that the 

salary is constant over father’s education level, within each field, against the alternative that the salary is 

increasing in father’s education level. We compare the p -values for this test with constrained alternative 

to the ANOVA test with unconstrained alternative. The svyglm function in survey package is used for 

the unconstrained alternative, and the F test by applying the anova function in survey package gives 

the p -value. The results of the tests for five recent cohorts are in Table 5.1. 

 
Table 5.1 

p-values for the null hypothesis that salary is constant in father’s education level, controlling for field of 

study 
 

year 2006-2007 2008-2010 2011-2013 2014-2015 2016-2017 
one-sided test 0.01951 0.00248 0.00029 0.00622 0.00052 

ANOVA F test 0.15198 0.10045 0.01357 0.22231 0.06551 

 
For each cohort, the p -value for the one-sided test is below 0.05, indicating that salaries increase 

significantly with father’s education level, consistently across years. In contrast, the p -value for the two-

sided test is consistently larger, and does not indicate a significant trend for some of the cohorts, and for 

other years the test results could be considered “borderline”. Using the a priori knowledge that if father 

education level affects salary, it must be a positive effect, helps increase the power to see the trend. 

 
6. Discussion 
 

In this paper, we developed a testing procedure for testing the linear inequality restrictions of the 

population domain means within the survey context. Under the design normal assumption of the survey 

domain means, the proposed test statistic T̂  has the asymptotic mixture beta densities, where the mixing 

probabilities (or the weights) can be easily computed via simulations. The covariance estimator Σ̂  and the 

unconstrained estimator sy  are obtained from the survey package in R and the constrained least square 

projection obtained by using the coneA function in coneproj package. We showed that the power of 

the test tends to one as the sample size increases, when the alternative hypothesis is true. Simulations 

show that the test behaves well, with both increased power and improved test size. 

The proposed test procedure can be applied to all kinds of complex sampling designs, including 

stratified sampling, multistage sampling and so on. In practice, though the total sample size n  is large, 

,dn  the number of randomly selected sample in domain ,d  may be small, or even zero. In such a case, the 

degrees of freedom (DF) on the estimate of the covariance matrix is small. The degrees of freedom 

associated with variance estimators was suggested to be (the number of sampled Primary Sampling Units 

(PSU) with sampled observations in domain )d  minus (the number of strata with sampled observations in 
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domain ),d  see Graubard and Korn (1996) for more details. Thus, neither the design based variance 

estimator nor the replication based variance estimator can provide accurate covariance estimate, which 

may undermine the effectiveness of the proposed test. To address the issue of dn  being small or zero, one 

might need to apply appropriate imputation methods to create proxy responses for domain d  (Haziza and 

Vallée (2020) considered the use of imputed data in variance estimation). The proposed procedure is 

expected to work properly as long as the estimated covariance matrix Σ̂  accounts for the complex design 

and the sample size for each domain is not too small. Taking the stratified design as an example, even if 

the sample size is zero for domain d  within certain strata, the test procedure is still applicable provided a 

decent number of samples for domain d  were selected from other strata and the covariance estimate Σ̂  

properly took into account the specific stratified sampling design being considered. In addition, the 

simulations gave a partial guide for minimum sample sizes needed for the proposed test under stratified 

simple random sampling design. For more complex sampling design, the effective sample size, defined as 

the original sample size divided by their design effect, can be considered. Also, it is important to check the 

weights for units with very low selection probabilities, because extremely small ’si  or ’sij  will result 

in rather unstable covariance estimate and thus make the proposed test invalid. 

Another related issue is that the covariance matrix estimate Σ̂  may not be positive definite or even 

positive semidefinite in finite samples. This problem is not uncommon in survey practice, see Théberge 

(2022), Haslett (2019), Haslett (2016) for more information. This practical issue will have an impact on 

the inverses of covariance matrix estimates and thus affect the stability of the proposed test procedure. 

Hence, we suggest survey practitioners check if covariance estimate is positive definite before applying 

the proposed test in real application. 

The implementation of the test in the csurvey package borrows from the survey package. For 

example, suppose we have a grid of domains in two variables x1 and x2 and study variable y. The survey 

design is specified with the svydesign command in the survey package, and the design object ds is 

used in the implementation of the test. The p -value for the test of constant versus increasing domain 

means along the x1 variable, without constraining the domain means in the x2 variable, is obtained as 

follows.  
 

ansc=csvy(y~incr(x1)*x2, data=data_set_name, design=ds, nD=M, test=TRUE) 
ansc$pval  
 

The csurvey package also provides the cone information criteron (CIC) for the fitted model, with 

and without constraints. The CIC was proposed by Oliva-Aviles, Meyer and Opsomer (2019), for 

checking monotonicity assumptions in the estimation of order-restricted survey domain means, but is valid 

for any type of constraints. The command ansc$CIC, using the above csurvey object, returns the CIC 

for the data fitted with the constraints. The command ansc$CIC.un returns the CIC for the data fitted 

with no constraints. If the CIC is smaller for the constrained fit, this is evidence that the constraints hold. 

On the other hand, if the unconstrained CIC is larger, this indicates that the assumptions may be incorrect. 

For more information and examples, see the csurvey manual. 
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Appendix 
 

A. Assumptions 
 

(A1) The number of domains D  is a known fixed integer and lim inf 0,dN

N N   

lim sup 1dN

N N   for 1, 2, , .d D …  

(A2) The boundedness property of the finite population fourth moment holds. That is, we have:  

 1 4lim sup .i
N i U

N y

 

    

(A3) The sample size n  is non-random and for a sequence of finite populations NU  with 

corresponding sequence of samples of size n  (for simplicity in notation, we omit the 

subscript N  from ),Nn  we have ,n N   as ,N   where 0 1.   There exists a 

constant vector Dμ R  called the “limiting domain means” so that ,
dU dy   for 

1, , .d D …  In addition, there exists a  0,1   such that, ,min d

d

n
d N

  as ,N   for 

1, , .d D …  

(A4) For all ,N 1 0min i U i     and , 2 0,min i j U ij     and  

 
, ,

lim sup max ij
i j U i jN

n
 

     

where  cov ,ij i j ij i jI I        and iI  is the sample membership indicator for subject .i   

(A5) For any vector Dx R  with finite fourth population moment, we have:  

      
1 2

ˆ ˆvar 0,s s U D DN


 x x x I
D

  

where ˆ sx  is the HT estimator of  
1

1 1
1 , , ,

D
U i D ii U i U

N x N x 

 
  x …

T

D DI  is the identity 

matrix of dimension ,D  the design covariance matrix  ˆvar sx  is positive definite.  

 

The assumption (A1) states that the number of domains remains constant as the population size N  

changes and ensures that there is no asymptotically vanishing domains. Assumption (A2) is a condition 

needed for showing the variance consistency of the Horvitz-Thompson estimator and this condition 

generally can be satisfied for most survey data. 

In (A3), the assumption of n N   asymptotically ensures that the sample and the population size 

are of the same order. In addition, by assuming ,min d

d

n
d N

  as ,N   we guarantee that there is no 

vanishing sampling fraction for each domain d  asymptotically, which is a mild condition in the 
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design-based context. Further, the non-random sample size assumption can be relaxed to accommodate a 

random sample size by imposing particular conditions on the expected sample size  E .p n  

Assumption (A4) illustrates that the design is both a probability sampling design and a measurable 

design. The assumption on the ij  states that the covariance between sample membership indicators is 

sufficiently small, which goes to zero at rate of 1.n   These conditions hold in many classical sampling 

designs, including simple random sampling with and without replacement, and many other unequal 

probability sampling designs. 

The asymptotic normal assumption in (A5) is usually assumed explicitly and it is satisfied for many 

specific sampling designs, including simple random sampling with or without replacement. Also, it holds 

for Poisson sampling and unequal probability sampling with replacement. The design asymptotic normal 

assumption, taken together with the variance consistency of the Horvitz-Thompson estimator, can be used 

to derive the asymptotic distribution of the constrained domain mean estimator. More importantly, it is 

this normal assumption that makes it possible for us to take advantage of the available techniques in the 

one-sided test literatures and obtain the null distribution of the test statistics approximately. Otherwise, we 

have to resort to the bootstrap method to get the empirical distribution of the test statistics when the 

properties of the design estimator are completely unknown. 

It is useful to note that all the results developed in this paper remains design-based. Only the design 

variability is accounted for by the asymptotic variance in the main results. While the design normal 

assumption can be viewed as “model-like” assumption, it does not imply a random structure for the 

population and the inference does not involve any type of model variability. The distributional properties 

derived in the main text follow from the design and sample size assumptions (A3)-(A5). 

 
B. Supplemental materials for Section 3 
 

In this section, we will show the following result  

          
1 1

1 1
1 1 1 1

1 1ˆmin min = 1s s s s po
n n

 

 
    

θ θ
y θ Σ y θ y θ Σ y θ   

C C

T T
  

to complete the proof for Lemma 1. Based on the result from (2.1) in Xu et al. (2021), for the term 

       
1 1

1
ˆˆ1 1 1 1

ˆ ˆˆ ˆ ˆ ,min mins s s s


     θ θy θ Σ y θ Z θ Z θ C C

TT
 the projection of ˆ sZ  onto the cone Ĉ  can 

be expressed as:  

     *
1
ˆ ˆ ˆ ˆ ˆ ˆ

J J J J s J
J

s


 θ I A A A A Z IT T  (B.1) 

where the sum is over  1, ,J M …  such that the rows of ˆ JA  form a linearly independent set and for 

each sample ,s  there is only one subset J  for which   1.J s I  Using the above explicit form of 
*
1
ˆ ,θ  we 

prove the following results. 
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Lemma 2. Let μ  be the limiting domain means. Let J  be the set that is associated with *
1θ̂  in (B.1) and 

0Jμ  be the corresponding set for the solution *
μθ  that minimizes    1 1 μ μZ θ Z θ

T
 subject to 

 1 : 0 ,  μ μθ θ A θC  where 1 2 ,μ μZ Σ μ ,μC μΣ  are limiting versions of ˆ ,sZ ˆ,C Σ̂  and 1 2 .μ μA AΣ  

Define  1 : 0jJ j μ A μ  and let 0 1 ,J J J μ μ μ  Then, we have:  

        0Pr 1 Pr 1 .J J o and J J o μ μ    
 

Proof. Firstly, consider the event .J Jμ  Define  

                                

      

     

 

 

* * *
1 1 1
ˆ ˆ ˆˆ ˆSSE

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ

ˆ

s s

s J J J J s s J J J J s

s J J J J s

s J J J J s

 





  

   
          





θ Z θ Z θ

Z I A A A A Z Z I A A A A Z

Z A A A A Z

y A A ΣA A y 

T

T

T T T T

T T T

T T T

  

similarly, we define:  

             0 0 0 0

* * *SSE = .
J J J J



  
μ μ μ μ

μ μ μ μ μ μθ Z θ Z θ μ A A Σ A A μ
T T T T   

Note that the projection of μZ  onto the linear space spanned by rows of μA  in position 0Jμ  is the same as 

the projection onto the linear space spanned by rows of μA  in position ,Jμ  so we have:  

                 0 0 0 0

*SSE .J J J JJ J J J



 
μ μ μ μμ μ μ μ

μ μ μθ μ A A Σ A A μ μ A A Σ A A μT T T T T T   

Further, denote:  

             1, 1, 1,
ˆ ˆ ˆˆ ˆ ˆSSE J s J s J s J J J J s



   
μ μ μ μ μ μ μ

θ Z θ Z θ y A A ΣA A y 
T

T T T   

        , , ,SSE J J J J J J J



   μ μ μ μ μ μθ Z θ Z θ μ A A Σ A A μ
T T T T

  

where   1,
ˆ ˆ ˆ ˆ ˆ ˆ

J J J J J s



 
μ μ μ μ μ

θ I A A A A ZT T  and   , , , , , .J J J J J



 μ μ μ μ μ μθ I A A A A ZT T  Then, we must have  

          * *
, 1 1,

ˆ ˆSSE SSE and SSE SSEJ J 
μμ μθ θ θ θ   

and due to the consistency of sy  and ˆ ,Σ  respectively, we also have:  

                * *
1 , 1,

1 1ˆ ˆSSE SSE 1 and SSE SSE 1 .J p J po o
n n

   
μμ μθ θ θ θ   

Finally, by Markov’s inequality, we get:  



Survey Methodology, June 2023 135 

 

 
Statistics Canada, Catalogue No. 12-001-X 

                     

                
          

   

             
    

* * *
1, 1 , ,

* *
1, 1 ,

*
,

* *1 1
1, 1 ,

*1
,

ˆ ˆPr Pr SSE SSE SSE SSE SSE SSE

ˆ ˆSSE SSE SSE SSE

SSE SSE

ˆ ˆSSE SSE SSE SSE

SSE SSE

0

J J J

J J

J

J Jn n

Jn

J J

E

E E

     

  




  






μ

μ

μ

μ μ μ μ μ

μ μ

μ μ

μ μ

μ μ

θ θ θ θ θ θ

θ θ θ θ

θ θ

θ θ θ θ

θ θ



  

since         *1
1,
ˆSSE SSE 1Jn

E o 
μ μθ θ  and         *1

1 ,
ˆSSE SSE 1 .Jn

E o μθ θ  Using the similar 

argument, we can also show that:  

    0Pr 1J J oμ    

this completes the proof.  

By the same argument as in Lemma 2, we also have the following result.  

 

Lemma 3. Let JΣ  (unknown) be the corresponding set of the solution *
1θ
  that minimizes 

   1 1s s Z θ Z θ T

 subject to 1 .θ C  Then, we have:  

        0Pr 1 Pr 1 ,J J o and J J o Σ μ μ Σ    

where Jμ  and 0Jμ  are defined in Lemma 2.   

 

Lemma 4. We have:  

          
1 1

1 1
1 1 1 1

1 1ˆmin min 1s s s s po
n n

 

 
     

θ θ
y θ Σ y θ y θ Σ y θ   

C C

T T
  

with respect to the sampling mechanism.   

 

Proof. Let J  be the observed set for a given sample .s  We can write the difference as follows:  

                

       

   

   

      

1 1

0 0

1 1
1 1 1 1

or

1 1ˆmin min

1 1ˆ ˆ ˆ ˆˆ ˆ=

ˆ

ˆ

s s s s

s J J J J s s J J J J s

s J J J J s s J J J J s

s J J J J s J J J J J J J

n n

n n

n n

n I I

 

 

 

 



 

    



 

 



Σ Σ Σ Σ

Σ Σ Σ Σ

μ μ μ μ

θ θ
y θ Σ y θ y θ Σ y θ

Z A A A A Z Z A A A A Z

y A A ΣA A y y A A ΣA A y

y A A ΣA A y

y

   

    

   

 



C C

 

T T

T T T T T T

T T T T T T

T T T

    00 ( or )s J J J J s J J J JJ J J
n I I



 

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 
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by Lemma 2 and Lemma 3, we have that 
 

 
0or

1pJ J J J
I o

μ μ 
 and 

 
 

0or
1 .pJ J J J

I o
Σ μ μ Σ 

 Then, we 

have:  

                      

       

       
 

       
 
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0 0
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0 0
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where we use the fact that for any set J  with 0 ,J J J μ μ  we have that  
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