
Survey Methodology

Catalogue no. 12-001-X 
ISSN 1492-0921

by Takis Merkouris

Optimal linear estimation in two-phase 
sampling

Release date: December 15, 2022



Published by authority of the Minister responsible for Statistics Canada

© His Majesty the King in Right of Canada as represented by the Minister of Industry, 2022

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
Email at infostats@statcan.gc.ca 
 
Telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following numbers: 

 • Statistical Information Service 1-800-263-1136
 • National telecommunications device for the hearing impaired 1-800-363-7629
 • Fax line 1-514-283-9350

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada 
has developed standards of service that its employees observe.  
To obtain a copy of these service standards, please contact  
Statistics Canada toll-free at 1-800-263-1136. The service   
standards are also published on www.statcan.gc.ca under 
“Contact us” > “Standards of service to the public.”

Note of appreciation
Canada owes the success of its statistical system to a 
long-standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information 
could not be produced without their continued co-operation  
and goodwill.

https://www.statcan.gc.ca/eng/reference/licence
https://www150.statcan.gc.ca/n1/pub/12-001-x/2022002/article/00011-eng.htm
https://www.statcan.gc.ca
mailto:infostats%40statcan.gc.ca%20?subject=
https://www.statcan.gc.ca
https://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, December 2022 439 
Vol. 48, No. 2, pp. 439-461 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Takis Merkouris, Department of Statistics, Athens University of Economics and Business, 2 Trias Street, Athens 11362, Greece. E-mail: 

merkouris@aueb.gr. 

 

Optimal linear estimation in two-phase sampling 

Takis Merkouris1 

Abstract 

Two-phase sampling is a cost effective sampling design employed extensively in surveys. In this paper a 

method of most efficient linear estimation of totals in two-phase sampling is proposed, which exploits 

optimally auxiliary survey information. First, a best linear unbiased estimator (BLUE) of any total is formally 

derived in analytic form, and shown to be also a calibration estimator. Then, a proper reformulation of such a 

BLUE and estimation of its unknown coefficients leads to the construction of an “optimal” regression 

estimator, which can also be obtained through a suitable calibration procedure. A distinctive feature of such 

calibration is the alignment of estimates from the two phases in an one-step procedure involving the combined 

first-and-second phase samples. Optimal estimation is feasible for certain two-phase designs that are used 

often in large scale surveys. For general two-phase designs, an alternative calibration procedure gives a 

generalized regression estimator as an approximate optimal estimator. The proposed general approach to 

optimal estimation leads to the most effective use of the available auxiliary information in any two-phase 

survey. The advantages of this approach over existing methods of estimation in two-phase sampling are 

shown both theoretically and through a simulation study. 
 

Key Words: Auxiliary information; Best linear unbiased estimation; Calibration; Generalized regression estimation; 

Double sampling. 

 

 

1. Introduction 
 

The two-phase sampling design, also called double sampling, has traditionally been used in sample 

surveys as a cost-effective survey method. In the first phase, a relatively large sample is drawn from the 

target population to provide auxiliary information that is inexpensive to collect. This sample forms a 

highly informative frame from which a subsample is drawn in the second phase to collect information on 

the items of interest. Also, two-phase sampling has been increasingly used as a mechanism for handling 

nonresponse. Särndal, Swensson and Wretman (1992) provide an extensive account of such uses of two-

phase sampling. Groves and Heeringa (2006), and Brick and Tourangeau (2017) discuss the important role 

of two-phase sampling in responsive designs when costly actions are taken for reduction of non-response 

bias. Other applications of two-phase sampling, which have emerged in recent survey practice, involve 

various forms of integration of separate surveys. In one such case, a first-phase sample serves as a frame 

for the second-phase sample for a multitude of similar surveys (Turmelle and Beaucage, 2013). In another 

case, a primary large survey is used as a frame for another smaller survey with a larger set of survey items 

(Australian Bureau of Statistics, 2004). 

Auxiliary information in two-phase sampling may be available at different levels. Some information is 

at the level of the whole population, and other information is at the level of the first-phase sample or the 

second-phase sample. Much research has been devoted to the use of such information for improved 

estimation of population totals or means; see Särndal et al. (1992), Hidiroglou and Särndal (1998), 

Hidiroglou (2001), Estevao and Särndal (2002, 2009), Wu and Luan (2003), Chen and Kim (2014), and 
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references therein. In general, two approaches are identified in this literature for incorporating auxiliary 

information into the estimation process. The generalized regression approach and the calibration approach; 

the two phases of sampling imply two regression fits or two successive calibrations. Under certain 

conditions the two approaches lead to identical estimators, but this is not so in general. Variance 

estimation of these two-phase estimators has been studied extensively; see, for example, Sitter (1997), 

Fuller (1998), Kim and Sitter (2003), Kim, Navarro and Fuller (2006), Hidiroglou, Rao and Haziza 

(2008), Kim and Yu (2011), Beaumont, Beliveau and Haziza (2015). 

Irrespective of the regression or calibration formulation of the existing estimation procedures, the 

resulting estimators for a target variable are in effect linear combinations of Horvitz-Thompson estimators 

of various totals (or means), including the estimator for the target variable derived from the second-phase 

sample and estimators for auxiliary variables derived from both first-phase and second-phase sample. 

Taking a formal approach to optimal estimation, in this paper we consider the most efficient linear 

combination of available estimators from both phases, based on the principle of best linear unbiased 

estimation. We show that the derived, in analytic form, best linear unbiased estimator (BLUE) possesses a 

useful orthogonality property and that it can be alternatively constructed as calibration estimator, linear in 

the values of the associated variable and incorporating the auxiliary information into the calibrated design 

weigs. Estimation of the unknown coefficients of this BLUE, using all available auxiliary information 

from both phases of sampling, gives an “optimal” estimator, analogous to the single-phase optimal 

regression estimator of Montanari (1987) and Rao (1994). This estimator is a large-sample approximation 

of the BLUE, with the estimated coefficients minimizing its estimated approximate (large sample) 

variance, and preserving the orthogonality property of the BLUE. With a proper reformulation of the 

BLUE, the optimal estimator can also be obtained through a suitable calibration procedure. The distinctive 

feature of such calibration is the convenient one-step procedure of aligning estimates from the two phases 

using the combined first-and-second phase samples. Optimal estimation is feasible for certain two-phase 

designs that are used often in large scale surveys. For general designs, an alternative one-step calibration 

procedure gives a novel generalized regression estimator as a convenient approximation to the optimal 

estimator. 

The proposed general method of estimation guides the construction of calibration estimators in any 

particular case of two-phase survey, making the most effective use of the available auxiliary information. 

It also provides an insig into existing less efficient estimation methods when these are placed into the 

framework of optimal estimation. The advantages of the proposed method over existing methods are 

shown both theoretically and through a simulation study. 

The paper is organized as follows. The structure of the two-phase sampling design, and notation, are 

introduced in Section 2. The derivation of the BLUE for the standard type of auxiliary information in two-

phase sampling, and its alternative construction as a calibration estimator, are described in Section 3. The 

two-phase optimal estimator and its calibration equivalent are presented in Section 4. The approximation 

of the optimal estimator by a generalized regression estimator is discussed in Section 5. Comparisons with 
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existing methods are presented in Section 6. A simulation study is presented in Section 7. The paper 

concludes with a discussion in Section 8.  

 
2. Two-phase sampling design: Structure and notation 
 

Let  1, , , ,U k N=  denote a finite population of N  units. A first-phase sample 
1s  of size 

1n  is 

drawn from the population ,U  using a sampling design that defines inclusion probability 
1 1( )k P k s =   

for unit ,k U  and joint inclusion probability 
1 1( , )kl P k l s =   for units , .k l U  Then, a second-phase 

sample 
2s  of size 

2n  is drawn from 
1s  using a sampling design that defines conditional inclusion 

probability 2 2 1( )k P k s s =   for 
1,k s  and joint conditional inclusion probability 2 2 1( , )kl P k l s s =   

for units 
1, .k l s  Assuming that 

1 0k   for all k U  and 
2 0k   for all 

1,k s  the first-phase design 

weig for 
1k s  is 

1 11 ,k kw =  the conditional second-phase design weig for 
2k s  is 

2 21 ,k kw =  and 

the overall design weig for 
2k s  is 

1 2 .k k kw w w=  

The standard type of auxiliary variables in two-phase sampling (see, for example, Särndal et al. (1992)) 

involves a vector of auxiliary variables ,x  partitioned as 
1 2( , )  =x x x  by p  and q  components of it, with 

population total kU
=xt x  and known total 

1 1kU
=xt x  of 

1.x  The value 
kx  is observed for every unit 

1,k s  whereas for a d -dimensional vector of target variables ,y  with total ,kU
=yt y  the value 

ky  is 

observed only for the units 
2.k s  In some surveys, components of the vector 

2x  are also target variables. 

An unbiased estimator of the total ,yt  the common Horvitz-Thompson (HT) estimator, given by 

2

,k ks
w=yt y  is obtained using the second-phase sample 

2 ,s  while two HT estimators of the total ,xt  

given by 
1

1
ˆ

k ks
w=xt x  and 

2

,k ks
w=xt x  are obtained using the samples 

1s  and 
2 ,s  respectively. In the 

derivation of results involving these estimators we will use the vector notation 2 ,=yt Y w  1 1
ˆ ,=xt X w  

2 ,=xt X w  
1 11 1

ˆ ,=xt X w  where 
1w  and w  denote the vectors of design weigs for samples 

1s  and 
2 ,s  

respectively, 
1X  and 

11X  denote the sample 
1s  matrices of x  and 

1x  of dimensions 
1 ( )n p q +  and 

1 ,n p  respectively, and 
2 ,Y  

2X  denote the sample 
2s  matrices of y  and x  of dimensions 

2n d  and 

2 ( ).n p q +  

The primary target of estimation is the total .yt  However, for better understanding of the construction 

of the proposed estimators, and because components of the vector 
2x  may also be target variables, a 

unified approach to the estimation of both yt  and 
xt  will be taken.  

 
3. Best linear unbiased estimation in two-phase sampling 
 

3.1 An analytic form of the best linear unbiased estimator 
 

For more efficient estimation of the totals yt  and ,xt  incorporating all the available information from 

both phases through the correlation of y  and ,x  we consider the best linear unbiased estimators (BLUE), 

denoted by ˆB

yt  and ˆ ,B

xt  which are minimum-variance linear unbiased combinations of the four estimators 

,yt  ˆ ,xt  ,xt  
1 1

ˆ−x xt t  and given in matrix form by  
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 ( ) ( )
1 1

ˆ ˆ ˆ ˆ, , , , ,B B   
    = −y x y x x x xt t t t t t tP  (3.1) 

where 1 1 1( ) ,− − − = W V W W VP  the matrix W  has entries 1’s and 0’s and satisfies 

1 1

ˆ ˆ( , , , ) = ( , ) ,E          − y x x x x y xt t t t t W t t  and V  is the covariance matrix of 
1 1

ˆ ˆ( , , , ) .     −y x x x xt t t t t  It follows 

that 1 1ˆ ˆVar ( , ) ( ) .B B  − −  = y xt t W V W  This typical formulation of best linear unbiased estimation has been 

explored in two other areas of survey sampling; see Wolter (1979), Jones (1980), Fuller (1990), and 

Chipperfield and Steel (2009). In the present context, a more practical formulation, which leads also to the 

representation of the BLUE as a calibration estimator, is as follows. 

Writing the two linear combinations in (3.1) in expanded form and using the condition of unbiasedness 

ˆ( )BE =y yt t  and ˆ( ) ,BE =x xt t  it is easy to show that the matrix P  of the coefficients in these linear 

combinations satisfies  

 
1 2 3 4 2 2 4

1 2 3 4 2 2 4

= ,
−   

=    
−  

y y y y y y y

x x x x x x x

B B B B I B B B

B B B B 0 B I B B
P   

and then the two components of the BLUE in (3.1) are written in the regression form  

 1 1

1 1

2 4

2 4

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ).

B

B

= + − + −

= + − + −

y y y x x y x x

x x x x x x x x

t t B t t B t t

t t B t t B t t
 (3.2) 

Now we can write (3.1) as  

 

1 1

ˆˆ
= ,

ˆˆ

B

B

   − 
+       −    

x xyy

x xxx

t ttt

t ttt
B  (3.3) 

where the matrix B  consists of the second and fourth columns of ,P  and has the easily derived variance-

minimizing value  

 

1 1 1 1

1
ˆ ˆ

Cov , Var .
ˆ ˆ

−

      − − 
= −            − −           

x x x xy

x x x xx

t t t tt

t t t tt
B  (3.4) 

Next write  

 
1 111*

2 2 2

, , ,
−    

= =     
     

X X 0 0w
w Ψ

X 0 Y Xw
=X  (3.5) 

so that  

 

1

* *
ˆ

, ,
ˆ

 −  
 = =    

  

x x y

x x

t t t
w Ψ w

t t
X  (3.6) 

and B  may then be expressed as 
1

* * *Cov( , ) Var( ) .
−

   =  Ψ w w wB X X  For the calculation of 

variances and covariances we define *
w  at the population level as *

1( , ) ,U U U
  =w w w  where the thk  

element of 
1Uw  is 1 1 1(1 ) ,

kU k kw I=  the indicator variable 
1I  denoting inclusion of a population unit in 
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1 ,s  and the thk  element of 
Uw  is  1 2 1 21 ( ) ,

kU k k k kw I I =  the indicator variable 
2I  denoting inclusion 

of a population unit in 
2s  conditional on the selection of sample 

1.s  We may now write * *

U U
 =w wX X  

and * * ,U U
 =Ψ w Ψ w  where 

UX  and 
UΨ  are the population counterparts of X  and ,Ψ  respectively; all 

submatrices in X  and Ψ  are expanded to population level, having N  rows. Then, denoting 
*ˆ =t Ψ w  

and 
*ˆ ,=t wX X  we get  

 
1 1

* *ˆ ˆ ˆCov ( , ) Var ( ) Var ( ) Var ( ) .U U U U U U

− −
    = =   t t t Ψ w w X XB X X X  (3.7) 

A useful more analytic expression of B  is then obtained using the following Lemma; the proof is in the 

Appendix.  

 
Lemma 1  

 
1 1*

1

Var( ) Var ( )
Var ( ) ,

Var ( ) Var ( )

U U

U

U U

 
=  
 

w w
w

w w
 (3.8) 

where  1 1 1 1 1 1Var( ) ( ) ,U kl k l k l    = −w   1 2 1 2 1 2 1 2 1 2Var( ) ( ) .U kl kl k k l l k k l l         = −w  

Using (3.7) and (3.8), it is easy to show that (3.4) is expressed as  

 
1 1

1 1

1 1

1

ˆ ˆ ˆ ˆCov( , ) Var ( ) Cov( , ) Var ( )
.

ˆ ˆCov( , ) Var ( )

− −

−

    − − −    =
 

    

y x x x x y x x

x x x

t t t t t t t t

I t t t

B  (3.9) 

Implicit in this representation of B  is the property ˆ ˆCov( , ) Var ( ),=x x xt t t  following from (3.8), implying 

that ˆ ˆVar( ) Var ( ) Var ( ),− = −x x x xt t t t  and the property 
1 1

ˆ ˆ ˆCov( , ) Cov ( , ),=x x x xt t t t  implying 

1

ˆ ˆCov( , )− =x x xt t t 0  (this covariance being the off-diagonal block of *Var( ) ).U U U
 wX X  Then (3.2) can 

be written explicitly as  

 
1 1 1 1

1 1 1 1

1

1

1

ˆ ˆ ˆ ˆCov( , ) Var ( ) ( )

ˆ ˆ ˆCov( , ) Var ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆCov( , ) Var ( ) ( ).

B

B

−

−

−

 = − − − − 

 + − 

 = + − 

y y y x x x x x x

y x x x x

x x x x x x x

t t t t t t t t t

t t t t t

t t t t t t t

 (3.10) 

In view of the property 
1

ˆ ˆCov( , ) ,− =x x xt t t 0  it follows immediately that  

 
1 1 1

1 1 1

1

1

1

ˆ ˆ ˆ ˆVar ( ) Var ( ) Cov( , ) Var ( ) Cov ( , )

ˆ ˆ ˆCov( , ) Var ( ) Cov ( , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆVar ( ) Var ( ) Cov( , ) Var ( ) Cov ( , ).

B

B

−

−

−

  = − − − − 

  −  

  = −  

y y y x x x x y x x

y x x y x

x x x x x x x

t t t t t t t t t t

t t t t t

t t t t t t t

 (3.11) 
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Remark 3.1. Every component or linear combination of components of ˆB

yt  is BLUE for the 

corresponding total. Also, as evident from (3.11), the efficiency of ˆ ,B

yt  relative to ,yt  depends on the 

strength of correlation of y  with 
1 2( , ),=x x x  as well as on the difference in sample size (and possibly in 

sampling design) for the samples 
1s  and 

2 .s  

Remark 3.2. Because of the orthogonality property 
1

ˆ ˆCov( , ) ,− =x x xt t t 0  the coefficient of any of the 

terms ˆ −x xt t  and 
1 1

ˆ−x xt t  in (3.10) would not change if the other one would be set equal to 0  in (3.2). 

For instance, the BLUE for yt  based on ˆ( , , )y x xt t t  would be ˆB

yt  as in (3.10) but without the last term. 

This is easily worked out as a special case of the full setup 
1 1

ˆ ˆ( , , , ).−y x x x xt t t t t  This orthogonality 

property explains the additive reduction of variance noticed in the first equation of (3.11). 

Remark 3.3. The BLUE ˆB

xt  in (3.10) can also be produced using the reduced setup 
1 1

ˆ ˆ( , )−x x xt t t  in 

(3.1). The same best linear estimator, for a single target variable, has been derived differently in the 

context of general single-phase sampling by Fuller and Isaki (1981) and Montanari (1987). In particular, 

for the auxiliary variable 
1x  we have 

1 1

ˆ .B =x xt t  Next, it can be easily verified that the BLUE in (3.1) can be 

alternatively derived in two steps of best linear unbiased estimation using the setup ˆ( , , ),B B B

y x xt t t  where 

1 1 1 1

1
ˆ ˆ ˆCov( , ) Var ( ) ( )B

−

 = + − y y y x x x xt t t t t t t  and 
1 1 1 1

1
ˆ ˆ ˆCov( , ) Var ( ) ( )B

−

 = + − x x x x x x xt t t t t t t  are the 

BLUEs generated by the one-phase setups 
1 1

ˆ( , )−y x xt t t  and 
1 1

ˆ( , ),−x x xt t t  respectively. It can be shown 

through tedious algebra, that another, more explicit, BLUE setup that is equivalent to that in (3.1) is 

2 2 1 1 1 1

ˆ ˆ( , , , , ).− −y x x x x x xt t t t t t t  This attests that the compact setup in (3.1) provides the most efficient linear 

estimation of yt  and 
xt  using all available relevant estimates. 

 
3.2 The two-phase BLUE as calibration estimator 
 

Using the notation leading to (3.7), and setting ˆ ˆ ˆ( , )B B B  =Ψ y xt t t  and *Var( ),UΔ w=  we may express the 

BLUE in (3.3) as ˆ ˆ ˆ( ),B = + −Ψ Ψt t t tX XB  where 1= ( )U U U U

− Ψ Δ ΔB X X X  and 
1

( , ) ,  = xt 0 tX  or in the 

more suggestive form  

 ( )* 1 *ˆ = ( ) .B

U U U U U U U

−   + −
 Ψt Ψ w Δ Δ t wXX X X X  (3.12) 

It appears from (3.12) that ˆB

Ψt  has the form of a calibration estimator, with population vector of calibrated 

weigs ( )* * 1 *( )U U U U U U U

− = + −c w Δ t wXX X X X  and vector of calibration totals .tX  This is formalized 

in the following theorem; the proof is in the Appendix.  

Theorem 1. The vector ( )* * 1 *( )U U U U U U U

− = + −c w Δ Δ t wXX X X X  minimizes the generalized least-

squares distance * * 1 * *( ) ( )U U U U

−− −c w Δ c w  subject to the constraints * ,U U
 =c tXX  i.e., 

1 =U U U U
 X c X c  

and 
11 1 ,U U

 = xX c t  where 
1( , )U Uc c  corresponds to 

1( , ).U Uw w  

Theorem 1 states that best linear unbiased estimation using the setup 
1 1

ˆ ˆ( , , , )−y x x x xt t t t t  is essentially 

a calibration procedure whereby the two estimates ˆ
xt  and 

xt  of 
xt  are calibrated to each other, i.e., they 

are aligned, and the estimate 
1

ˆ
xt  is calibrated to the total 

1
.xt  We may now write formally the BLUE ˆB

Ψt  
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as a calibration estimator 
*ˆ ,B

U U
=Ψt c  with its two components given in the simple linear forms 

ˆB

U U
=yt Y c  and ˆ .B

U U
=xt X c  

The alternative two-step construction of the BLUE noted in Remark 3.3 above can also be carried out 

through a two-step calibration procedure involving *

Uw  in both steps. Indeed, partitioning 
UX  by its two 

column submatrices as 
12 1( , ),U U U=X X X  and noting that 

112 1
ˆ ˆCov( , ) ,U U

 = − =x x xΔ t t t 0X X  it is easy to 

decompose the vector *

Uc  as  

 
( )

( )
1

* * 1 *

12 12 12 12

1 *

1 1 1 1

= ( )

( ) .

U U U U U U U

U U U U U

−

−

 + −

 + −x

c w Δ Δ 0 w

Δ Δ t w

X X X X

X X X X
 (3.13) 

In the rig hand side of (3.13), the sum of the first and second terms results from calibration with constraint 
*

12 1U U U U U U
  = − =c X c X c 0X  only, while the sum of the first and third terms results from calibration with 

constraint 
1

*

1U U
 = xc tX  only. 

Now setting 
1 1Var ( )U=Δ w  and 

2 Var ( ),U=Δ w  these variances being specified by (3.8), it follows 

easily from (3.13) that the optimal calibration estimators ˆB

yt  and ˆB

xt  in (3.10) can be written in the explicit 

form, which will be recalled later,  

 

   

1 1

1 1

1

2 1 2 1

1

1 1 1 1 1

1

1 1 1 1 1

ˆ ˆ( )

ˆ( ) ( )

ˆ ˆ ˆ( ) ( ).

B

U U U U U U U U

U U U U

B

U U U U

−

−

−

   = + − − −

 + −

 = + −

y y x x

x x

x x x x

t t Y Δ X Y Δ X X Δ X X Δ X t t

Y Δ X X Δ X t t

t t X Δ X X Δ X t t

 (3.14) 

 
4. Optimal linear estimation in two-phase sampling 

 
4.1 The two-phase optimal estimator 
 

The matrix B  in (3.7) comprises variances and covariances which need to be estimated. In view of 

ˆVar ( ) U U
=t ΔX X X  and ˆ ˆCov( , ) ,U U

=Ψt t Ψ ΔX X  and recalling (3.8), the obvious unbiased estimates are 

Var̂ ˆˆ( ) =t ΔX X X  and Cov̂ ,ˆˆ ˆ( , ) = 
Ψt t Ψ ΔX X  where the 

1 2 1 2( ) ( )n n n n+  +  matrix ˆ =Δ Var̂ *( )Uw  has 

diagonal blocks  1 1 1 1 1 1 1
ˆ = ( )kl k l k l kl     −Δ ,  2 1 2 1 2 1 2 1 2 1 2 1 2

ˆ = ( ) ,kl kl k k l l k k l l kl kl           −Δ  

and off-diagonal blocks 12
ˆ ,Δ  21 12

ˆ ˆ= Δ Δ  with  12 1 1 1 1 1 1 2
ˆ = ( ) ,kl k l k l kl l      −Δ  and ,X  Ψ  are the 

sample matrices in (3.5). 

We now obtain, as elements of the matrices Var̂ ˆ( )tX  and Cov̂ ˆ ˆ( , ),Ψt tX  the unbiased estimates of all 

variances and covariances in (3.9), i.e, Var̂ 1 1 1
ˆˆ( ) = ,

xt X Δ X  Var̂ 2 2 2
ˆ( ) = ,

xt X Δ X  Var̂
1 11 1 11

ˆˆ( ) = ,
xt X Δ X  

Cov̂
1 2 21 11

ˆˆ( , ) = ,
x xt t X Δ X  Cov̂ 2 21 1

ˆˆ( , ) = ,
y xt t Y Δ X  Cov̂

1 2 21 11
ˆˆ( , ) = ,

y xt t Y Δ X  Cov̂ 2 2 2
ˆ( , ) = .

y xt t Y Δ X  

However, the matrix Var̂ ˆ( )tX  includes also the elements Cov̂ 1 12 2
ˆˆ( , ) = ,

x xt t X Δ X  and Cov̂
1

ˆ ˆ( , ) =−x x xt t t  

11 1 1 11 12 2
ˆ ˆ , −X Δ X X Δ X  which clearly do not retain the properties ˆ ˆCov( , ) Var ( )=x x xt t t  and 

1

ˆ ˆCov( , ) ,− =x x xt t t 0  respectively. Unbiased estimates for the variances and covariances in (3.9) could be 
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directly used, but then the estimate of the simple form B  in (3.9) could not be expressed as 
1ˆ ˆ( ) ,− Δ ΔX X X  and thus the resulting estimator would not retain the calibration form of the BLUE in 

(3.12). This complication is circumvented using the following reformulation. Reset 
* ,w  X  and Ψ  as  

 

1 1 1 1

*

2 2 2

1 11 1 1

, , = ,

− − −     
     

= =     
     
     

w X 0 Y X

w w X 0 Ψ Y X

w 0 X Y X

X  (4.1) 

where the sample matrices 
1,X  

2 ,X  
11X  and 

2Y  are as before, and 
1Y  is the matrix of y  for sample 

1s  

with dummy values 
ky  for 

2.k s  Clearly, *wX  and *Ψ w  are exactly as in (3.6). Then, having as 

before 
*ˆ =t wX X  and 

*ˆ = ,
Ψt Ψ w  we obtain again 

1
ˆ ˆ ˆCov( , ) Var ( ) ,

−

 =  Ψt t tX XB  where 
*ˆVar( ) Var ( )U U U

=t wX X X  and 
* ,ˆ ˆCov( , ) Var ( )U U

=Ψt t Ψ wX X  as in (3.7) but with * ,Uw  
UX  and 

UΨ  

being the population counterparts of the redefined 
* ,w  ,X  .Ψ  An extension of Lemma 1 to the redefined 

*
w  gives  

 

1 1 1

*

1 1

1 1 1

Var ( ) Var ( ) Var ( )

Var ( ) Var ( ) Var ( ) Var ( ) ,

Var ( ) Var ( ) Var ( )

U U U

U U U U

U U U

 
 

=  
 
 

w w w

w w w w

w w w

  

where 
1Var ( )Uw  and Var ( )Uw  are the same as in Lemma 1. It is easy now to verify that again B  may 

be expressed analytically as in (3.9), and the two components of the BLUE are identical to those given by 

(3.10). More importantly, it follows from this special form of *Var( )Uw  that we have again 

ˆVar ( ) U U
=t ΔX X X  and ˆ ˆCov( , ) ,U U

=Ψt t Ψ ΔX X  where now 
1 2 1= diag( , , )−Δ Δ Δ Δ  and 

1 ,Δ  
2Δ  as 

already defined. Thus we obtain again the BLUE in the calibration form of (3.12), and the retained 

orthogonal decomposition of the vector of calibrated weigs in (3.13) leads readily to the expression (3.14). 

Now the orthogonality property 
12 1U U
 =Δ 0X X  is induced by the block-diagonal structure of the 

redefined ,UX  rather than by the special structure of the initial matrix Δ  used in (3.12). 

For the reconstructed BLUE we now have the unbiased estimates Var̂ ˆˆ( ) =t ΔX X X  and Cov̂ ˆ ˆ( , ) =Ψt tX
ˆ ,Ψ ΔX  where ,X  Ψ  are the sample matrices in (4.1), and 1 2 1

ˆ ˆ ˆ ˆ= diag( , , )−Δ Δ Δ Δ  with 1
ˆ ,Δ  2Δ̂  as defined 

at the beginning of the section. From these we rederive easily the unbiased estimates of the variances and 

covariances in (3.9), but two of the elements of the sample matrix ˆΨ ΔX  which involve 
1 ,Y  namely 

1 1 1
ˆY Δ X  and 1 1 11

ˆ ,Y Δ X  require special consideration. The dummy (unobserved) values 
ky  for 

2 ,k s  

necessary for expanding 
1Y  to the population matrix 

UY  in the reconstructed BLUE, are set equal to zero, 

and the values 
ky  for 

2k s  are then necessarily weiged by 
21 .k  Then 1 1 1

ˆY Δ X  and 1 1 11
ˆY Δ X  reduce to 

2 21 1
ˆY Δ X  and 2 21 11

ˆ ,Y Δ X  which are the unbiased estimates Cov̂ ˆ( , )y xt t  and Cov̂
1

ˆ( , ),y xt t  respectively. The 

estimated B  in (3.9) is now given by  

 

1 1

2 2 2 2 21 1 2 2 2 1 1 1 2 21 11 11 1 11

1

1 1 11 11 1 11

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ .

ˆ ˆ

− −

−

           − −
      

=  
     

Y Δ X Y Δ X X Δ X X Δ X Y Δ X X Δ X

I X Δ X X Δ X

B   
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The BLUE ˆ ˆ ˆ( )B = + −Ψ Ψt t t tX XB  with estimated B  will be called optimal linear unbiased estimator, 

optimal estimator in short, denoted by ˆˆ ˆ ˆ( ),O = + −Ψ Ψt t t tX XB  with its two components given by  

 
1 1

1 1

1

2 2 2 2 21 1 2 2 2 1 1 1

1

2 21 11 11 1 11

1

1 1 11 11 1 11

ˆ ˆ ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( )

ˆ ˆˆ ˆ ˆ( ).

O

O

−

−

−

      = + − − −
   

  + −
 

  = + −
 

y y x x

x x

x x x x

t t Y Δ X Y Δ X X Δ X X Δ X t t

Y Δ X X Δ X t t

t t X Δ X X Δ X t t

 (4.2) 

This is the sample version of the BLUEs in (3.14), with estimated coefficients. In particular, ˆO

xt  is the 

customary single-phase optimal estimator of 
xt  using 

1x  as auxiliary variable, and data from the full first-

phase sample 
1;s  see Montanari (1987) and Rao (1994). 

Remark 4.1. When 
2n  is very close to 

1 ,n  the optimal estimator ˆO

yt  can be quite unstable because of 

the near singularity of the inverted matrix in the coefficient of ˆ ,−x xt t  and thus can become very 

inefficient; see, though, later Remark 6.1 on two-phase designs in which this is not an issue. Generally this 

is not a realistic setting in two-phase sampling, where 
2n  is typically much smaller than 

1.n  

Following the construction of 2 21 1
ˆY Δ X  and 2 21 11

ˆY Δ X  as two of the estimates in ˆ ,B  it transpires that 

these two bilinear forms can be written alternatively as 1 1 1
ˆY Δ X  and 1 1 11

ˆ ,Y Δ X  respectively, where 
1Y  is a 

weiged version of 
1Y  in which 

2k k k=y y  if 
2k s  and 0k =y  if 

2.k s  Then 
* *ˆ , = =Ψt Ψ w Ψ w  

where Ψ  is Ψ  in (4.1) with 
1Y  in place of 

1 ,Y  and B̂  can be written compactly as 
1ˆ ˆ ˆ( ) ,− =Ψ Δ ΔB X X X=  where 1 2 1

ˆ ˆ ˆ ˆdiag( , , ).= −Δ Δ Δ Δ  Henceforth, Δ̂  will be meant to be the matrix 

1 2 1
ˆ ˆ ˆdiag( , , ).−Δ Δ Δ  

As in Montanari (1987) and Rao (1994) for the single-phase optimal estimator, for large samples 
1s  

and 
2s  the optimal estimator ˆˆ ˆ ˆ( )O = + −Ψ Ψt t t tX XB  approximates the BLUE ˆ ,B

Ψt  and thus it is 

approximately unbiased. Furthermore, the variance of ˆO

Ψt  approximates that of ˆ ,B
t  which works out 

easily to be 
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆVar( ) Var ( ) Cov ( , ) Var ( ) Cov ( , ),B
−

  = −  Ψ Ψ Ψ Ψt t t t t t tX X X  i.e., the compact form of (3.11). 

Then, using the estimates Var̂ ˆ( )Ψt  and Cov̂ ˆ ˆ( , ),Ψt tX  derived earlier, we obtain the estimated approximate 

variance of ˆO

Ψt  as AV̂ ˆ( )O =Ψt Var̂ ˆ( ) −Ψt Cov̂ ˆ ˆ( , )Ψt tX [Var̂( t̂X )]
1− Cov̂′ ˆ ˆ( , ).Ψt tX  From this we derive the 

computationally convenient expressions AV̂ 1

2 2 2 1 1
ˆ ˆ ˆ ˆˆ( ) ( ) ,O −   = −yt Y Δ Y Δ Δ ΔX X X X   where 1Ψ  is the 

first column submatrix of ,Ψ  and AV̂
1

1 1 1 1 1 11 11 1 11 11 1 1
ˆ ˆ ˆ ˆˆ( ) = .O

−

    −
 xt X Δ X X Δ X X Δ X X Δ X  

 

4.2 The two-phase optimal estimator as calibration estimator 
 

The optimal estimator ˆˆ ˆ ˆ( ),O = + −Ψ Ψt t t tX XB  with 
1ˆ ˆ ˆ( ) ,− = Δ ΔB X X X  takes the form  

 * 1 *ˆ ˆˆ ( ) ( ) ,O −   = + −
 Ψt Ψ w Δ Δ t wXX X X X   

of a calibration estimator, with vector of calibration totals tX  and sample vector of calibrated weigs 

( )* * 1 *ˆ ˆ( )− = + −c w Δ Δ t wXX X X X  satisfying * . =c tXX  This is established formally by the 

following theorem; the proof is similar to that of Theorem 1, and is omitted.  
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Theorem 2. The vector 
* * 1 *ˆ ˆ( ) ( )− = + −c w Δ Δ t wXX X X X  minimizes the generalized least-squares 

distance 
* * 1 * *ˆ( ) ( )−− −c w Δ c w  subject to the constraints * , =c tXX  i.e., 

1 1 2
 =X c X c  and 

111 1 , = xX c t  

where 
1( , )c c  corresponds to 

1( , ).w w  

The sample vector *
c  admits the same orthogonal decomposition as its population counterpart *

Uc  in 

(3.13). We may now write formally the optimal estimator ˆO

Ψt  as a calibration estimator 
*ˆ ,O =Ψt Ψ c  which 

in view of * =c tXX  is generated by the simultaneous calibration of the two estimates ˆ
xt  and 

xt  of 
xt  to 

each other, and of the estimate 
1

ˆ
xt  to the total 

1
.xt  

Now, in expanded form the vector *
c  is  

 

1 1

1

1 1 1 2 2 2 1 1 11

* 1

2 2 2 2 2 2 1 1 1

1
3 1 1 11 11 1 11

ˆ ˆ ˆ ˆ[ ] ( )

ˆ ˆ ˆ ˆ[ ] ( ) .

ˆ ˆ ˆ( ) ( )

−

−

−

  + − − 
  

 = =  + − −  
    + −   

x x

x x

x x

w Δ X X Δ X X Δ X t tc

c c w Δ X X Δ X X Δ X t t

c w Δ X X Δ X t t

 (4.3) 

Then, using the partition 
12 1( , ),=X X X  where 

12X  and 
1X  are the two orthogonal column submatrices 

of X  shown in (4.1), the two constraints are written as *

12 2 2 1 1
  = − =c X c X c 0X  and 

1

*

1 11 3 . = = xc X c tX  

It also follows from (4.3) that 
*ˆO =t Ψ c  implies (4.2). Regarding the two components of ˆO

Ψt  we observe 

that 1 1 2 2 1 3 1 3
ˆ = ,O    = − + +xt X c X c X c X c  and that  

  
2

1 3 1 2 2 3 1 2 2
ˆ ( ) ( ) .O

k k k k ks
c c c = − + = − +yt Y c c Y c y   

The explicit expression of ˆ ,O

yt  in terms of sample units, is  

 

( )( )

2 2 2 1

2 2 1 1

1 12 1 1 1

2 1

1

2 1

1

1 1 1 1 1

ˆ ˆˆ

ˆ ˆ ˆ( )

ˆ ˆ ˆ( ),

O

kl k l kl k ls s s s

kl k l kl k ls s s s

kl k l kl k ls s s s

−

−

  = +  −  
 

   −  −
 

 +   −

   

   

   

y y

x x

x x

t t y x y x

x x x x t t

y x x x t t

 (4.4) 

where 1
ˆ

kl  and 2
ˆ

kl  are the thkl  elements of 1Δ̂  and 2
ˆ ,Δ  respectively. Formula (4.4) is simplified in 

certain two-phase designs employed in important large scale surveys; examples of such surveys are 

presented in Hidiroglou and Särndal (1998) and Turmelle and Beaucage (2013). Specifically, this is the 

case when independent sampling (Poisson, or stratified Poisson) is used in one of the two phases, that is, 

when 
1 1 1kl k l  =  or 

2 2 2 .kl k l  =  The simplification is considerable in the case of independent sampling 

in both phases. Then, both 1Δ̂  and 2Δ̂  are diagonal, with diagonal elements 1 1 1
ˆ (1 ) ((1 ) 1)kk k k  = −  

and 2 1 2 1 2
ˆ (1 ) ((1 ) 1),kk k k k k    = −  respectively, and (4.4) involves only single summations. Other 

two-phase designs in which (4.4) involves single summations only, although 1Δ̂  and 2Δ̂  are not diagonal, 

involve simple random sampling or stratified simple random sampling in either phase; for an example of a 

survey with such two-phase design see Hidiroglou (2001). In general, however, the optimal estimator may 

not be practical because it requires the use of first-phase and second-phase joint inclusion probabilities 

1kl  and 
2 ,kl  which are not known for some complex sampling designs. Even when these joint 
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probabilities are known, but the matrices 1Δ̂  and 2Δ̂  are not diagonal, the estimated coefficient B̂  and, 

hence, the optimal estimator may be unstable in very small samples ‒ especially if the dimension of the 

auxiliary vector x  is large. These difficulties may be overcome, at some loss of optimality, by employing 

simple approximations of the variances and covariances in ˆ ;B  for approximate variance estimates based 

only on first order inclusion probabilities see, for example, Haziza, Mecatti and Rao (2008) and references 

therein. A computationally very convenient approximation of B̂  leading to a two-phase estimator that 

belongs to the class of generalized regression estimators is described in the next section. 

 
5. A two-phase generalized regression estimator 
 

A variant of 1ˆ ˆ ˆ( )− =Ψ Δ ΔB X X X  that is computationally efficient, but generally suboptimal, is the 

generalized regression (GREG) coefficient GR 1ˆ ( ) ,− =Ψ Λ ΛB X X X  where Ψ  is as in (4.1) and with 

0k =y  if 
2 ,k s  and Λ  is the “weiging” matrix 

1 2 1diag( , , ),Λ Λ Λ  with 
1 1 1diag{ }k kw q=Λ  and 

2 2diag{ },k kw q=Λ  and with 
1 ,kq  

2kq  being positive constants. This gives the GREG estimator  

 GR GR GR GR *ˆ ˆ ˆˆ ˆ ˆ( ) ( ) .
 = + − = + −Ψ Ψt t t t t Ψ wX X XB B XB  (5.1) 

Note that GRB̂  is optimal in the sense of least squares, i.e., it minimizes the quadratic distance 
GR GRˆ ˆ( ) ( ),

 − −Ψ Λ ΨXB XB  involving the residuals GRˆ 
−Ψ XB  in 

GRˆ ,Ψt  whereas the coefficient B̂  

minimizes ˆ ˆˆ( ) ( ) , − −Ψ Δ ΨXB XB  the estimated approximate variance of the optimal estimator ˆ .O

Ψt  In 

this sense 
GRˆ
Ψt  is an approximation to ˆ .O

Ψt  The two components of 
GRˆ ,Ψt  similar in structure to the 

components of ˆO

Ψt  in (4.2), are  

 

   

 

 

1 1

1 1

1GR

2 2 2 1 1 1 2 2 2 1 1 1

1

1 1 11 11 1 11

1GR

1 1 11 11 1 11

ˆ ˆ( )

ˆ( )

ˆ ˆ ˆ( ).

−

−

−

   = + + + −

 + −

 = + −

y y x x

x x

x x x x

t t Y Λ X Y Λ X X Λ X X Λ X t t

Y Λ X X Λ X t t

t t X Λ X X Λ X t t

 (5.2) 

The GREG estimator 
GRˆ
xt  is the standard single-phase GREG estimator based on 

1s  and the auxiliary 

variable 
1.x  The GREG estimator 

GRˆ ,yt  with the two orthogonal regression terms shown in (5.2), is 

expressed explicitly in terms of sample units as  

 

( ) ( )
2 2 1

1 12 1

1
GR

1 2 2 1

1

1 1 1 1 1

ˆ ˆ( ) ( )

ˆ( ),

k k k k k k k k k ks s s

k k k k k ks s

−

−

     = +  +   +  −
   

 +   −

  

 

y y x x

x x

t t y x x x x x t t

y x x x t t

  

where 
1 1 1k k kw q =  and 

2 2k k kw q =  are the thk  element of 
1Λ  and 

2 ,Λ  respectively. The constants 

ikq  should be specified as ,ik iq n=  to account for the differential in the sample size of ;is  see Merkouris 

(2004) for a justification in the context of calibrating combined samples. An equivalent adjustment of the 

weigs in 
1k  and 

2k  can be made through the multiplication of 
1kw  in 

1k  by 
2 1 .n n =  Values of 

ikq  
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that convert the GREG estimator 
GRˆ
yt  to the optimal estimator ˆO

yt  can be specified for two-phase sampling 

designs for which optimal estimation is possible, as in the similar context of matrix sampling (Merkouris, 

2015). For the simple example involving Poisson sampling in both phases, this specification is 

1 1 1(1 )k k kq  = −  and 
2 1 2 1 2(1 ),k k k k kq    = −  rendering 

1Λ  and 
2Λ  identical to 1Δ̂  and 2

ˆ .Δ  

The vector of calibrated weigs associated with the GREG estimator 
GRˆ
Ψt  is 

GR * 1 *( ) ( ).− = + −c w Λ Λ t wXX X X X  It has the same form as *
c  in (4.3), but with 

1Λ  and 
2Λ  in 

place of 
1−Δ  and 

2 ,Δ  and minimizes the generalized least-squares distance GR * 1 GR *( ) ( )−− −c w Λ c w  

subject to the constraints GR . =c tXX  The partition 
12 1( , ),=X X X  defined after (4.3), allows the 

orthogonal decomposition of the vector *
c  

 

1

GR * 1 *

12 12 12 12

1 *

1 1 1 1

( ) ( )

( ) ( ).

−

−

 = + −

 + −x

c w Λ Λ 0 w

Λ Λ t w

X X X X

X X X X
 (5.3) 

In the rig hand side of (5.3), the sum of the first and second terms would result from calibration with 

constraint GR

12
 =c 0X  only, while the sum of the first and third terms would result from calibration with 

constraint 
1

GR

1
 = xc tX  only. The practical implication of this is that the vector *

c  could be formed by 

concatenating the weig vectors generated by two separate calibrations, i.e., calibration of 
1( , )  w w  using 

1 2( , )  −X X  followed by calibration of 
1w  using 

11.X  However, the one-step calibration procedure 

generating GR
c  is more convenient. 

On the basis of its Taylor linearization, the GREG estimator 
GRˆ
yt  in (5.1) is approximately (for large 

samples) unbiased. Furthermore, denoting by e  the matrix of sample residuals GRˆ ,


−Ψ XB  the estimated 

approximate variance of GR GR *ˆˆ = +yt t e wXB  is the estimated variance of *,e w  i.e., AV̂ GRˆ( ) =yt Var̂
* ˆ( ) , =e w e Δe  whereas the estimated variance of the HT estimator yt  is Var̂ ( ) =yt Var̂ *

2 2 2
ˆ( ) ,

 =Ψ w Y Δ Y  

with 1Ψ  being the first column submatrix of .Ψ  

Now using the calibration form GR


Ψ c  of 

GRˆ
yt  and the orthogonal decomposition (5.3) of 

GR ,c  we 

easily obtain the decomposition 
11 12 1

ˆ ˆ , = − −x xe Ψ β βX X  where 
1

12 12 12
ˆ = ( )−

 
xβ Ψ Λ ΛX X X  and 

1

1

1 1 1
ˆ ( )−

 =xβ Ψ Λ ΛX X X  are the coefficients of ˆ −x xt t  and 
1 1

ˆ ,−x xt t  respectively. Note that 1 12
ˆ − xΨ βX  

is the matrix of residuals in the GREG estimator 
GR ˆˆ ˆ( )= + −

x

y y x x xt t β t t  resulting from calibration 

involving only 
12 ,X  and 

11 1
ˆ − xΨ βX  is the matrix of residuals in the GREG estimator 

1

1 1 1

GR ˆˆ ˆ( )= + −
x

y y x x xt t β t t  resulting from calibration involving only 
1.X  Then, using the orthogonality of 

1X  and 
12 ,X  it is shown without difficulty that  

 AV̂ GRˆ( ) −yt Var̂ ( ) =yt AV̂
GRˆ( ) −

x

yt Var̂ ( ) +yt AV̂ 1
GRˆ( ) −

x

yt Var̂ ( ),yt   

which implies that the reduction of variance due to using the two auxiliary variables 
1x  and x  in the 

regression (also calibration) procedure is additive. Thus, recalling Remark 3.2, the generalized regression 

estimator retains this additivity property of the BLUE of .yt  
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6. Comparisons with existing methods 
 

An earlier approach to optimal linear estimation in two-phase sampling designs, involving the standard 

type of auxiliary information considered in Sections 2 to 5, is described in Hidiroglou (2001). The 

formulation starts with postulating a regression form for the estimator of ,yt  for univariate ,y  which is 

identical to the form of the estimator ˆB

yt  in the first line of (3.2), and then the two unknown coefficients 

are determined so as to minimize the variance of this estimator. In estimating the two coefficients, the 

identities ˆ ˆVar( ) Var ( ) Var ( )− = −x x x xt t t t  and 
1

ˆ ˆCov( , ) =−x x xt t t 0  were ignored in the first and the 

second coefficient, respectively, and variances and covariances in both coefficients involving first-phase 

estimators were estimated using the second-phase sample only, thereby ignoring relevant information 

from the larger part of the first-phase sample. The resulting estimator was not shown to be a calibration 

estimator. In fact, this version of optimal estimator cannot be constructed as a calibration estimator. As a 

practicable variant of this, Hidiroglou (2001) considered a GREG estimator whose two coefficients (of 

1 1

ˆ−x xt t  and ˆ )−x xt t  can be justified either by assuming different regression models for each phase or by 

two successive calibrations. The same GREG estimator had been proposed earlier by Hidiroglou and 

Särndal (1998), but with no reference to optimal estimation. In the calibration approach of Hidiroglou and 

Särndal (1998), the estimator 
1

ˆ
xt  is first calibrated to its total 

1
,xt  using 

1 ,s  and the GREG estimator 
1

GRˆ
x x

t  

of 
xt  is then generated using the calibrated weigs, denoted by 

1 .kw  Then the overall weig for 
2k s  is 

formed as 
1 2 .k k kw w w=  In a second calibration involving 

2s  and ,kw  the estimator 
xt  is calibrated to 

1

GRˆ .
x x

t  The resulting calibrated weigs of 
2s  are then used to generate the GREG estimator of ,yt  denoted 

here by 
HSˆ .yt  

Estevao and Särndal (2002, 2009) proposed a simpler version of the estimator 
HSˆ ,yt  in which the overall 

design weigs 
1 2=k k kw w w  for 

2k s  are used in the second calibration. Using current notation, this 

estimator, denoted here by 
ESˆ ,yt  can be expressed in regression form as  

 
( )

( )  
1 1

1ES

2 2 2 2 2 2

11

2 2 2 2 2 2 1 1 11 11 1 11

ˆ ˆ( )

ˆ( ).

−

−−

 = + −

   + −

y y x x

x x

t t Y Λ X X Λ X t t

Y Λ X X Λ X X Λ X X Λ X t t
 (6.1) 

Here the standard weiging matrices 
1 1diag{ }kw=Λ  and 

2 diag{ }kw=Λ  are used. Estevao and Särndal 

(2009) showed that this estimator is asymptotically equivalent to the estimator 
HSˆ .yt  For the estimator 

ESˆ
yt  

in (6.1), Estevao and Särndal (2002) provide two linear regression representations corresponding to the 

two calibration steps. Replacing y  by x  in (6.1) gives 
ESˆ ,xt  which is identical to 

GRˆ
xt  in (5.2). 

In comparison, the regression estimator proposed in Section 5 is motivated by the single-step 

calibration structure of the optimal two-phase estimator, of which it serves as practical approximation. It 

derives its statistical and computational efficiency, relative to competing regression estimators assessed in 

this section, from a single-step calibration procedure involving the combined first-phase and second-phase 

samples, and in which first-phase and second-phase estimated totals are calibrated to each other. As a 

consequence, the regression coefficients of the terms 
1 1

ˆ−x xt t  and ˆ −x xt t  incorporate information from 

the full sample 
1 ,s  as in the optimal estimator, and because of that they are more stable estimates of their 
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population counterparts. An empirical comparison of the proposed regression estimator with the 

competing regression estimators is included in the simulation study in Section 7. 

Replacing 
1Λ  and 

2Λ  by 1Δ̂  and 2Δ̂  in (6.1) converts the coefficient of the GREG estimator 
1

GRˆ
x x

t  

generated by the first step calibration into the coefficient Cov̂
1

ˆ ˆ( , ) [x xt t Var̂
1

1ˆ( )]−xt  of the single-phase 

optimal regression estimator 
1

ˆ ,O

x x
t  and the coefficient of the GREG estimator 

ESˆ
yt  generated by the second 

step calibration into the coefficient Cov̂ ( , ) [y xt t Var̂ 1( )] .−

xt  This latter coefficient may be viewed as 

pseudo-optimal since 
1

ˆO

x x
t  is treated as constant in the second step calibration, generating a pseudo-

optimal estimator 
PSOˆ .yt  In turn, if in place of the sample matrices 1Δ̂  and 2Δ̂  in (6.1) we use the 

population matrices 
1Δ  and 

2Δ  we construct the pseudo-BLUE  

 
( )

( ) ( )
1 1

1PSB

2 2

1 1

2 2 1 1 1 1 1

ˆ ˆ( )

ˆ( ),

U U U U

U U U U U U U U

−

− −

 = + −

   + −

y y x x

x x

t t Y Δ X X Δ X t t

Y Δ X X Δ X X Δ X X Δ X t t
 (6.2) 

where the coefficients of ˆ −x xt t  and 
1 1

ˆ−x xt t  are, respectively, 
1

Cov( , ) Var ( )
−

  y x xt t t  and 

1 1

11
ˆ ˆ ˆCov( , ) Var ( ) Cov( , ) Var ( ) .

−−
     y x x x x xt t t t t t  Thus, the GREG estimator (6.1) may be viewed as an 

approximation of 
PSOˆ ,yt  which is the estimator 

PSBˆ
yt  with estimated coefficients (in analogy with the 

relationship of the optimal estimator ˆO

yt  and the BLUE ˆ ,B

yt  in (4.2) and (3.14)). The pseudo-BLUE 

estimator 
PSBˆ ,xt  obtained from (6.2) by replacing y  with ,x  is identical to the BLUE ˆ ,B

xt  in (3.14). On the 

other hand, the estimators ˆB

yt  and 
PSBˆ
yt  are identical only under the condition of the following proposition; 

see proof in the Appendix.  

Proposition 1. The estimators ˆB

yt  and 
PSBˆ
yt  are identical only if 

1 2 ,=Δ Δ  for a constant .  
 

Remark 6.1. The condition of Proposition 1 holds if the same equal-inclusion probability design is used 

in both phases; the constant   is then a function of the sample inclusion probabilities. Two-phase designs 

that satisfy this condition are SRS and Bernoulli in both phases, as well as their stratification versions with 

identical stratification and proportional sample allocation in both phases. The practical importance of this 

is that for these designs the sample counterparts of ˆB

yt  and 
PSBˆ ,yt  i.e., ˆO

yt  and 
PSOˆ ,yt  will be for large 

samples almost identical. Furthermore, 
1 2=Δ Δ  implies that the minus sign in the coefficient of ˆ −x xt t  

in (3.14) and (4.2) could change to plus sign, with 1 −  factoring out, and thus the singularity problem 

identified in Remark 4.1 will not exist. 

Remark 6.2. It is simple to verify that 
PSOˆ
yt  is a calibration estimator, constructed by a two-step 

calibration procedure (as with the 
ESˆ
yt  estimator). Also, like 

ESˆ ,yt  the estimator 
PSOˆ
yt  is formed using the 

calibrated weigs of the second-phase sample only. 

Finally, it should be mentioned that a “design-optimal regression estimator”, not having the calibration 

property, has been proposed by Chen and Kim (2014) for a specific application and auxiliary variable 

setup. Also, a calibration estimator that is optimal under a model-assisted framework, and with 
2x  as the 

only auxiliary vector, has been proposed by Wu and Luan (2003). 
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7. Simulation study 
 

We have conducted a simulation study to assess the performance of the proposed two-phase estimators 

of the total ,yt  for scalar variables ,y  
1x  and 

2 ,x  and compare them with the competing regression 

estimators considered above. Distributions of these variables were specified as follows. The distribution of 

1x  is the lognormal with mean and variance parameters 
1 1

2( 4, 4).x x = =  The distribution of 
2x  is 

specified by the linear model 
2 15x x= + + 𝜖, where 𝜖 ~ (0,N 𝜎𝜖

2), and the distribution of y  is specified by 

the linear model 
1 210 2 3 ,y x x = + + +  where 2~ (0, ).N    The value of 𝜎𝜖

2 determines the linear 

relationship between 
2x  and 

1 ,x  as defined by the population square correlation coefficient 
1 2

2

, ,x xr  and the 

value of 2

  determines the linear relationship of y  with 
1x  and 

2 ,x  as defined by the coefficient of 

determination 
1 2 1 2 1 2 1 2

2 2 2 2

, , , , , ,[ 2 ] (1 ).y x y x y x y x x x x xr r r r r r r= + − −  

Three values, 0, 0.25, 0.75, were specified for 
1 2

2

, ,x xr  and two values, 0.25 and 0.75, for 
2 ,r  giving six 

combinations of values 
1 2

2 2

,( , ).x xr r  For the value 
1 2

2

, 0,x xr =  in particular, the bivariate lognormal 

distribution for 
1 2( , )x x  with parameters 

1 1

2( 4, 4),x x = =  
2 2

2( 9, 9)x x = =  and zero correlation was 

used. The required values of 𝜎𝜖
2 and 2

  are readily determined, while values for 
1

2

,y xr  and 
2

2

,y xr  are 

implicitly specified. For each of these six combinations, a population of size =N 50,000 was simulated 

by generating values from the distributions of the components of the vector 
1 2( , , ).y x x  Four combinations 

of first-phase and second-phase sample sizes 
1 2( , )n n  with fixed 

1n  and varying 
2n  were specified, i.e., 

(3,000; 2,000), (3,000; 1,500), (3,000; 1,000), (3,000; 500), thus creating a total of 24 simulation settings. 

Three different two-phase sampling designs were considered. Simple random sampling (SRS) without 

replacement was first used in both phases. For this sampling design, denoted by (SRS, SRS), the BLUE 

ˆB

yt  in (3.10) and its exact variance in (3.11) can be calculated. Using the fact that under SRS the 

correlation of the HT estimators for two totals is identical to the correlation coefficient of the associated 

variables, tedious but straigforward algebra gives the relative difference (RDV) of variances of the 

estimators ˆB

yt  and yt  as  

 
1

2 21 2 2 1
,

1 2 1 2

ˆVar ( ) Var ( ) ( ) ( )
= .

Var ( ) ( ) ( )

B

y y

y x

y

t t N n n n N n
r r

t n N n n N n

− − −
+

− −
  

The percent RDV is the measure of the efficiency of the BLUE ˆB

yt  relative to the HT estimator .yt  This 

exact maximum efficiency will serve to measure the closeness of the approximation of the BLUE by the 

optimal estimator, for the different sample sizes, as well as the efficiency of the other competing 

estimators relative to the HT estimator. Notice that as 
2n  tends to zero, the RDV tends to 

2 ,r  and as 
2n  

tends to 
1 ,n  the RDV tends to 

1

2

,y xr  (the efficiency of the BLUE based on 
1s  and 

1).x  The second two-

phase design, denoted by (STRSRS, SRS), was stratified simple random sampling (STRSRS) and SRS in 

the first and second phase, respectively. The simulated populations were stratified by the size of the 

variable ,y  with three strata of sizes 
1 =N 30,000, 

2 =N 15,000, 
3 =N 5,000 and proportional allocation 

of the sample 
1s  to the three strata ‒ giving equal inclusion probabilities in each of the two phases. For this 

design too, the BLUE ˆB

yt  and its exact variance can be calculated. The third two-phase design, denoted by 
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(SRS, PPSS), involved SRS in the first phase and probability proportional to size systematic sampling 

(PPSS) in the second phase, using as size measure the simple transformation 
2 215 0.5z x= +  of the 

variable 
2 ;x  using 

2x  as size would result in 
2 2

ˆ .x xt t=  In this case the BLUE ˆB

yt  (and the optimal 

estimator ˆ )O

yt  cannot be calculated, because of the unknown probabilities 
2 .kl  However, GREG 

estimators can be calculated. 

For each of these three two-phase designs, and all the 24 simulation settings, sampling was repeated 

30,000 times, and each time we computed the estimators ,yt  ˆ ,O

yt  GRˆ ,yt  ES

ŷt  and HSˆ ,yt  to obtain their 

empirical bias and variance. In all these cases, the simulation showed that the bias of all estimators was 

negligible, even for the smaller subsample sizes 
2 .n  Thus their comparison is based on their variances 

relative to the benchmark variance of the HT estimator .yt  Specifically, the efficiency of each of the 

competing estimators ˆ ,O

yt  
GRˆ ,yt  

ES

ŷt  and 
HS

ŷt  is assessed through the percent relative difference between its 

empirical variance and the empirical variance of the estimator ;yt  for example, for 
GR

ŷt  the relative 

difference is GRˆVar( ) Var ( ) Var ( ).y y yt t t −   The relative difference shows the reduction of the variance 

of the particular estimator relative to the variance of the basic estimator .yt  

In the (SRS, SRS) design, the exact efficiency of the BLUE ˆ ,B

yt  relative to the HT estimator ,yt  

increases as 
2n  decreases and as we move to higher values of 

2

2 2

,( , ),y xr r  confirming Remark 3.1; see 

column 2 of Table 7.1. It is also confirmed that the efficiency of ˆB

yt  tends to 2r  as 
2n  decreases, faster for 

higher 
1 2

2

, .x xr  This maximum efficiency is closely approximated by the empirical efficiency of ˆ ,O

yt  even 

for the smaller subsample sizes 
2 ;n  see column 3 of Table 7.1. For the (STRSRS, SRS) design the exact 

efficiency of ˆB

yt  is shown in column 6 of Table 7.1, exhibiting a pattern similar to that in the (SRS, SRS). 

This efficiency is closely approximated by the empirical efficiency of ˆ ;O

yt  see column 7 of Table 7.1. In 

both (SRS, SRS) and (STRSRS, SRS) the approximation of ˆB

yt  by ˆO

yt  is a little weaker in some settings 

involving the largest value of 
2 ,n  for the reason given in Remark 4.1. 

Although the estimator ˆO

yt  can be calculated in the (SRS, SRS) and (STRSRS, SRS) designs, the 

performance of the more practical, and of general applicability, calibration (GREG) estimators 
GR

ŷt  and 
ES

ŷt  is of great interest. For (SRS, SRS), the empirical efficiencies of these estimators are shown in 

columns 4 and 5 of Table 7.1. The negative sign indicates loss of efficiency with respect to the HT 

estimator. The efficiency of 
GR

ŷt  approximates closely the efficiency of ˆ ,O

yt  except for the four settings 

specified by 
1 2

2

,x xr = 0, 2r = 0.25, 0.75 and 
2n = 2,000; 1,500; in particular, when 

2n = 2,000 the estimator 
GR

ŷt  is a little less efficient than the estimator .yt  In contrast, the estimator 
ES

ŷt  is less efficient than the 

estimator yt  in six settings, when 
1 2

2

,x xr = 0, 2r = 0.25, 0.75 and 
2n = 2,000; 1,500; 1,000; substantially 

less efficient when 
2n = 2,000; 1,500. The highlig in columns 4 and 5 is that the estimator 

GR

ŷt  is much 

more efficient than the estimator 
ES

ŷt  in all settings, more so for higher values of 
2n  and for the higher 

values of 
2

2 2

,( , );y xr r  this indicates that 
GR

ŷt  is more effective in using information from the complement of 

2s  and in exploiting higher correlations of y  with 
1x  and 

2 .x  The efficiency of the estimator 
HS

ŷt  was 

virtually identical with that of 
ESˆ ,yt  in all three designs, and hence is not reported in Table 7.1. For 

(STRSRS, SRS), the empirical efficiencies of the calibration estimators 
GR

ŷt  and 
ES

ŷt  are shown in 
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columns 8 and 9 of Table 7.1. It should be noted that the correlations within the strata are much weaker 

than the correlations for the whole population (shown in Table 7.1). Also, the HT estimator yt  is highly 

efficient because of the stratification, especially for the larger values of 
2 .n  The estimator GR

ŷt  is less 

efficient than the estimator yt  in 3 of the 24 settings, involving 
2n = 2,000, while for the rest its efficiency 

increases greatly as 
2n  decreases, approaching the efficiency of ˆ .O

yt  The estimator ES

ŷt  is less efficient 

than the estimator yt  in 12 settings. The estimator GR

ŷt  is much more efficient than the estimator ES

ŷt  in all 

settings, more so for higher values of 
2n  and as we move from 2r = 0.25 to 2r = 0.75, and considerably 

more than in the (SRS, SRS) design. 

 

Table 7.1 

Percent efficiency of ˆ ,
B

y
t  ˆ ,

O

y
t  

GRˆ ,
y

t  
ESˆ
y

t  relative to 
y

t  
 

 (SRS, SRS)  (STRSRS, SRS)  (SRS, PPSS) 

2
n  ˆB

y
t  ˆO

y
t  GRˆ

y
t  ESˆ

y
t   ˆB

y
t  ˆO

y
t  GRˆ

y
t  ESˆ

y
t   GRˆ

y
t  ESˆ

y
t  

 2

 = 292.41,  
1 2

2

,x xr = 0.00,  
1

2

,y xr = 0.04,  
2

2

,y xr = 0.21,  2r = 0.25 

2,000 11.54 10.09 -1.66 -26.88  16.74 13.69 -23.49 -79.94  -5.51 -30.38 

1,500 15.00 13.84 10.91 -13.61  20.01 17.80 7.22 -38.46  4.57 -20.69 

1,000 18.41 17.68 17.79 -0.71  22.22 21.20 19.34 -11.76  9.69 -10.22 

500 21.74 20.62 20.77 11.29  23.81 22.34 22.75 7.84  11.24 0.67 

 2

 = 32.15,  
1 2

2

,x xr = 0.00,  
1

2

,y xr = 0.13,  
2

2

,y xr = 0.62,  2r = 0.75 

2,000 34.35 31.21 -4.23 -80.22  52.31 48.02 -66.06 -232.15  -21.68 -107.41 

1,500 44.84 42.34 33.09 -41.49  61.53 59.02 24.66 -108.30  15.95 -74.74 

1,000 55.10 53.80 53.83 -2.25  67.58 65.48 59.17 -30.84  36.49 -39.03 

500 65.16 63.87 63.90 34.31  71.85 70.53 70.41 27.83  45.55 2.00 

 𝜎𝜖
2 =12.11,  2

 = 632.52,  
1 2

2

,x xr = 0.25,  
1

2

,y xr = 0.12,  
2

2

,y xr = 0.24,  2r = 0.25 

2,000 16.70 16.89 16.69 9.88  17.14 15.56 2.08 -23.18  10.24 3.03 

1,500 18.85 19.02 19.52 13.57  20.26 19.45 16.46 -3.21  13.83 7.08 

1,000 20.97 20.79 20.52 16.50  22.38 21.07 21.04 6.84  13.03 8.04 

500 23.04 22.28 21.67 19.64  23.91 22.84 23.41 16.40  11.57 9.38 

 𝜎𝜖
2 =12.11,  2

 = 70.68,  
1 2

2

,x xr = 0.25,  
1

2

,y xr = 0.36,  
2

2

,y xr = 0.71,  2r = 0.75 

2,000 49.70 48.33 46.89 25.33  53.11 50.78 20.11 -38.15  35.49 11.64 

1,500 56.23 55.48 56.46 38.08  61.86 60.63 53.81 8.36  46.33 22.98 

1,000 62.63 62.20 61.35 48.69  67.71 66.38 66.10 34.90  47.91 30.19 

500 68.90 68.09 65.58 59.65  71.90 70.99 71.00 55.27  47.68 38.93 

 𝜎𝜖
2 =1.33,  2

 = 340.40,  
1 2

2

,x xr = 0.75,  
1

2

,y xr = 0.22,  
2

2

,y xr = 0.24,  2r = 0.25 

2,000 23.36 23.67 23.01 10.81  18.09 15.47 -6.07 -46.54  16.62 3.38 

1,500 23.78 23.63 24.19 13.85  20.83 19.60 14.52 -17.17  19.77 7.95 

1,000 24.20 23.83 23.15 16.97  22.68 21.67 21.58 0.86  17.04 10.02 

500 24.61 23.54 22.24 19.92  24.01 22.39 22.98 13.24  14.52 11.77 

 𝜎𝜖
2 =1.33,  2

 = 37.82,  
1 2

2

,x xr = 0.75,  
1

2

,y xr = 0.67,  
2

2

,y xr = 0.72,  2r = 0.75 

2,000 69.84 67.98 65.10 26.96  60.26 56.75 32.34 -27.50  56.65 13.24 

1,500 71.17 69.57 70.70 38.91  66.25 64.49 59.73 14.39  65.49 26.11 

1,000 72.47 71.26 69.17 49.62  70.17 68.80 68.69 40.44  61.00 35.28 

500 73.74 72.19 67.58 60.66  72.94 71.12 71.10 56.90  54.67 44.54 

SRS = Simple random sampling; STRSRS = stratified simple random sampling; PPSS = probability proportional to size systematic. 

 
For (SRS, PPSS), the empirical efficiencies of the calibration estimators 

GR

ŷt  and 
ES

ŷt  are shown in 

columns 10 and 11 of Table 7.1. The pattern of these efficiencies is very similar to that in the (SRS, SRS) 

design. This is particularly so for the efficiency of 
GR

ŷt  relative to 
ESˆ ,yt  which is not included in Table 7.1 
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but can be easily derived using the displayed efficiencies of GR

ŷt  and ES

ŷt  relative to .yt  The HT estimator 

yt  itself is more efficient with this two-phase design, which explains why the efficiency of the two 

calibration estimators GR

ŷt  and ES

ŷt  relative to yt  is somewhat lower than in the (SRS, SRS) and (STRSRS, 

SRS) designs. 

The whole simulation study was repeated with the simulated population for the vector 
1 2( , , )y x x  

generated from a trivariate lognormal distribution with the specified correlation structures. For all three 

designs (SRS, SRS), (SRS, PPSS) and (STRSRS, SRS), the results (not shown here) were very similar to 

those based on the linear model for y  used above. 

It is of interest to consider the setup of auxiliary variables in which the scalar variable 
1x  is augmented 

to 
1(1, ),x  with known totals 

1
( , ).xN t  Then in the (SRS, SRS) design, in which construction of the BLUE 

ˆB

yt  and the optimal estimator ˆO

yt  is feasible, using the complete setup 
1 2(1, , )x x  in calibration gives the 

same ˆB

yt  and practically the same ˆB

yt  as when using 
1 2( , ).x x  It would also convert the regression 

estimator GR

ŷt  to ˆO

yt  (using the same adjustment 
21 k  of 

1Y  as in ˆ ),O

yt  and the regression estimator ES

ŷt  

estimator to the pseudo-optimal estimator 
PSO

ŷt  (defined in Section 6). These properties are derived from 

known theory, see for example Merkouris (2004, 2015), more directly for 
ES

ŷt  and the second regression 

term of GR

ŷt  and the optimal ˆ ,O

yt  irrespective of any specific functional relationship of y  with 
1 2(1, , ).x x  

Then, the three sample-based estimators would show virtually identical empirical behavior. This follows 

from Proposition 1, which gives the condition (satisfied by specific designs, including (SRS, SRS)) under 

which the pseudo-optimal regression estimator PSO

ŷt  is asymptotically equivalent to the proposed optimal 

estimator ˆ .O

yt  Experimental calculations have confirmed this equivalence. In the (STRSRS, SRS) design 

too, using 
1 2(1, , )x x  gives the same ˆB

yt  and ˆO

yt  as when using 
1 2( , ),x x  and converts the 

GR

ŷt  and 
ES

ŷt  

estimators to the ˆO

yt  and 
PSO

ŷt  estimators, respectively. However, by Proposition 1 the equivalence of the 

latter two estimators, and hence of 
GR

ŷt  and 
ESˆ ,yt  does not hold in this sampling design. 

 
8. Discussion 
 

The described method of optimal and regression estimation for two-phase sampling involves a single-

step calibration of the weigs of the combined first-and-second phase samples. Thus, using a single set of 

calibrated weigs that incorporate all the available information from the two phases, a substantially 

improved estimate of the total of a target variable can be obtained, as shown by the simulation study. 

These weigs could be used to calculate other weiged statistics, including means, ratios, quantiles and 

regression coefficients. The framework of the method is general enough to encompass complex designs 

with multiple stages and different stratification at the two phases, as well as various types of auxiliary 

variables known at the population or sample level ‒ ten different cases of auxiliary information are 

identified in Estevao and Särndal (2002). Furthermore, the method may be extended to multi-phase 

sampling designs through the appropriate calibration setup. 
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Estimation of a total for any domain (subpopulation) of interest, ,dU U  can be carried out readily 

using the calibrated weigs and summing the weiged sample values of the variable of interest over .dU  For 

the resulting domain estimator to be optimal linear estimator, the domain estimates of ,yt  
1

xt  and 
2xt  

need to be combined linearly, by carrying out optimal calibration at the domain level with domain 

calibration totals and with the appropriate modification of the matrix .X  A number of calibration options, 

regarding the use of the available auxiliary information at the population, domain and two-phase sample 

levels, could be considered for the most efficient estimation of domain totals in any particular application. 

Related work in Merkouris (2010) would be helpful in this context. 

The estimated approximate variances of the two-phase optimal estimator and the two-phase regression 

estimator, based on Taylor linearization, were given in Sections 4.1 and Section 5, respectively. For the 

two-phase regression estimator, replication methods of variance estimation, such as the jackknife method 

or the bootstrap method, could be alternatively applied, or would be the only option when first-phase or 

second-phase joint inclusion probabilities are not known. There is extensive literature on such replication 

methods for existing regression estimators in two-phase sampling. The single-step calibration feature of 

the proposed regression estimation method may be helpful in this direction; detailed study of this is 

beyond the scope of this paper.  
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Appendix 

 
Proof of Lemma 1 
 

The symmetric matrix *Var( )Uw  has the form of (3.8) but with 
1Cov( , )U Uw w  as off-diagonal block. 

The thkl  element of the matrix 
1Var ( )Uw  is  

 1 1 1 1 1 1 1 1 1 1 1 1 1Cov( , ) [ ( ) ( ) ( )] ( ) .
k lU U k l k l k l kl k l k lw w E I I E I E I       = − = −   

The thkl  element of the matrix Var ( )Uw  is  

 

1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

Cov( , ) = [ ( ) ( ) ( )]

= [ ( ( )) ( ( )) ( ( ))]

= [ ] ,

k lU U k k l l k k l l k k l l

k l k l k k l l k k l l

kl kl k k l l k k l l

w w E I I I I E I I E I I

E I I E I I E I E I E I E I

   

   

         

−

−

−

  

where 
1E  and 

2E  denote expectation under first and second phase of sampling, respectively. Using 

similar arguments it follows that the thkl  element of the matrix 
1Cov( , )U Uw w  is 
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 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1Cov( , ) = [ ( ) ( ) ( )] = ( ) .
k lU U k l l k l l k l l kl k l k lw w E I I I E I E I I        − −   

This shows that 1 1 1Cov( , ) = Cov( , )
k l k lU U U Uw w w w  and thus 

1 1Cov( , ) = Var ( ),U U Uw w w  which completes 

the proof. 

 
Proof of Theorem 1 
 

Matrix *Var( )UΔ w=  is nonsingular if and only if 
1Var ( ) Var ( )U U−w w  is nonsingular. This follows 

from a general result on inverses of partitioned matrices (see Harville, 2008, page 98). But 

1 1Var ( ) Var ( ) = Var ( ),U U U U− −w w w w  because 
1 1Cov( , ) = Var ( ),U U Uw w w  and therefore Var ( )U −w  

1Var ( )Uw  is nonsingular, being a variance-covariance matrix. Next, to find the vector *

Uc  that minimizes 
* * 1 * *( ) ( )U U U U

−− −c w Δ c w  subject to the constraints * ,U U
 =c tXX  consider the function =F  

* * 1 * * *( ) ( )U U U U U U

−  − − −c w Δ c w λ cX  where λ  is a vector of Langrange multipliers. We then get the system 

of equations  

 

1 * *

*

*

= 2 ( ) =

.

U U U

U

U U

−
− −



 − =

F
Δ c w λ 0

c

c t 0X

X

X
  

Multiplying the first equation by ,U
 ΔX  using *

U U
 =c tXX  and solving for λ  gives 

( )1 *= 2( ) .U U U U

− −λ Δ t wXX X X  Inserting this into the first equation and solving for *

Uc  gives 

( )* * 1 *( ) .U U U U U U U

− = + −c w Δ Δ t wXX X X X  

 

Proof of Proposition 1 
 

Clearly, the coefficients of ˆ −x xt t  in (3.14) and (6.2) are identical if 
1 2 .=Δ Δ  Next, using the 

partition 
1 2( , ),U U U=X X X  the coefficient of 

1 1

ˆ−x xt t  in (6.2) is expressed as follows. First we obtain  

 

( )

 
 

1

1 1 2 1 1 2 2 1 1 1

2 2 1 1 2 1 2

2 2 1 2 2 2 2 1 1

2 1 11 1 1 1 12 2 1 1

2 2 21 1 1 1 22 2 1 1

( , )

( ) ( )

( ) ( ) ,

U U U U U U

U U U U U U U U U

U U U U U U

U U U U U U

U U U U U U

A A

A A

−

−      
   =    

     

  = +

  + +

X Δ X X Δ X X Δ X
Y Δ X X Δ X X Δ X Y Δ X X

X Δ X X Δ X X Δ X

Y Δ X X Δ X X Δ X

Y Δ X X Δ X X Δ X

  

where 
11 ,A  

12 ,A  
21 ,A  

22A  are derived by algebra of inverses of partitioned matrices. In particular,  

 1 1

11 1 2 1 12 2 2 1 1 2 1= ( ) ( ) ( )U U U U U UA A− −  −X Δ X X Δ X X Δ X   

and 1

21 22 2 2 1 1 2 1( ) ( ) .U U U UA A − = − X Δ X X Δ X  Then,  

 

1

11 1 1 1 12 2 1 1 1 2 1 1 1 1 12

21 1 1 1 22 2 1 1 22

( ) ( ) ( )

( ) ( ) = ,

U U U U U U U U

U U U U

A A A

A A A

−   + = +

 +

X Δ X X Δ X X Δ X X Δ X B

X Δ X X Δ X B
  

where 
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 1

2 1 1 2 2 1 1 2 1 1 1 1( ) ( ).U U U U U U U U

−   = −B X Δ X X Δ X X Δ X X Δ X   

It is then easy to verify that if 
1 2 ,=Δ Δ  we have 1

1 2 1 1 1 1( )U U U U −  =X Δ X X Δ X I  and .=B 0  It follows 

that ( )
1

2 2 1 1 1 1 ,U U U U U U U U

−
   =Y Δ X X Δ X X Δ X Y Δ X  and thus the coefficients of 

1 1

ˆ−x xt t  in (3.14) and 

(6.2) are also identical. 
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