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Multilevel time series modelling of antenatal care coverage in 

Bangladesh at disaggregated administrative levels 

Sumonkanti Das, Jan van den Brakel, Harm Jan Boonstra and Stephen Haslett1 

Abstract 

Multilevel time series (MTS) models are applied to estimate trends in time series of antenatal care coverage at 

several administrative levels in Bangladesh, based on repeated editions of the Bangladesh Demographic and 

Health Survey (BDHS) within the period 1994-2014. MTS models are expressed in an hierarchical Bayesian 

framework and fitted using Markov Chain Monte Carlo simulations. The models account for varying time 

lags of three or four years between the editions of the BDHS and provide predictions for the intervening years 

as well. It is proposed to apply cross-sectional Fay-Herriot models to the survey years separately at district 

level, which is the most detailed regional level. Time series of these small domain predictions at the district 

level and their variance-covariance matrices are used as input series for the MTS models. Spatial correlations 

among districts, random intercept and slope at the district level, and different trend models at district level and 

higher regional levels are examined in the MTS models to borrow strength over time and space. Trend 

estimates at district level are obtained directly from the model outputs, while trend estimates at higher 

regional and national levels are obtained by aggregation of the district level predictions, resulting in a 

numerically consistent set of trend estimates. 
 

Key Words: Cross-sectional Fay-Herriot model; Hierarchical Bayesian approach; MCMC simulation; Small area 
estimation; Demographic and Health Surveys. 

 

 

1. Introduction 
 

Demographic and Health Surveys have been widely used in over 90 countries for estimating national 

and sub-national level indicators on fertility, family planning, child mortality, child health, maternal 

health, and nutrition of children and women (DHS, 2021). In the sampling design of the Bangladesh 

Demographic and Health Survey (BDHS), administrative units lower than the sub-national level (7 

divisions), such as 64 districts and more than 450 sub-districts (second and third administrative hierarchies 

respectively), are not accounted for. Consequently sample sizes are too small to estimate any indicator 

under division level with standard design-based estimators. Over the time period 1994-2014 seven surveys 

have been conducted, providing time series of direct estimates at the national level and division level on 

aforementioned indicators to monitor progress in declining maternal and neonatal mortality in Bangladesh. 

However, for optimal allocation of resources and policy making, reliable statistical information at the 

more detailed regional level of districts is required. For these regions, small area estimation models are 

developed in this paper. Small area estimation refers to a class of model based estimation procedures that 

improve upon the accuracy of direct domain estimates by increasing the effective sample size in each 

separate domain with sample information observed in other domains or preceding reference period. This is 

often referred to as borrowing strength over space or time, respectively (Rao and Molina, 2015). 
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The BDHS is conducted repeatedly with varying time lags of 3 or 4 years between two consecutive 

surveys. Seven editions for the period of 1994 until 2014 are included in this study. In this paper 

multivariate multilevel time series (MTS) models are developed to produce reliable trend estimates of 

antenatal care (ANC) coverage at district level as well as division and national levels. These models are 

developed in an hierarchical Bayesian framework and fitted using Markov Chain Monte Carlo 

simulations. The advantage of a multivariate time series approach is that it takes advantage of all available 

information by modelling cross-sectional and temporal correlations among districts and reference periods. 

The models are defined at an annual frequency and therefore properly account for the varying time lags of 

3 or 4 years between the subsequent survey occasions. On top of that the MTS models provide predictions 

for the years without survey data. 

Two related response variables are considered in this paper: whether no or at least four antenatal 

consults have been received, abbreviated as ANC0 and ANC4. Direct estimates along with variance 

estimates are calculated from the cross-sectional data of the seven BDHS surveys at the most detailed 

regional level of districts and are used as input for the MTS model. A drawback of this approach is that 

additional auxiliary information, available from two censuses, cannot be included in the MTS models. The 

censuses are conducted with intervals of ten years. This implies that the same values of auxiliary 

information, available from a particular census are used in two or even three subsequent editions of the 

BDHS conducted after this census but preceding the next census. This creates shocks in the MTS 

predictions during periods in which information from a new census becomes available. This problem is 

circumvented by developing the following two-step approach. As a first step, cross-sectional Fay-Herriot 

(FH) models (Fay and Herriot, 1979) are applied to each survey occasion using the direct estimates at the 

district level and their smoothed standard errors. The census auxiliary information is used to improve 

these cross-sectional FH models. In a second step, these cross-sectional FH estimates are used as input in 

the MTS model. Note that the cross-sectional FH predictions for a particular survey year are correlated. 

The MTS models account for this correlation by using the full variance-covariance matrices of the cross-

sectional FH predictions as input for the MTS model. The advantage of this two-step approach is that it 

removes large sampling errors from the direct estimates and stabilizes the input series for the MTS 

models. This relies, however, on the assumption that the input series for the MTS models are not biased 

due to miss-specification of the cross-sectional FH models. To avoid this, a careful model selection and 

evaluation process for the cross-sectional FH models in the first step is required. 

The MTS models borrow strength over time and space in several ways. Cross-sectional relations are 

modelled using fixed effects as well as district-level random intercepts and slopes, either independent or 

correlated. Spatial correlations among districts are also considered. Smooth trends and local level trends at 

district, division and national level are used to model temporal and cross-sectional correlations. Instead of 

defining a full correlation matrix between the trend disturbance terms at the district level, trends are 

defined at the division level, which are shared by all underlying districts. Deviations from this overall 

trend are modelled with trends at the district level. This is a parsimonious way of modelling 
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cross-sectional relations between districts (Boonstra and van den Brakel, 2019). Trend estimates at the 

district level are obtained directly from the model outputs, while trends at division and national levels are 

obtained by aggregation of the district level predictions. The advantage of producing estimates for higher 

aggregation levels by aggregating predictions from the most detailed regional level is that all publication 

tables are numerically consistent by definition. Estimates for districts for the non-surveyed years and 

districts not covered in the surveyed years are also predicted based on the estimated time series models. 

The MTS models developed in this paper are extensions of the FH model. Rao and Yu (1994) extended 

FH model to borrow strength over time by assuming area-specific random effects follow a first-order 

autoregressive AR(1) model over time independently across areas. Datta, Lahiri, Maiti and Lu (1999), and 

You and Rao (2000) generalized a time-series extension of the FH model following Rao and Yu (1994) in 

hierarchical Bayes framework by considering area-specific error terms follow first-order random walk 

model over time instead of AR(1) process. Datta, Lahiri and Maiti (2002) also used a random walk model 

for the time component to estimate median income of four-person families by state using time series and 

cross-sectional data using empirical Bayes estimation method. Marhuenda, Molina and Morales (2013) 

extended Rao and Yu (1994) model to a spatio-temporal version of FH model by incorporating additional 

assumption that area-specific random effects follow a first order simultaneously autoregressive process 

(Pratesi and Salvati, 2008) to include spatial correlation among data from neighboring areas. These 

extensions are very specific to only area-level random effects component. In the spatio-temporal FH 

model considered in this study, random effects can be specified at various disaggregation levels beside the 

target detailed level domains to incorporate spatial, temporal and spatio-temporal correlations among the 

data. In this regard, the considered hierarchical Bayesian model is more flexible than the other extension 

of the FH model. Other relevant accounts of multilevel time-series models and state space models 

extending the FH model to borrow strength over both time and space, include You, Rao and Gambino 

(2003); You (2008); Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006); Bollineni-Balabay, 

van den Brakel, Palm and Boonstra (2017); Boonstra and van den Brakel (2022, 2019) and Boonstra, 

van den Brakel and Das (2021). 

The remainder of this article is organized as follows. In Section 2 the need for reliable low regional 

statistical information to evaluate Sustainable Development Goals related to maternal and neonatal 

mortality in Bangladesh is described. Section 3 briefly describes the data sources and the computation of 

direct estimates and variance estimates from the BDHS survey data, along with transformations of direct 

estimates and the Generalized Variance Function (GVF) approach for smoothing the variance estimates, 

which both improve model fitting. Section 4 describes the hierarchical Bayesian time series multilevel 

modelling framework. The models selected for ANC0 and ANC4 are presented in Section 5, along with a 

brief discussion of the model building process. Section 6 provides a discussion on the trend estimates 

based on the developed models, and some model evaluation results are illustrated in Section 7. The paper 

concludes with a discussion in Section 8. 
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2. Need for reliable regional statistics on maternal and neonatal 

mortality in Bangladesh 
 

Bangladesh has made remarkable progress in reducing the maternal mortality ratio (MMR) and 

neonatal mortality rate (NMR) following the target of Millennium Development Goals 4 and 5. However, 

both the indicators MMR (170 per 100,000 live births (WHO, UNICEF and Others, 2014)) and NMR (28 

per 1,000 live births (NIPORT, 2015a)) are still reasonably high compared to the Sustainable 

Development Goals (SDGs) of reducing MMR to 70 per 100,000 live births and NMR to 12 deaths per 

1,000 live births in Bangladesh (BBS, 2020). Poor utilization of maternal health services such as antenatal 

care (ANC), skilled birth attendance (SBA) at delivery, and postnatal care (PNC) (NIPORT, 2016), is 

considered as one of the major reasons for these high mortality rates. Receiving sufficient ANC during 

pregnancy is important since it also increases usage of SBA and PNC (Mrisho, Obrist, Schellenberg, 

Haws, Mushi, Mshinda, Tanner and Schellenberg, 2009). 

The most recent household survey indicates that the majority of pregnant women (75%) in Bangladesh 

receive ANC from medically trained providers. However, the proportion of women that receive WHO-

recommended 4+  ANC is much less at 37% (BBS and UNICEF, 2019). These data suggest that 

Bangladesh lags behind in reaching the national target of 50% 4+  ANC utilization by the year 2016. To 

address this gap and to meet the target of the third SDG 3 of increasing 4+ ANC coverage to 98% by 2030 

(NIPORT, 2015b), the country needs a comprehensive strategy and specific milestones. National level 

trends of ANC coverage indicate that the proportion of women having no ANC care (ANC0) improved to 

only 17.2% in 2019 from 85% in 1994, while the proportion of women who obtained at least four ANC 

(ANC4) increased to 37% in 2019 from 6% in 1994. The improvement of the indicators over this period 

varies by division. The most marked improvement is observed for the Khulna division where ANC0 and 

ANC4 shifted from about 70% and 5% to about 12% and 40%, respectively. The poorest development has 

been observed in Sylhet division. 

The facilities for ANC services vary considerably within Bangladesh. There are community clinics and 

family welfare centers at the union level (also non-government organisation clinics), upazila health 

complexes at sub-district level and district and tertiary hospitals at district level. Moreover, the access to 

private doctors varies according to the level of urbanization as well as the distance between the 

district/sub-district and the corresponding Metropolitan cities, particularly the capital city Dhaka. This 

inequality in the access to ANC is also explicitly visible at the division level. At disaggregated 

administrative levels such as district and sub-district, it can be expected that inequalities are even larger. 

There are, however, no studies that confirm this hypothesis, mainly because sufficient detailed survey data 

at those levels are not available. Recent evidence from disaggregated level studies on poverty, child 

nutrition and morbidity indicate high levels of inequality at both district and sub-district levels (Haslett 

and Jones, 2004; Haslett, Jones and Isidro, 2014; Das, Kumar and Kawsar, 2020; Hossain, Das and 

Chandra, 2020). 
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3. Data sources and input estimates 

 
3.1 Data sources 
 

Since 1993-94 the BDHS has been conducted under the authority of the National Institute of 

Population Research and Training (NIPORT) of the Ministry of Health and Family Welfare (MOHFW) to 

evaluate existing health and social programs and to design new strategies for improving the health status 

of the country’s women and children. Until 2018, eight BDHS surveys have been conducted: in 1993-94, 

1996-97, 2000, 2004, 2007, 2011, 2014 and 2017-18. In this study, the survey data over the period 1994-

2014 have been used since the district level location of the surveyed clusters is not disclosed in the most 

recent BDHS 2017-18. Over the period of 1994-2014, three Population and Housing Censuses have been 

conducted, in 1991, 2001 and 2011. Full census data are not available, but only 10% of Census 1991 data, 

10% of Census 2001 data and 5% of Census 2011 data are publicly available from IPUMS-International 

(https://international.ipums.org). A number of district-level contextual variables have been generated and 

used in the development of cross-sectional FH models to produce input estimates for the MTS models. 

 
3.2 Direct estimates 
 

The variables analysed in this paper are ANC0 and ANC4. Bangladesh is divided into 7 sub-national 

regions, called divisions. These divisions are further divided into 64 districts, which is the most detailed 

regional level considered in this study. As a first step, estimates and variance estimates of the two target 

variables at the district level are obtained from each survey year’s unit-level data using the standard 

design-based direct survey estimator (hereafter denoted by DIR), where the survey weights are used to 

account for the sampling design and for non-response. 

In this study, reproductive age ever-married women who have given birth within the last three years 

before a survey year are considered as the target population. Since in the census population such 

pregnancy related information is not available, area-specific population size is estimated by the number of 

reproductive age ever-married women available in the three Censuses. This means that even though the 

area-specific sample sizes are based on a census, there is some uncertainty about them, which is ignored in 

the SAE models. See Das, van den Brakel, Boonstra and Haslett (2021) for more details about division 

and district specific population sizes. 

The BDHS uses a two-stage stratified sample of households. The strata are formed from divisions and 

sub-divisions according to their urban-rural characterization. The primary sampling units (PSUs) are the 

enumeration areas of the Population and Housing Census created to have an average of about 120 

households (slightly vary over census). In the first stage, PSUs are selected with probabilities proportional 

to PSU size, i.e., the number of households. In the second stage, a complete household listing is carried 

out in all selected PSUs and then about 30 households are selected from each PSU using systematic 

sampling. The response rates among eligible women have been over 95% in all BDHS years. Though the 

sample size of the ever-married women is greater than 10,000 in all the surveys, in this study only the 
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ever-married women who had a child birth in the three years preceding the survey year are considered, 

and therefore sample sizes are smaller. At the district level, mean sample sizes vary between 60 and 114, 

with some districts having less than 10 or even no observed women. 

Sampling weights are calculated based on selection probabilities. These weights are then adjusted for 

household and individual non-response. The direct estimate for the population proportion in a certain 

domain i  for survey year t  is computed as the sample mean   

 ˆ = ,it
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ijt ijtj s
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where y  is the response variable of interest, its  is the set of ever-married women in domain i  for which y  

is observed in year ,t  and ijtw  is the survey weight for person j  living in area i  in year .t  Note that the 

weights ijtw  are scaled such that the sum over the weights in the sample is equal to the net sample size. 

The corresponding variance estimates are approximated as   
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where itn  is the number of ever-married women observed in domain i  at the survey year .t  Initially, the 

variance was approximated by calculating the variance among the estimated PSU totals as if they were 

selected by using stratified sampling with replacement, known as the ultimate sampling unit variance 

approximation. This resulted in zero variance estimates for a few domains. Variance approximation (3.2) 

avoids these zero variance estimates, and otherwise results in variance estimates comparable with the 

initial approximation where PSUs were assumed to be selected with replacement. In the first MTS model, 

denoted by MTS-I, these direct estimates are used as the input series. 

 
3.3 Cross-sectional Fay-Herriot estimates 
 

An issue with the MTS-I model is the use of census data as auxiliary variables in the MTS model. 

Because the time gap between two subsequent censuses is 10 years whereas the BDHS is conducted every 

3 or 4 years, the census covariates remain the same until the new census data are available. Including these 

census data as covariates in the MTS-I models will bias estimates of trends and period-to-period changes. 

One way to take advantage of the census information is to model the direct estimates at the district level in 

separate cross-sectional FH models using relevant contextual variables extracted from the census data. It is 

also expected that the use of on-time available census auxiliary variables in repetitive cross-sectional FH 

models may affect regression coefficients and the accuracy of model predictions of the dependent 

variable, but not the predictions of the dependent variable itself. Compared to the direct estimates used in 

MTS-I, these cross-sectional FH models also provide better estimates by already borrowing some strength 

over districts. 
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The cross-sectional FH estimates and their standard errors are used as input for a second model, 

denoted by MTS-II. The cross-sectional FH estimates are correlated due to their common fixed effect 

components, which is ignored in MTS-II. Therefore a third MTS model, denoted by MTS-III, is developed 

using cross-sectional FH estimates and their full covariance matrix as input. 

The fixed and random effect components for the survey-specific cross-sectional FH models are shown 

in Appendix Tables A.2 and A.3. For all the models, random effects are assumed to follow a normal 

distribution. Non-normal models have been considered for the random effects (Laplace and horseshoe) 

and the sampling error (t-distribution) as alternatives for the normal distribution. This, however, did not 

improve the model fit. 

 
3.4 Generalized variance functions 
 

In the FH and MTS models, the variance estimates of the direct estimates are largely treated as fixed 

given quantities. Since these variance estimates can be very noisy, they are smoothed using a GVF before 

using them in the FH and MTS models. It is understood that a district without sample information is 

considered as missing and is therefore not considered in the model development approach. The cross-

sectional FH model can produce estimates and standard errors for these out-of-sample domains. These 

synthetic estimates are, however, not used in the development of the MTS-II and MTS-III models to allow 

for a better comparison with the MTS-I model. 

The GVFs are regression models that relate the variance estimates to predictors such as sample size, 

survey design variables, and point estimates (Wolter (2007), Chapter 7). For both ANC0 and ANC4, the 

following GVF is used:   

 ˆlogse( ) = log log( 1) Divisionit it itY Y m   + + + + +∈𝑖𝑡 , (3.3) 

where ˆse( )itY  is the standard error of ˆ
itY  in (3.1), itm  the number of sampling units contributing to district 

i  in year t  and Division  is a categorical variable with 7 levels. Since we cannot trust the direct estimates 

for very small ,itm  the 
itY  on the right hand side of (3.3) are simple smoothed estimates   
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where 
[ ]d i tY  denotes the mean for division ( 1d d =  to 7) to which district i  belongs, in year .t  As 

mentioned by a referee, a composite regression estimator can be used as an alternative for (3.4). 

The regression errors ∈𝑖𝑡 , are assumed to be independent and normally distributed with a common 

variance parameter 2.  The GVFs are fitted only to districts with non-zero standard errors of the direct 

estimates. The predicted (smoothed) standard errors based on the fitted models are   

 ( )2

pred
ˆ ˆˆ ˆ ˆ ˆse ( ) = exp log log( 1) Division 2 ,it it itY Y m    + + + + +  (3.5) 
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where ̂  is 0.03 for ANC0 and 0.003 for ANC4, respectively. The R-squared values for both models are 

quite high 0.79 for ANC0 and 0.99 for ANC4. Note that the exponential back-transformation in (3.5) 

includes a bias correction, which in this case has only a small effect. This approach is used to get 

smoothed standard errors for the cross-sectional FH models and MTS-I model. 

 
3.5 Transformations of input series 
 

Square root, log and log-ratio transformation are considered as a variance stabilizing transformation, 

see Sakia (1992). The square root transformation is applied to ANC4 data (the MTS models and the cross-

sectional FH models) since this transformation reduces the correlation between point estimates and their 

standard errors of the input series, reduces heterogeneity, improves the convergence of the MCMC 

simulation, and reduces the skewness of proportion data if they take values close to the lower boundary of 

zero. For ANC0, the square root transformation is only used for the year specific cross-sectional FH 

models in 2011 and 2014 only. In the other years, no transformation is applied. In all three MTS models, 

no transformation is applied for ANC0 since the square root transformation for the input series increases 

the dependency between direct estimates and standard errors. 

Let ˆ ˆ= ( )it itY +Y  denote the square root transformed direct estimates, where   is a small number 

(0.005), necessary because for some districts direct estimates equal zero. Using a first order Taylor 

approximation it can be shown that ( )ˆ ˆ ˆse( ) se( ) 2 .it it itY Y  +Y  

If the GVF (3.3) is applied to the standard errors of the untransformed direct estimates, then the 

standard errors for domains with a very small number of sampling units can become unreasonably large 

due to the linearisation approximation. This issue is avoided by applying the GVF to the standard errors of 

the transformed estimates, i.e., ˆse( ).itY  

 
4. Time series multilevel modelling 
 

In this study, direct estimates and their standard errors are available for the survey years 1994, 1997, 

2000, 2004, 2007, 2011 and 2014. To account for the varying time-lags of 3 or 4 years between the 

subsequent survey years, the MTS models are defined at an annual frequency, (i.e., values refer to a 

reference period of one year) at the most detailed regional level of the 64 districts. With a time span of 21 

years, there are 1,344 domain-year combinations. With seven available survey years, the model is fitted to 

the 448 domain-year observations. The years between two subsequent surveys are defined as missing in 

the model. In this way the period-to-period evolution of the trend is specified correctly and the model 

provides predictions for the missing domain-year combinations. 

For convenience let us now denote by ˆ
itY  the input series for the time series models for either ANC0 or 

ANC4 in year t  and domain .i  This can be the untransformed direct estimates, the square root 

transformed direct estimates or the model predictions obtained with the cross-sectional FH models. Here 
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domain index i  runs from 1 to = 64dM  and time index t  from 1 to = 21.T  We further combine these 

estimates into a vector 11 1 1
ˆ ˆ ˆ ˆ ˆ( , , , ) ,

d dM T M TY Y Y Y Y =  a vector of dimension = .dM M T  

 
4.1 Model structure 
 

The multilevel models considered take the general linear additive form   

 ( ) ( )ˆ ,Y X Z v e 



= + +  (4.1) 

where X  is a M p  design matrix for a p -vector of fixed effects ,  and the ( )Z   are ( )M q   design 

matrices for ( )q  -dimensional random effect vectors ( ).v   Here the sum over   runs over several possible 

random effect terms at different levels, such as local level and smooth trends at district and division levels, 

white noise at the most detailed level of the M  domains, etc. This is explained in more detail below. In 

formula (4.1) 11 1( , , , )
d dM M Te e e e =  denotes, depending on the input series, the sampling errors of the 

direct estimates or the prediction errors of the cross-sectional FH model. The errors are taken to be 

normally distributed as ~ (0, )e N   where 
=1 .T

t t =   If the input series are the untransformed direct 

estimates, then t  is the covariance matrix for the untransformed direct estimates observed in year .t  If 

the input series are transformed, then t  is the covariance matrix for the transformed direct estimates, as 

described in Subsection 3.5. If the input series are the predictions based on the cross-sectional FH models, 

then t  contains the estimated mean squared errors of the FH predictions. Under MTS-II, t  is diagonal 

and ignores the correlations between the domain predictions. Under MTS-III, t  is a full covariance 

matrix that also accommodates the correlations between domain predictions. 

Based on the distribution of the sampling errors e  in (4.1), the likelihood function conditional on fixed 

and random effects parameters can be defined as   

 ( ) ( )ˆ ˆ, , ,p Y N Y  =   (4.2) 

where ( ) ( )X Z v 


 = +  is the linear predictor. For the errors e  a Student-t distribution instead of the 

normal distribution can be considered to give smaller weight to more outlying observations, following 

West (1984). 

The fixed effect part of   can contain components like an intercept, a linear trend, main effects for 

division and district and possibly the second-order interactions for linear trends and division or district. 

The vector   of fixed effects is assigned a normal prior ( ) (0,100 ),pp N I =  with xI  the identity matrix 

of dimension .x x  This is only very weakly informative as a standard error of 10 is very large relative to 

the scales of the (transformed) direct estimates and the covariates used. 

The second term on the right hand side of (4.1) consists of a sum of contributions to the linear 

predictor by random effects or varying coefficient terms. The random effect vectors ( )v   for different   

are assumed to be independent, but the components within a vector ( )v   are possibly correlated to 
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accommodate temporal or cross-sectional correlation. To describe the general model for each vector ( )v   

of random effects, we suppress superscript   in what follows for notational convenience. 

Each random effects vector v  is assumed to be distributed as   

 ~ (0, ),v N A V  (4.3) 

where V  and A  are d d  and l l  covariance matrices, respectively, and A V  denotes the Kronecker 

product of A  with .V  The total length of v  is ,q dl=  and these coefficients may be thought of as 

corresponding to d  effects allowed to vary over l  levels of a factor variable. If, e.g., V  corresponds to 

division, then V  defines 7d =  different random effects that correspond to the 7 categories of division. If 

subsequently A  corresponds to time, then = 21l  years. In that case each of the 7 effects can vary over its 

21 levels (years in this case). Each random effect generated for a division   year combination is shared by 

all districts belonging to that division in that particular year. 

The covariance matrix A  describes the covariance structure among the levels of the factor variable, 

and is assumed to be known. Instead of covariance matrices, precision matrices 1

AQ A−=  are actually 

used, because of computational efficiency (Rue and Held, 2005). The covariance matrix V  for the d  

varying effects can be parameterized in one of three different ways: (i) a full parameterized covariance 

matrix, (ii) a diagonal matrix with unequal diagonal elements, and (iii) a diagonal matrix with equal 

diagonal elements. The scaled-inverse Wishart prior is used as proposed in O’Malley and Zaslavsky 

(2008) and recommended by Gelman and Hill (2007) when a full covariance matrix is assumed, while 

half-Cauchy priors are used for the standard deviations when the covariance matrix is assumed diagonal 

with equal or unequal elements. In case of diagonal variances, half-Cauchy priors are better default priors 

than the more common inverse gamma priors (Gelman, 2006). 

The following random effect structures are considered in the model selection procedure:   

1. Random intercepts for the dM  domains. In this case =
dMA I  and V  is a scalar variance 

parameter. This implies ,it iv t=   and 2~ (0, ).i IN   

2. First or second order random walks at different aggregation levels. A first order random walk or 

local level trend at district level is defined as it itv L=  with , 1it i t itL L −= +  and 2

1,~ (0, ).it R iN   

A second order random walk or smooth trend model at district level is defined as it itv L=  with 

, 1 , 1,it i t i tL L R− −= +  , 1it i t itR R −= +  and 2

2,~ (0, ).it R iN   Both kind of trends can be defined 

similarly at the division or national level. See Rue and Held (2005) for the specification of the 

precision matrix AQ  for first and second order random walks. A full covariance matrix for the 

trend innovations can be considered to allow for cross-sectional besides temporal correlations, 

or a diagonal matrix with different or equal variance parameters to allow for temporal 

correlations only. In the case of equal variances, 2 2

1, 1R i R =  and 2 2

2, 2 , .R i R i =   First and 

second order random walk components at district level are denoted below by RW1_District  

and RW2_District  respectively. At division level they are denoted by RW1_Division  and 

RW2_Division.  



Survey Methodology, December 2022 411 
 

 
Statistics Canada, Catalogue No. 12-001-X 

3. The first order random walks as used in our models cannot capture an overall level as the 

corresponding random effects are constrained to sum to zero over time. Similarly, the second 

order random walks cannot capture both level and linear trend. This means that level and linear 

trend must be accommodated by other model terms, as either fixed or random effects. District-

level intercepts have already been discussed under item 1. To also include linear trends by 

district, this component can be extended to random intercepts and slopes linear in time. In that 

case V  can be either a 2 2  general covariance matrix  

           
2

2
= ,I IS I S

IS I S S

V
   

   

 
 
 

  

accounting for correlations between intercepts and slopes, or a diagonal matrix with diagonal 

elements 2

I  and 2

S  the variances of the radom intercept and slopes respectively. This model 

component is referred to as RIS_District  below.  

4. Spatial random effects: random intercepts varying over the spatial location of districts following 

an intrinsic conditional autoregressive (ICAR) model (Besag and Kooperberg, 1995), defined as 

( )2

( )~ ( ) ,i i i nb i i i Sp iv v N v a a −   for each spatial effect conditional on the others. Here 

( )nb i  is the set of domains neighbouring domain i  and ia  the number of domains neighbouring 

domain i . See Rue and Held (2005) for the specification of the precision matrix .AQ  This 

spatial component is referred to later as Spatial_District. 

5. White noise: to allow for random unexplained variation, white noise at the most detailed 

domain-by-year level can be included. In this case MA I=  and V  a scalar variance parameter. 

This implies 2~ (0, ).it WN   

 

We also investigated generalisations of (4.3) to non-normal distributions of random effects by 

implementing Student-t, horseshoe prior (Carvalho, Polson and Scott, 2010) and Laplace (Tibshirani, 

1996; Park and Casella, 2008). These alternative distributions have fatter tails allowing for occasional 

large effects. However, these distributions did not improve results for the considered target variables in 

terms of model information criteria as well as the underlying trend predictions. Therefore the normal 

distribution is used for all random effect components. The exact lay out of the final MTS models for 

ANC0 and ANC4 are specified in Subsections 5.1 and 5.2 respectively. 

 

4.2 Model estimation 
 

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs 

sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). See Boonstra and van den Brakel (2022) 

for a specification of the full conditional distributions. The models specified in Subsection 4.1 are run in R 

(R Core Team, 2015) using package mcmcsae (Boonstra, 2021). The Gibbs sampler is run in parallel for 

three independent chains with randomly generated starting values. In the model building stage 1,000 

iterations are used, in addition to a “burn-in” period of 100 iterations. This was sufficient for reasonably 
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stable Monte Carlo estimates of the model parameters and trend predictions. For the selected model we 

use a longer run of 1,000 burn-in plus 5,000 iterations of which the draws of every fifth iteration are 

stored. This leaves 3  1,000 = 3,000 draws to compute estimates and standard errors. The convergence of 

the MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin 

potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the chains. For 

the longer simulation of the selected model all model parameters and model predictions have potential 

scale reduction factors below 1.01 and sufficient effective numbers of independent draws. 

Many models of the form (4.1) have been fitted to the data. For the comparison of models using the 

same input data we use the Widely Applicable Information Criterion or Watanabe-Akaike Information 

Criterion (WAIC) (Watanabe, 2010, 2013) and the Deviance Information Criterion (DIC) (Spiegelhalter, 

Best, Carlin and van der Linde, 2002). We also compare the models graphically by their model fits and 

trend predictions at three aggregation levels. 

 
5. Selected models and model prediction 
 

5.1 MTS model for ANC0 
 

No transformation for the input series of the direct estimates or the FH estimates is considered. The 

following fixed effect components are included in the selected models for MTS-I, MTS-II, and MTS-III: 

 1 Division . Division * . ,yr c yr c+ + +  (5.1) 

where .yr c  denotes the standardized quantitative year variable, which defines a fixed effect linear trend. 

Similarly Division * .yr c  defines a fixed effect linear trend for each separate division. The random effects 

part of the three models is shown in Table 5.1. If multiple varying effects are modeled, then there is a 

choice between scalar, diagonal or full covariance matrix V  in (4.3). For variation over time, second order 

random walks RW2_Division  and RW2_District  were finally selected. White noise components are 

considered but not included in the final model since it did not further improve the model fit.   

 
Table 5.1 

Summary of the random effect components for the selected time series multilevel model for ANC0. The second 

and third columns refer to the varying effects with covariance matrix V  in (4.3), whereas the fourth column 

refers to the factor variable associated with A  in (4.3). The last column contains the total number of random 

effects for each component 
 

Model Component Formula V Variance Structure Factor A # of Effects 

RIS_District  1 .yr c+  full District 128 

RW2_Division  Division scalar RW2(yr) 147 

RW2_District  District scalar RW2(yr) 1,344 

Spatial_District  1 scalar Spatial(District) 64 
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The linear predictor of the selected model can be written, element-wise for district i  and year ,t  as 

 ( ) ( )

[ ] ,yr div

it it i t i it j i t ix z u u s   = + + + + +  (5.2) 

where   is the vector of fixed effects corresponding to the covariates itx  as specified in (5.1), i  are 

random intercepts varying by district, tz  denotes the .yr c  variable for year ,t  and ( )yr

i  are the 

corresponding random slopes varying by district. These random intercepts and slopes are jointly 

distributed as   

 

2
iid

( ) 2

0
~ , .

0

i I I S

yr

i I S S

N
   

   

     
      
     

 (5.3) 

The second-order random walk effects at district and division level are distributed as   

 
( )

iid 2

( 1) ( 2) 2

iid( ) ( ) ( ) ( ) 2

[ ] [ ]( 1) [ ]( 2) 2

~2 (0, )

~2 0, ( ) ,

it i t i t R

div div div div

j i t j i t j i t R

u u u N

u u u N





− −

− −

− +

− +
 (5.4) 

where [ ]j i  should be read as division j  to which district i  belongs. Finally, the spatial effects is  are 

distributed as   

 
ind 2

( )

1 1
~ , ,i i i i Sp

i nb ii i

s s N s
a a

 


 
 
 

  (5.5) 

where ia  is the size of the set ( )nb i  of neighbouring districts of district .i  Priors for the covariance matrix 

in (5.3) and the other variance parameters are chosen as described in Section 4.1. For identifiability of the 

model components, the following constraints are imposed:   

 

=1 =1

( ) ( )

[ ] [ ]

=1 =1

=1

= 0 and = 0 for all districts ,

= 0 and = 0 for all divisions ,

= 0.
d

T T

it it

t t

T T
div div

j i t j i t

t t

M

i

i

u tu i

u tu j

s

 

 



 (5.6) 

Note that RW2 trends are specified at division and district levels, both with a scalar variance structure. A 

division level trend is shared by all underlying districts. Deviations of each district from this division-level 

trend is modeled with RW2 trends at district level. This is a parsimonious alternative to borrow strength 

over time and space, compared to modelling RW2 trends at the district level only with a full covariance 

matrix (Boonstra and van den Brakel, 2019). 

 
5.2 MTS model for ANC4 
 

The square-root transformation is applied to the input series of the direct and FH estimates of ANC4 

for models MTS-I, MTS-II, and MTS-III. For MTS-I the GVF (3.3) is applied to the transformed standard 
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errors to obtain the variance matrix ,  as explained at the end of Subsection 3.5. For the fixed effect 

component a factor variable called “Region” has been created based on the degree of urbanization 

following Rahman, Mohiuddin, Kafy, Sheel and Di (2019). The variable has four levels; 1 for three big 

cities Dhaka, Chittagong and Gazipur, 2 for other nine regional big cities (Barisal, Bogra, Comilla, 

Khulna, Mymensing, Narayanganj, Rajshahi, Rangpur, Sylhet), 3 for three hilly districts (Bandarban, 

Khagrachhari and Rangamati) and 4 for the remaining districts. This variable mainly helped to adjust the 

estimates for the three hilly districts which have very few (even no) information in the considered seven 

surveys. The final model has the following fixed effects components:   

 1 Division . Region.yr c+ + +  (5.7) 

The interaction between “Division” and “yr.c” (like in the ANC0 model) was found to be insignificant in 

the ANC4 model. The random effect components for ANC4 model shown in Table 5.2 are very similar to 

those used for the model of ANC0 (shown in Table 5.1). A local level trend instead of smooth trend at 

division level (RW1_Division in Table 5.2) has been considered since the smooth trend component 

(RW2_Division, as in Table 5.1) resulted in some bias in the national and divisional trends. Also, the 

model with RW1_Division component gives better scores for the information criteria compared to the 

model with RW2_Division component. White noise components are considered but not included in the 

final model since it did not further improve the model fit. 

 

Table 5.2 

Summary of the random effect components for the selected multilevel time series model for ANC4. The second 

and third columns refer to the varying effects with covariance matrix V  in (4.3), whereas the fourth column 

refers to the factor variable associated with A  in (4.3). The last column contains the total number of random 

effects for each term 
 

Model Component Formula V Variance Structure Factor A # of Effects 

RIS_District  1 .yr c+  full District 128 

RW1_Division  Division scalar RW1(yr) 147 

RW2_District  District scalar RW2(yr) 1,344 

Spatial_District  1 scalar Spatial(District) 64 

 
Alternatively, the model can be expressed as in (5.2), where now   and itx  correspond to the fixed 

effects specification (5.7). The only other difference is that the division-level trends are now modelled as a 

first-order random walk: 

 ( )iid ( ) 2

[ ] [ ]( 1) 1
~ 0, ( ) ,div

j i t j i t Ru u N −−  (5.8) 

where for identifiability reasons the constraint ( )

=1
= 0

T div

jtt
u  is imposed for all division .j  As in the case 

of ANC0, RW1 trends are specified at division and RW2 trends at the district levels, both with a scalar 

variance structure as a parsimonious way to borrow strength over time and space. 
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5.3 Trend estimation 
 

Trend estimates are computed based on the MCMC simulation results. In a first step, for each MCMC 

replicate, an M -dimensional vector containing predictions at the most detailed level of all year-district 

combinations is computed as   

 ( ) ( ) ( ) ( , )= ,r r rX Z v 



  +   (5.9) 

where superscript ( )r  indexes the retained MCMC draws. Note that ( )r  also includes predictions for the 

years without survey observations. Since a square root transformation was applied to the ANC4 series, 

initially the following back-transformation for the vectors ( )r  was considered following Boonstra et al. 

(2021): 

 ( )
2

( ) ( ) 2 ˆ= ( ) se( ) .r r

it  + Y  (5.10) 

The second term on the right hand side is a (relatively small) bias correction using the transformed and 

smoothed standard errors. The bias correction stems from the fact that the design expectation of the direct 

estimates can be written as   

 ( ) ( )2 2 2ˆˆ( ) = ( ) = ( ) = var ( ),E Y E E  + +Y E E   

where E  is the vector of sampling errors after transformation, assumed to be normally distributed with 

standard errors ˆse( ).itY  A difficulty with the data at hand is that the bias correction can only be applied to 

the survey years, since standard errors are only available for those years. Applying the bias correction only 

for the survey years distorts the trend estimates, as illustrated in Das, van den Brakel, Boonstra and Haslett 

(2021). In case of MTS-I model, the impact of this bias correction is most clear for those domains with 

zero direct estimates particularly for Chittagong hilly districts. The impact of the bias correction is less in 

case of MTS-II and MTS-III models since the estimated standard errors of the FH estimates are already 

smoothed enough and consistent. However, at national and division levels this bias correction causes some 

overestimation in some survey years for all the trends based on the MTS models. Therefore, the bias 

correction for the square root transformation is not applied in the trend estimates but only used in the 

calculation of cross-sectional FH estimates. 

Trend estimates with their standard errors at the most detailed level of districts for all years are 

obtained by taking the mean and the standard deviation over the MCMC replications ( ) ,r  respectively. 

Trends at the divisional and national levels are obtained by aggregating each MCMC replication from the 

most detailed regional level of districts, using the number of ever-married women as a weighting variable. 

Subsequently, trend estimates and their standard errors are obtained by taking the mean and the standard 

deviation over these aggregated MCMC replications. 

 
6. Results 
 

The trends of ANC0 and ANC4 shown in the figures consist of five types of estimates with their 

approximate 95% confidence intervals: (i) weighted direct estimates (DIR) at the surveyed year (black 
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error-bar line), (ii) cross-sectional FH estimates at the surveyed year (green error-bar line), (iii) estimates 

based on MTS-I model (red line), (iv) estimates based on MTS-II (green line) and (v) estimates based on 

MTS-III model (blue line). 

 

6.1 ANC0 
 

The national level trends of ANC0 are shown in Figure 6.1. The figure shows that the DIR and cross-

sectional FH estimates are very similar at the survey years with approximately equal 95% CI. This can be 

expected for figures at the national level, since the gain in precision obtained with a small area prediction 

model with respect to a direct estimator becomes smaller as the sample size increases. During the initial 

period 1994-2000, the national level trend based on the MTS-I model follows the DIR and cross-sectional 

FH estimates, while the trends based on MTS-II and MTS-III models are slightly higher. For the period 

2004-2010, the trend based on MTS-I model is slightly higher than the trends based on MTS-II and MTS-

III models. The differences are, however, very small. 

The trends at division level, shown in Figure 6.2, indicate that the trends under MTS-I are very similar 

to those based on MTS-II and MTS-III models with some small exceptions in Dhaka, Khulna and 

Rajshahi divisions. The differences in Dhaka and Khulna division may cause most of the differences in 

the national level trends. 

The trends based on the MTS-II and MTS-III models are almost identical at national and division 

levels. This is supported by the estimated variance components of the division-level smooth-trend random 

component under the developed two models ( )

2
ˆ( :div

R  about 0.020) given in Table 6.1. However, there are 

more substantial differences in the trends under MTS-II and MTS-III at the district level, see Figures 6.3 

and 6.4. See Das, van den Brakel, Boonstra and Haslett (2021) for plots for all districts. The trends based 

on the MTS-III model are smoother than those based on the MTS-II model, which is a result of the smaller 

values of the estimated variance component 2
ˆ

R  under MTS-III (see Table 6.1). 

 

Table 6.1 

Posterior means of standard deviation parameters of random components of MTS-I, MTS-II, MTS-III models 

for ANC0. No superscript refers to district level, superscripts (div) refers to division level 
 

Model ˆ (SE)
I

  ˆ (SE)
S

  ˆ (SE)
IS

  ˆ (SE)
Sp

  
( )

2
ˆ (SE)

div

R
  

2
ˆ (SE)

R
  

MTS-I 0.083 (0.013) 0.054 (0.007) 0.168 (0.171) 0.068 (0.032) 0.019 (0.003) 0.024 (0.002) 

MTS-II 0.069 (0.012) 0.033 (0.004) 0.254 (0.180) 0.071 (0.028) 0.020 (0.003) 0.013 (0.002) 

MTS-III 0.062 (0.013) 0.027 (0.013) 0.227 (0.201) 0.067 (0.030) 0.020 (0.003) 0.009 (0.001) 

 
The trends at the district level have a tendency to follow the pattern of their respective division level 

trend shown in Figure 6.2. This is particularly the case for domains with a relatively small number of 

observations such as districts Bandarban, Khagrachnari and Rangamati in Figure 6.3 that belong to 

Chittagong division in Figure 6.2. To reduce this tendency, an MTS model was developed by removing 

smooth trend component RW2_Division  at division level in Table 5.1. This, however, resulted in highly 

smooth unrealistic trends at the national and divisional levels. In a similar way, to examine the need for a 
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spatial component, MTS models were developed with and without considering the spatial component 

(Spatial_District  in Table 5.1). It is observed that the spatial component makes the estimates more 

plausible for those districts with small or zero sample sizes. See for example the trends of Bandarban and 

Rangamati districts of Chittagong division. 

The MTS-I model shows upward trends for some districts during the period of 1994-2000. These 

developments are unplausible from a subject matter point of view and are nicely corrected by the MTS-II 

and MTS-III models that use the FH estimates as input series. See for example Noakhali, Bandarban, 

Rangamati, Narayanganj, Rajbari, and Narail districts in Figure 6.3. Some districts have volatile trends 

according to the DIR estimates and MTS-I model during the whole period mainly due to variation in the 

sample size. See for example, Bandarban, Bhola, Khagrachhari, Kishoreganj and Rangamati in 

Figure 6.3, Chapai Nababganj, Feni, Jhalokati, Joypurhat, and Pabna districts in Figure 6.4. From a 

subject matter point of view a smooth decreasing trend for ANC0 coverage is expected. In particular the 

turning points that are visible in several districts arround 2007 and 2011 are not expected. The trends 

based on the MTS-II and MTS-III models ignore most of these volatilities and show reasonable smooth 

trends for these districts and are therefore more realistic compared to MTS-I. Nevertheless, the fits of all 

three models are compatible with the observed data. MTS-II appears to be a nice compromise between 

models I and III. 

 
Figure 6.1 National level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional 

FH (green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue 

line). 
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Figure 6.2 Division level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Figure 6.3 District level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Figure 6.4 District level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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In most cases models MTS-II and MTS-III behave similarly. However, model MTS-III, which 

accounts for correlation among the cross-sectional FH estimates, overestimates ANC0 for some districts 

(such as Chapai Nababganj, Lalmonirhat and Shariatpur districts in Figure 6.4) and also slightly 

underestimate the trend in some districts (such as Khagrachari, Rangamati, and Shirajganj districts in 

Figure 6.3) compared to the cross-sectional FH estimates. Again MTS-II seeks a compromise between 

smooth trends under MTS-III and more volatile trends under MTS-I in most of the districts and appears to 

be the preferred model for estimating trends of ANC0. 

 

6.2 ANC4  
 

The national level trend of ANC4 shown in Figure 6.5 shows a linear upward increase from 6% in 

1994 to about 31% in 2014. Like ANC0, the DIR and cross-sectional FH estimates of ANC4 are very 

similar at the survey years with approximately equal 95% CI. Trends estimated from the MTS-I (red line), 

MTS-II (green line) and MTS-III (blue line) show very similar patterns. Compared to the DIR and cross-

sectional FH estimates, the trend of MTS-I is slightly lower in 2007 and 2014. Trends under MTS-II and 

MTS-III in survey year 2011 are somewhat larger compared to the DIR and cross-sectional FH estimates. 

The trends at division level are shown in Figure 6.6. The three MTS models give very similar trend 

estimates. Some differences occur in Chittagong, Dhaka and Rangpur divisions. With MTS-I the trend is 

slightly higher compared to the DIR and FH estimates for Rangpur division over the 1994-2000 period. 

For MTS-II and MTS-III, the trend is somewhat higher in Rajshahi division during 2011-2014 period 

compared to the DIR and FH estimates. All three MTS models show slightly bow-shaped 95% CI bands in 

between two subsequent survey years, which indicates slightly higher uncertainty during the non-survey 

years compared to the survey years. 

 

Figure 6.5 National level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional 

FH (green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue 

line). 
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Figure 6.6 Division level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Although the trends based on MTS-II and MTS-III are almost identical at national and division levels, 

the estimated variance components of both model differ considerably as follows from Table 6.2. These 

differences lead to substantial differences in the trend estimates at the district level for MTS-II and MTS-

III. Plots for some of the districts are provided in Figures 6.7 and 6.8. See Das, van den Brakel, Boonstra 

and Haslett (2021) for plots of all districts. Similar to ANC0, the trends of ANC4 under MTS-III are 

smoother than those under MTS-II. The smaller variance components of MTS-III also result in narrower 

confidence bands compared to MTS-II. 
 

Table 6.2 

Posterior means of standard deviation parameters of random components of MTS-I, MTS-II, MTS-III models 

for ANC4. No superscript refers to district level, superscripts (div) refers to division level 
 

Model ˆ (SE)
I

  ˆ (SE)
S

  ˆ (SE)
IS

  ˆ (SE)
Sp

  
( )

1
ˆ (SE)

div

R
  

2
ˆ (SE)

R
  

MTS-I 0.060 (0.010) 0.033 (0.005) 0.428 (0.178) 0.047 (0.026) 0.012 (0.004) 0.009 (0.001) 

MTS-II 0.046 (0.007) 0.022 (0.003) 0.501 (0.162) 0.035 (0.018) 0.016 (0.003) 0.004 (0.001) 

MTS-III 0.038 (0.006) 0.018 (0.006) 0.522 (0.165) 0.027 (0.016) 0.014 (0.003) 0.002 (0.001) 

 

The trend estimates under MTS-I are volatile and show unexpected downward trends for some 

districts, see for example Bhola and Pirojpur districts of Barisal division, Gazipur, Kishoreganj and 

Manikganj of Dhaka division, Bogra, Chapai Nababganj and Rajshahi districts of Rajshahi division, and 

Habiganj district of Sylhet division in Figure 6.7. From a subject matter point of view, such strong 

movements and turning points are not expected for ANC4 coverage. Therefore it appears that MTS-I 

follows the DIR estimates too strongly. The trends under MTS-II generally ignore these volatilities and 

show reasonably smooth trends for these districts. The trends under MTS-III are even smoother for some 

of these districts, as for example Bogra and Habiganj districts in Figure 6.7, and Mymensingh and Sylhet 

districts in Figure 6.8. 

The main difficulty arises for the three hilly districts of Chittagong division, i.e., Khagrachhari, 

Rangamati, and Lakshmipur (the first two districts are plotted in Figure 6.8). MTS-I shows very poor 

trend estimates for ANC4 over the whole period mainly due to the erratic DIR estimates, which are either 

zero or highly inconsistent in most of the surveys. The cross-sectional FH estimates are more robust and 

consequently MTS-II and MTS-III show reasonable upward trends for ANC4. It is expected that women 

residing in urbanized and better socioeconomic areas are supposed to receive more ANC visits compared 

to those residing in rural and poor socioeconomic areas. MTS-I shows in some districts lower and in other 

districts higher than expected trend estimates over the whole time period. For example, the trend obtained 

with MTS-I for Narsingdi in Figure 6.8, which is a highly urbanized district of Dhaka division, is lower 

than expected. Similarly the trend under MTS-I Munshiganj in Figure 6.8, which is a less urbanized 

district of Dhaka is higher than expected. Similarly the trend estimates under MTS-I are over the whole 

period higher than expected in Meherpur district of Khulna division, Lalmonirhat and Panchagarh 

districts of Rangpur division. The trend estimates under MTS-II and MTS-III seem more plausible 

because the cross-sectional FH estimates appear to be more realistic than the DIR estimates. Overall, as in 

the case of ANC0, MTS-II is a good compromise between MTS-I and MTS-III. 
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Figure 6.7 District level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Figure 6.8 District level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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7. Model assessment  
 

In this study, models were selected based on the WAIC, DIC and graphical comparisons of their trend 

predictions at three hierarchical levels. In addition to these model diagnostics, three discrepancy measures 

are defined to evaluate and compare the time-series multilevel models. The first two measures are the 

Relative Bias (RB) and Absolute Relative Bias (ARB), which express the differences between model 

estimates and direct estimates, as percentage of the latter. For a given model, RBit  and ARBit  for domain 

i  and (survey) year t  are defined as   

 
ˆ ˆ( )

RB = 100%,
ˆ

it it
it

it

Y

Y

 −
  (7.1) 

 
ˆ ˆ

ARB = 100%
ˆ

it it

it

it

Y

Y

 −
  (7.2) 

with ˆ
it  the model prediction and ˆ

itY  the direct estimate. The third discrepancy measure is the Relative 

Reduction of the Standard Errors (RRSE), which measures the percentage of reduction in standard error of 

the model-based estimates compared to the direct estimates, i.e.,   

 ( )ˆˆ ˆRRSE 100% se( ) se( ) se( ).it it it itY Y=  −  (7.3) 

The RRSE measure should not be interpreted too strictly, since design-based and model-based standard 

errors are conceptually different quantities. However, both are commonly used as measures of uncertainty, 

and once reasonable models that sufficiently account for variations over all levels of interest have been 

selected, based on other criteria, it is informative to use the RRSE as one of the comparison measures. 

These three discrepancy measures are calculated at national, division and district (i.e., most detailed) 

levels. The distributions of these measures are presented in terms of the minimum value, 1st quartile 1( ),Q  

median, mean, 3rd quartile 3( )Q  and maximum value. 

Additionally, observed coverage rate (CR expressed in %) for 95% confidence interval of the 

considered cross-sectional FH and MTS models are calculated at division and district levels by identifying 

whether the estimated 95% confidence interval (CI) of ˆ
it  contains the direct estimates ˆ( ).itY  Coverage at 

the district level is the percentage of district by year combinations (about 7 64  domains) where the 

direct estimate is included in the CI of ˆ .it  Coverage at the division level is the percentage of division by 

year combinations (7 7  domains) where the direct estimate is included in the CI of ˆ .it  Coverage rates 

are defined in a similar way for each survey year by averaging over all available districts in one particular 

survey year. Finally coverage is calculated for each division seperately by averaging over the 7 survey 

years. 

The distributions of the RBit  (7.1), ARBit  (7.2) and RRSEit  (7.3) for three administrative levels are 

provided in Tables 7.1, 7.2, and 7.3 for ANC0 and ANC4 for the cross-sectional FH, MTS-I, MTS-II, and 

MTS-III models. Table 7.1 shows that FH and MTS-I models provide lower mean RB for ANC0 and 
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ANC4 at all three levels, while MTS-II provides slightly lower mean RB compared to MTS-III model at 

the district level. The ARB distributions in Table 7.2 show that the performance of MTS-II is in between 

MTS-I and MTS-III for all administrative levels except the national level for ANC4. The ARB values are 

the lowest for the cross-sectional FH model. It is also observed that the ARB increases as the domain 

sample size becomes smaller. Table 7.3 shows that MTS-II has the highest RRSE values at national and 

division levels, while at district level this model shows slightly lower RRSE than the MTS-III model for 

both ANC0 and ANC4. The variance reduction increases as the domain sample sizes become smaller. The 

reason that standard errors for the trends at national and division level under MTS-II are smaller than 

MTS-III is because under MTS-II the covariances between the cross-sectional FH predictions at the 

district level in the input series are ignored. These covariances are predominantly positive and therefore 

the standard errors of trends at aggregated levels are higher and more realistic under MTS-III. The higher 

RB, ARB and RRSE values for models MTS-II and MTS-III are a consequence of the more smooth trends 

obtained under both models. Small variances under smooth trends imply a larger amount of bias with 

respect to the direct estimates. As discussed in Section 6, these trends are more plausible compared to the 

cross-sectional FH model and MTS-I model, since from a subject matter point of view a smooth decreases 

for ANC0 and increase for ANC4 are expected. 

 

Table 7.1 

Summary statistics of relative bias (RB, in %) at different aggregation levels for the SAE estimates of ANC0 

and ANC4 
 

Parameter Aggregation 

level 

Model Min. 
1

Q  Median Mean 
3

Q  Max. 

ANC0 Nation FH -0.48 -0.20 0.23 0.08 0.37 0.47 

MTS-I -1.84 -0.68 0.54 -0.05 0.73 0.88 

MTS-II -1.16 -0.55 0.29 0.41 1.19 2.43 

MTS-III -1.53 -0.80 -0.57 -0.02 0.60 2.35 

Division FH -0.68 -0.48 -0.36 0.05 0.50 1.31 

MTS-I -0.99 -0.50 -0.31 0.05 0.64 1.41 

MTS-II -0.77 0.04 0.15 0.59 1.08 2.50 

MTS-III -1.44 -0.37 0.13 0.15 0.89 1.35 

District FH -8.77 -1.72 0.14 0.31 1.67 12.41 

MTS-I -10.35 -1.24 -0.49 -0.66 0.30 1.87 

MTS-II -7.87 -1.15 0.77 1.25 2.89 18.34 

MTS-III -10.05 -2.63 0.89 1.34 3.91 21.43 

ANC4 Nation FH -1.65 -0.62 0.07 -0.07 0.65 1.04 

MTS-I -4.09 -1.60 0.05 1.00 3.19 7.88 

MTS-II -1.85 0.27 1.98 1.91 3.80 5.07 

MTS-III -2.00 -1.35 1.06 1.11 3.10 5.23 

Division FH -1.33 -0.60 -0.13 0.24 0.43 3.47 

MTS-I -1.17 -0.25 -0.04 -0.07 0.32 0.59 

MTS-II -0.50 0.68 1.18 1.55 1.70 5.39 

MTS-III -2.08 0.31 0.73 1.24 1.92 5.58 

District FH -17.83 -4.85 0.40 2.08 6.78 64.77 

MTS-I -16.32 -3.80 -0.56 -0.42 2.98 15.57 

MTS-II -22.00 -5.30 0.57 4.57 12.47 84.31 

MTS-III -29.92 -8.23 0.57 6.12 14.07 124.63 
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This conclusion is confirmed by the CR values shown in Table 7.4. The CRs for the cross-sectional FH 

models are too high, indicating that the FH predictions tend too much to the direct estimates. The CR 

levels are reasonably good for MTS-I, substantially lower for MTS-II and the lowest for MTS-III. The 

lower coverage rates of MTS-II and MTS-III at the district level is reflected by the corresponding higher 

ARB and higher RRSE. These findings show that MTS-I model predictions are more volatile and tend to 

the direct estimates, MTS-III model predictions are highly smoothed, and MTS-II model predictions seem 

like a reasonable compromise between MTS-I and MTS-III model predictions, particularly at the district 

level. 

 
 
Table 7.2 

Summary statistics of absolute relative bias (ARB, in %) at different aggregation levels for the SAE estimates 

of ANC0 and ANC4 
 

Parameter Aggregation 

level 

Model Min. 
1

Q  Median Mean 
3

Q  Max. 

ANC0 Nation FH 0.04 0.27 0.42 0.34 0.46 0.48 

MTS-I 0.26 0.63 0.75 0.87 0.99 1.84 

MTS-II 0.29 0.44 0.58 1.05 1.59 2.43 

MTS-III 0.49 0.61 0.96 1.18 1.61 2.35 

Division FH 0.39 0.50 0.65 0.90 1.20 1.84 

MTS-I 0.48 0.66 0.78 1.39 2.13 2.90 

MTS-II 0.79 0.96 1.56 1.78 2.14 3.88 

MTS-III 1.00 1.14 1.41 1.88 2.43 3.61 

District FH 1.08 2.73 4.17 5.12 5.84 15.94 

MTS-I 1.48 3.93 6.58 7.53 9.02 26.67 

MTS-II 3.15 6.46 10.31 11.32 14.50 33.01 

MTS-III 4.15 8.65 12.54 13.49 16.98 38.16 

ANC4 Nation FH 0.07 0.25 0.92 0.76 1.08 1.65 

MTS-I 0.05 1.60 2.47 3.09 4.00 7.88 

MTS-II 0.97 1.68 1.98 2.71 3.80 5.07 

MTS-III 1.06 1.19 1.46 2.46 3.53 5.23 

Division FH 0.98 1.40 1.71 1.87 2.06 3.47 

MTS-I 1.96 3.06 4.31 4.07 4.64 6.82 

MTS-II 2.18 3.66 4.68 4.33 5.07 6.00 

MTS-III 3.66 4.60 5.36 5.27 5.63 7.46 

District FH 1.93 7.64 12.91 14.29 17.60 64.77 

MTS-I 3.86 14.27 18.72 20.61 28.10 53.45 

MTS-II 7.07 19.47 26.22 28.51 35.88 84.31 

MTS-III 8.62 21.36 29.32 33.13 41.00 124.63 
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Table 7.3 

Summary statistics of relative reduction of standard errors (RRSE in %) at different aggregation levels for 

the SAE estimates of ANC0 and ANC4 
 

Parameter Aggregation 

level 

Model Min. 
1

Q  Median Mean 
3

Q  Max. 

ANC0 Nation FH -0.65 4.03 8.10 8.00 12.72 15.01 

MTS-I -0.03 1.35 4.01 3.67 5.82 7.33 

MTS-II 4.07 7.90 13.71 12.89 17.47 21.68 

MTS-III -3.52 1.02 3.30 3.69 7.15 9.67 

Division FH 2.99 5.82 7.56 7.03 8.64 9.75 

MTS-I 2.66 4.00 5.32 5.16 6.65 6.84 

MTS-II 8.47 12.74 13.70 13.12 14.34 15.53 

MTS-III 3.30 4.71 5.21 5.47 6.12 8.16 

District FH -1.60 7.17 10.20 9.98 12.04 21.61 

MTS-I 7.91 15.16 17.81 18.06 21.15 27.47 

MTS-II 12.60 27.84 34.08 33.80 38.46 48.53 

MTS-III 19.48 32.61 38.40 37.79 41.55 52.71 

ANC4 Nation FH 8.58 11.22 11.66 13.71 14.49 24.32 

MTS-I 6.64 12.16 14.60 14.75 18.50 20.66 

MTS-II 17.79 22.87 23.56 25.12 27.99 32.75 

MTS-III 10.33 16.58 19.45 18.15 21.04 22.04 

Division FH 11.08 11.80 14.07 14.23 16.39 18.08 

MTS-I 11.82 14.31 14.46 15.78 18.18 19.17 

MTS-II 20.32 24.96 27.39 26.34 28.15 30.45 

MTS-III 15.49 20.37 21.75 21.72 24.51 25.05 

District FH 0.34 11.62 16.77 17.63 22.60 38.62 

MTS-I 17.79 27.84 30.48 30.93 33.65 43.40 

MTS-II 29.58 43.37 46.86 48.10 54.96 66.75 

MTS-III 35.63 48.88 51.75 52.94 59.31 70.35 

 
 
Table 7.4 

Observed coverage rate (CR in %) of the model predictions for 95% confidence interval at district and 

division levels as well as district level by survey years for the SAE estimates of ANC0 and ANC4 
 

Parameter Model Year wise CR at District Level Overall CR by Level 

1994 1997 2000 2004 2007 2011 2014 District Division 

ANC0 FH 100.00 98.33 100.00 100.00 100.00 98.36 100.00 99.53 100.00 

MTS-I 100.00 90.00 93.44 88.52 93.22 98.36 100.00 94.81 100.00 

MTS-II 88.33 63.33 70.49 67.21 71.19 75.41 91.53 75.10 95.92 

MTS-III 83.33 53.33 50.82 52.46 61.02 55.74 79.66 62.22 95.92 

ANC4 FH 98.15 98.28 100.00 100.00 100.00 100.00 90.20 98.36 100.00 

MTS-I 87.04 84.48 68.33 76.27 81.97 96.72 100.00 84.58 95.92 

MTS-II 44.44 51.72 50.00 52.54 62.30 65.57 76.47 57.55 97.96 

MTS-III 44.44 41.38 40.00 38.98 50.82 55.74 72.55 48.70 97.96 
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8. Discussion 
 

In this study, multilevel time-series (MTS) models have been developed for the percentage of women 

receiving no antenatal consult (ANC0) and the percentage of women receiving at least 4 antenatal consults 

(ANC4) in Bangladesh, using only seven editions of the Bangladesh Demographic and Health Survey 

(BDHS) over the period of 1994-2014. Time series models are defined at an annual frequency where years 

without a survey edition are treated as missing. In this way, the model accounts for the varying time gaps 

between the subsequent editions of the BDHS and produce predictions in the years without sample 

surveys. Trends are produced at three regional levels, namely the national level, a break down in 7 

divisions and a breakdown in 64 districts. 

In the first model (MTS-I) year-domain-specific direct estimates and their standard errors are used as 

input in the MTS model. Trends obtained under this model, are rather volatile since the trend estimates 

tend to follow the direct estimates. Another drawback of the MTS-I model is that it hampers the use of 

auxiliary information from two available censuses, since values for the auxiliary information from a 

particular census does not change in two or three subsequent editions of the survey. To use this census 

information, it is proposed to develop cross-sectional Fay-Herriot (FH) models for each survey year 

separately. In a second MTS model, MTS-II, these FH estimates and their standard errors are used as input 

series. In a third model, called MTS-III, the FH estimates with their full covariance matrices, are used as 

input series. This MTS model properly accounts for the cross-sectional correlations between the FH 

estimates. The overall model for MTS-II and MTS-III is then a two-step non-iterated process, for which 

the first stage is producing the FH estimates. 

The models are developed at the most detailed regional level of districts. Division and national level 

trends are estimated by aggregating predictions of the district level trends. In this way, figures at different 

aggregation levels are numerically consistent by definition. 

Compared to other time series small area estimation models proposed in the literature, our models 

contain more structure, since dynamic trend models are specified at different aggregation levels. This is 

necessary to obtain accurate aggregated predictions for the divisions and the national level and is a more 

parsimonious way of modelling cross-sectional correlations. Further model regularization was considered 

by specifying global-local priors. This, however, did not further improve the model fits. 

In small area estimation, domain estimates are often benchmarked to the direct estimates at the national 

level for numerical consistency and as an attempt to reduce the bias in the model based domain 

predictions. In this application the trend estimates at the national level under the MTS models are already 

very close to the direct estimates. Therefore we do not consider an additional benchmark step. 

All three time series models provide estimates with improved accuracy. Because MTS-II ignores the 

predominantly positive correlations between the cross-sectional FH input series, the standard errors of the 

trends at aggregated levels are actually too small. Since MTS-III accounts for these correlations, the 

standard errors for national and division trends are larger but also more realistic. The MTS-II model, 

however, seems to provide most plausible trends for both response variables, particularly at the district 

level, by compromising volatility in the trends under the MTS-I model and flatness in the trends under the 

MTS-III model. This choice is supported by the fact that these variables are likely to be relatively smooth 
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over time. Fitting these models to the series of ANC0 and ANC4 is therefore certainly suitable in concept. 

This also justifies the interpolation of the trends for the years without sample surveys. Our approach can 

be useful also for many developing countries with repeated DHS surveys, since these are typically 

observed with varying time lags and mainly depend on census information that is not updated within two 

or three subsequent editions of the survey. 

Using predictions of the cross-sectional FH models as input series for the MTS models, is proposed as 

a practical solution to make better use of the available census information. The additional advantage of 

this approach is that it stabilizes the input series for the MTS models by removing large sampling errors 

from the direct estimates. This requires, however, a careful model selection and evaluation process for the 

cross-sectional FH models, since model miss-specification of the cross-sectional FH models can result in 

biased input series with estimated standard errors that underestimate the real uncertainty. 

One limitation of this study is related to the bias correction for the square root transformation that is 

applied to ANC4. The bias correction can only be applied to the trend estimates in the survey years. This 

results in awkward increases of point estimates if the sampling error is not smoothed enough, particularly 

for the domains with small sample size. This hampers estimation of period-to-period changes between 

survey years and non-survey years. Therefore the bias correction is only applied to the cross-sectional FH 

models and not to the MTS models. 

The prevalence of ANC0 and ANC4 visits are negatively correlated, so a multivariate model may be an 

interesting alternative to the univariate models used here. The two series could be combined with the 

series of the remainder category in a single multivariate model. This, however, requires a multinomial 

model that has the advantages that it may further improve the precision of the estimates and guarantees 

that the predictions take values in their admissible range, and that the predictions over the categories add 

up to hundred percent. The multinomial model is, however, not easy to implement. Particularly in this 

study the variance-covariance matrix can be difficult to estimate for the districts with small number of 

observation. Furthermore, Datta et al. (2002) shows that univariate models may provide as good results as 

multivariate models proposed in Ghosh, Nangia and Kim (1996), while being simpler to implement. The 

extension of our univariate models to a multinomial model is therefore left for further research. 

For ANC0, the national level shows a downward trend. The decline in the trend temporarily stopped 

during 2004-2011. The trend of ANC4 shows steady increase over the considered study period. Division 

level trends for ANC0 show a steady decline for all the divisions except Dhaka, Chittagong and Sylhet 

divisions. The trends for these three divisions remained stable during the period of 2004-2011 which 

mainly causes the flat trend at the national level of ANC0. On the other hand, at the division level ANC4 

shows almost linear upward trends for most of the divisions except Dhaka and Chittagong. The greatest 

improvement is observed for Khulna and Rangpur divisions where the trends of ANC4 reach to more than 

40% in 2014. District-level trends help to identify highly vulnerable districts in terms of the two 

considered response variables. Though the national level trend of ANC0 declines to about 21% in 2014, a 

few districts get below 10% (Dhaka, Jhenaidaha, and Meherpur) while a considerable number of districts 

still have ANC0 higher than 35% (Bhola, cox’s Bazar, Kishoregonj, Noakhali, Sunamganj, Sirajgonj, and 

three Chittagong hill tract districts). For ANC4, a few districts have estimates above 50% (Dhaka, 
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Nilphamari, and Panchagarh) and most of the districts with high ANC0 have ANC4 estimates less than 

20%. These district level trends might help policy makers to focus on vulnerable hotspots where both 

ANC0 and ANC4 indicators are still poor. Obviously, detailed level trends might help policy makers to 

take actions for reducing disaggregated level inequalities in the race to achieve SDGs. 
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Appendix 
 

Table A.1 

District level contextual variables generated from Census 1991, Census 2001, and Census 2011 data for ANC0 
 

Variable Definition 

Division Barishal, Chittagong, Dhaka, Khulna, Rajshahi, Rangpur, Sylhet. 

Region (1) Densely populated Dhaka, Chittagong and Gazipur districts, 

(2) 9 regional districts with big cities, 

(3) 3 hilly districts (Bandarban, Khagrachhari and Rangamati), 

(4) 49 other districts (less urbanized areas). 

Chittagong Chittagong Division? 

Dhaka  Dhaka Division? 

Khulna  Khulna Division? 

Rangpur  Rangpur Division? 

Rajshahi  Rajshahi Division? 

P_U5  Proportion of Under-5 children. 

P_W  Proportion of women aged 15-49 years.  

P_MW  Proportion of married women aged 15-49 years. 

P_MW_Prim_Edu  Proportion of married women aged 15-49 years 

having primary education. 

P_MW_Sec_Edu  Proportion of married women aged 15-49 years having 

at least secondary education. 

P_HH_No_Edu_W  Proportion of household (HH) with illiterate 

women aged 15-49 years. 

P_HH_Prim_Edu_W  Proportion of household (HH) with primary educated 

women aged 15-49 years. 

P_HH_High_Edu_W  Proportion of household (HH) with higher educated 

women aged 15-49 years. 

P_HH_Sec_Edu_Head  Proportion of HH with at least secondary educated HH head. 
+P_Ru_HH_4  Proportion of rural HH of size 4 and more.  

P_Ru_HH_Elec  Proportion of rural HH with electricity.  

P_Ru_HH_Sing_Moth  Proportion of rural HH with single mother. 

P_HH_U5_Sec_Edu_W  Proportion of HH having under-5 children and women aged 

-49 years having at least secondary education. 
+P_HH_2 _U5  Proportion of HH with 2 or more under-5 children.  

P_Ru_HH_U5  Proportion of rural HH with under-5 children. 
+P_Ru_HH_2 _U5  Proportion of rural HH with 2 or more under-5 children.  
+P_Ur_HH_2 _U5  Proportion of urban HH with 2 or more under-5 children.  
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Table A.2 

Fixed and Random effects of survey-year specific FH models for ANC0 
 

Survey 

Year 

Transformation Fixed Effects Random 

Effect 

Census 

Data 

1994 No +1+ Division + P_HH_High_Edu_W + P_Ur_HH_2 _U5  RI: District level 

Random Intercept 

1991 

1997 No 1+ Division + P_MW_Sec_Edu + P_HH_Sec_Edu_Head  RI 1991 

2000 No 1+ Division + P_Ru_HH_U5 + P_W  RI 1991 

2004 No 1+ Division + P_HH_U5_Sec_Edu_W + P_MW  RI 2001 

2007 No +1+ Division + P_U5 + P_Ru_HH_Size_4  RI 2001 

2011 SQRT 1+ Division + sqrt (P_Ru_HH_U5) + sqrt (P_MW)  RI 2011 

2014 SQRT +1+ Division + sqrt (P_Ur_HH_2 _U5) + sqrt (P_Ru_HH_Elec)  RI 2011 

 
Table A.3 

Fixed and Random effects of survey-year specific FH models for ANC4 
 

Survey 

Year 

Transformation Fixed Effects Random 

Effect 

Census 

Data 

1994 SQRT +1+ Division + sqrt (P_Ru_U5) + sqrt (P_HH_2 _U5)  
++ sqrt (P_Ur_HH_2 _U5)  

RI: District level 

Random Intercept 

1991 

1997 SQRT 1+ Division +  

sqrt (P_HH_U5_Sec_Edu_W) + log(P_HH_Sec_Edu_Head)  

RI 1991 

2000 SQRT 1+ Khulna + Region +  

P E I Esqrt (P_MW rim du) + sqrt (P_HH_Wlli du)  

RI 1991 

2004 SQRT 1+ Division + sqrt (P_HH_U5_Prim_Edu_W) + sqrt (P_W)  RI 2001 

2007 SQRT +1+ Rangpur + Region + sqrt (P_U5) + sqrt (P_Ru_HH_Size_4 )  RI 2001 

2011 SQRT 1+ Rangpur + Chittagong +  

sqrt ((P_HH_U5_Sec_Edu_W) + sqrt (P_W)  

RI 2011 

2014 SQRT 1+ Rangpur + Chittagong + Rajshahi + Region +  

sqrt (P_W) + sqrt (P_Ru_HH_Sing_Mot)  

RI 2011 
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