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Are deep learning models superior for missing data 

imputation in surveys? Evidence from an empirical 

comparison 

Zhenhua Wang, Olanrewaju Akande, Jason Poulos and Fan Li1 

Abstract 

Multiple imputation (MI) is a popular approach for dealing with missing data arising from non-response in 

sample surveys. Multiple imputation by chained equations (MICE) is one of the most widely used MI 

algorithms for multivariate data, but it lacks theoretical foundation and is computationally intensive. Recently, 

missing data imputation methods based on deep learning models have been developed with encouraging 

results in small studies. However, there has been limited research on evaluating their performance in realistic 

settings compared to MICE, particularly in big surveys. We conduct extensive simulation studies based on a 

subsample of the American Community Survey to compare the repeated sampling properties of four machine 

learning based MI methods: MICE with classification trees, MICE with random forests, generative adversarial 

imputation networks, and multiple imputation using denoising autoencoders. We find the deep learning 

imputation methods are superior to MICE in terms of computational time. However, with the default choice of 

hyperparameters in the common software packages, MICE with classification trees consistently outperforms, 

often by a large margin, the deep learning imputation methods in terms of bias, mean squared error, and 

coverage under a range of realistic settings. 
 

Key Words: Deep learning; Hyperparameter selection; Missing data; Multiple imputation by chained equations; 

Simulation studies; Survey data. 

 

 

1. Introduction 
 

Many sample surveys suffer from missing data, arising from unit nonresponse, where a subset of 

participants do not complete the survey, or item nonresponse, where missing values are concentrated on 

particular questions. In opinion polls, nonresponse may reflect either refusal to reveal a preference or lack 

of a preference (De Leeuw, Hox and Huisman, 2003). If not properly handled, missing data patterns can 

lead to biased statistical analyses, especially when there are systematic differences between the observed 

data and the missing data (Rubin, 1976; Little and Rubin, 2019). Complete case analysis on units with 

completely observed data is often infeasible and may lead to large bias in most situations (Little and 

Rubin, 2019). As a result, many analysts account for the missing data by imputing missing values and then 

proceeding as if the imputed values are true values. 

Multiple imputation (MI) (Rubin, 1987) is a popular approach for handling missing values. In MI, an 

analyst creates 1L   completed datasets by replacing the missing values in the sample data with plausible 

draws generated from the predictive distribution of probabilistic models based on the observed data. In 

each completed dataset, the analyst can then compute sample estimates for population estimands of 

interest, and combine the sample estimates across all L  datasets using MI inference methods developed 

by Rubin (1987), and more recently, Rubin (1996), Barnard and Meng (1999), and Reiter and 
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Raghunathan (2007), and Harel and Zhou (2007). In MI, the estimated variance of an estimand consists of 

both within-imputation and between-imputation variances, and thus takes into account the inherent 

variability of the imputed values. Note that in survey studies, single imputation, e.g., via matching or 

regression, remains to be common for dealing with missing data, where the variance is estimated via the 

delta method or resampling methods (Chen and Haziza, 2019; Haziza and Vallée, 2020). 

 

1.1 Model-based imputation 
 

There are two general modeling strategies for MI. The first strategy, known as joint modeling (JM), is 

to specify a joint distribution for all variables in the data, and then generate imputations from the implied 

conditional (predictive) distributions of the variables with missing values (Schafer, 1997). The JM strategy 

aligns with the theoretical foundation of Rubin (1987), but it can be challenging to specify a joint model 

with high-dimensional variables of different types. Indeed, most popular JM approaches, such as “PROC 

MI” in SAS (Yuan, 2011), and “AMELIA” (Honaker, King and Blackwell, 2011) and “norm” in R 

(Schafer, 1997), make a simplifying assumption that the data follow multivariate Gaussian distributions, 

even for categorical variables, which can lead to bias (Horton, Lipsitz and Parzen, 2003). Recent research 

developed flexible JM models based on advanced Bayesian nonparametric models such as Dirichlet 

Process mixtures (Manrique-Vallier and Reiter, 2014; Murray and Reiter, 2016). However, these methods 

are computationally expensive, and often struggle to scale up to high-dimensional cases. 

The second strategy is called fully conditional specification (FCS, van Buuren, Brand, Groothuis-

Oudshoorn and Rubin (2006)), where one separately specifies a univariate conditional distribution for 

each variable with missing values given all the other variables and imputes the missing values variable-by-

variable iteratively, akin to a Gibbs sampler. The most popular FCS method is multiple imputation by 

chained equations (MICE) (van Buuren and Groothuis-Oudshoorn, 2011), usually implemented with 

specifying generalized linear models (GLMs) for the univariate conditional distributions (Raghunathan, 

Lepkowski, Van Hoewyk and Solenberger, 2001; Royston and White, 2011; Su, Gelman, Hill and Yajima, 

2011). Recent research indicates that specifying the conditional models by classification and regression 

trees (CART, Breiman, Friedman, Olshen and Stone (1984) and Burgette and Reiter (2010)) 

comprehensively outperforms MICE with GLM (Akande, Li and Reiter, 2017). A natural extension of 

MICE with CART is to use ensemble tree methods such as random forests, rather than a single tree 

(Breiman, 2001; Doove, Van Buuren and Dusseldorp, 2014). 

MICE is appealing in large-scale survey data because it is simple and flexible in imputing different 

types of variables. However, MICE has a key theoretical drawback that the specified conditional 

distributions may be incompatible, that is, they do not correspond to a joint distribution (Arnold and Press, 

1989; Gelman and Speed, 1993; Li, Yu and Rubin, 2012). Despite this drawback, MICE works 

remarkably well in real applications and numerous simulations have demonstrated it outperforms many 

theoretically sound JM-based methods; see van Buuren (2018) for case studies. However, MICE is also 

computationally intensive (White, Royston and Wood, 2011) and generally cannot be parallelized. 

Moreover, popular software packages for implementing MICE with GLMs, e.g., mice in R (van Buuren 
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and Groothuis-Oudshoorn, 2011), often crash in settings with high dimensional non-continuous variables, 

e.g., categorical variables with many categories (Akande et al., 2017). 

 

1.2 Imputation with deep learning models 
 

Recent advances in deep learning greatly expand the scope of complex models for high-dimensional 

data. This advancement brings the hope that a new generation of missing data imputation methods based 

on deep learning models may address the theoretical and computational limitations of existing statistical 

methods. For example, deep generative models such as generative adversarial networks (GANs, 

Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville and Bengio (2014)) are naturally 

suitable for producing multiple imputations because they are designed to generate data that resemble the 

observed data as much as possible. A method in this stream is the generative adversarial imputation 

network (GAIN) of Yoon, Jordon and Schaar (2018). Multiple imputation using denoising autoencoders 

(MIDA, Gondara and Wang (2018) and Lu, Perrone and Unpingco (2020)), is another generative method 

based on deep neural networks trained on corrupted input data in order to force the networks to learn a 

useful low-dimensional representation of the input data, rather than its identity function (Vincent, 

Larochelle, Bengio and Manzagol, 2008; Vincent, Larochelle, Lajoie, Bengio, Manzagol and Bottou, 

2010). Several methods have been proposed for missing value imputation in time-series data using 

variational autoencoders (Fortuin, Baranchuk, Rätsch and Mandt, 2020) or recurrent neural networks 

(Lipton, Kale and Wetzel, 2016; Monti, Bronstein and Bresson, 2017; Cao, Wang, Li, Zhou, Li and Li, 

2018; Che, Purushotham, Cho, Sontag and Liu, 2018; Yoon, Zame and van der Schaar, 2018). 

Deep learning based MI methods have several advantages, at least theoretically, over the traditional 

statistical models, including (i) they avoid making distributional assumptions; (ii) can readily handle 

mixed data types; (iii) can model nonlinear relationships between variables; (iv) are expected to perform 

well in high-dimensional settings; and (v) can leverage graphics processing unit (GPU) power for faster 

computation. Several papers report encouraging performance of deep learning based MI methods 

compared to MICE (e.g., Yoon, Jordon and Schaar, 2018). However, such conclusions are made based on 

limited evidence. First, the studies are usually based on small simulations or several well-studied public 

“benchmark” datasets, such as those described in Section 5, which do not resemble survey data. Second, 

the evaluations are usually based on a few overall performance metric, e.g., the overall predictive mean 

squared error or accuracy. Such metrics may not give a full picture of the comparisons and sometimes can 

be even misleading, as will be illustrated later. Third, given the uncertainty of the missing data process, it 

is crucial to examine the repeated sampling properties of imputation methods, but these have been rarely 

evaluated. Finally, hyperparameter tuning is crucial for machine learning models and different tuning can 

result in dramatically different results, but few details are provided on hyperparameter tuning and its 

consequences on the performance of imputation methods. 

Motivated by these limitations, in this paper we carry out extensive simulations based on real survey 

data to evaluate MI methods with a range performance metrics. Specifically, we conduct simulations 

based on a subsample from the American Community Survey to compare repeated sampling properties of 
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four aforementioned MI methods: MICE with CART (MICE-CART), MICE with random forests (MICE-

RF), GAIN, and MIDA. We find that deep learning based MI methods are superior to MICE in terms of 

computational time. However, MICE-CART consistently outperforms, often by a large margin, the deep 

learning methods in terms of bias, mean squared error, and coverage, under a range of realistic settings. 

This contradicts previous findings in the machine learning literature, and raises questions on the 

appropriate metrics for evaluating imputation methods. It also highlights the importance of assessing 

repeated-sampling properties of imputation methods. Though we focus on multiple imputation in this 

paper, we note that the aforementioned MI methods are readily applicable to generate single imputation 

when L  is set to 1. Extensive empirical evidences suggest that the within-imputation variance usually 

dominates the between-imputation variance in MI. As such, we expect the patterns between different 

imputation methods observed here also stand if these methods are used for single imputation. 

The remainder of this article is organized as follows. In Section 2, we review the four MI methods used 

in our evaluation. In Section 3, we describe a framework with several metrics for evaluating imputation 

methods. In Section 4, we describe the simulation design and results with large-scale survey data, and in 

Section 5 we summarize evaluation results on the benchmark datasets used in machine learning literature. 

Finally, in Section 6, we conclude with a practical guide for implementation in real applications. 

 
2. Missing data imputation methods 
 

We first introduce notation. Consider a sample with n  units, each of which is associated with p  

variables. Let ijY  be the value of variable j  for individual ,i  where =1, ,j p  and 1, , .i n=  Here, Y  

can be continuous, binary, categorical or mixed binary-continuous. For each individual ,i  let 

( )1, , .Yi i ipY Y=  For each variable ,j  let ( )1 , , .Yj j njY Y=  Let ( )1, , n=Y Y Y  be the n p  matrix 

comprising the data for all records included in the sample. We write ( )obs mis, ,Y Y Y=  where obsY  and 

misY  are respectively the observed and missing parts of .Y  We write ( )mis mis,1 mis,, , ,Y Y Y p=  where 

mis, jY  represents all missing values for variable ,j  with 1, , .j p=  Similarly, we write 

( )obs obs,1 obs,, , p=Y Y Y  for the corresponding observed data. 

In MI, the analyst generates values of the missing data misY  using pre-specified models estimated with 

obs ,Y  resulting in a completed dataset. The analyst then repeats the process to generate L  completed 

datasets, 
( ) : 1, , ,Y
l l L=  that are available for inference or dissemination. For inference, the analyst 

can compute sample estimates for population estimands in each completed dataset 
( )

,Y
l

 and combine 

them using MI inference rules developed by Rubin (1987), which will be reviewed in Section 3. 

 

2.1 MICE with classification tree models 
 

Under MICE, the analyst begins by specifying a separate univariate conditional model for each 

variable with missing values. The analyst then specifies an order to iterate through the sequence of the 

conditional models, when doing imputation. We write the ordered list of the variables as ( ) ( )( )1
, , .Y Y

p
 

Next, the analyst initializes each ( )mis,
.Y

j
 The most popular options are to sample from (i) the marginal 
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distribution of the corresponding ( )obs,
,Y

j
 or (ii) the conditional distribution of ( )jY  given all the other 

variables, constructed using only available cases. 

After initialization, the MICE algorithm follows an iterative process that cycles through the sequence 

of univariate models. For each variable j  at each iteration ,t  one fits the conditional model 
( ) ( 1)

( ) obs,( ) ( ) ( )( ,{ : }, { : }).Y Y Y Y
t t

j j k kk j k j−   Next, one replaces 
( )

( )

mis,

t

j
Y  with draws from the implied 

model ( ) ( ) ( 1)

mis,( ) obs,( ) ( ) ( )( ,{ : }, { : }).Y Y Y Y
t t t

j j k kk j k j−   The iterative process continues for T  total iterations 

until convergence, and the values at the final iteration make up a completed dataset 
( ) ( )( )obs mis, .Y Y Y
l T=  

The entire process is then repeated L  times to create the L  completed datasets. We provide pseudocode 

detailing each step of the MICE algorithm in the supplementary material. 

Under MICE-CART, the analyst uses CART (Breiman et al., 1984) for the univariate conditional 

models in the MICE algorithm. CART follows a decision tree structure that uses recursive binary splits to 

partition the predictor space into distinct non-overlapping regions. The top of the tree often represents its 

root and each successive binary split divides the predictor space into two new branches as one moves 

down the tree. The splitting criterion at each leaf is usually chosen to minimize an information theoretic 

entropy measure. Splits that do not decrease the lack of fit by an reasonable amount based on a set 

threshold are pruned off. The tree is then built until a stopping criterion is met; e.g., minimum number of 

observations in each leaf. 

Once the tree has been fully constructed, one generates 
( )

( )

mis,

t

j
Y  by traversing down the tree to the 

appropriate leaf using the combinations in 
( ) ( 1)({ : }, { : }),Y Y
t t

k kk j k j−   and then sampling from the 

( )
obs

j
Y  values in that leaf. That is, given any combination in 

( ) ( 1)({ : }, { : }),Y Y
t t

k kk j k j−   one uses the 

proportion of values of 
obs

jY  in the corresponding leaf to approximate the conditional distribution 
( ) ( 1)

( ) obs,( ) ( ) ( )( , { : }, { : }).Y Y Y Y
t t

j j k kk j k j−   The iterative process again continues for T  total iterations, 

and the values at the final iteration make up a completed dataset. 

MICE-RF instead uses random forests for the univariate conditional models in MICE (e.g., Stekhoven 

and Bühlmann, 2012; Shah, Bartlett, Carpenter, Nicholas and Hemingway, 2014). Random forests (Ho, 

1995; Breiman, 2001) is an ensemble tree method which builds multiple decision trees to the data, instead 

of a single tree like CART. Specifically, random forests constructs multiple decision trees using 

bootstrapped samples of the original, and only uses a sample of the predictors for the recursive partitions 

in each tree. This approach can reduce the prevalence of unstable trees as well as the correlation among 

individual trees significantly, since it prevents the same variables from dominating the partitioning process 

across all trees. Theoretically, this decorrelation should result in predictions with less variance (Hastie, 

Tibshirani and Friedman, 2009). 

For imputation, the analyst first trains a random forests model for each ( )jY  using available cases, 

given all other variables. Next, the analyst generates predictions for mis, jY  under that model. Specifically, 

for any categorical ( ) ,Y
j

 and given any particular combination in 
( ) ( 1)({ : }, { : }),Y Y
t t

k kk j k j−   the 

analyst first generates predictions for each tree based on the values 
obs

jY  in the corresponding leaf for that 

tree, and then uses the most commonly occurring majority level of among all predictions from all the 
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trees. For a continuous ( ) ,Y
j

 the analyst instead uses the average of all the predictions from all the trees. 

The iterative process again cycles through all the variables, for T  total iterations, and the values at the 

final iteration make up a completed dataset. A particularly important hyperparameter in random forests is 

the maximum number of trees .d  

For our evaluations, we use the mice R package to implement both MICE-CART and MICE-RF, and 

retain the default hyperparameter setting in the package to mimic the common practice in real world 

applications. Specifically, we set the minimum number of observations in each terminal leaf to 5 and the 

pruning threshold to 0.0001 in MICE-CART. In MICE-RF, the maximum number of trees d  is set to be 

10. 

 

2.2 Generative Adversarial Imputation Network (GAIN) 
 

GAIN (Yoon, Jordon and Schaar, 2018) is an imputation method based on GANs (Goodfellow et al., 

2014), which consist of a generator function G  and a discriminator function .D  For any data matrix 

( )obs mis, ,Y Y Y=  we replace misY  with random noise, ,ijZ  sampled from a uniform distribution. The 

generator G  inputs this initialized data and a mask matrix ,M  with  0,1ijM   indicating observed 

values of ,Y  and outputs predicted values for both the observed data and missing data, ˆ .Y  The 

discriminator D  utilizes ( )obs mis
ˆ ˆ,=Y Y Y  and a hint matrix H  of the same dimension to identify which 

values are observed or imputed by ,G  which results in a predicted mask matrix ˆ .M  The hint matrix, 

sampled from the Bernoulli distribution with p  equal to a “hint rate” hyperparameter, reveals to D  partial 

information about M  in order to help guide G  to learn the underlying distribution of .Y  

We first train D  to minimize the loss function, ( )ˆ, ,M MDL  for each mini-batch of size :in  

 ( ) ( ) ( ) ( )
=1 =1

ˆ ˆ ˆ, log 1 log 1 .
in J

D ij ij ij ij

i j

L M M M M= + − −M M  (2.1) 

Next, G  is trained to minimize the loss function (2.2), which is composed of a generator loss, 

( )ˆ, ,M MGL  and a reconstruction loss, ( )ˆ, , .Y Y MML  The generator loss (2.3) is minimized when D  

incorrectly identifies imputed values as being observed. The reconstruction loss (2.4) is minimized when 

the predicted values are similar to the observed values, and is weighted by the hyperparameter :  

 ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , , , , ,G ML L L= +Y Y M M M M Y Y M  (2.2) 

 ( ) ( )
=1 =1

ˆ ˆ, log 1 ,
in J

G ij ij

i j

L M M= −M M  (2.3) 

 ( ) ( ) ( )rec

=1 =1

ˆ ˆ, , 1 , ,
in J

M ij ij ij

i j

L M L Y Y= −Y Y M  (2.4) 

where  

 ( )
( )

2

rec

ˆ if is continuous
ˆ,

ˆlog if is categorical.

ij ij ij

ij ij

ij ij ij

Y Y Y
L Y Y

Y Y Y

 −
= 
−

 (2.5) 
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In our experiments, we model both G  and D  as fully-connected neural networks, each with three 

hidden layers, and   hidden units per hidden layer. The hidden layer weights are initialized uniformly at 

random with the Xavier initialization method (Glorot and Bengio, 2010). We use leaky ReLU activation 

function (Maas, Hannun and Ng, 2013) for each hidden layer, and a softmax activation function for the 

output layer for G  in the case of categorical variables, or a sigmoid activation function in the case of 

numerical variables and for the output of .D  We facilitate this choice of output layer for numerical 

variables by transforming all continuous variables to be within range (0, 1) using the MinMax 

normalization:    * min ( ) max ( ) min ( ) ,ij ij j j jY Y Y Y Y  = − −  where min ( )jY  and max( )jY  are the 

minimum and maximum of variable ,j  respectively. After imputation, we transform each value back to 

its original scale. We generate multiple imputations using several runs of the model with varying initial 

imputation of the missing values. 

To implement GAIN in our evaluations, we use the same architecture as the one in Yoon, Jordon, and 

Schaar (2018). We set 100, =    equal to the number of features of the input data, and tune the hint rate 

on a single simulation. Following the common practice in the GAN literature (Berthelot, Schumm and 

Metz, 2017; Ham, Jun and Kim, 2020), we track the evolution of GAIN’s generator and discriminator 

losses, and manually tune the hint rate so that the two losses are qualitatively similar. Specifically, we first 

coarsely select the hint rate among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Then we determine the final 

value by an additional fine tuning step. In the MAR scenario, for example, after observing that the optimal 

value is in the range (0.1, 0.2), we perform a search among {0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 

0.19}. Finally, we set the optimal hint rate for MCAR and MAR scenarios to be 0.3 and 0.13, respectively. 

We train the networks for 200 epochs using stochastic gradient descent (SGD) and mini-batches of size 

512 to learn the parameter weights. We use the Adam optimizer to adapt the learning rate, with an initial 

rate of 0.001 (Kingma and Ba, 2014). 

 

2.3 Multiple Imputation using Denoising Autoencoders (MIDA) 
 

MIDA (Gondara and Wang, 2018; Lu et al., 2020) extends a class of neural networks, denoising 

autoencoders, for MI. An autoencoder is a neural network model trained to learn the identity function of 

the input data. Denoising autoencoders intentionally corrupt the input data in order to prevent the 

networks from learning the identity function, but rather a useful low-dimensional representation of the 

input data. The MIDA architecture consists of an encoder and decoder, each modeled as a fully-connected 

neural network with three hidden layers, with   hidden units per hidden layer. We first perform an initial 

imputation on missing values using the mean for continuous variables and the most frequent label for 

categorical variables, which results in a completed data 0 .Y  The encoder inputs 0 ,Y  and corrupts the 

input data by randomly dropping out half of the variables. The corrupted input data is mapped to a higher 

dimensional representation by adding   hidden units to each successive hidden layer of the encoder. The 

decoder receives output from the encoder, and symmetrically scales the encoding back to the original 

input dimension. All hidden layers use a hyperbolic tangent (tanh) activation function, while the output 

layer of the decoder uses a softmax (sigmoid) activation function in the case of categorical (numerical) 
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variables. Multiple imputations are generated by using multiple runs with the hidden layer weights 

initialized as a Gaussian random variable. 

Following Lu et al. (2020), we train MIDA in two phases: a primary phase and fine-tuning phase. In 

the primary phase, we feed the initially imputed data to MIDA and train for primeN  epochs. In the fine-

tuning phase, MIDA is trained for tuneN  epochs on the output in the primary phase, and produces the 

outcome. The loss function is used in both phases and closely resembles the reconstruction loss in GAIN:  

 ( )
( ) ( )

( )

0

0

0

2
ˆ1 if is continuous

ˆ, ,
ˆ1 log if is categorical.

ij ij ij ij

ij ij ij

ij ij ij ij

M Y Y Y
L Y Y M

M Y Y

 − −
= 
− −


Y

 (2.6) 

To implement MIDA in our evaluations, we use the same architecture and tune the hyperparameters in a 

single simulation as in Lu et al. (2020). We plot the evolution of loss function ,L  and select the number of 

additional units   among {1, 2, 3, 4, 5, 6, 7 ,8, 9, 10} to reduce the loss. In our experiments, we set   

equal to the number of features of the input data and add 7=  hidden units to each of the three hidden 

layers of the encoder. We train the model for prime 100N =  epochs in the primary phase and tune 2N =  

epochs in the fine-tuning phase. Similar as in GAIN, we learn the model parameters using SGD with mini-

batches of size 512, and use the Adam optimizer to adapt the learning rate with the initial rate being 0.001. 

 
3. Simulation-based evaluation of imputation methods 
 

Methods for missing data imputation are usually evaluated via real-data based simulations 

(van Buuren, 2018). Namely, one creates missing values from a complete dataset according to a missing 

data mechanism (Little and Rubin, 2014), imputes the missing values by a specific method, and then 

compares these imputed values with the original “true” values based on some metrics. 

We first give a quick review of Rubin’s MI combination rules. Let Q  be the target estimand in the 

population, and 
( )lq  and 

( )lu  be the point and variance estimate of Q  based on the thl  imputed dataset, 

respectively. The MI point estimate of Q  is 
( )

=1
,

L l

L l
q q L=  and the corresponding estimate of the 

variance is equal to ( )1 1 ,L L LT L b u= + +  where 
( )( )

2

=1
= ( 1),

L l

L Ll
b q q L− −  and 

( )

=1
= .

L l

L l
u u L  

The confidence interval of Q  is constructed using ( ) ( )~ 0, ,L Lq Q t T−  where vt  is a t -distribution with 

( )  ( )
2

1 1 (1 1 )L LL u L b = − + +  degrees of freedom. 

The first step in our simulation-based evaluation procedure is choosing a dataset with all values 

observed, which is taken as the “population”. We then choose a set of target estimands Q  and compute 

their values from this population data, which are taken as the “ground truth”. The estimands are usually 

summary statistics of the variables or parameters in a down-stream analysis model, e.g., a coefficient in a 

regression model (Tang, Song, Belin and Unützer, 2005; Huque, Carlin, Simpson and Lee, 2018). Second, 

we randomly draw without replacement H  samples of size n  from the population data, and in each of 

sample ( )1, ,h H=  create missing data according to a specific missing data mechanism and pre-fixed 

proportion of missingness. Third, for each simulated sample with missing data, we create L  imputed 

datasets using the imputation method under consideration and construct the point and interval estimate of 
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each estimand using Rubin’s rules. Lastly, we compute performance metrics of each estimand from the 

quantities obtained in the previous step. 

In the empirical application, we select a large complete subsample from the American Community 

Survey (ACS) ‒ a national survey that bears the hallmarks of many big survey data ‒ as our population. 

Since discrete variables are prevalent in the ACS, as well as in most survey data, we focus on the marginal 

probabilities of binary and categorical variables; e.g., a categorical variable with K  categories has 1K −  

estimands. To evaluate how well the imputation methods preserve the multivariate distributional 

properties, similar to Akande et al. (2017), we also consider the bivariate probabilities of all two-way 

combinations of categories in binary and categorical variables. Another useful metric is the finite-sample 

pairwise correlations between continuous variables. For continuous variables, the common estimands are 

mean, median or variance. To facilitate meaningful comparisons of the results between the categorical and 

continuous variables, we propose to discretize each continuous variable into K  categories based on the 

sample quantiles. We then evaluate these binned continuous variables as categorical variables based on the 

aforementioned estimands of marginal and bivariate probabilities. 

For each estimand ,Q  we consider three metrics. The first metric focuses on bias. To accommodate 

close-to-zero estimands that are prevalent in probabilities of categorical variables, we consider the 

absolute standardized bias (ASB) of each estimand :Q  

 
( ) ( )

= 1

ASB = ,
H

h

L

h

q Q H Q−   (3.1) 

where 
( )h

Lq  is the MI point estimate of Q  in simulation .h  

The second metric is the relative mean squared error (Rel.MSE), which is the ratio between the MSE 

of estimating Q  from the imputed data and that from the sampled data before introducing the missing 

data:  

 

( )( )
( )( )

2

=1

2

=1

Rel.MSE = ,

H h

Lh

H h

h

q Q

Q Q

−

−




 (3.2) 

where 
( )h

Lq  is defined earlier, and 
( )hQ  is the prototype estimator of ,Q  i.e., the point estimate from the 

complete sampled data in simulation .h  

The third metric is coverage rate, which is the proportion of the %  (e.g., 95%) confidence intervals, 

denoted by CIh

  ( )=1, , ,h H  in the H  simulations that contain the true :Q  

  
=1

Coverage = CI .
H

h

h

Q H1  (3.3) 

We recommend conducting a large number of simulations (e.g., 100)H   to obtain reliable estimates 

of MSE and coverage. This would not be a problem for deep learning algorithms, which can be typically 

completed in seconds even with large sample sizes. However, it can be computationally prohibitive for the 
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MICE algorithms when each of the simulated data is large (e.g., =100,000n  in some of our simulations). 

In the situation that one has to rely on only a few or even a single simulation for evaluation, we propose a 

modified metric of bias. Specifically, for each categorical variable or binned continuous variable ,j  we 

define the weighted absolute bias (WAB) as the sum of the absolute bias weighted by the true marginal 

probability in each category:  

 
( )

= 1

Weighted absolute bias = ,
K

h

jk jk jk

k

Q q Q−  (3.4) 

where K  is the total number of categories, jkQ  is the population marginal probability of category k  in 

variable ,j  and 
( )h

jkq  is its corresponding point estimate in simulation .h  We can also average the 

weighted absolute bias over a number of repeatedly simulated samples. 

The above procedure and metrics differ from the common practice in the machine learning literature. 

For example, many machine learning papers on missing data imputation conduct simulations on 

benchmark datasets, but these data often have vastly different structure and features from survey data and 

thus are less informative for the goal of this paper. One such dataset is the Breast Cancer dataset in the 

UCI Machine Learning Repository (Dua and Graff, 2017), which has only 569 sample units and no 

categorical variables. Also, these simulations are usually based on randomly creating missing values of a 

single dataset repeatedly rather than on drawing repeated samples from a population, and thus fails to 

account for the sampling mechanism. Moreover, these evaluations often use metrics focusing on accuracy 

of individual predictions rather than distributional features. Specifically, the most commonly used metrics 

are the root mean squared error (RMSE) and accuracy (Gondara and Wang, 2018; Yoon, Jordon and 

Schaar, 2018; Lu et al., 2020). Both metrics can be defined in an overall or variable-specific fashion, but 

the machine learning literature usually focuses on the overall version. The overall RMSE is defined as  

 
( )

2

=1

=1

ˆ

RMSE = ,

n

ij ij iji j

n

iji j

M Y Y

M

− 

 
 (3.5) 

where ijY  is the value of continuous variable j  for individual i  in the complete data before introducing 

missing data, and ˆ
ijY  is the corresponding imputed value. For non-missing values (i.e., =1),ijM  ˆ .ij ijY Y=  

The (overall) accuracy is defined for categorical variables, namely it is the proportion of the imputed 

values being equal to the corresponding original “true” value:  

 
( )

cat

cat

=1

=1

ˆ =
Accuracy = ,

n

ij ij iji j S

n

iji j S

M Y Y

M





 

 

11
 (3.6) 

where catS  is the set of categorical variables. 

A number of caveats are in order for the RMSE and accuracy metrics. First, they are usually computed 

on a single imputed sample as an overall measure of an imputation method, but this ignores the 
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uncertainty of imputations. Second, both RMSE and accuracy are single value summaries and do not 

capture the multivariate distributional feature of data. Third, RMSE does not adjust for the different scale 

of variables and can be be easily dominated by a few outliers; also, it is often computed without 

differentiating between continuous and categorical variables. Lastly, when there are multiple ( )L  imputed 

data, a common way is to use the mean of the L  imputed value as ˆ
ijY  in (3.5), but the statistical meaning 

of the resulting metrics is opaque. This is particularly problematic for categorical variables. For these 

reasons, we warn against using the overall RMSE and accuracy as the only metrics for comparing 

imputation methods, and one should exercise caution when interpreting them. 

 
4. Evaluation based on ACS 
 

In this section, we evaluate the four imputation methods described in Section 2 following the 

procedure and metrics described in Section 3. For simplicity, in the following discussions we use CART 

and RF to denote MICE-CART and MICE-RF, respectively.  

 

4.1 The “population” data 
 

We use the one-year Public Use Microdata Sample from the 2018 ACS to construct our population. 

The 2018 ACS data contains both household-level variables ‒ for example, whether or not a house is 

owned or rented ‒ and individual-level variables ‒ for example, age, income and sex of the individuals 

within each household. Since individuals nested within a household are often dependent, and the 

imputation methods we evaluate generally assume independence across all observations, we set our unit of 

observation at the household-level, where independence is more likely to hold. We first remove units 

corresponding to vacant houses. Next, we delete units with any missing values, so that we only keep the 

complete cases. Within each household, we also retain individual-level data corresponding only to the 

household head and merge them with the household-level variables, resulting in a rich set of variables 

with potentially complex joint relationships. 

It is often challenging to generate plausible imputations for ordinal variables with many levels when 

there is very low mass at the highest levels, as is the case for some variables in the ACS data. Following 

Li, Baccini, Mealli, Zell, Frangakis and Rubin (2014), we treat ordinal variables with more than 10 levels 

as continuous variables. We also follow the approach in Akande et al. (2017) to exclude binary variables 

where the marginal probabilities violate 10np   or ( )1 10;n p−   this eliminates estimands where the 

central limit theorem is not likely to hold. For each categorical variable with more than two levels but less 

than 10 levels where this might also be a problem, we merge the levels with a small number of 

observations in the population data. For example, for the household language variable, we recode the 

levels from five to three (English, Spanish, and other), because the probability of speaking neither English 

nor Spanish in the full population is less than 8.8%. 

The final population data contains 1,257,501 units, with 18 binary variables, 20 categorical variables 

with 3 to 9 levels, and 8 continuous variables. We describe the variables in more detail in the 

supplementary material. We compute the population values of the estimands Q  described in Section 3, 
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including all marginal and bivariate probabilities of discrete and binned continuous variables. We vary the 

size of the simulated samples from 10,000 to 100,000, and simulate missing data according to either 

missing completely at random (MCAR) or missing at random (MAR) mechanisms in each of these 

scenarios. 

 

4.2 Simulations with n = 10,000 
 

We first randomly draw H = 100 samples of size n = 10,000, and set 30% of each sample to be 

missing under either MCAR or MAR. CART or RF takes around 2.8 and 9.2 hours, respectively, to create 

L = 10 imputed datasets with default parameters on a standard desktop computer with a single central 

processing unit (CPU). The deep learning methods are much faster because they leverage GPU computing 

power when implemented on the GPU-enabled TensorFlow software framework (Abadi, Agarwal, 

Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, 

Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, 

Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, 

Wicke, Yu and Zheng, 2015). GAIN takes roughly 1.5 minutes and MIDA takes roughly 4 minutes to 

create L = 10 completed datasets using a GeForce GTX 1660 Ti GPU. Note that it is infeasible to 

manually tune the hyperparameter in each of the 100 simulations in each scenario for the deep learning 

models. So for each scenario, we have randomly selected one simulation, and tune the hyperparameters 

using the procedure described in Section 2. We then apply these selected hyperparameters to all 

simulations. 

 

4.2.1 MCAR scenario 
 

To create the MCAR scenario, we randomly set 30% of the values of each variable to be missing 

independently. Table 4.1 displays the distributions of the estimated ASB and relative MSE of all the 

marginal and bivariate probabilities in the imputed data by the four imputation methods.  

Overall, for the estimands of marginal and bivariate probabilities of the categorical and binned 

continuous variables, MICE with CART significantly outperforms all other three methods, with 

consistently yielding the smallest ASB and relative MSE. RF is the second best, also consistently 

outperforming the deep learning methods. The advantage of the MICE algorithms is particularly 

pronounced in the upper (e.g., 75% and 90%) quantiles, indicating that GAIN and MIDA imputations 

have large variations over repeated samples and variables. Indeed, MIDA and GAIN lead to ultra long 

tails in estimating the summary statistics of the variables. For example, for bivariate probabilities of 

binned continuous variables, the 90% percentile of the ASB from MIDA and GAIN is approximately 20 

and 27 times, respectively, of that from CART. The discrepancy is even bigger for relative MSE. There is 

no consistent pattern in comparing MIDA and GAIN. Specifically, for continuous variables, MIDA 

generally outperforms GAIN, but the difference is small except for the upper percentiles, where GAIN 

tends to produce very large bias and relative MSE. For categorical variables, GAIN outperforms MIDA 

half of the time, but again leads to the largest variation in imputations across the variables. Moreover, an 

interesting and somewhat surprising observation is that MICE with CART consistently outperforms RF ‒ 

sometimes by a large magnitude ‒ regardless of the choice of estimand or metric. 



Survey Methodology, December 2022 387 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

Table 4.1 

Distributions of absolute standardized bias ( 100)  and relative mean squared error of all marginal and 

bivariate probabilities based on the imputations by the four MI methods, when n = 10,000 and 30% values 

MCAR 
 

 Quantiles Marginal Bivariate 

CART RF GAIN MIDA CART RF GAIN MIDA 

ASB ( 100)  Cat.  10% 0.05 0.47 0.76 0.98 0.15 1.14 1.21 1.54 
25% 0.13 1.25 1.48 2.22 0.40 2.83 3.08 3.93 
50% 0.27 2.80 3.22 4.69 1.05 6.74 7.14 8.47 
75% 0.64 5.86 7.18 8.86 2.51 13.59 17.03 15.23 
90% 1.14 10.01 19.55 14.41 5.34 22.33 26.92 21.90 

B.Cont.  10% 0.06 0.24 7.25 2.73 0.19 1.30 6.05 4.80 
25% 0.10 1.05 12.86 8.36 0.43 3.24 17.61 12.01 
50% 0.21 3.59 27.30 18.51 1.02 6.61 34.29 24.07 
75% 0.43 5.43 30.21 26.84 1.90 11.76 49.38 39.54 
90% 0.81 8.49 46.41 31.36 3.42 20.79 90.90 64.65 

Rel.MSE Cat.  10% 1.05 1.67 2.50 3.38 0.96 1.11 2.75 2.98 
25% 1.16 2.40 4.97 9.03 1.08 1.61 4.33 4.75 
50% 1.37 5.99 10.37 14.89 1.25 3.35 7.40 8.16 
75% 1.49 10.25 27.73 26.16 1.48 9.07 14.87 15.80 
90% 1.62 16.22 97.33 40.16 1.89 23.91 36.37 27.92 

B.Cont.  10% 1.19 1.50 44.06 4.35 0.82 0.86 7.40 2.05 
25% 1.30 1.77 74.42 13.82 0.92 1.11 14.80 4.90 
50% 1.44 3.31 139.24 72.57 1.07 1.90 32.26 13.76 
75% 1.55 6.71 284.00 150.35 1.26 4.09 88.78 47.56 
90% 1.64 19.69 603.38 451.44 1.54 10.80 282.29 127.15 

“Cat.” means categorical variables and “B.Cont.” means binned continuous variables. 

CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  

MIDA = Multiple imputation using denoising autoencoders. 

 

All methods generally yield less biased estimates (i.e., smaller ASB) of the marginal probabilities than 

the bivariate probabilities. This illustrates preserving multivariate distributional features is more 

challenging than univariate ones. The advantage of CART over the other methods is comparatively larger 

when estimating bivariate estimands than univariate ones. Interestingly, the relative MSE tends to be 

higher for the marginal probabilities than the bivariate probabilities. This is likely due to the fact that the 

denominator in the definition of relative MSE in (3.2) is the MSE from the sampled data before 

introducing missing data, which tends to be smaller for marginal probabilities than bivariate probabilities. 

CART yields MSEs that are very close to the corresponding MSEs from the sampled data before 

introducing missing data; i.e., the relative MSE is close to 1. On the contrary, both deep learning methods, 

and GAIN in particular, can result in exceedingly large relative MSE for many estimands. 

Figures 4.1 displays the estimated coverage rates of the 95% confidence intervals for the marginal and 

bivariate probabilities. The patterns on coverage between different methods is similar to those on bias and 

MSE. Specifically, CART tends to result in coverage rates that are close to the nominal 95% level, with 

the median consistently being around 95% and tight interquartile range. In contrast, RF, GAIN and MIDA 

all result in coverage rates that are much farther off from the nominal 95% level. For example, the median 

coverage rates under both GAIN and MIDA are all under 0.60, and are even less than 0.30 for continuous 

variables. A closer look into the prediction accuracy of each variable reveals that GAIN and MIDA tend to 

generate imputations that are biased toward the most frequent levels, and GAIN in particular generally 

produces narrower intervals than the other methods. This once again provides evidence of significant bias 

under the deep learning methods. All methods tend to result in higher median coverage rates for the 
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bivariate probabilities than the marginal probabilities, although the left tails are generally longer for the 

former than the latter. 

 

Figure 4.1 Coverage rate of the 95% confidence interval for all marginal and bivariate probabilities obtained 

from the four imputation methods in the simulations with n = 10,000 and 30% values MCAR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The red dashed line is 0.95. 

 CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  

MIDA = Multiple imputation using denoising autoencoders. 

 

4.2.2 MAR scenario 
 

We also consider a MAR scenario, which is more plausible than MCAR in practice. We set six 

variables ‒ age, gender, marital status, race, educational attainment and class of worker ‒ to be fully 

observed. It would be cumbersome to specify different MAR mechanism for each of the remaining 40 

variables, so we randomly divide them into three groups, consisting of 10, 15, and 15 variables. We then 

specify a separate nonresponse model by which to generate the missing data for the variables in each 

group. Specifically, we postulate a logistic model per group, conditional on the fully observed six 

variables, based on which we then generate binary missing data indicators for each variable in that group. 

This process results in approximately 30% missing rate for each of the 40 variables. We describe the 

models in more detail in the supplementary material. 

Table 4.2 displays the distributions of the ASB and relative MSE of all the marginal and bivariate 

probabilities from the four methods. All methods yield larger ASB and relative MSE under the MAR 

scenario than the previous MCAR scenario. This is expected because MAR is a stronger assumption than 

            Marginal for categorical variables                                 Bivariate for categorical variables 

 
              CART                            RF                           GAIN                         MIDA                                          CART                            RF                           GAIN                        MIDA  
         Marginal for binned continuous variables                      Bivariate for binned continuous variables 
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MCAR that requires conditioning on more information. Nonetheless, the overall patterns of relative 

performance between the methods remain the same as those under MCAR. Specifically, CART once again 

produces estimates with the least ASB and relative MSE ‒ by an even larger margin then under MCAR ‒ 

among the four methods, followed by RF, and then MIDA and GAIN. One notable observation is the 

deteriorating performance of the deep learning methods, particularly GAIN, in imputing continuous 

variables, sometimes resulting in several hundreds fold of relative MSE than CART. This indicates the 

huge uncertainties associated with GAIN in imputing continuous variables. 

 
Table 4.2 

Distributions of absolute standardized bias ( 100)  and relative mean squared error for all methods, when 

n = 10,000 and 30% values MAR, over all possible marginal and bivariate probabilities 
 

 Quantiles  Marginal Bivariate 

CART RF GAIN MIDA CART RF GAIN MIDA 

ASB ( 100)  Cat.  10% 0.05 0.13 0.15 0.14 0.15 0.71 0.76 0.89 

25% 0.11 0.44 0.62 0.61 0.40 2.23 2.55 3.20 

50% 0.29 2.13 3.05 4.55 1.08 6.06 6.85 8.14 

75% 1.04 4.98 6.63 10.22 2.49 13.43 16.78 16.19 

90% 1.80 10.49 18.91 17.00 5.68 24.06 28.04 25.36 

B.Cont.  10% 0.07 0.29 0.33 0.33 0.27 1.17 10.87 6.18 

25% 0.17 1.07 9.64 3.13 0.69 3.49 23.67 16.26 

50% 0.67 3.14 32.86 23.85 1.58 7.83 38.52 31.17 

75% 1.20 6.95 39.57 36.09 3.40 15.20 53.59 47.34 

90% 3.40 12.39 63.45 41.99 5.94 25.16 97.47 85.44 

Rel.MSE Cat.  10% 1.00 1.00 1.00 1.00 0.97 1.00 1.53 1.93 

25% 1.08 1.82 2.56 4.75 1.04 1.39 3.78 4.03 

50% 1.33 4.33 19.03 15.13 1.25 3.00 10.42 8.38 

75% 1.72 13.08 55.07 33.36 1.59 9.56 27.45 16.95 

90% 2.27 18.70 101.91 48.44 2.23 27.44 64.01 32.85 

B.Cont.  10% 1.00 1.00 1.00 1.00 0.88 0.90 11.19 2.96 

25% 1.38 1.83 90.98 8.49 1.00 1.16 20.15 6.87 

50% 1.70 4.57 207.58 96.08 1.18 2.29 45.25 21.33 

75% 2.12 11.47 692.67 239.69 1.50 6.95 125.39 70.90 

90% 3.12 50.56 1342.23 806.43 2.12 18.07 459.78 205.14 
“Cat.” means categorical variables and “B.Cont.” means binned continuous variables. 

CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  
MIDA = Multiple imputation using denoising autoencoders. 

 
Figures 4.2 displays the estimated coverage rates of the 95% confidence intervals for the marginal and 

bivariate probabilities, under each method. Similar as the case of bias and MSE, all methods generally 

result in lower coverage rates under MAR than MCAR, with visibly longer left tails in some cases, but the 

overall patterns comparing between the methods remain the same. Specifically, CART still tends to result 

in coverage rates that are above 90%, while the other three methods have consistently lower coverage rate. 

In particular, both GAIN and MIDA result in extremely low ‒ below 7% – median coverage rates for 

continuous variables. This is closely related to the previous observation of the large uncertainty of the 

deep learning methods in imputing continuous variables. 
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Figure 4.2 Coverage rates of the 95% confidence intervals for all marginal and bivariate probabilities 

obtained from four methods in the simulations with n = 10,000 and 30% values MAR.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 The red dashed line is 0.95. 

 CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  

MIDA = Multiple imputation using denoising autoencoders.  

 

Finally, to illustrate that evaluating only the overall RMSE and accuracy metrics may be misleading, 

we display the mean and empirical standard errors of the overall RMSE and accuracy over the 100 

simulations in Table 4.3, where MCAR is in the top panel and MAR is in the bottom panel. Under both 

missing data mechanisms, for the continuous variables, MIDA leads to the smallest overall RMSE, 

followed by CART, and with RF and GAIN being last. For the categorical variables, CART and GAIN 

lead to the highest overall accuracy, with MIDA being closely behind and RF last. These patterns, not 

surprisingly, differ from those reported earlier based on marginal and bivariate probabilities and different 

metrics. As discussed in Section 3, overall RMSE and accuracy do not capture the distributional features 

of multivariate data or the repeated sampling properties of the imputation methods.  

 

Table 4.3 

Overall RMSE on continuous variables and overall accuracy on categorical variables averaged over 100 

simulations  
 

Mechanism Metric CART RF GAIN MIDA 

MCAR  RMSE  0.128 (0.002) 0.159 (0.003) 0.161 (0.008) 0.112 (0.002) 

Accuracy 0.785 (0.001) 0.658 (0.003) 0.782 (0.002) 0.752 (0.004) 

MAR RMSE  0.130 (0.003) 0.154 (0.004) 0.145 (0.009) 0.110 (0.002) 

Accuracy 0.819 (0.001) 0.704 (0.003) 0.820 (0.002) 0.780 (0.007) 

The empirical standard errors in the parenthesis.  

The top panel is under MCAR and the bottom panel is under MAR, all with 30% missing data. 
CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  
MIDA = Multiple imputation using denoising autoencoders. 
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4.3 Simulations with n = 100,000 and 30% MCAR 
 

Deep learning models usually require a large sample size to train. Therefore, to give MIDA and GAIN 

a more favorable setting as well as to investigate the sensitivity of our results to variations in sample size, 

we generate a simulation scenario of H = 10 samples with n = 100,000 under MCAR. That is, we 

randomly set 30% of the values of each variable to be missing independently. Here we only generate 10 

simulations due to the huge computational cost of MICE for samples with this size. In this scenario, we 

omit RF because the previous results in Section 4.2 have shown that RF is consistently inferior to CART 

in terms of performance and computation. We use CART, GAIN, and MIDA to create L = 10 completed 

datasets. 

Because it usually requires a much larger number of simulations to reliably calculate MSE and 

coverage, here we focus on the weighted absolute bias metric (3.4). Table 4.4 displays the distributions of 

the estimated weighted absolute bias, averaged over 10 simulations, of the marginal probabilities of the 

categorical and binned continuous variables. Overall, the patterns comparing between the four methods 

remain consistent with those observed in Section 4.2. Specifically, CART again results in the smallest 

weighted absolute difference in both categorical and continuous variables, and the advantage is 

particularly pronounced with continuous variables. For example, for categorical variables, MIDA and 

GAIN result in a median of weighted absolute bias at least 9 and 11 times, respectively, larger than 

CART. The advantage of CART grows to about 30 and 60 times over MIDA and GAIN, respectively, for 

continuous variables. Moreover, CART performs robustly across variables, evident from the small 

variation in the weighted absolute bias, e.g., 0.07 for 10% percentile and 0.33 for 90% percentile among 

the categorical variables. In contrast, both deep learning models result in much larger variation across 

variables; e.g., 0.57 for 10% percentile and 2.92 for 90% percentile among the categorical variables under 

MIDA, and even larger for GAIN. In summary, other than computational time, MICE with CART 

significantly outperforms MIDA and GAIN in terms of bias and variance regardless of the sample size. 

 

Table 4.4 

Distributions of the weighted absolute bias ( 100)  averaged over 10 simulated samples, each with n = 100,000 

and 30% values MCAR 
 

Quantiles Categorical Binned Continuous 

CART GAIN MIDA CART GAIN MIDA 

10% 0.07 0.43 0.57 0.10 5.52 1.98 

25% 0.11 1.11 1.02 0.11 6.65 2.78 

50% 0.15 1.74 1.40 0.12 7.36 4.04 

75% 0.24 3.77 2.07 0.13 9.40 6.50 

90% 0.33 4.63 2.92 0.15 11.31 7.72 

CART = Classification and regression trees; GAIN = Generative adversarial imputation network;  
MIDA = Multiple imputation using denoising autoencoders. 

 
4.4 Role of hyperparameters in tree-based MICE 
 

The pattern that CART outperforms RF is surprising, because the common knowledge is that ensemble 

methods are usually superior to single tree methods. But the same pattern was also observed in another 
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recent study (Wongkamthong and Akande, 2021). We investigate the role of the key hyperparameter in 

RF ‒ the maximum number of trees d  ‒ in the simulations. We randomly selected a simulated data of size 

n = 10,000 and 30% of entries being MCAR. We use the mice package to fit RF with different number 

of trees: 2, 5,10,15, 20,d =  where 10d =  is the default setting. The relative MSE of the imputed 

categorical variables fitted using each d  value, as well as that using CART, is shown as trajectories in 

Figure 4.3, which reveals a consistent pattern: the upper quantiles ‒ particularly those above 50% ‒ of the 

relative MSE deteriorates rapidly as the maximum number of trees in RF increases, while the lower 

quantiles, e.g., 10%, 25%, remain stable. We found a similar pattern with the standardized bias metric and 

continuous variables, and thus the results are omitted here. This suggests that larger number of trees in RF 

‒ at least as implemented in the mice package ‒ leads to much longer tail in the distribution of the bias 

and MSEs. This is likely due to overfitting. We cannot exclude the possibility that a more customized 

hyperparameter tuning of RF may outperform CART in some applications. However, such case-specific 

fine-tuning of the MICE algorithm is generally not available for the vast majority of MI consumers who 

relies on the default setting of popular packages like mice. 

 

Figure 4.3 Quantiles of the relative mean squared error over all marginal and bivariate probabilities of 

categorical and binned continuous variables, under CART and RF with various number of trees, 

for a simulation sample with n = 10,000 and 30% values MCAR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Evaluation based on “benchmark” datasets 
 

To verify the evaluations in the GAIN and MIDA papers (Gondara and Wang, 2018; Yoon, Jordon and 

Schaar, 2018; Lu et al., 2020), we also compared the two deep learning models with CART based on the 
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five benchmark datasets and simulation procedure (different from our proposed framework) used in these 

papers. Details of these datasets and simulations are presented in the supplementary material. The sample 

sizes of these data are generally not large enough to be considered as population data from which we can 

repeatedly sample from without replacement, so we are unable to evaluate them in a meaningful way 

using absolute standardized bias, relative MSE or coverage. We therefore evaluate the methods primarily 

on the weighted absolute bias metric. In summary, CART again consistently and significantly outperforms 

MIDA and GAIN in terms of weighted absolute bias for both categorical and continuous variables, across 

all five benchmark datasets. The difference in performance is particularly pronounced with continuous 

variables. We also calculated the overall MSE and accuracy as those papers did. Except for one dataset, 

we could not reproduce the results reported in these papers, even with the authors’ code. One possible 

reason is that the process of tuning and selecting model hyperparameters may not be clearly documented, 

which is true in the present case. More details are provided in the online supplementary material. 

 
6. Conclusion 
 

Recent years have seen the development of many machine learning based methods for imputing 

missing data, raising the hope of improving over the more traditional imputation methods such as MICE. 

However, efforts in evaluating these methods in real world situations remain scarce. In this paper, we 

adopt an evaluation framework real-data-based simulations. We conduct extensive simulation studies 

based on the American Community Survey to compare repeated sampling properties of two MICE 

methods and two deep learning imputation methods based on GAN (GAIN) and denoising autoencoders 

(MIDA). 

We find that the deep learning models hold a vast computational advantage over MICE methods, 

partially because they can leverage GPU power for high-performance computing. However, our 

simulations as well as evaluation on several “benchmark” data suggest that MICE with CART 

specification of the conditional models consistently outperforms, usually by a substantial margin, the deep 

learning models in terms of bias, mean squared error, and coverage under a wide range of realistic 

settings. In particular, GAIN and MIDA tend to generate unstable imputations with enormous variations 

over repeated samples compared with MICE. One possible explanation is that deep neural networks excel 

at detecting complex sub-structures of big data, but may not suit for data with simple structure, such as the 

simulated data used here. Another possibility is that the sample sizes in our simulations are not adequate 

to train deep neural networks, which usually required much more data compared to traditional statistical 

models. 

These results contradict previous findings based on the single performance metric of overall mean 

squared error in the machine learning literature (e.g., Gondara and Wang, 2018; Yoon, Jordon and Schaar, 

2018; Lu et al., 2020). This discrepancy highlights the pitfalls of the common practice in the machine 

learning literature of evaluating imputation methods. It also demonstrates the importance of assessing 

repeated-sampling properties on multiple estimands of MI methods. An interesting finding is that 

ensemble trees (e.g., RF) do not improve over a single tree (e.g., CART) in the context of MICE, which 

matches the findings in another recent study (Wongkamthong and Akande, 2021). Combined with the fact 
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that the former is more computationally intensive than the latter, we recommend using MICE with CART 

instead of RF in practice. 

Our study has a few limitations. First, there are many deep learning methods that can be adapted to 

missing data imputation and all may have different operating characteristics. We choose GAIN and MIDA 

because both generative adversarial network and denoising autoencoders are immensely popular deep 

learning methods, and the imputation methods based on them have been advertised as superior to MICE. 

Nonetheless, it would be desirable to examine other deep learning based imputation methods in future 

research. Second, performance of machine learning methods is highly dependent on hyperparameter 

selection. So it can be argued that the inferior performance of GAIN and MIDA may be at least partially 

due to sub-optimal hyperparameter selection. However, practitioners would most likely rely on default 

hyperparameter values for any machine learning based imputation methods, which is indeed what we have 

adopted in our simulations and thus represents the real practice. Third, we did not consider the joint 

distribution between any categorical and continuous variables, but our evaluations within categorical and 

continuous variables have yielded consistent conclusions. Lastly, as any simulation study, one should 

exercise caution in generalizing the conclusions. By carefully selecting the data and metrics, we have 

attempted to closely mimic the settings representative of real survey data so that our conclusions are 

informative for practitioners who deal with similar situations. Additional evaluation studies based on 

different data are desired to shed more insights on the operating characteristics and comparative 

performances of different missing data imputation methods. Data, code, and supplementary material for 

the paper are available at: https://github.com/zhenhua-wang/MissingData_DL. 
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