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Abstract 

Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We 

introduce two new methods of nonparametric propensity score technique for weighting in the non-probability 

samples. One is the information projection approach and the other is the uniform calibration in the reproducing 

kernel Hilbert space. 
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1. Introduction 
 

We would like to congratulate Dr. Changbao Wu on the outstanding work in non-probability sampling. 

Even though probability sampling served as a golden standard tool for finite population inference in the 

past decades, it has recently become tarnished gold due to low response rates and high costs. Non-

probability sampling, on the other hand, is popular due to its feasibility and low cost (Couper, 2000; 

Kaplowitz, Hadlock and Levine, 2004). More importantly, non-probability sampling, such as a web 

survey, can quickly gather up-to-date information when compared to a probability sample. However, 

because the selection mechanism is unavailable for non-probability sampling, failing to correct the 

selection bias in analyzing a non-probability sample may result in inefficiency or even erroneous 

inference. As a result, adjusting the selection bias for a non-probability sample is a fundamental topic for 

survey sampling researchers, and this work presents the most comprehensive answers to this subject. 

Dr. Wu’s research, in particular, includes a thorough examination of propensity score (PS) techniques. 

Those PS techniques, on the other hand, have drawbacks. First, even for a correctly specified PS model, 

the inverse probability weighting estimator may be inefficient due to small estimated propensity scores. 

One alternative is post-stratification, as stated in Section 5 of the paper, although there is no clear 

guidance on how to choose .K  Furthermore, in practice, correctly specifying a PS model is difficult. 

While doubly robust estimation can help to safeguard a bad PS model, the final estimator is problematic 

when both the PS and regression models are incorrect (Kang and Schafer, 2007). 

To overcome the misspecification of the PS model, Dr. Wu has mentioned several nonparametric 

methods, including a kernel method and a tree-based method. In this discussion, we would like to expand 

on this direction and provide two more methods to augment the study. One is based on a density ratio 

model using information projection (Csiszár and Shields, 2004), and the other is by uniformly calibrating 

functions over a reproducing kernel Hilbert space (RKHS). As explained by Wahba (1990), RKHS is a 

very flexible function space for approximation. Instead of estimating the propensity scores, we aim at 
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estimating the sampling weights  1( ) :A

i Ai S −   to avoid possible inefficiency due to small estimated 

propensity scores. 

Denote AS  and BS  to be the index sets for the non-probability and reference probability samples, 

respectively, and the corresponding sample sizes are An  and .Bn  Let  ( , ) :i i Ay i Sx  and 

 ( , ) :B

i i Bd i Sx  be available, where iy  and ix  are the study variable and auxiliary vector for the thi  

unit and B

id  is the design weight for .Bi S  

The paper is organized as follows. In Section 2, we introduce the information projection approach. In 

Section 3, we introduce the basic idea of uniform calibration. Some concluding remarks are made in 

Section 4. 

 
2. Information projection approach 
 

Suppose that we are interested in estimating parameter 0θ  defined through  ( ; , ) = 0,NE U Yθ X  

where ( )NE   is the expectation with respect to the population empirical distribution Pr{( , )Y =X  
1( , )}=i iy N−

x  for 1, ,i N=  and 0 otherwise, and ( ); ,U yθ x  is a certain estimating function. For 

example, ( ); ,U y y = −x  corresponds to 1

=1

N

y ii
N y −=   in the paper. We wish to obtain an estimator 

of 1( ) ,A

i
−  ( )Pr 1 , ,A

i i i iR y = = x  and 1iR =  if Ai S  and 0 otherwise. 

To estimate  1( ) : ,A

i Ai S −   we may use the relationship in the density ratio function. First, we 

consider a super-population model ,  and let 0 ( , )f yx  and 1 ( , )f yx  be the density functions of ( , )yx  

given 0R =  and 1,R =  respectively. Denote the density ratio function to be  

 0

1

( , )
( , ) ,

( , )

f y
r y

f y
=

x
x

x
  

and by the Bayes formula, we have  

 1 Pr ( 0)
( ) 1 ( , ).

Pr ( 1)

A i
i i i

i

R
r y

R
 − =

= +
=

x  (2.1) 

Thus, there is a one-to-one relationship between 1( )A

i
−  and ( , ).i ir yx  

Under assumption A1, we can show that ( , ) ( ).r y r=x x  In this section, we make a more general 

assumption that there exists T

1( ) ( ( ), , ( ))Lb b=b x x x  such that  

 ( ).R Y⊥ b x  (2.2) 

Rosenbaum and Rubin (1983) called ( )b x  in (2.2) balancing scores. 

To estimate the density ratio function ( ),r x  we minimize the Kullback-Leibler divergence  

 0 0 1 0( ) = log( ) dQ f f f f   (2.3) 
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with respect to 0f  subject to some constraint, where both 0f  and 1f  are absolutely continuous with 

respect to a  -finite measure .  Regarding the constraint, we may use the following one  

  1 0Pr( 1) ( ) ( ) (d ) Pr ( 0) ( ) ( ) (d ) = ( ) ,i iR f R f E = + = b x x x b x x x b X  (2.4) 

where ( )E   is the expectation with respect to the super-population model .  That is, given 1 ( ),f x  we can 

find 0 ( )f x  to minimize (2.3) under a calibration constraint with respect to ( ).b x  

By Lemma 3.1 of Wang and Kim (2021), the optimized conditional density function satisfies  

 
 

 

T

T

1*

0 1

1 1

exp ( )
( ) ( ) ,

exp ( )
f f

E
=

 
 

λ b x
x x

λ b x
 (2.5) 

where 1λ  is chosen to satisfy (2.4). Note that the solution (2.5) is equivalent to  

   T

0 1log ( ; ) ( )r = +x λ λ b x  (2.6) 

for the density ratio function ( ),r x  where T T

0 1= ( , ) ,λ λ  and 0  is a normalizing constant satisfying 

1( ; ) ( ) (d ) 1.r f  = x λ x x  Thus, the information projection finds the best model for propensity score 

function. 

Once the model is determined as in (2.6), we need to estimate the model parameters. Because of the 

moment constraints in (2.4), the sample-version estimating equation for λ  is the calibration equation 

given by  

    T

0 1

=1

1 1
1, ( ) 1 exp ( ) = 1, ( ) .

B

N
BA A

i i i i i

i i SA

n n
R d

N n N




  −
+ +   

   
 b x λ b x b x  (2.7) 

Here, since  ( )E b X  is not available, we use its estimate 1 ( ).
B

B

i ii S
N d−

 b x  Once the parameter 

estimate λ̂  is obtained, we can construct  

  T

0 1

1 ˆ ˆˆ = 1 exp ( )A
i i

A

n

n
 

−
+ + λ b x   

as the final PS weights. The parameter of interest can be estimated by solving 
1 ˆ ( ; , ) = 0

A
i i ii S

N U y−

 θ x  for .θ  

Wang and Kim (2021) developed this framework under the non-probability sampling setup where ix  

are available throughout the finite population. Consistency and the asymptotic normality can be developed 

under the assumption that  ( ; , )E U Yθ x x  lies in the linear space generated by  1 ( ), , ( ) .Lb bx x  

Instead of assuming the availability of  : 1, ,i i N=x  as in Wang and Kim (2021), there only exists a 

reference probability sample  ( , ) : .B

i i Bd i Sx  If the probability sample BS  is a census, then the method 

above reduces to the one considered by Wang and Kim (2021), except that we consider a finite population 

parameter 0 .θ  In Section 11.2 of Kim and Shao (2021), the information projection approach is called the 
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maximum entropy method and applied to the data integration problem. In the simulation study presented 

in example 11.1 of the book, the proposed information projection method shows better performance than 

the methods of Chen, Li and Wu (2020) and Elliott and Valliant (2017). 

 
3. Uniform calibration approach 
 

Calibration is commonly used to improve the representativeness of a non-probability sample, but 

existing methods, including the information projection approach mentioned in Section 2, are based on 

calibrating a set of pre-specified functions. However, it is hard to correctly specify them for calibration in 

practice. In this section, we propose a general framework for uniformly calibrating functions in an RKHS. 

Instead of considering a parametric form for ( )E Y x  in (3.1), we only assume ( ) ( ),i i iE y m =x x  

where ( )m x  is a smooth function satisfying certain conditions. 

We still consider (2.1) under the assumption A1. Instead of assuming a set of pre-specified functions 

( ),b x  we propose to estimate  :i Ar i S  by the following optimization,  

 

2

1 22 2
0

2 2

( , )
ˆ argmin ( ) ,sup H

A
u H

uS u
Q

u u
 

 

   
 = − + 
    

γ

γ
γ γ  (3.1) 

where ( )1= , , ,Nr rγ  = 0ir  for ,Ai S  0γ  is equivalent to 0ir   for 1, , ,i N=  H  is an RKHS,  

 ( )

2

1 1, 1 1 ( ) ( ) ,
A B

B

i i i i

i S i SA

N
S u N r u N d u

n

− −

 

    
= + − −   

     
 γ x x  (3.2) 

2 1 2

2
( ) ( ) ,

A B
A B ii S S

u n n u−

 
= +  x  

H
u  is the norm associated with the RKHS, ( )AQ γ  is a general 

penalty on γ  to avoid overfitting, and 1  and 2  are two tuning parameters; see Wahba (1990) for a 

detailed introduction about the RKHS. 

The intuition for the optimization (3.1) is briefly discussed. First, if ir  approximates the true density 

ratio ( )ir x  well, the bias of the first term in (3.1) is negligible for estimating 1

=1
( )

N

ii
N u−  x  for .u H  

Besides, 1 ( )
B

B

i ii S
N d u−

 x  is design-unbiased. Thus, ( , )S uγ  balances two estimators for 
1

=1
( ),

N

ii
N u−  x  and it is small if ir  approximately equals ( )ir x  for .Ai S  However, ( , )S uγ  is not scale 

invariant, and we have 2( , ) ( , )S cu c S u=γ γ  for cℝ. Thus, we use 
2

2
u  to make it scale-invariant. The 

term 
2

1 H
u  is used to penalize the smoothness of the function u  for .u H  There exist different 

choices for ( )AQ γ . For example,  
2

1( ) 1 ( 1)
A

A A ii S
Q Nn r−


= + −γ  corresponds to penalizing extreme 

values for the sampling weights, and Wong and Chan (2018) investigated a similar problem assuming the 

availability of { : 1, , }.i i N=x  The optimization (3.1) can be viewed as a “minmax” problem, and if 

,m H  the estimated density ratios  ˆ :i Ar i S  may lead to a reasonably good estimator  

 1ˆ ˆ1 1 .
A

uc i i

i S A

N
N r y

n
 −



   
= + −  

   
  (3.3) 
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Uniform calibration is a new method for non-probability sampling, and there are some technical 

challenges in (3.1). For example, how to incorporate the design properties of BS  when establishing the 

theoretical properties of (3.3) has not be fully investigated, and we have finished a working paper about 

this topic (Wang, Mao and Kim, 2022). The kernel-based method is computationally expensive, especially 

when the sample sizes are large. It may be interesting to propose a more computationally efficient 

algorithm for the uniform calibration problem. One possible answer is to consider some other functional 

spaces, such as the one spanned by B-splines. In addition, it is also of interest to consider how to 

incorporate more than one reference probability sample, and how to formulate a uniform calibration if we 

have different covariates in different reference probability samples. 

 
4. Concluding remarks 
 

Propensity score weighting is an important tool for correcting selection bias in the nonprobability 

sampling. Dr. Changbao Wu made significant contributions on this important topic. In addition to the two 

additional methods, the empirical likelihood (EL) approach of Qin, Leung and Shao (2002) is potentially 

useful as another tool for propensity score weighting. In particular, the EL-based weighting method is 

applicable even under informative sampling. Further investigation on this direction will be explored 

elsewhere. 
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