Statistical inference with non-probability survey samples
Section 4. Propensity scores based approach

The propensity scores π i A = P ( R i = 1 | x i , y i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfacaaMc8+aaeWaaeaa caWGsbWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlaai2dacaaMe8UaaG ymaiaaysW7daabbaqaaiaaysW7caWH4bWaaSbaaSqaaiaadMgaaeqa aOGaaGilaiaaysW7caWG5bWaaSbaaSqaaiaadMgaaeqaaaGccaGLhW oaaiaawIcacaGLPaaaaaa@4F2D@ for the non-probability survey sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ are theoretically defined for all the units in the target population. Estimation of the propensity scores for units in S A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaO Gaaiilaaaa@3431@ which plays the most crucial role for propensity scores based methods, requires an assumed model on the propensity scores and auxiliary information at the population level. In this section, we first discuss estimation procedures for the propensity scores under the setting and assumptions described in Section 2, and then provide an overview of estimation methods proposed in the recent literature on the finite population mean μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ involving the estimated propensity scores.

4.1  Estimation of propensity scores

Under assumption A1, the propensity scores π i A = P ( R i = 1 | x i ) = π ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8UaaGypaiaaysW7caWGqbGaaGPaVpaabmaabaGa amOuamaaBaaaleaacaWGPbaabeaakiaaysW7caaI9aGaaGjbVlaaig dacaaMe8+aaqqaaeaacaaMe8UaaCiEamaaBaaaleaacaWGPbaabeaa aOGaay5bSdaacaGLOaGaayzkaaGaaGjbVlabg2da9iaaysW7cqaHap aCcaaMc8+aaeWaaeaacaWH4bWaaSbaaSqaaiaadMgaaeqaaaGccaGL OaGaayzkaaaaaa@559F@ are a function of the auxiliary variables x i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4bWaaSbaaSqaaiaadMgaaeqaaa aa@33C8@ but the functional form can be complicated and is completely unknown. Three popular parametric forms π i A = π ( x i , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7daqadaqa aiaahIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahg7aai aawIcacaGLPaaaaaa@43EB@ in dealing with a binary response can be considered: (i) the inverse logit function π i A =1 { 1+exp( x i α ) } 1 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlaaigdacaaMe8UaeyOeI0Ia aGjbVpaacmaabaGaaGymaiaaysW7cqGHRaWkcaaMe8UaciyzaiaacI hacaGGWbGaaGPaVpaabmqabaGaaCiEamaaDaaaleaacaWGPbaabaac caGae8NmGikaaOGaaCySdaGaayjkaiaawMcaaaGaay5Eaiaaw2haam aaCaaaleqabaGaeyOeI0IaaGymaaaakiaaygW7caGG7aaaaa@541D@ (ii) the inverse probit function π i A =Φ( x i α ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8UaaGypaiaaysW7cqqHMoGrcaaMc8+aaeWabeaa caWH4bWaa0baaSqaaiaadMgaaeaaiiaacqWFYaIOaaGccaWHXoaaca GLOaGaayzkaaGaaiilaaaa@435B@ where Φ ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqqHMoGrcaaMc8UaaiikaiabgwSixl aacMcaaaa@3855@ is the cumulative distribution function of N ( 0, 1 ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobGaaGPaVlaacIcacaaIWaGaaG ilaiaaysW7caaIXaGaaiykaiaacUdaaaa@39DB@ and (iii) the inverse complementary log-log function π i A =1exp{ exp( x i α ) }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8UaaGypaiaaysW7caaIXaGaaGjbVlabgkHiTiaa ysW7ciGGLbGaaiiEaiaacchacaaMc8+aaiWaaeaacqGHsislciGGLb GaaiiEaiaacchacaaMc8+aaeWabeaacaWH4bWaa0baaSqaaiaadMga aeaaiiaacqWFYaIOaaGccaWHXoaacaGLOaGaayzkaaaacaGL7bGaay zFaaGaaiOlaaaa@5104@ Nonparametric techniques without assuming an explicit functional form for π ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWaaeaacaWH4b aacaGLOaGaayzkaaaaaa@377F@ are attractive alternatives for the estimation of propensity scores.

4.1.1   The pseudo maximum likelihood method

Let π i A = π ( x i , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7caGGOaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdiaacM caaaa@43BB@ be a specified parametric form with unknown model parameters α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoGaaiOlaaaa@339C@ Under the ideal situation where the complete auxiliary information { x 1 , x 2 , , x N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaGadaqaaiaahIhadaWgaaWcbaGaaG ymaaqabaGccaaISaGaaGjbVlaahIhadaWgaaWcbaGaaGOmaaqabaGc caaISaGaaGjbVlablAciljaaiYcacaaMe8UaaCiEamaaBaaaleaami aad6eaaOqabaaacaGL7bGaayzFaaaaaa@41C4@ is available and with the independence assumption A3, the full log-likelihood function on α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ can be written as (Chen et al., 2020)

( α ) = log { i = 1 N ( π i A ) R i ( 1 π i A ) 1 R i } = i S A log ( π i A 1 π i A ) + i = 1 N log ( 1 π i A ) . ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aabmaabaGaaCySdaGaayjkaiaawMcaaiaaysW7caaMe8Uaeyypa0Ja aGjbVlaaysW7ciGGSbGaai4BaiaacEgadaGadaqaamaarahabaGaaG PaVpaabmaabaGaeqiWda3aa0baaSqaaiaadMgaaeaacaWGbbaaaaGc caGLOaGaayzkaaWaaWbaaSqabeaacaWGsbWaaSbaaWqaaiaadMgaae qaaaaakmaabmaabaGaaGymaiaaysW7cqGHsislcaaMe8UaeqiWda3a a0baaSqaaiaadMgaaeaacaWGbbaaaaGccaGLOaGaayzkaaWaaWbaaS qabeaacaaIXaGaaGjbVlabgkHiTiaaysW7caWGsbWaaSbaaWqaaiaa dMgaaeqaaaaaaSqaaiaadMgacaaI9aGaaGymaaqaaiaad6eaa0Gaey 4dIunaaOGaay5Eaiaaw2haaiaaysW7caaMe8UaaGypaiaaysW7caaM e8+aaabuaeaacaaMc8UaciiBaiaac+gacaGGNbWaaeWaaeaadaWcaa qaaiabec8aWnaaDaaaleaacaWGPbaabaGaamyqaaaaaOqaaiaaigda caaMe8UaeyOeI0IaaGjbVlabec8aWnaaDaaaleaacaWGPbaabaGaam yqaaaaaaaakiaawIcacaGLPaaaaSqaaiaadMgacqGHiiIZcaWGtbWa aSbaaWqaaiaadgeaaeqaaaWcbeqdcqGHris5aOGaaGjbVlabgUcaRi aaysW7daaeWbqaaiaaykW7ciGGSbGaai4BaiaacEgacaaMc8+aaeWa aeaacaaIXaGaaGjbVlabgkHiTiaaysW7cqaHapaCdaqhaaWcbaGaam yAaaqaaiaadgeaaaaakiaawIcacaGLPaaacaaMi8oaleaacaWGPbGa eyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoakiaac6cacaaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaigdacaGG Paaaaa@A9F4@

The maximum likelihood estimator of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ is the maximizer of ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aabmaabaGaaCySdaGaayjkaiaawMcaaiaac6caaaa@388F@ Under the current setting where the population auxiliary information is supplied by the reference probability sample S B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaO Gaaiilaaaa@3432@ we replace ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aabmaabaGaaCySdaGaayjkaiaawMcaaaaa@37DD@ by the pseudo log-likelihood function (Chen et al., 2020)

* ( α ) = i S A log ( π i A 1 π i A ) + i S B d i B log ( 1 π i A ) . ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aaCaaaleqabaGaaiOkaaaakmaabmaabaGaaCySdaGaayjkaiaawMca aiaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7daaeqbqaaiaaykW7ci GGSbGaai4BaiaacEgacaaMc8+aaeWaaeaadaWcaaqaaiabec8aWnaa DaaaleaacaWGPbaabaGaamyqaaaaaOqaaiaaigdacaaMe8UaeyOeI0 IaaGjbVlabec8aWnaaDaaaleaacaWGPbaabaGaamyqaaaaaaaakiaa wIcacaGLPaaaaSqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadg eaaeqaaaWcbeqdcqGHris5aOGaaGjbVlaaysW7cqGHRaWkcaaMe8Ua aGjbVpaaqafabaGaaGPaVlaadsgadaqhaaWcbaGaamyAaaqaaiaadk eaaaGcciGGSbGaai4BaiaacEgacaaMc8+aaeWaaeaacaaIXaGaaGjb VlabgkHiTiaaysW7cqaHapaCdaqhaaWcbaGaamyAaaqaaiaadgeaaa aakiaawIcacaGLPaaacaaMi8oaleaacaWGPbGaeyicI4Saam4uamaa BaaameaacaWGcbaabeaaaSqab0GaeyyeIuoakiaac6cacaaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaikdacaGG Paaaaa@87CA@

The maximum pseudo-likelihood estimator α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ is the maximizer of * ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aaCaaaleqabaGaaiOkaaaakmaabmaabaGaaCySdaGaayjkaiaawMca aaaa@38C2@ and can be obtained as the solution to the pseudo score equations given by U ( α ) = * ( α ) / α = 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHvbGaaGPaVlaacIcacaWHXoGaai ykaiaaysW7cqGH9aqpcaaMe8+aaSGbaeaacqGHciITqqa6daaaaaGu LrgapeGaeS4eHW2damaaCaaaleqabaGaaiOkaaaakiaacIcacaWHXo GaaiykaaqaaiabgkGi2kaahg7aaaGaaGjbVlabg2da9iaaysW7caWH WaGaaiOlaaaa@4B5B@ If the inverse logit function is assumed for π i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaGGSaaaaa@3605@ the pseudo score functions are given by

U ( α ) = i S A x i i S B d i B π ( x i , α ) x i . ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCyvaiaaykW7daqadaqaai aahg7aaiaawIcacaGLPaaacaaMe8UaaGjbVlabg2da9iaaysW7caaM e8+aaabuaeaacaaMc8UaaCiEamaaBaaaleaacaWGPbaabeaaaeaaca WGPbGaeyicI4Saam4uamaaBaaameaacaWGbbaabeaaaSqab0Gaeyye IuoakiaaysW7cqGHsislcaaMe8+aaabuaeaacaaMc8UaamizamaaDa aaleaacaWGPbaabaGaamOqaaaakiabec8aWjaaykW7daqadaqaaiaa hIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahg7aaiaawI cacaGLPaaacaaMe8UaaCiEamaaBaaaleaacaWGPbaabeaaaeaacaWG PbGaeyicI4Saam4uamaaBaaameaacaWGcbaabeaaaSqab0GaeyyeIu oakiaac6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI 0aGaaiOlaiaaiodacaGGPaaaaa@72A4@

In general, the pseudo score functions U ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHvbGaaGPaVlaaiIcacaWHXoGaaG ykaaaa@36B8@ at the true values of the model parameters α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoWaaSbaaSqaaiaaicdaaeqaaa aa@33D0@ are unbiased under the joint q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ randomization in the sense that E q p { U ( α 0 ) } = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaadghacaWGWb aabeaakmaacmaabaGaaCyvaiaaykW7caaMi8Uaaiikaiaahg7adaWg aaWcbaGaaGimaaqabaGccaGGPaaacaGL7bGaayzFaaGaaGjbVlabg2 da9iaaysW7caWHWaGaaiilaaaa@43D2@ which implies that the estimator α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ is q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ -consistent for α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoWaaSbaaSqaaiaaicdaaeqaaa aa@33D0@ (Tsiatis, 2006).

Valliant and Dever (2011) made an earlier attempt to estimate the propensity scores by pooling the non-probability sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ with the reference probability sample S B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaO GaaiOlaaaa@3434@ Let S A B = S A S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeacaWGcb aabeaakiaaysW7cqGH9aqpcaaMe8Uaam4uamaaBaaaleaacaWGbbaa beaakiaaysW7cqGHQicYcaaMe8Uaam4uamaaBaaaleaacaWGcbaabe aaaaa@40C1@ be the pooled sample without removing any potential duplicated units. Let R i * = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGsbWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaaGjbVlabg2da9iaaysW7caaIXaaaaa@3932@ if i S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaaaa@3903@ and R i * = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGsbWaa0baaSqaaiaadMgaaeaaca GGQaaaaOGaaGjbVlabg2da9iaaysW7caaIWaaaaa@3931@ if i S B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadkeaaeqaaOGaaiOlaaaa@39C0@ Valliant and Dever (2011) proposed to fit a survey weighted logistic regression model to the pooled dataset { ( R i * , x i , d i ) , i S A B } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaGadaqaaiaacIcacaWGsbWaa0baaS qaaiaadMgaaeaacaGGQaaaaOGaaGilaiaaysW7caWH4bWaaSbaaSqa aiaadMgaaeqaaOGaaGilaiaaysW7caWGKbWaaSbaaSqaaiaadMgaae qaaOGaaiykaiaaiYcacaaMe8UaamyAaiaaysW7cqGHiiIZcaaMe8Ua am4uamaaBaaaleaacaWGbbGaamOqaaqabaaakiaawUhacaGL9baaca GGSaaaaa@4BB3@ where the weights are defined as d i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caaIXaaaaa@3895@ if i S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaaaa@3903@ and d i = d i B ( 1 n A / N ^ B ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caWGKbWaa0baaSqaaiaadMgaaeaacaWG cbaaaOWaaeWaaeaacaaIXaGaaGjbVlabgkHiTiaaysW7daWcgaqaai aad6gadaWgaaWcbaGaamyqaaqabaaakeaaceWGobGbaKaadaWgaaWc baGaamOqaaqabaaaaaGccaGLOaGaayzkaaaaaa@44DF@ if i S B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadkeaaeqaaOGaaiOlaaaa@39C0@ The key motivation behind the creation of the weights d i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaa aa@33B0@ is that the total weight i S A B d i = i S B d i B = N ^ B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaaeqaqabSqaaiaadMgacqGHiiIZca WGtbWaaSbaaWqaaiaadgeacaWGcbaabeaaaSqab0GaeyyeIuoakiaa ykW7caWGKbWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabg2da9iaays W7daaeqaqabSqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadkea aeqaaaWcbeqdcqGHris5aOGaaGPaVlaadsgadaqhaaWcbaGaamyAaa qaaiaadkeaaaGccaaMe8Uaeyypa0JaaGjbVlqad6eagaqcamaaBaaa leaacaWGcbaabeaaaaa@50EF@ for the pooled sample matches the estimated population size, and the hope is that the survey weighted logistic regression model would lead to valid estimates for the propensity scores. It was shown by Chen et al. (2020) that the pooled sample approach of Valliant and Dever (2011) does not lead to consistent estimators for the parameters of the propensity scores model unless the non-probability sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ is a simple random sample from the target population.

The method of Valliant and Dever (2011) reveals a fundamental difficulty with approaches based on the pooled sample S A B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeacaWGcb aabeaakiaac6caaaa@34FA@ If the units in the non-probability sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ are treated as exchangeable in the pooled sample S A B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeacaWGcb aabeaakiaacYcaaaa@34F8@ which was reflected by the equal weights d i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaGymaaaa@3856@ used in the method of Valliant and Dever (2011), the resulting estimates for the propensity scores will be invalid unless S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ is a simple random sample. This observation has implications to the validity of nonparametric methods or regression tree-based methods to be discussed in Section 4.1.3.

In a recent paper, Wang, Valliant and Li (2021) proposed an adjusted logistic propensity (ALP) weighting method. The method involves two steps for computing the estimated propensity scores. The initial estimates, denoted as p ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGWbGbaKaadaWgaaWcbaGaamyAaa qabaaaaa@33CC@ for i S A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaOGaaiilaaaa@39BD@ are obtained by fitting the survey weighted logistic regression model to the pooled sample S A B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeacaWGcb aabeaaaaa@343E@ similar to Valliant and Dever (2011), with the weights defined as d i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaGymaaaa@3856@ if i S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaaaa@3903@ and d i = d i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caWGKbWaa0baaSqaaiaadMgaaeaacaWG cbaaaaaa@3AA5@ if i S B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadkeaaeqaaOGaaiOlaaaa@39C0@ The final estimated propensity scores are computed as π ^ i A = p ^ i / ( 1 p ^ i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPb aabaGaamyqaaaakiaaysW7cqGH9aqpcaaMe8+aaSGbaeaaceWGWbGb aKaadaWgaaWcbaGaamyAaaqabaaakeaadaqadaqaaiaaigdacaaMe8 UaeyOeI0IaaGjbVlqadchagaqcamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaaaacaGGUaaaaa@44EA@ The key theoretical argument is the equation π i A = p i / ( 1 p i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVpaalyaabaGaamiCamaaBaaa leaacaWGPbaabeaaaOqaamaabmaabaGaaGymaiaaysW7cqGHsislca aMe8UaamiCamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa aaa@4408@ where π i A = P ( i S A | U ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfacaaMc8+aaeWaaeaa caWGPbGaaGjbVlabgIGiolaaysW7caWGtbWaaSbaaSqaaiaadgeaae qaaOGaaGjbVpaaeeaabaGaaGjbVlaadwfaaiaawEa7aaGaayjkaiaa wMcaaiaacYcaaaa@4AF6@ p i = P ( i S A * | S A * U ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caWGqbGaaGPaVpaabmaabaGaamyAaiaa ysW7cqGHiiIZcaaMe8Uaam4uamaaDaaaleaacaWGbbaabaGaaiOkaa aakiaaysW7daabbaqaaiaaysW7caWGtbWaa0baaSqaaiaadgeaaeaa caGGQaaaaOGaaGjbVlabgQIiilaaysW7caWGvbaacaGLhWoaaiaawI cacaGLPaaacaGGSaaaaa@5153@ and S A * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaa0baaSqaaiaadgeaaeaaca GGQaaaaaaa@3426@ is a copy of S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ but is viewed as a different set. However, there are conceptual issues with the arguments since the probabilities π i A = P ( i S A | U ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfacaaMc8+aaeWaaeaa caWGPbGaaGjbVlabgIGiolaaysW7caWGtbWaaSbaaSqaaiaadgeaae qaaOGaaGjbVpaaeeaabaGaaGjbVlaadwfaaiaawEa7aaGaayjkaiaa wMcaaaaa@4A46@ are defined under the assumed propensity scores model with the given finite population U , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGvbGaaiilaaaa@3337@ and the assumed model does not lead to a meaningful interpretation of the probabilities p i = P ( i S A * | S A * U ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caWGqbGaaGPaVpaabmaabaGaamyAaiaa ysW7cqGHiiIZcaaMe8Uaam4uamaaDaaaleaacaWGbbaabaGaaiOkaa aakiaaysW7daabbaqaaiaaysW7caWGtbWaa0baaSqaaiaadgeaaeaa caGGQaaaaOGaaGjbVlabgQIiilaaysW7caWGvbaacaGLhWoaaiaawI cacaGLPaaacaGGUaaaaa@5155@ The latter require a different probability space and are conditional on the given S A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaO GaaiOlaaaa@3433@ As a matter of fact, one can easily argue that under the assumed propensity scores model and conditional on the given S A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaO Gaaiilaaaa@3431@ we have p i = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaaGymaaaa@3862@ if i S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaaaa@3903@ and p i = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caaIWaaaaa@38A0@ otherwise.

4.1.2  Estimating equations based methods

The pseudo score equations U ( α ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHvbGaaGPaVlaacIcacaWHXoGaai ykaiaaysW7cqGH9aqpcaaMe8UaaCimaaaa@3B85@ derived from the pseudo likelihood function * ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aaCaaaleqabaGaaiOkaaaakiaacIcacaWHXoGaaiykaiaayIW7aaa@3A23@ may be replaced by a system of general estimating equations. Let h ( x , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiAaiaaykW7caGGOaGaaC iEaiaacYcacaaMe8UaaCySdiaacMcaaaa@3B8E@ be a user-specified vector of functions with the same dimension of α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoGaaiOlaaaa@339C@ Let

G ( α ) = i S A h ( x i , α ) i S B d i B π ( x i , α ) h ( x i , α ) . ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4raiaaykW7daqadaqaai aahg7aaiaawIcacaGLPaaacaaMe8UaaGjbVlabg2da9iaaysW7caaM e8+aaabuaeaacaWHObGaaGPaVpaabmaabaGaaCiEamaaBaaaleaaca WGPbaabeaakiaaiYcacaaMe8UaaCySdaGaayjkaiaawMcaaaWcbaGa amyAaiabgIGiolaadofadaWgaaadbaGaamyqaaqabaaaleqaniabgg HiLdGccaaMe8UaeyOeI0IaaGjbVpaaqafabaGaamizamaaDaaaleaa caWGPbaabaGaamOqaaaakiabec8aWjaaykW7daqadaqaaiaahIhada WgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahg7aaiaawIcacaGL PaaacaaMe8UaaCiAaiaaykW7daqadaqaaiaahIhadaWgaaWcbaGaam yAaaqabaGccaaISaGaaGjbVlaahg7aaiaawIcacaGLPaaacaaMi8Ua aiOlaaWcbaGaamyAaiabgIGiolaadofadaWgaaadbaGaamOqaaqaba aaleqaniabggHiLdGccaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaa cIcacaaI0aGaaiOlaiaaisdacaGGPaaaaa@8046@

It follows that E q p { G ( α 0 ) } = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaadghacaWGWb aabeaakmaacmaabaGaaC4raiaayIW7caaMc8UaaGikaiaahg7adaWg aaWcbaGaaGimaaqabaGccaaIPaaacaGL7bGaayzFaaGaaGjbVlaai2 dacaaMe8UaaCimaaaa@42E1@ for any chosen h ( x , α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHObGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHXoGaaiykaiaac6caaaa@3AAF@ In principle, an estimator α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeGabaamQiqahg7agaqcaaaa@3357@ of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHXoaaaa@32EA@ can be obtained by solving G ( α ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHhbGaaGPaVlaacIcacaWHXoGaai ykaiaaysW7cqGH9aqpcaaMe8UaaCimaaaa@3B77@ with the chosen parametric form π i A = π ( x i , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7caGGOaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdiaacM caaaa@43BB@ and the chosen functions h ( x , α ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHObGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHXoGaaiykaiaacYcaaaa@3AAD@ and the estimator α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ is consistent.

The estimator α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ using arbitrary user-specified functions h ( x , α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHObGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHXoGaaiykaaaa@39FD@ is typically less efficient than the one based on the pseudo score functions, due to the optimality of the maximum likelihood estimator (Godambe, 1960). Some limited empirical results also show that the solution to G ( α ) = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHhbGaaGPaVlaacIcacaWHXoGaai ykaiaaysW7cqGH9aqpcaaMe8UaaCimaaaa@3B76@ can be unstable for certain choices of h ( x , α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHObGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHXoGaaiykaiaac6caaaa@3AAF@ Nevertheless, the estimating equations based methods provide a useful tool for the estimation of the propensity scores under more restricted scenarios. For instance, if we let h ( x , α ) = x / π ( x , α ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHObGaaGPaVlaacIcacaWH4bGaai ilaiaaysW7caWHXoGaaiykaiaaysW7cqGH9aqpcaaMe8+aaSGbaeaa caWH4bGaaGjcVdqaaiabec8aWjaaykW7caGGOaGaaCiEaiaacYcaca aMe8UaaCySdiaacMcaaaGaaiilaaaa@4A91@ the estimating functions given in (4.4) reduce to

G ( α ) = i S A x i π ( x i , α ) i S B d i B x i . ( 4.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4raiaaykW7daqadaqaai aahg7aaiaawIcacaGLPaaacaaMe8UaaGjbVlabg2da9iaaysW7caaM e8+aaabuaeaacaaMc8+aaSaaaeaacaWH4bWaaSbaaSqaaiaadMgaae qaaaGcbaGaeqiWdaNaaGPaVpaabmaabaGaaCiEamaaBaaaleaacaWG PbaabeaakiaaiYcacaaMe8UaaCySdaGaayjkaiaawMcaaaaaaSqaai aadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadgeaaeqaaaWcbeqdcqGH ris5aOGaaGjbVlaaysW7cqGHsislcaaMe8UaaGjbVpaaqafabaGaaG PaVlaadsgadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaWH4bWaaSba aSqaaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaai aadkeaaeqaaaWcbeqdcqGHris5aOGaaiOlaiaaywW7caaMf8UaaGzb VlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGynaiaacMcaaaa@744A@

The form of G ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHhbGaaGPaVlaacIcacaWHXoGaai ykaaaa@369E@ in (4.5) looks like a “distorted” version of the pseudo score functions given in (4.3) under a logistic regression model for the propensity scores. The most practically important difference between the two versions, however, is the fact that the G ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHhbGaaGPaVlaacIcacaWHXoGaai ykaaaa@369E@ given in (4.5) only requires the estimated population totals for the auxiliary variables x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4bGaaiOlaaaa@3360@ There are scenarios where the population totals of the auxiliary variables x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@ can be accessed or estimated from an existing source but values of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@ at the unit level for the entire population or even a probability sample are not available. The use of estimating functions G ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHhbGaaGPaVlaacIcacaWHXoGaai ykaaaa@369E@ given (4.5) makes it possible to obtain valid estimates of the propensity scores for units in the non-probability sample. Section 6.3 describes an example where the estimating equations based approach leads to a valid variance estimator for the doubly robust estimator of the population mean.

4.1.3  Nonparametric methods and regression-tree based methods

The propensity scores π i A = P ( R i = 1 | x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfacaaMc8+aaeWaaeaa caWGsbWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabg2da9iaaysW7ca aIXaGaaGjbVpaaeeaabaGaaGjbVlaahIhadaWgaaWcbaGaamyAaaqa baaakiaawEa7aaGaayjkaiaawMcaaaaa@4B07@ are the mean function E q ( R i | x i ) = π ( x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaadghaaeqaaO WaaeWaaeaacaWGsbWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVpaaeeaa baGaaGjbVlaahIhadaWgaaWcbaGaamyAaaqabaaakiaawEa7aaGaay jkaiaawMcaaiaaysW7cqGH9aqpcaaMe8UaeqiWdaNaaGPaVpaabmaa baGaaCiEamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaa@4910@ for the binary response R i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGsbWaaSbaaSqaaiaadMgaaeqaaO GaaiOlaaaa@345A@ Nonparametric methods for estimating π ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8UaaiikaiaahIhaca GGPaaaaa@374F@ can be an attractive alternative. The major challenge is to develop estimation procedures which provide valid estimates of the propensity scores. As noted in Section 4.1.1, estimation methods based on the pooled sample S A B = S A S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeacaWGcb aabeaakiaaysW7cqGH9aqpcaaMe8Uaam4uamaaBaaaleaacaWGbbaa beaakiaaysW7cqGHQicYcaaMe8Uaam4uamaaBaaaleaacaWGcbaabe aaaaa@40C1@ may lead to invalid estimates. Strategies similar to the one used by Chen et al. (2020) can be theoretically justified under the joint q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ framework, where the estimation procedures are first derived using data from the entire finite population and unknown population quantities are then replaced by estimates obtained from the reference probability sample.

We consider the kernel regression estimator of π i A = π ( x i ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7daqadaqa aiaahIhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaGGUa aaaa@411D@ Suppose that the dataset { ( R i , x i ) , i = 1, 2, , N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaGadaqaaiaacIcacaWGsbWaaSbaaS qaaiaadMgaaeqaaOGaaGilaiaaysW7caWH4bWaaSbaaSqaaiaadMga aeqaaOGaaiykaiaaiYcacaaMe8UaamyAaiaaysW7cqGH9aqpcaaMe8 UaaGymaiaaiYcacaaMe8UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGil aiaaysW7caWGobaacaGL7bGaayzFaaaaaa@4D20@ is available for the finite population. Let K h ( t ) = K ( t / h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGlbWaaSbaaSqaaiaadIgaaeqaaO WaaeWaaeaacaWG0baacaGLOaGaayzkaaGaaGjbVlabg2da9iaaysW7 caWGlbGaaGPaVpaabmaabaWaaSGbaeaacaWG0baabaGaamiAaaaaai aawIcacaGLPaaaaaa@4022@ be a chosen kernel with a bandwidth h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaiOlaaaa@334C@ The Nadaraya-Watson kernel regression estimator (Nadaraya, 1964; Watson, 1964) of π ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWaaeaacaWH4b aacaGLOaGaayzkaaaaaa@377F@ is given by

π ˜ ( x ) = j = 1 N K h ( x x j ) R j j = 1 N K h ( x x j ) . ( 4.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaacaiaaykW7daqadaqaai aahIhaaiaawIcacaGLPaaacaaMe8UaaGjbVlabg2da9iaaysW7caaM e8+aaSaaaeaadaaeWaqaaiaaykW7caWGlbWaaSbaaSqaaiaadIgaae qaaOWaaeWaaeaacaWH4bGaaGjbVlabgkHiTiaaysW7caWH4bWaaSba aSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaadkfadaWgaa WcbaGaamOAaaqabaaabaGaamOAaiaai2dacaaIXaaabaGaamOtaaqd cqGHris5aaGcbaWaaabmaeaacaaMc8Uaam4samaaBaaaleaacaWGOb aabeaakmaabmaabaGaaCiEaiaaysW7cqGHsislcaaMe8UaaCiEamaa BaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaWcbaGaamOAaiabg2 da9iaaigdaaeaacaWGobaaniabggHiLdaaaOGaaiOlaiaaywW7caaM f8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGOnaiaacM caaaa@7195@

A kernel estimator in the form of π ˜ ( x ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaacaiaaykW7caaMi8Uaai ikaiaahIhacaGGPaaaaa@38EF@ given in (4.6) usually has no practical values since we do not have complete auxiliary information for the finite population. It turns out that for the estimation of propensity scores the numerator in (4.6) only requires observations from the non-probability sample due to the binary variable R j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGsbWaaSbaaSqaaiaadQgaaeqaaO Gaaiilaaaa@3459@ and the denominator is a population total and can be estimated by using the reference probability sample. The nonparametric kernel regression estimator of the propensity scores is given by (Yuan, Li and Wu, 2022)

π ^ i A = π ^ ( x i ) = j S A K h ( x i x j ) j S B d j B K h ( x i x j ) , i S A . ( 4.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPb aabaGaamyqaaaakiaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7cuaH apaCgaqcamaabmaabaGaaCiEamaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaaiaaysW7caaMe8Uaeyypa0JaaGjbVlaaysW7daWcaaqa amaaqababaGaam4samaaBaaaleaacaWGObaabeaakmaabmaabaGaaC iEamaaBaaaleaacaWGPbaabeaakiaaysW7cqGHsislcaaMe8UaaCiE amaaBaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaWcbaGaamOAai abgIGiolaadofadaWgaaadbaGaamyqaaqabaaaleqaniabggHiLdaa keaadaaeqaqaaiaadsgadaqhaaWcbaGaamOAaaqaaiaadkeaaaGcca WGlbWaaSbaaSqaaiaadIgaaeqaaOWaaeWaaeaacaWH4bWaaSbaaSqa aiaadMgaaeqaaOGaaGjbVlabgkHiTiaaysW7caWH4bWaaSbaaSqaai aadQgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGQbGaeyicI4Saam4u amaaBaaameaacaWGcbaabeaaaSqab0GaeyyeIuoaaaGccaaISaGaaG zbVlaadMgacaaMe8UaeyicI4SaaGjbVlaadofadaWgaaWcbaGaamyq aaqabaGccaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOa GaaGinaiaac6cacaaI3aGaaiykaaaa@85E8@

The estimator π ^ i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPb aabaGaamyqaaaaaaa@355B@ given in (4.7) is consistent under the joint q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ framework and the q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ -model for the propensity scores is very flexible due to the nonparametric assumption on π ( x ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8UaaiikaiaahIhaca GGPaGaaiOlaaaa@3801@ The estimated propensity scores are easy to compute when the dimension of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@ is not too high. Issues with high dimensional x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@ and the choices of the kernel K h ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGlbWaaSbaaSqaaiaadIgaaeqaaO GaaGPaVlaacIcacqGHflY1caGGPaaaaa@38CE@ and the bandwidth h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObaaaa@329A@ remain as in general applications of kernel-based estimation methods. Simulation results reported by Yuan et al. (2022) show that the kernel estimation method provides robust results for the propensity scores using the normal kernel and popular choices for the bandwidth.

Chu and Beaumont (2019) considered regression-tree based methods for estimating the propensity scores. Their proposed TrIPW method is a variant of the CART algorithm (Breiman, Friedman, Olshen and Stone, 1984) and uses data from the combined sample of the non-probability sample and the reference probability sample. The method aims to construct a classification tree with the terminal nodes of the final tree treated as homogeneous groups in terms of the propensity scores. The estimator of μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ is constructed based on the final tree and post-stratification. Section 5 contains further details on poststratified estimators.

Statistical learning techniques such as classification and regression trees and random forests have been developed primarily for the purpose of prediction. Their use for estimating the propensity scores of non-probability samples requires further research. It is not a desirable approach to naively apply the methods over the pooled sample S A B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeacaWGcb aabeaaaaa@343E@ without theoretical justifications on the consistency of the final estimators. Further research towards this direction should be encouraged.

4.2  Inverse probability weighting

Let π ^ i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPb aabaGaamyqaaaaaaa@355B@ be an estimate of π i A = P ( i S A | x i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfacaaMc8+aaeWaaeaa caWGPbGaaGjbVlabgIGiolaaysW7caWGtbWaaSbaaSqaaiaadgeaae qaaOGaaGjbVpaaeeaabaGaaGjbVlaahIhadaWgaaWcbaGaamyAaaqa baaakiaawEa7aaGaayjkaiaawMcaaaaa@4B91@ under a chosen method for the estimation of the propensity scores. Two versions of the inverse probability weighted (IPW) estimator of μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ are constructed as

μ ^ IPW 1 = 1 N i S A y i π ^ i A and μ ^ IPW 2 = 1 N ^ A i S A y i π ^ i A , ( 4.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaigdaaOqabaGaaGjbVlaaysW7caaI9aGaaGjb VlaaysW7daWcaaqaaiaaigdaaeaacaWGobaaamaaqafabaGaaGPaVp aalaaabaGaamyEamaaBaaaleaacaWGPbaabeaaaOqaaiqbec8aWzaa jaWaa0baaSqaaiaadMgaaeaacaWGbbaaaaaaaeaacaWGPbGaeyicI4 Saam4uamaaBaaameaacaWGbbaabeaaaSqab0GaeyyeIuoakiaaywW7 caqGHbGaaeOBaiaabsgacaaMf8UafqiVd0MbaKaadaWgaaWcbaadca qGjbGaaeiuaiaabEfacaaIYaaakeqaaiaaysW7caaMe8UaaGypaiaa ysW7caaMe8+aaSaaaeaacaaIXaaabaGabmOtayaajaWaaWbaaSqabe aacaWGbbaaaaaakmaaqafabaWaaSaaaeaacaWG5bWaaSbaaSqaaiaa dMgaaeqaaaGcbaGafqiWdaNbaKaadaqhaaWcbaGaamyAaaqaaiaadg eaaaaaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadgeaaeqa aaWcbeqdcqGHris5aOGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7ca aMf8UaaiikaiaaisdacaGGUaGaaGioaiaacMcaaaa@7A5C@

where N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobaaaa@3280@ is the population size and N ^ A = i S A ( π ^ i A ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGobGbaKaadaahaaWcbeqaaiaadg eaaaGccaaMe8Uaeyypa0JaaGjbVpaaqababaGaaGikaiqbec8aWzaa jaWaa0baaSqaaiaadMgaaeaacaWGbbaaaOGaaGykamaaCaaaleqaba GaeyOeI0IaaGymaaaaaeaacaWGPbGaeyicI4Saam4uamaaBaaameaa caWGbbaabeaaaSqab0GaeyyeIuoaaaa@44BF@ is the estimated population size. The estimator μ ^ IPW 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaigdaaOqabaaaaa@36E9@ is a version of the Horvitz-Thompson estimator and μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ corresponds to the Hájek estimator as discussed in design-based estimation theory. There are ample evidences from both theoretical justifications and practical observations that the Hájek estimator μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ performs better than the Horvitz-Thompson estimator and should be used in practice even if the population size N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobaaaa@3280@ is known.

The validity of the IPW estimators μ ^ IPW 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaigdaaOqabaaaaa@36E9@ and μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ depends on the validity of the estimated propensity scores. Under the assumptions A1 and A2 and the parametric model π i A = π ( x i , α 0 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7caGGOaGa aCiEamaaBaaaleaacaWGPbaabeaakiaaiYcacaaMe8UaaCySdmaaBa aaleaacaaIWaaabeaakiaacMcacaGGSaaaaa@455B@ the consistency of μ ^ IPW 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaigdaaOqabaaaaa@36E9@ follows a standard two-step argument. Let μ ˜ IPW = N 1 i S A y i / π i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabM eacaqGqbGaae4vaaGcbeaacaaMe8Uaeyypa0JaaGjbVlaad6eadaah aaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqaqaamaalyaabaGaamyEam aaBaaaleaacaWGPbaabeaaaOqaaiabec8aWnaaDaaaleaacaWGPbaa baGaamyqaaaaaaaabaGaamyAaiabgIGiolaadofadaWgaaadbaGaam yqaaqabaaaleqaniabggHiLdGccaGGSaaaaa@49AF@ which is not a computable estimator but an analytic tool useful for asymptotic purposes. It follows that E q ( μ ˜ IPW ) = μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaadghaaeqaaO WaaeWaaeaacuaH8oqBgaacamaaBaaaleaamiaabMeacaqGqbGaae4v aaGcbeaaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVlabeY7aTn aaBaaaleaacaWG5baabeaaaaa@40AC@ and the order V q ( μ ˜ IPW ) = O ( n A 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGwbWaaSbaaSqaaiaadghaaeqaaO WaaeWaaeaacuaH8oqBgaacamaaBaaaleaamiaabMeacaqGqbGaae4v aaGcbeaaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVlaad+eada qadaqaaiaad6gadaqhaaWcbaGaamyqaaqaaiabgkHiTiaaigdaaaaa kiaawIcacaGLPaaaaaa@43D2@ holds under the condition that n A π i A / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcgaqaaiaad6gadaWgaaWcbaGaam yqaaqabaGccqaHapaCdaqhaaWcbaGaamyAaaqaaiaadgeaaaaakeaa caWGobaaaaaa@382D@ is bounded away from zero. As a consequence, we have μ ˜ IPW μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabM eacaqGqbGaae4vaaGcbeaacqGHsgIRcqaH8oqBdaWgaaWcbaGaamyE aaqabaaaaa@3AFA@ in probability as n A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadgeaaeqaaO GaaGjbVlabgkziUkaaysW7cqGHEisPcaGGUaaaaa@3AC6@ Under the correctly specified model π i A = π ( x i , α 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVlabec8aWjaaykW7daqadaqa aiaahIhadaWgaaWcbaGaamyAaaqabaGccaaISaGaaGjbVlaahg7ada WgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@44DB@ for the propensity scores, the typical root- n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbaaaa@32A0@ order α ^ α 0 = O p ( n A 1 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaacaaMe8UaeyOeI0IaaG jbVlaahg7adaWgaaWcbaGaaGimaaqabaGccaaMe8Uaeyypa0JaaGjb Vlaad+eadaWgaaWcbaGaamiCaaqabaGcdaqadeqaaiaad6gadaqhaa WcbaGaamyqaaqaaiabgkHiTmaalyaabaGaaGymaaqaaiaaikdaaaaa aaGccaGLOaGaayzkaaaaaa@4541@ holds for commonly encountered scenarios. We can show by treating μ ^ IPW 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaigdaaOqabaaaaa@36E9@ as a function of α ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWHXoGbaKaaaaa@32FA@ and using a Taylor series expansion that μ ^ IPW 1 = μ ˜ IPW + O p ( n A 1 / 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaigdaaOqabaGaaGjbVlabg2da9iaaysW7cuaH 8oqBgaacamaaBaaaleaamiaabMeacaqGqbGaae4vaaGcbeaacaaMe8 Uaey4kaSIaaGjbVlaad+eadaWgaaWcbaGaamiCaaqabaGcdaqadeqa aiaad6gadaqhaaWcbaGaamyqaaqaaiabgkHiTmaalyaabaGaaGymaa qaaiaaikdaaaaaaaGccaGLOaGaayzkaaaaaa@4B78@ under some mild finite moment conditions. The consistency of μ ^ IPW2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaabkdaaOqabaaaaa@36E3@ can be established using standard arguments for a ratio estimator (Section 5.3, Wu and Thompson, 2020) where N 1 i S A ( π i A ) 1 = 1 + o p ( 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGobWaaWbaaSqabeaacqGHsislca aIXaaaaOWaaabeaeqaleaacaWGPbGaeyicI4Saam4uamaaBaaameaa caWGbbaabeaaaSqab0GaeyyeIuoakiaaykW7daqadaqaaiabec8aWn aaDaaaleaacaWGPbaabaGaamyqaaaaaOGaayjkaiaawMcaamaaCaaa leqabaGaeyOeI0IaaGymaaaakiaaysW7caaI9aGaaGjbVlaaigdaca aMe8Uaey4kaSIaaGjbVlaad+gadaWgaaWcbaGaamiCaaqabaGccaGG OaGaaGymaiaacMcacaGGUaaaaa@50AD@

4.3  Doubly robust estimation

The dependence of the IPW estimator on the validity of the assumed propensity score model is viewed as a weakness of the method. The issue is not unique to the IPW estimators and is faced by many other approaches involving an assumed statistical model. Robust estimation procedures which provide certain degrees of protection against model misspecifications have been pursued by researchers, and the so-called doubly robust estimators have been a successful story since the work of Robins, Rotnitzky, and Zhao (1994).

The doubly robust (DR) estimator of μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ is constructed using both the propensity score model q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ and the outcome regression model ξ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaGGUaaaaa@3422@ The DR estimator with the given propensity scores π i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaGGSaaaaa@3605@ i S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaaaa@3903@ and the mean responses m i = E ξ ( y i | x i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabg2da9iaaysW7caWGfbWaaSbaaSqaaiabe67a4bqabaGc daqadaqaaiaadMhadaWgaaWcbaGaamyAaaqabaGccaaMe8+aaqqaae aacaaMe8UaaCiEamaaBaaaleaacaWGPbaabeaaaOGaay5bSdaacaGL OaGaayzkaaGaaiilaaaa@45D4@ i = 1, 2, , N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabg2da9iaaysW7ca aIXaGaaGilaiaaysW7caaIYaGaaGilaiaaysW7cqWIMaYscaaISaGa aGjbVlaad6eaaaa@40F0@ has the following general form,

μ ˜ DR = 1 N i S A y i m i π i A + 1 N i = 1 N m i . ( 4.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabs eacaqGsbaakeqaaiaaysW7caaMe8UaaGypaiaaysW7caaMe8+aaSaa aeaacaaIXaaabaGaamOtaaaadaaeqbqaaiaaykW7daWcaaqaaiaadM hadaWgaaWcbaGaamyAaaqabaGccaaMe8UaeyOeI0IaaGjbVlaad2ga daWgaaWcbaGaamyAaaqabaaakeaacqaHapaCdaqhaaWcbaGaamyAaa qaaiaadgeaaaaaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaa dgeaaeqaaaWcbeqdcqGHris5aOGaaGjbVlaaysW7cqGHRaWkcaaMe8 UaaGjbVpaalaaabaGaaGymaaqaaiaad6eaaaWaaabCaeaacaaMc8Ua amyBamaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaeyypa0JaaGymaa qaaiaad6eaa0GaeyyeIuoakiaac6cacaaMf8UaaGzbVlaaywW7caaM f8UaaGzbVlaacIcacaaI0aGaaiOlaiaaiMdacaGGPaaaaa@6FDC@

The second term on the right hand side of (4.9) is the model-based prediction of μ y . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba GccaGGUaaaaa@3549@ The first term is a propensity score based adjustment using the errors ε i = y i m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH1oqzdaWgaaWcbaGaamyAaaqaba GccaaMe8Uaeyypa0JaaGjbVlaadMhadaWgaaWcbaGaamyAaaqabaGc caaMe8UaeyOeI0IaaGjbVlaad2gadaWgaaWcbaGaamyAaaqabaaaaa@40CD@ from the outcome regression model. The magnitude of the adjustment term is negatively correlated to the “goodness-of-fit” of the outcome regression model. It can be shown that μ ˜ DR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabs eacaqGsbaakeqaaaaa@3550@ is an exactly unbiased estimator of μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ if one of the two models q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ and ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEaaa@3370@ is correctly specified and hence it is doubly robust. The estimator μ ˜ DR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabs eacaqGsbaakeqaaaaa@3550@ has an identical structure to the generalized difference estimator of Wu and Sitter (2001). It is important to note that the double robustness property of μ ˜ DR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabs eacaqGsbaakeqaaaaa@3550@ does not require the knowledge of which of the two models being correctly specified. It is also apparent that the estimator μ ˜ DR MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaacamaaBaaaleaamiaabs eacaqGsbaakeqaaaaa@3550@ given in (4.9) is not computable in practical applications.

Let π ^ i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPb aabaGaamyqaaaaaaa@355B@ and m ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGTbGbaKaadaWgaaWcbaGaamyAaa qabaaaaa@33C9@ be respectively the estimators of π i A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaaaaa@354B@ and m i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbWaaSbaaSqaaiaadMgaaeqaaa aa@33B9@ under the assumed models q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@ and ξ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaGGUaaaaa@3422@ Under the two-sample setting described in Section 2, the two DR estimators of μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ proposed by Chen et al. (2020) are given by

μ ^ DR 1 = 1 N i S A y i m ^ i π ^ i A + 1 N i S B d i B m ^ i ( 4.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaacaaMe8UaaGjbVlaai2dacaaMe8UaaGjb VpaalaaabaGaaGymaaqaaiaad6eaaaWaaabuaeaacaaMc8+aaSaaae aacaWG5bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgkHiTiaaysW7 ceWGTbGbaKaadaWgaaWcbaGaamyAaaqabaaakeaacuaHapaCgaqcam aaDaaaleaacaWGPbaabaGaamyqaaaaaaaabaGaamyAaiabgIGiolaa dofadaWgaaadbaGaamyqaaqabaaaleqaniabggHiLdGccaaMe8UaaG jbVlabgUcaRiaaysW7caaMe8+aaSaaaeaacaaIXaaabaGaamOtaaaa daaeqbqaaiaaykW7caWGKbWaa0baaSqaaiaadMgaaeaacaWGcbaaaO GabmyBayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacqGHiiIZ caWGtbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aOGaaGzbVl aaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaIXaGa aGimaiaacMcaaaa@7445@

and

μ ^ DR 2 = 1 N ^ A i S A y i m ^ i π ^ i A + 1 N ^ B i S B d i B m ^ i , ( 4.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaacaaMe8UaaGjbVlaai2dacaaMe8UaaGjb VpaalaaabaGaaGymaaqaaiqad6eagaqcamaaCaaaleqabaGaamyqaa aaaaGccaaMe8+aaabuaeaacaaMc8+aaSaaaeaacaWG5bWaaSbaaSqa aiaadMgaaeqaaOGaaGjbVlabgkHiTiaaysW7ceWGTbGbaKaadaWgaa WcbaGaamyAaaqabaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPbaa baGaamyqaaaaaaGccaaMe8oaleaacaWGPbGaeyicI4Saam4uamaaBa aameaacaWGbbaabeaaaSqab0GaeyyeIuoakiaaysW7cqGHRaWkcaaM e8UaaGjbVpaalaaabaGaaGymaaqaaiqad6eagaqcamaaCaaaleqaba GaamOqaaaaaaGccaaMe8+aaabuaeaacaaMc8UaamizamaaDaaaleaa caWGPbaabaGaamOqaaaakiqad2gagaqcamaaBaaaleaacaWGPbaabe aaaeaacaWGPbGaeyicI4Saam4uamaaBaaameaacaWGcbaabeaaaSqa b0GaeyyeIuoakiaacYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl aacIcacaaI0aGaaiOlaiaaigdacaaIXaGaaiykaaaa@7A41@

where d i B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaa0baaSqaaiaadMgaaeaaca WGcbaaaaaa@3478@ are the design weights for the probability sample S B , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaWGaamOqaaGcbe aacaGGSaaaaa@343E@ N ^ A = i S A ( π ^ i A ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGobGbaKaadaahaaWcbeqaaiaadg eaaaGccaaMe8UaaGypaiaaysW7daaeqaqaamaabmaabaGafqiWdaNb aKaadaqhaaWcbaGaamyAaaqaaiaadgeaaaaakiaawIcacaGLPaaada ahaaWcbeqaaiabgkHiTiaaigdaaaaabaGaamyAaiabgIGiolaadofa daWgaaadbaGaamyqaaqabaaaleqaniabggHiLdaaaa@44A4@ and N ^ B = i S B d i B . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGobGbaKaadaahaaWcbeqaaiaadk eaaaGccaaMe8UaaGypaiaaysW7daaeqaqabSqaaiaadMgacqGHiiIZ caWGtbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aOGaaGPaVl aadsgadaqhaaWcbaGaamyAaaqaaiaadkeaaaGccaGGUaaaaa@42B8@ The estimator μ ^ DR 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaaaaa@360D@ using the estimated population size has better performance in terms of bias and mean squared error and should be used in practice.

The probability survey design p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbaaaa@32A2@ is an integral part of the theoretical framework for assessing the two estimators μ ^ DR 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaaaaa@360C@ and μ ^ DR 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaacaGGUaaaaa@36BF@ It is assumed that S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ and S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ are selected independently, which implies that E p ( i S B d i B m ^ i ) = i = 1 N m ^ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaadchaaeqaaO WaaeWaaeaadaaeqaqaaiaadsgadaqhaaWcbaGaamyAaaqaaiaadkea aaGcceWGTbGbaKaadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabgI GiolaadofadaWgaaadbaGaamOqaaqabaaaleqaniabggHiLdaakiaa wIcacaGLPaaacaaMe8UaaGypaiaaysW7daaeWaqaaiaaykW7ceWGTb GbaKaadaWgaaWcbaGaamyAaaqabaaabaGaamyAaiabg2da9iaaigda aeaacaWGobaaniabggHiLdGccaGGUaaaaa@4E04@ Consistency of the estimators μ ^ DR 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGymaaGcbeaaaaa@360C@ and μ ^ DR 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabs eacaqGsbGaaGOmaaGcbeaaaaa@360D@ can be established under either the q p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaamiCaaaa@3398@ or the ξ p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaWGWbaaaa@3465@ framework. It should be noted that even if the non-probability sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ is a simple random sample with π i A = n A / N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCdaqhaaWcbaGaamyAaaqaai aadgeaaaGccaaMe8Uaeyypa0JaaGjbVpaalyaabaGaamOBamaaBaaa leaacaWGbbaabeaaaOqaaiaad6eaaaGaaiilaaaa@3CFD@ the doubly robust estimator in the form of (4.9) does not reduce to the model-based prediction estimator μ ^ y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaacaWG5b adcaaIYaaakeqaaaaa@356F@ given in (3.3).

4.4  The pseudo empirical likelihood approach

The pseudo empirical likelihood (PEL) methods for probability survey samples have been under development over the past two decades. Two early papers on the topic are Chen and Sitter (1999) on point estimation incorporating auxiliary information and Wu and Rao (2006) on PEL ratio confidence intervals. The PEL approaches are further used for multiple frame surveys (Rao and Wu, 2010a) and Bayesian inferences with survey data (Rao and Wu, 2010b; Zhao, Ghosh, Rao and Wu, 2020b). Using the PEL methods for general inferential problems with complex surveys has been studied in two recent papers (Zhao and Wu, 2019; Zhao, Rao and Wu, 2020a).

Chen, Li, Rao and Wu (2022) showed that the PEL provides an attractive alternative approach to inference with non-probability survey samples. Let π ^ i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaHapaCgaqcamaaDaaaleaacaWGPb aabaGaamyqaaaakiaacYcaaaa@3615@ i S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaaaa@3903@ be the estimated propensity scores under an assumed parametric or non-parametric model, q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbGaaiOlaaaa@3355@ The PEL function for the non-probability survey sample S A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaa aa@3377@ is defined as

PEL ( p ) = n A i S A d ˜ i A log ( p i ) , ( 4.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aaBaaaleaamiaabcfacaqGfbGaaeitaaGcbeaacaaIOaGaaCiCaiaa iMcacaaMe8UaaGjbVlabg2da9iaaysW7caaMe8UaamOBamaaBaaale aacaWGbbaabeaakmaaqafabaGabmizayaaiaWaa0baaSqaaiaadMga aeaacaWGbbaaaOGaciiBaiaac+gacaGGNbWaaeWaaeaacaWGWbWaaS baaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaleaacaWGPbGaeyic I4Saam4uamaaBaaameaacaWGbbaabeaaaSqab0GaeyyeIuoakiaayI W7caGGSaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGin aiaac6cacaaIXaGaaGOmaiaacMcaaaa@615A@

where p = ( p 1 , , p n A ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHWbGaaGjbVlaai2dacaaMe8Uaai ikaiaadchadaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlablAci ljaaiYcacaaMe8UaamiCamaaBaaaleaacaWGUbWaaSbaaWqaaiaadg eaaeqaaaWcbeaakiaacMcaaaa@428A@ is a discrete probability measure over the n A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadgeaaeqaaa aa@3392@ selected units in S A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadgeaaeqaaO Gaaiilaaaa@3431@ d ˜ i A = ( π ^ i A ) 1 / N ^ A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGKbGbaGaadaqhaaWcbaGaamyAaa qaaiaadgeaaaGccaaMe8UaaGypaiaaysW7daWcgaqaaiaacIcacuaH apaCgaqcamaaDaaaleaacaWGPbaabaGaamyqaaaakiaacMcadaahaa WcbeqaaiabgkHiTiaaigdaaaaakeaaceWGobGbaKaadaahaaWcbeqa aiaadgeaaaaaaaaa@414C@ and N ^ A = j S A ( π ^ j A ) 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGobGbaKaadaahaaWcbeqaaiaadg eaaaGccaaMe8UaaGypaiaaysW7daaeqaqaaiaacIcacuaHapaCgaqc amaaDaaaleaacaWGQbaabaGaamyqaaaakiaacMcadaahaaWcbeqaai abgkHiTiaaigdaaaaabaGaamOAaiabgIGiolaadofadaWgaaadbaGa amyqaaqabaaaleqaniabggHiLdaaaa@4476@ which is defined earlier in Section 4. Without using any additional information, maximizing PEL ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aaBaaaleaamiaabcfacaqGfbGaaeitaaGcbeaadaqadaqaaiaahcha aiaawIcacaGLPaaaaaa@3A45@ under the normalization constraint

i S A p i = 1 ( 4.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaaeqbqaaiaaykW7caWGWbWaaSbaaS qaaiaadMgaaeqaaaqaaiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaa dgeaaeqaaaWcbeqdcqGHris5aOGaaGjbVlaaysW7caaI9aGaaGjbVl aaysW7caaIXaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGa aGinaiaac6cacaaIXaGaaG4maiaacMcaaaa@4F6D@

leads to p ^ i = d ˜ i A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGWbGbaKaadaWgaaWcbaGaamyAaa qabaGccaaMe8UaaGypaiaaysW7ceWGKbGbaGaadaqhaaWcbaGaamyA aaqaaiaadgeaaaGccaGGSaaaaa@3B4A@ i S A . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadgeaaeqaaOGaaiOlaaaa@39BF@ The maximum PEL estimator of μ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyEaaqaba aaaa@348D@ is given by μ ^ PEL = i S A p ^ i y i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabc facaqGfbGaaeitaaGcbeaacaaMe8UaaGypaiaaysW7daaeqaqaaiqa dchagaqcamaaBaaaleaacaWGPbaabeaakiaadMhadaWgaaWcbaGaam yAaaqabaaabaGaamyAaiabgIGiolaadofadaWgaaadbaGaamyqaaqa baaaleqaniabggHiLdGccaGGSaaaaa@451B@ which is identical to the IPW estimator μ ^ IPW 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabM eacaqGqbGaae4vaiaaikdaaOqabaaaaa@36EA@ given in (4.8).

The PEL approach to non-probability survey samples provides flexibilities in combining information through additional constraints and constructing confidence intervals and conducting hypothesis tests using the PEL ratio statistic. The maximum PEL estimator μ ^ PEL = i S A p ^ i y i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacuaH8oqBgaqcamaaBaaaleaamiaabc facaqGfbGaaeitaaGcbeaacaaMe8UaaGypaiaaysW7daaeqaqaaiqa dchagaqcamaaBaaaleaacaWGPbaabeaakiaadMhadaWgaaWcbaGaam yAaaqabaaabaGaamyAaiabgIGiolaadofadaWgaaadbaGaamyqaaqa baaaleqaniabggHiLdaaaa@4461@ is doubly robust if ( p ^ 1 , , p ^ n A ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadaqaaiqadchagaqcamaaBaaale aacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7ceWG WbGbaKaadaWgaaWcbaGaamOBamaaBaaameaacaWGbbaabeaaaSqaba aakiaawIcacaGLPaaaaaa@3E00@ is the maximizer of PEL ( p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaqqa6daaaaaGuLrgapeGaeS4eHW2dam aaBaaaleaamiaabcfacaqGfbGaaeitaaGcbeaadaqadaqaaiaahcha aiaawIcacaGLPaaacaaMi8oaaa@3BD6@ under both the normalization constraint and the model-calibration constraint given by

i S A p i m ^ i = m ¯ B , ( 4.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaaeqbqaaiaaykW7caWGWbWaaSbaaS qaaiaadMgaaeqaaOGabmyBayaajaWaaSbaaSqaaiaadMgaaeqaaaqa aiaadMgacqGHiiIZcaWGtbWaaSbaaWqaaiaadgeaaeqaaaWcbeqdcq GHris5aOGaaGjbVlaaysW7cqGH9aqpcaaMe8UaaGjbVlqad2gagaqe amaaCaaaleqabaadcaWGcbaaaOGaaiilaiaaywW7caaMf8UaaGzbVl aaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGymaiaaisdacaGGPaaa aa@53DC@

where m ¯ B = ( N ^ B ) 1 i S B d i B m ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGTbGbaebadaahaaWcbeqaaiaadk eaaaGccaaMe8Uaeyypa0JaaGjbVpaabmaabaGabmOtayaajaWaaWba aSqabeaacaWGcbaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacqGHsi slcaaIXaaaaOWaaabeaeaacaWGKbWaa0baaSqaaiaadMgaaeaacaWG cbaaaOGabmyBayaajaWaaSbaaSqaaiaadMgaaeqaaaqaaiaadMgacq GHiiIZcaWGtbWaaSbaaWqaaiaadkeaaeqaaaWcbeqdcqGHris5aaaa @4830@ is computed using the fitted values m ^ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGTbGbaKaadaWgaaWcbaGaamyAaa qabaGccaGGSaaaaa@3483@ i S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabgIGiolaaysW7ca WGtbWaaSbaaSqaaiaadkeaaeqaaaaa@3904@ from an assumed outcome regression model, ξ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH+oaEcaGGUaaaaa@3422@ The equation (4.14) is a modified version of the original model-calibration constraint of Wu and Sitter (2001) using the probability sample S B MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGtbWaaSbaaSqaaiaadkeaaeqaaa aa@3378@ . Chen et al. (2022) contain further details on the asymptotic distributions of the PEL ratio statistic and simulation studies on the performances of PEL ratio confidence intervals on a finite population proportion.


Date modified: