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Statistical inference with non-probability survey samples 

Changbao Wu1 

Abstract 

We provide a critical review and some extended discussions on theoretical and practical issues with analysis 

of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical 

procedures under commonly used assumptions, and address issues on the justification and verification of 

assumptions in practical applications. Some current methodological developments are showcased, and 

problems which require further investigation are mentioned. While the focus of the paper is on non-

probability samples, the essential role of probability survey samples with rich and relevant information on 

auxiliary variables is highlighted. 
 

Key Words: Auxiliary information; Bootstrap variance estimator; Calibration method; Doubly robust estimator; 
Estimating equations; Inverse probability weighting; Model-based prediction; Poststratification; Pseudo 

likelihood; Propensity score; Quota survey; Sensitivity analysis; Variance estimation. 

 

 

1. Introduction 
 

The field of survey sampling distinguishes itself from other areas of statistics with a number of unique 

features. The target population consists of finite number of well defined units, and the population 

parameters can be determined without error, at least conceptually, by conducting a census. Operational 

constraints and administrative convenience for data collection often make it necessary to consider 

stratification, clustering and unequal probability selection. Since the seminal paper of Neyman (1934), 

probability sampling methods have become one of the primary data collection tools for official statistics 

and researchers in health sciences, social and economic studies, business and marketing, agricultural and 

natural resource inventories, and other areas. Probability survey samples have also been used for analytic 

studies involving models and model parameters; see, for instance, Binder (1983), Godambe and 

Thompson (1986), Thompson (1997), Rao and Molina (2015), among others. Probability survey samples 

and design-based inference have been a successful story as part of statistical sciences in the past 80 years. 

In recent years, however, “there has been a wind of change and other data sources are being 

increasingly explored” (Beaumont, 2020). The success of probability survey samples led to more 

ambitious study designs, long and complicated questionnaires and increased burden on respondents. The 

response rates have been declining and the cost of data collection has been soaring over the years. With 

the advances of new technology and the explosion of information over the Internet, there is also a strong 

desire to access real-time statistics. Statistics Canada has launched the so-called modernization initiatives, 

“moving beyond a survey-first approach with new methods and integrating data from a variety of existing 

sources”. 

Non-probability survey samples are one of those data sources which have gained increased popularity 

in recent years. Non-probability samples are not something new to the field of survey sampling. They 

have been used since the early days of conducting surveys. Quota surveys, for instance, lead to 
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non-probability samples, and the method is widely used and can be successful under certain conditions; 

see Section 5 for further discussions. Non-probability survey samples had not gained true momentum in 

the past in survey practice due to the lack of a mature theoretical framework for analyzing the data. 

Nevertheless, they are an available data source that is cheaper and quicker to obtain and have become 

prevalent for online research. Commercial survey firms create and maintain a long list of individuals, 

called the opt-in panels, who agreed to be contacted to participate in surveys either as volunteers or with 

incentives. The precise mechanisms for individuals being included in the panel are typically unknown, 

resulting in panel-based non-probability survey samples. 

The main issue with non-probability survey samples is that they are biased samples and do not 

represent the target population. One might argue that, other than iid samples, most samples are biased, and 

even probability survey samples are biased. The reason that we do not worry about the biased nature of 

probability survey samples is the known inclusion probabilities from the survey design, which lead to 

valid estimation methods through suitable weighting procedures. The real main issue with non-probability 

survey samples thus is the unknown sample inclusion or participation mechanisms. It will become clear 

from discussions in Section 4 that the biased nature of non-probability samples cannot be corrected by 

using the sample itself. It requires additional auxiliary information on the target population. 

This paper provides a critical review and some extended discussions on theoretical and practical issues 

with analysis of non-probability survey samples. Section 2 describes the general setting, commonly used 

assumptions, and inferential frameworks for statistical procedures discussed in the paper. Section 3 

presents model-based prediction approach to non-probability survey samples. Section 4 discusses 

estimation of propensity scores and constructions of propensity score based estimators. Section 5 shows 

the connections between inverse probability weighted estimators and quota surveys with extensions to 

poststratification. Section 6 focuses on techniques as well as issues with variance estimation. In Section 7, 

we address the important question on how to check and verify the required assumptions in practice. Some 

concluding remarks are given in Section 8. 

 
2. Assumptions and inferential frameworks 
 

Suppose that the target population  = 1, 2, ,U N  consists of N  labelled units. Associated with unit 

i  are values ix  and iy  for the auxiliary variables x  and the study variable .y  The discussions focus on a 

single y  but the dataset most likely contains multiple study variables. Let 
1

1

N

y ii
N y −

=
=   be the 

population mean which is the parameter of interest. Let  ( , ),i i Ay i Sx  be the dataset for the non-

probability survey sample AS  with An  participating units. For most practical scenarios, the simple sample 

mean 1=
A

A A ii S
y n y−

  is a biased estimator of y  and hence is invalid. 

 

2.1 Assumptions 
 

Let = ( )i AR I i S  be the indicator variable for unit i  being included in the non-probability sample 

.AS  Note that the variable iR  is defined for all i  in the target population. Let  
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 ( ) ( )= , = =1 , , =1, 2, , .A

i A i i i i iP i S y P R y i N  x x   

We call the A

i  the propensity scores, a term borrowed from the missing data literature (Rosenbaum and 

Rubin, 1983). Some authors use the term participation probabilities; see, for instance, Beaumont (2020) 

and Rao (2021), among others. The propensity scores A

i  characterize the sample inclusion and 

participation mechanisms. They are unknown and require suitable model assumptions for the development 

of valid estimation methods. The following three basic assumptions were used by Chen, Li, and Wu 

(2020), which were adapted from the missing data literature. 

A1 The sample inclusion and participation indicator iR  and the study variable iy  are independent 

given the set of covariates ,ix  i.e., ( ) .i i iR y⊥ x  

A2 All the units in the target population have non-zero propensity scores, i.e., 0,A

i   

=1, 2, , .i N  

A3 The indicator variables 1 2, , , NR R R  are independent given the set of auxiliary variables 

( )1 2, , , .Nx x x  

 

Assumption A1 is similar to the missing at random (MAR) assumption for missing data analysis. 

Under A1, we have ( ) ( ) ( )= =1 , = =1 = .A

i i i i i i iP R y P R x x x  Assumption A2 can be problematic in 

practice; see Section 7 for further discussions. Assumption A3 typical holds when participants are 

approached one at a time but can be questionable when clustered selections are used. It is shown in 

Section 4 that estimation of ( )=A

i i  x  under assumption A1 requires auxiliary information from the 

target population. The ideal scenario is that the complete auxiliary information ( )2, , ,
N1x x x  is 

available. The more practical scenario is that auxiliary information can be obtained from an existing 

probability survey. 

A4 There exists a probability survey sample BS  of size Bn  with information on the auxiliary 

variables x  (but not on )y  available in the dataset  ( , ), ,B

i i Bd i Sx  where B

id  are the design 

weights for the probability sample .BS  

 

The BS  is called the reference probability survey sample. The most crucial part of assumption A4 is 

that the set of auxiliary variables x  is observed in both the non-probability sample AS  and the probability 

sample .BS  A reference probability survey sample is often available in practice but the common set of 

auxiliary variables may not contain all the components to satisfy assumption A1. 

 
2.2 Inferential frameworks 
 

There are three possible sources of variation under the general setting of two samples AS  and :BS  (i) 

The model q  for the propensity scores on the sample inclusion and participation in the non-probability 

survey sample ;AS  (ii) The model   for the outcome regression ( )y x  or imputation; and (iii) The 

probability sampling design p  for the reference probability survey sample .BS  For the three approaches 
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to inference to be discussed in Sections 3 and 4, the reference probability sample BS  is always involved. 

Each of the three approaches requires a joint randomization framework involving p  and one of ( ), .q   

(a) Model-based prediction approach: The p  framework under the joint randomization of the 

outcome regression model   and the probability sampling design .p  

(b) Inverse probability weighting using estimated propensity scores: The qp  framework under the 

joint randomization of the propensity score model q  and the probability sampling design .p  

(c) Doubly robust inference: The qp  framework or the p  framework, with no specification of 

which one. 

 

The inferential framework is the foundation for theoretical development. Consistency of point 

estimators needs to be established under the suitable joint randomization. Theoretical variances typically 

involve two components, one from each source of variation, and correct derivations of the two 

components are the key to the construction of consistent variance estimators under the designated 

inferential framework.  

 
3. Model-based prediction approach  
 

Model-based prediction methods for finite population parameters require two critical ingredients: the 

amount of auxiliary information that is available at the estimation stage and the reliability of the assumed 

model for inference. In the absence of any auxiliary information, the common mean model ( ) 0= ,iE y   

( ) 2= ,iV y  =1, ,i N  may be viewed as reasonable but the model-based prediction estimator 
1ˆ = = ,

A
y A A ii S

y n y −

  although unbiased under the model since ( ) = 0,A yE y −  is generally not an 

acceptable estimator of .y  The variance 2  for the common mean model is typically large and it renders 

the estimator ˆ =
Ay y  with a prediction variance that is too large to be practically useful.  

 

3.1 Semiparametric outcome regression models 
 

Without loss of generality, we assume that x  contains 1 as its first component corresponding to the 

intercept of a regression model. Under the setting described in Section 2, we consider the following 

semiparametric model for the finite population, denoted as :  

 ( ) ( ) ( ) ( ) 2= , , and = , =1, 2, , ,i i i i i iE y m V y v i N  x x β x x  (3.1) 

where the mean function ( , )m    and the variance function ( )v   have known forms, and the ’siy  are also 

assumed to be conditionally independent given the ’s.ix  Let 0β  and 2

0  be the true values of the model 

parameters β  and 2  under the assumed model. The first major implication of assumption A1 is that 

( ) ( ), =1 =i i i i iE y R E y x x  and ( ) ( ), =1 = .i i i i iV y R V y x x  The model (3.1) which is assumed for 

the finite population also holds for the units in the non-probability survey sample .AS  The quasi maximum 
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likelihood estimator β̂  of 0β  is obtained using the dataset  ( , ),i i Ay i Sx  from the non-probability 

survey sample as the solution to the quasi score equations (McCullagh and Nelder, 1989) given by  

 ( )
( )

   
1,

S = ( ) ( , ) = .
A

i

i i i

i S

m
v y m

−




−




x β
β x x β 0

β
 (3.2) 

The semiparametric model (3.1) can be extended to replace ( )iv x  by a general variance function ( )iv   

where = ( , ).i im x β  The quasi maximum likelihood estimation theory covers linear or nonlinear 

regression models with the weighted least square estimators, the logistic regression model and other 

generalized linear models. Let 0= ( , )i im m x β  and ˆˆ = ( , ),i im m x β =1, 2, , .i N  

 
3.2 Two general forms of prediction estimators 
 

There are two commonly used model-based prediction estimators for y  in the presence of complete 

auxiliary information  1, , ;Nx x  see Chapter 5 of Wu and Thompson (2020). Note that 
1

1
( ) = .

N

y ii
E N m  −

=  The two prediction estimators are constructed as  

 
1 2

1 1

1 1
ˆ ˆ ˆ ˆ ˆ= and = .

A A

N N

y i y i i i

i i S i S i

m y m m
N N

 
=   =

  
− + 

  
     (3.3) 

The estimator 
2

ˆ
y  is built based on  1

A A
y i ii S i S

N y y −

 
= +   and uses ˆ =

A
ii S

m
  

1
ˆ ˆ

A

N

i ii i S
m m

= 
−   to predict the unobserved term .

A
ii S

y
  Under a linear regression model where 

( ), ,m =x β x β  the two estimators given in (3.3) reduce to  

 ( )1 2

ˆ ˆ ˆˆ ˆ= and = ,A
y y A A

n
y

N
     − +x xβ x β β  (3.4) 

where 1

1
=

N

ii
N −

=x x  is the vector of the population means of the x  variables and 1

A
A A ii S

n−


= x x  is 

the vector of the simple sample means of x  from the non-probability sample .AS  If the linear regression 

model contains an intercept and β̂  is the ordinary least square estimator, we have 
2 1

ˆˆ ˆ= =y y  xβ  since 

ˆ = 0A Ay − x β  due to the zero sum of fitted residuals. The prediction estimators in (3.4) under a linear 

model only require the population means x  in addition to the non-probability sample .AS  Under the 

setting described in Section 2 with auxiliary information on x  provided through a reference probability 

sample ,BS  we simply replace 
1

ˆ
N

ii
m

=  by ˆ
B

B

i ii S
d m

  for the estimators in (3.3) and substitute x  by 
1ˆˆ =

B

B

B i ii S
N d −

x x  for the estimators in (3.4), where ˆ = .
B

B

B ii S
N d

  The population size N  appearing 

in (3.3) or (3.4) should also be replaced by ˆ
BN  even if it is known. 

 
3.3 Mass imputation 
 

Model-based prediction estimators of y  using a non-probability survey sample on ( , )y x  and a 

reference probability survey sample on x  have traditionally been presented as the mass imputation 

estimator. The study variable y  is not observed for any units in the reference survey sample BS  and hence 
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can be viewed as missing for all .Bi S  Let *

iy  be an imputed value for ,iy .Bi S  The mass imputation 

estimator of y  is then constructed as  

 *

MI

1
ˆ = ,

ˆ
B

B

y i i

i SB

d y
N




  (3.5) 

where ˆ
BN  is defined as before and the subscript “MI” indicates “Mass Imputation” (not “Multiple 

Imputation”). Under the deterministic regression imputation where * ˆ= ,i iy x β  the estimator MI
ˆ

y  reduces 

to the model-based prediction estimator ˆ̂ xβ  as discussed in Section 3.2. 

The mass imputation approach to analyzing non-probability survey samples has the same spirit as 

model-based prediction methods but it opens the door for using more flexible models and imputation 

techniques that have been developed in the existing literature on missing data problems. The approach was 

first examined by Rivers (2007) through the so-called sample matching method. For each ,Bi S  the 

“missing” iy  is imputed as *

i jy y=  for some ,Aj S  where j  is a matching donor from AS  selected 

through the nearest neighbor method as measured by the distance between ix  and .jx  The underlying 

model   for the nearest neighbor imputation method is nonparametric, i.e., ( ) ( )i i iE y m =x x  for some 

unknown function ( ).m   The matching value jy  can be viewed as the predicted value of the missing iy  

under the model. Theoretical properties of estimators based on nearest neighbor imputation were 

discussed by Chen and Shao (2000, 2001) for missing survey data problems. 

The semiparametric model (3.1) can be used for deterministic regression mass imputation. Under 

assumption A1, a consistent estimator β̂  of β  is first obtained from the non-probability sample dataset 

 ( , ), ,i i Ay i Sx  and the estimator β̂  is then used to compute the imputed values ( )* ˆ,i iy m= x β  for 

.Bi S  In other words, the assumption A1 implies the so-called model transportability by Kim, Park, 

Chen and Wu (2021): the model which is built for the non-probability sample can be used for prediction 

with the reference probability sample. The resulting mass imputation estimator MI
ˆ

y  is identical to one of 

the model-based prediction estimators presented in Section 3.2. Asymptotic properties and variance 

estimation for the estimator MI
ˆ

y  using the semiparametric model (3.1) were discussed by Kim et al. 

(2021). 

Under the mass imputation approach, the only role played by the observed iy  for Ai S  is to estimate 

the model parameters .β  The estimator MI
ˆ

y  is constructed using the fitted model and auxiliary 

information from the reference probability sample .BS  It seems that we did not fully use the information 

on the observed iy  given that y  is the main parameter of interest. This led to the research question 

described in Chapter 17 of Wu and Thompson (2020) on “reverse sample matching”. The proposed 

estimator is constructed as * 1 *

A
ˆˆ ( )

A
y i ii S

N d y −


=   using all the observed iy  in the non-probability 

sample, where * *ˆ = .
A

ii S
N d

  The *

id  is a matched survey weight from BS  such that * B

i jd d=  with Bj S  

being the nearest neighbor of Ai S  as measured by .i j−x x  Theoretical properties of the reverse 

matched estimator ˆ
yA  using the nearest neighbor Bj S  to match *

id  with B

jd  have not been formally 

investigated in the existing literature. 
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Wang, Graubard, Katki and Li (2020) proposed a kernel weighting approach to reverse sample 

matching using * ,
B

i ij jj S
d K d


  where ijK  is a kernel distance between ˆ

ip  and ˆ ;jp  see the adjusted 

logistic propensity (ALP) weighting method discussed at the end of Section 4.1.1 on the calculation of ˆ .ip  

They showed that the estimator A
ˆ

y  is consistent under certain regularity conditions. In a recent working 

paper posted on arXiv by Liu and Valliant (2021), the authors discussed issues with the bias and the 

variance of the reverse matched estimator under different randomization frameworks involving one, two 

or all three of the sources ( ), , .p q   The authors also proposed a calibration step over the matched 

weights, which seems to be a promising idea. Further research on this topic is needed. 

The mass imputation approach to analyzing non-probability survey samples leads to an interesting 

research question that is currently under investigation by a doctoral student at University of Waterloo: Is it 

theoretically feasible and practically useful to create a mass-imputed dataset  *( , , ),B

i i i By d i Sx  based 

on the reference probability survey sample that can be used for general statistical inferences? The answer 

clearly depends on the types of inferential problems to be conducted over the imputed dataset. A minimum 

requirement is that the conditional distribution of the study variable y  given the covariates x  is preserved 

for the mass-imputed dataset. The nearest neighbor imputation method and the random regression 

imputation method can be useful for this purpose. Fractional imputation is another possibility, especially 

for binary or ordinal study variables. Multiple imputation is also potentially useful in this direction to 

create multiple mass-imputed datasets. The subscript “MI” in this case might need to be changed to “MI2”, 

meaning “Mass Imputation with Multiple Imputation”. 

 
4. Propensity scores based approach  
 

The propensity scores ( )=1 ,A

i i i iP R y = x  for the non-probability survey sample AS  are 

theoretically defined for all the units in the target population. Estimation of the propensity scores for units 

in ,AS  which plays the most crucial role for propensity scores based methods, requires an assumed model 

on the propensity scores and auxiliary information at the population level. In this section, we first discuss 

estimation procedures for the propensity scores under the setting and assumptions described in Section 2, 

and then provide an overview of estimation methods proposed in the recent literature on the finite 

population mean y  involving the estimated propensity scores. 

 
4.1 Estimation of propensity scores 
 

Under assumption A1, the propensity scores ( ) ( )= =1A

i i i iP R =x x  are a function of the auxiliary 

variables ix  but the functional form can be complicated and is completely unknown. Three popular 

parametric forms ( ),A

i i = x α  in dealing with a binary response can be considered: (i) the inverse logit 

function  
1

1 1 exp( ) ;A

i i
−

= − + x α  (ii) the inverse probit function = ( ),A

i i  x α  where ( )   is the 

cumulative distribution function of (0,1);N  and (iii) the inverse complementary log-log function 
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 =1 exp exp( ) .A

i i − − x α  Nonparametric techniques without assuming an explicit functional form for 

( ) x  are attractive alternatives for the estimation of propensity scores. 

 
4.1.1 The pseudo maximum likelihood method 
 

Let ( , )A

i i = x α  be a specified parametric form with unknown model parameters .α  Under the ideal 

situation where the complete auxiliary information  1 2, , ,
N

x x x  is available and with the independence 

assumption A3, the full log-likelihood function on α  can be written as (Chen et al., 2020)  

 ( ) ( ) ( ) ( )
1

1=1

log 1 = log log 1 .
1

i i

A

AN N
R R

A A Ai
i i iA

i S ii i


  



−

 =

  
= − + −   

−   
 α  (4.1) 

The maximum likelihood estimator of α  is the maximizer of ( ).α  Under the current setting where the 

population auxiliary information is supplied by the reference probability sample ,BS  we replace ( )α  by 

the pseudo log-likelihood function (Chen et al., 2020)  

 ( ) ( )* log log 1 .
1

A B

A
B Ai
i iA

i S i Si

d



 

 
= + − 

− 
 α  (4.2) 

The maximum pseudo-likelihood estimator α̂  is the maximizer of ( )*
α  and can be obtained as the 

solution to the pseudo score equations given by *( ) ( ) .=   =U α α α 0  If the inverse logit function is 

assumed for ,A

i  the pseudo score functions are given by  

 ( ) ( ), .
A B

B

i i i i

i S i S

d 
 

= − U α x x α x  (4.3) 

In general, the pseudo score functions ( )U α  at the true values of the model parameters 0α  are unbiased 

under the joint qp  randomization in the sense that  0( ) ,qpE =U α 0  which implies that the estimator α̂  is 

qp -consistent for 0α  (Tsiatis, 2006). 

Valliant and Dever (2011) made an earlier attempt to estimate the propensity scores by pooling the 

non-probability sample AS  with the reference probability sample .BS  Let AB A BS S S=   be the pooled 

sample without removing any potential duplicated units. Let * 1iR =  if Ai S  and * 0iR =  if .Bi S  

Valliant and Dever (2011) proposed to fit a survey weighted logistic regression model to the pooled 

dataset  *( , , ), ,i i i ABR d i Sx  where the weights are defined as 1id =  if Ai S  and ( )ˆ1B

i i A Bd d n N= −  if 

.Bi S  The key motivation behind the creation of the weights id  is that the total weight 

ˆ
AB B

B

i i Bi S i S
d d N

 
= =   for the pooled sample matches the estimated population size, and the hope is 

that the survey weighted logistic regression model would lead to valid estimates for the propensity scores. 

It was shown by Chen et al. (2020) that the pooled sample approach of Valliant and Dever (2011) does not 

lead to consistent estimators for the parameters of the propensity scores model unless the non-probability 

sample AS  is a simple random sample from the target population. 
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The method of Valliant and Dever (2011) reveals a fundamental difficulty with approaches based on 

the pooled sample .ABS  If the units in the non-probability sample AS  are treated as exchangeable in the 

pooled sample ,ABS  which was reflected by the equal weights = 1id  used in the method of Valliant and 

Dever (2011), the resulting estimates for the propensity scores will be invalid unless AS  is a simple 

random sample. This observation has implications to the validity of nonparametric methods or regression 

tree-based methods to be discussed in Section 4.1.3. 

In a recent paper, Wang, Valliant and Li (2021) proposed an adjusted logistic propensity (ALP) 

weighting method. The method involves two steps for computing the estimated propensity scores. The 

initial estimates, denoted as ˆ
ip  for ,Ai S  are obtained by fitting the survey weighted logistic regression 

model to the pooled sample ABS  similar to Valliant and Dever (2011), with the weights defined as = 1id  

if Ai S  and B

i id d=  if .Bi S  The final estimated propensity scores are computed as ( )ˆ ˆ ˆ1 .A

i i ip p = −  

The key theoretical argument is the equation ( )1A

i i ip p = −  where ( ),A

i AP i S U =   

( )* * ,i A Ap P i S S U=    and *

AS  is a copy of AS  but is viewed as a different set. However, there are 

conceptual issues with the arguments since the probabilities ( )A

i AP i S U =   are defined under the 

assumed propensity scores model with the given finite population ,U  and the assumed model does not 

lead to a meaningful interpretation of the probabilities ( )* * .i A Ap P i S S U=    The latter require a 

different probability space and are conditional on the given .AS  As a matter of fact, one can easily argue 

that under the assumed propensity scores model and conditional on the given ,AS  we have = 1ip  if 

Ai S  and 0ip =  otherwise. 

 
4.1.2 Estimating equations based methods 
 

The pseudo score equations ( ) =U α 0  derived from the pseudo likelihood function *( )α  may be 

replaced by a system of general estimating equations. Let ( , )h x α  be a user-specified vector of functions 

with the same dimension of .α  Let  

 ( ) ( ) ( ) ( ), , , .
A B

B

i i i i

i S i S

d 
 

= − G α h x α x α h x α  (4.4) 

It follows that  0( ) =qpE G α 0  for any chosen ( , ).h x α  In principle, an estimator α̂  of α  can be obtained 

by solving ( ) =G α 0  with the chosen parametric form ( , )A

i i = x α  and the chosen functions ( , ),h x α  

and the estimator α̂  is consistent. 

The estimator α̂  using arbitrary user-specified functions ( , )h x α  is typically less efficient than the one 

based on the pseudo score functions, due to the optimality of the maximum likelihood estimator 

(Godambe, 1960). Some limited empirical results also show that the solution to ( ) =G α 0  can be unstable 

for certain choices of ( , ).h x α  Nevertheless, the estimating equations based methods provide a useful tool 

for the estimation of the propensity scores under more restricted scenarios. For instance, if we let 

( , ) ( , ),=h x α x x α  the estimating functions given in (4.4) reduce to  
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 ( )
( )

.
,

A B

Bi
i i

i S i Si

d
 

= − 
x

G α x
x α

 (4.5) 

The form of ( )G α  in (4.5) looks like a “distorted” version of the pseudo score functions given in (4.3) 

under a logistic regression model for the propensity scores. The most practically important difference 

between the two versions, however, is the fact that the ( )G α  given in (4.5) only requires the estimated 

population totals for the auxiliary variables .x  There are scenarios where the population totals of the 

auxiliary variables x  can be accessed or estimated from an existing source but values of x  at the unit 

level for the entire population or even a probability sample are not available. The use of estimating 

functions ( )G α  given (4.5) makes it possible to obtain valid estimates of the propensity scores for units 

in the non-probability sample. Section 6.3 describes an example where the estimating equations based 

approach leads to a valid variance estimator for the doubly robust estimator of the population mean. 

 
4.1.3 Nonparametric methods and regression-tree based methods 
 

The propensity scores ( )1A

i i iP R = = x  are the mean function ( ) ( )q i i iE R =x x  for the binary 

response .iR  Nonparametric methods for estimating ( ) x  can be an attractive alternative. The major 

challenge is to develop estimation procedures which provide valid estimates of the propensity scores. As 

noted in Section 4.1.1, estimation methods based on the pooled sample AB A BS S S=   may lead to invalid 

estimates. Strategies similar to the one used by Chen et al. (2020) can be theoretically justified under the 

joint qp  framework, where the estimation procedures are first derived using data from the entire finite 

population and unknown population quantities are then replaced by estimates obtained from the reference 

probability sample. 

We consider the kernel regression estimator of ( ).A

i i = x  Suppose that the dataset 

 ( , ), 1, 2, ,i iR i N=x  is available for the finite population. Let ( ) ( )hK t K t h=  be a chosen kernel with 

a bandwidth .h  The Nadaraya-Watson kernel regression estimator (Nadaraya, 1964; Watson, 1964) of 

( ) x  is given by  

 ( )
( )

( )
=1

1

.

N

h j jj

N

h jj

K R

K


=

−
=

−





x x
x

x x
 (4.6) 

A kernel estimator in the form of ( ) x  given in (4.6) usually has no practical values since we do not have 

complete auxiliary information for the finite population. It turns out that for the estimation of propensity 

scores the numerator in (4.6) only requires observations from the non-probability sample due to the binary 

variable ,jR  and the denominator is a population total and can be estimated by using the reference 

probability sample. The nonparametric kernel regression estimator of the propensity scores is given by 

(Yuan, Li and Wu, 2022)  

 ( )
( )

( )
ˆ ˆ , .A

B

h i jj SA

i i AB

j h i jj S

K
i S

d K
 





−
= = 

−





x x
x

x x
 (4.7) 
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The estimator ˆ A

i  given in (4.7) is consistent under the joint qp  framework and the q -model for the 

propensity scores is very flexible due to the nonparametric assumption on ( ). x  The estimated propensity 

scores are easy to compute when the dimension of x  is not too high. Issues with high dimensional x  and 

the choices of the kernel ( )hK   and the bandwidth h  remain as in general applications of kernel-based 

estimation methods. Simulation results reported by Yuan et al. (2022) show that the kernel estimation 

method provides robust results for the propensity scores using the normal kernel and popular choices for 

the bandwidth. 

Chu and Beaumont (2019) considered regression-tree based methods for estimating the propensity 

scores. Their proposed TrIPW method is a variant of the CART algorithm (Breiman, Friedman, Olshen 

and Stone, 1984) and uses data from the combined sample of the non-probability sample and the reference 

probability sample. The method aims to construct a classification tree with the terminal nodes of the final 

tree treated as homogeneous groups in terms of the propensity scores. The estimator of y  is constructed 

based on the final tree and post-stratification. Section 5 contains further details on poststratified 

estimators. 

Statistical learning techniques such as classification and regression trees and random forests have been 

developed primarily for the purpose of prediction. Their use for estimating the propensity scores of non-

probability samples requires further research. It is not a desirable approach to naively apply the methods 

over the pooled sample ABS  without theoretical justifications on the consistency of the final estimators. 

Further research towards this direction should be encouraged. 

 
4.2 Inverse probability weighting 
 

Let ˆ A

i  be an estimate of ( )A

i A iP i S =  x  under a chosen method for the estimation of the 

propensity scores. Two versions of the inverse probability weighted (IPW) estimator of y  are constructed 

as  

 
IPW1 IPW 2

1 1
ˆ ˆ= and = ,

ˆˆ ˆ
A A

i i

A AA
i S i Si i

y y

N N
 

  

   (4.8) 

where N  is the population size and 1ˆ ˆ( )
A

A A

ii S
N  −


=  is the estimated population size. The estimator 

IPW1
̂  is a version of the Horvitz-Thompson estimator and 

IPW 2
̂  corresponds to the Hájek estimator as 

discussed in design-based estimation theory. There are ample evidences from both theoretical 

justifications and practical observations that the Hájek estimator 
IPW 2

̂  performs better than the Horvitz-

Thompson estimator and should be used in practice even if the population size N  is known. 

The validity of the IPW estimators 
IPW1

̂  and 
IPW 2

̂  depends on the validity of the estimated propensity 

scores. Under the assumptions A1 and A2 and the parametric model 
0( , ),A

i i = x α  the consistency of 

IPW1
̂  follows a standard two-step argument. Let 

IPW

1 ,
A

A

i ii S
N y −


=   which is not a computable 

estimator but an analytic tool useful for asymptotic purposes. It follows that ( )IPWq yE  =  and the order 

( ) ( )IPW

1

q AV O n −=  holds under the condition that A

A in N  is bounded away from zero. As a consequence, 
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we have 
IPW y →  in probability as .An →  Under the correctly specified model ( )0,A

i i = x α  for the 

propensity scores, the typical root- n  order ( )1 2

0
ˆ

p AO n−− =α α  holds for commonly encountered scenarios. 

We can show by treating 
IPW1

̂  as a function of α̂  and using a Taylor series expansion that 

( )
IPW1 IPW

1 2ˆ
p AO n  −= +  under some mild finite moment conditions. The consistency of 

IPW2
̂  can be 

established using standard arguments for a ratio estimator (Section 5.3, Wu and Thompson, 2020) where 

( )
1

1 =1 (1).
A

A

i pi S
N o

−
−


+  

 
4.3 Doubly robust estimation 
 

The dependence of the IPW estimator on the validity of the assumed propensity score model is viewed 

as a weakness of the method. The issue is not unique to the IPW estimators and is faced by many other 

approaches involving an assumed statistical model. Robust estimation procedures which provide certain 

degrees of protection against model misspecifications have been pursued by researchers, and the so-called 

doubly robust estimators have been a successful story since the work of Robins, Rotnitzky, and Zhao 

(1994). 

The doubly robust (DR) estimator of y  is constructed using both the propensity score model q  and 

the outcome regression model .  The DR estimator with the given propensity scores ,A

i Ai S  and the 

mean responses ( ),i i im E y= x 1, 2, ,i N=  has the following general form,  

 
DR

1

1 1
= .

A

N
i i

iA
i S ii

y m
m

N N


 =

−
+   (4.9) 

The second term on the right hand side of (4.9) is the model-based prediction of .y  The first term is a 

propensity score based adjustment using the errors i i iy m = −  from the outcome regression model. The 

magnitude of the adjustment term is negatively correlated to the “goodness-of-fit” of the outcome 

regression model. It can be shown that 
DR

  is an exactly unbiased estimator of y  if one of the two 

models q  and   is correctly specified and hence it is doubly robust. The estimator 
DR

  has an identical 

structure to the generalized difference estimator of Wu and Sitter (2001). It is important to note that the 

double robustness property of 
DR

  does not require the knowledge of which of the two models being 

correctly specified. It is also apparent that the estimator 
DR

  given in (4.9) is not computable in practical 

applications. 

Let ˆ A

i  and ˆ
im  be respectively the estimators of A

i  and im  under the assumed models q  and .  

Under the two-sample setting described in Section 2, the two DR estimators of y  proposed by Chen et al. 

(2020) are given by  

 
DR1

ˆ1 1
ˆ ˆ=

ˆ
A B

Bi i
i iA

i S i Si

y m
d m

N N


 

−
+   (4.10) 

and  
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DR 2

ˆ1 1
ˆ ˆ= ,

ˆ ˆˆ
A B

Bi i
i iAA B

i S i Si

y m
d m

N N


 

−
+   (4.11) 

where B

id  are the design weights for the probability sample ,
B

S ( )
1

ˆ ˆ=
A

A A

ii S
N 

−

  and ˆ = .
B

B B

ii S
N d

  

The estimator 
DR 2

̂  using the estimated population size has better performance in terms of bias and mean 

squared error and should be used in practice. 

The probability survey design p  is an integral part of the theoretical framework for assessing the two 

estimators 
DR 1

̂  and 
DR 2

ˆ .  It is assumed that AS  and BS  are selected independently, which implies that 

( ) 1
ˆ ˆ= .

B

NB

p i i ii S i
E d m m

 =   Consistency of the estimators 
DR 1

̂  and 
DR 2

̂  can be established under either 

the qp  or the p  framework. It should be noted that even if the non-probability sample AS  is a simple 

random sample with ,A

i An N =  the doubly robust estimator in the form of (4.9) does not reduce to the 

model-based prediction estimator 
2

ˆ
y  given in (3.3). 

 

4.4 The pseudo empirical likelihood approach 
 

The pseudo empirical likelihood (PEL) methods for probability survey samples have been under 

development over the past two decades. Two early papers on the topic are Chen and Sitter (1999) on point 

estimation incorporating auxiliary information and Wu and Rao (2006) on PEL ratio confidence intervals. 

The PEL approaches are further used for multiple frame surveys (Rao and Wu, 2010a) and Bayesian 

inferences with survey data (Rao and Wu, 2010b; Zhao, Ghosh, Rao and Wu, 2020b). Using the PEL 

methods for general inferential problems with complex surveys has been studied in two recent papers 

(Zhao and Wu, 2019; Zhao, Rao and Wu, 2020a). 

Chen, Li, Rao and Wu (2022) showed that the PEL provides an attractive alternative approach to 

inference with non-probability survey samples. Let ˆ ,A

i Ai S  be the estimated propensity scores under an 

assumed parametric or non-parametric model, .q  The PEL function for the non-probability survey sample 

AS  is defined as  

 ( )PEL
( ) log ,

A

A

A i i

i S

n d p


= p  (4.12) 

where 1= ( , , )
Anp pp  is a discrete probability measure over the An  selected units in ,AS  

1 ˆˆ= ( )A A A

i id N −  and 1ˆ ˆ= ( )
A

A A

jj S
N  −

  which is defined earlier in Section 4. Without using any 

additional information, maximizing ( )PEL
p  under the normalization constraint  

 = 1
A

i

i S

p


  (4.13) 

leads to ˆ = ,A

i ip d .Ai S  The maximum PEL estimator of y  is given by 
PEL

ˆ ˆ= ,
A

i ii S
p y

  which is 

identical to the IPW estimator 
IPW 2

̂  given in (4.8). 

The PEL approach to non-probability survey samples provides flexibilities in combining information 

through additional constraints and constructing confidence intervals and conducting hypothesis tests using 

the PEL ratio statistic. The maximum PEL estimator 
PEL

ˆ ˆ=
A

i ii S
p y

  is doubly robust if ( )1
ˆ ˆ, ,

Anp p  is 
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the maximizer of ( )PEL
p  under both the normalization constraint and the model-calibration constraint 

given by  

 ˆ ,B

A

i i

i S

p m m


=  (4.14) 

where ( )
1

ˆ ˆ
B

B B B

i ii S
m N d m

−


=   is computed using the fitted values ˆ ,im Bi S  from an assumed outcome 

regression model, .  The equation (4.14) is a modified version of the original model-calibration constraint 

of Wu and Sitter (2001) using the probability sample BS . Chen et al. (2022) contain further details on the 

asymptotic distributions of the PEL ratio statistic and simulation studies on the performances of PEL ratio 

confidence intervals on a finite population proportion. 

 
5. Quota surveys and poststratification 
 

Quota surveys are one of the oldest non-probability survey sampling methods which are still used in 

practice in present days. For a pre-specified overall sample size ,An  quotas of sample sizes are set for 

subpopulations which are defined by demographic variables and social-economic status indicators or other 

characteristic variables suitable for units of the target population. Data collection processes continue until 

quotas for each of the subpopulations are filled. Units from the population are typically approached using 

whatever convenient ways available and there are little or no controls on how units are selected for the 

final sample other than the pre-specified quotas. 

The theory of the IPW estimators for non-probability survey samples provides an opportunity to 

examine scenarios where quota surveys may succeed or fail. For the convenience of notation without loss 

of generality, let AS  be the quota survey sample and x  be the set of categorical variables used for defining 

the subpopulations and setting the quotas. The overall sample can be partitioned into 1=A A AKS S S   

corresponding to the cross-classification of sampled units using the combinations of levels of the x  

variables. For instance, if ( )1 2= ,x x x  with 1x  having two levels and 2x  having three levels, we have a 

total of = 2 3 = 6K   subpopulations defined by .x  Let kn  be the pre-specified size of AkS  and kN  be the 

size of the corresponding subpopulation. Under the assumption A1, the propensity scores ( )A

i i = x  

become a constant for units in the same subpopulation and are given by A

i k kn N =  for the thk  

subpopulation. The IPW estimator 
IPW 2

̂  given in (4.8) reduces to  

 
IPW 2

1 1

1 ˆˆ = = ,
ˆ ˆ

Ak

K K
i

k kAA
k i S ki

y
W y

N


=  =

    (5.1) 

where 1 ,
Ak

k k ii S
y n y−


=  ˆ ˆ ˆ ,A

k kW N N= ˆ
kN  is the size of the thk  subpopulation obtained or estimated from 

external sources, and 
1

ˆ ˆ .
KA

kk
N N

=
=  Under the current setting with the availability of a reference 

probability sample ,
B

S  we form the same partition as cross-classified by levels of x  and obtain 

1 .B B BKS S S=    We can then use ˆ = .
Bk

B

k ii S
N d
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The estimator given in (5.1) is the standard poststratified estimator of .y  It requires the information 

on the “stratum weights” ˆ ,kW 1, , ,k K=  which is not available from the sample data itself. Quota 

surveys, combined with the use of the poststratified estimator, can be successful in producing valid 

population estimates for the study variable y  if the following conditions hold: 

(i) The categorical variables x  used in defining the subpopulations and setting the quotas provide 

characterizations of the participation behavior of the units for voluntary surveys.  

(ii) The inclusion of units in the survey is relatively random within each subpopulation and no 

specific groups are intentionally excluded from the survey.  

(iii) The information on the stratum weights corresponding to the cross-classifications in setting the 

quotas can be reliably obtained from external sources.  

(iv) The hardcore nonrespondents in the population who never take any voluntary surveys possess 

similar features to respondents in terms of the study variable .y  

 

The IPW estimators 
IPW1

̂  and 
IPW 2

̂  given in (4.8) may be sensitive to small values of estimated 

propensity scores. The poststratified estimator in the form of (5.1) serves as a robust alternative under 

general scenarios where the dimension of x  is not low and/or some components of x  are continuous. The 

K  strata are formed based on homogeneous groups in terms of the propensity scores. Suppose that 

ˆˆ ( , ),A

i i = x α Ai S  are computed based on a parametric model, .q  Suppose also that A An m K=  with 

the chosen K  where Am  is an integer. Let (1) ( )
ˆ ˆ

A

A A

n    be the estimated propensity scores in 

ascending order. Let 1AS  be the set of the first Am  units in the sequence, 2AS  be the second Am  units in 

the sequence, and so on. The poststratified estimator of y  is computed as 
PST 1

ˆˆ ,
K

k kk
W y

=
=  which has 

the same form of the estimator given in (5.1). The estimates of the stratum weights, ˆ ,kW 1, 2, ,k K=  can 

be obtained by using the reference probability sample BS  as follows. Let  ˆmax : ,A

k i Akb i S= 

1, 2, , 1.k K= −  Let 0 0b =  and 1.Kb =  

(a) Compute ˆˆ ( , ),i i = x α .Bi S  

(b) Define  1
ˆ, ,Bk B k i kS i i S b b−=    1, 2, , .k K=  

(c) Calculate ˆ ,
Bk

B

k ii S
N d


= 1, 2, , .k K=  

 

It is apparent that 1B B BKS S S=    and 
1

ˆ ˆ .
B

K B B

k ik i S
N N d

= 
= =   The estimated stratum weights are 

given by ˆ ˆ ˆ .B

k kW N N=  

The choice of K  needs to reflect the balance between homogeneity of the units within each post-

stratum (in terms of the propensity scores) and the stability of the poststratified estimator (in terms of the 

stratum sample sizes). When the sample size An  is small or moderate, a small number such as 5K =  

should be used. For scenarios where An  is large, a larger K  should be used such that units within the 

same poststratified sample AkS  have similar estimated propensity scores. A practical guidance for the 

choice of K  is to ensure that 30Am   for the poststratified samples. For those who are old enough, do 

you remember the good old days when “the sample size is large” means “ 30”?n   
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6. Variance estimation 
 

Variance estimation under the two sample AS  and BS  setup involves at least two different sources of 

variation. The probability sampling design for the reference sample BS  remains one of the sources 

regardless of the approaches used for non-probability survey samples. Estimation of the variance 

component due to the use of BS  requires either suitable variance approximation formulas or replication 

weights as part of the dataset from the reference probability sample. Our discussion in this section 

assumes that a design-based variance estimator for the survey weighted point estimator based on BS  is 

available. 

 
6.1 Variance estimation for mass imputation estimators 
 

Variance estimation for the model-based prediction estimator ˆ
y  involves first deriving the asymptotic 

variance formula for ( )ˆVar y y −  under the assumed outcome regression model or the imputation 

model   and the probability sampling design ,p  and then using plug-in estimators for various unknown 

population quantities. 

The mass imputation estimator 1 *

MI
ˆˆ

B

B

y B i ii S
N d y −


=   given in (3.5) is a special type of model-based 

prediction estimator, where the model   refers to the one used for imputation and is not necessarily the 

same as the outcome regression model. The imputation method plays a key role in deriving the asymptotic 

variance formula, and the variance estimator needs to be constructed accordingly. Noting that MI
ˆ

y  is a 

Hájek type estimator due to the use of the estimated population size ˆ ,
B

N  derivations of the asymptotic 

variance formula start with putting the true value N  in first and then dealing with MI
ˆ

y  as a ratio 

estimator. Kim et al. (2021) considered variance estimation for 1 *ˆ ,
B

B

y i ii S
N d y −


=   where ( )* ˆ,i iy m= x β  

is the imputed value for iy  based on the semiparametric model (3.1). The asymptotic variance formula is 

developed in two steps. First, a linearized version of ˆ
y  is obtained by using a Taylor series expansion at 

*,β  where *
β  is the probability limit of β̂  such that ( )* 1 2ˆ .p AO n−= +β β  Second, two variance components 

are derived for ( )ˆVar y y −  based on the linearized version using the semiparametric model (3.1) and 

the sampling design for .BS  The process is tedious, which is the case for most model-based variance 

estimation methods. A bootstrap variance estimator turns out to be more attractive for practical 

applications. See Kim et al. (2021) for further details. 

 
6.2 Variance estimation for IPW estimators 
 

The commonly used IPW estimator 
IPW 2

̂  given in (4.8) is valid under the assumed model q  for the 

propensity scores. An explicit asymptotic variance formula for 
IPW 2

̂  can be derived under the joint qp -

framework when the propensity scores are estimated using the pseudo maximum likelihood method or an 

estimating equation based method as discussed in Section 4.1. The theoretical tool is the sandwich-type 

variance formula for point estimators defined as the solution to a combined system of estimating equations 

for both y  and 0 .α  
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Consider the parametric form ( ),A

i i = x α  for the propensity scores, where the model parameters α  

are estimated through the estimating equations (4.4) with user-specified functions ( , ).h x α  The first major 

step in deriving the asymptotic variance formula for 
IPW 2

̂  is to write down the system of joint estimating 

equations for both y  and 0 .α  Let ( ), =η α  be the vector of the combined parameters. The estimator 

( )IPW 2
ˆ ˆ , =η α  is the solution to the system of joint estimating equations ( ) ,n =Φ η 0  where  

 ( )
( )

( ) ( )

1

=1

1 1

1

= .
, ,

B

N A

i i ii

n N B A

i i i i ii i S

N R y

N R N d

 



−

− −

= 

 −
 
 −
 



 
Φ η

h x α h x α
 (6.1) 

The factor 1N −  is redundant but useful in facilitating asymptotic orders. The estimating functions defined 

by (6.1) are unbiased under the joint qp -framework, i.e.,  0( ) ,qpE =Φ η 0  where ( )0 0, .y
=η α  There 

are two major consequences from the unbiasedness of the estimating equations system. First, consistency 

of the estimator η̂  can be argued using the theory of general estimating functions similar to those 

presented in Section 3.2 of Tsiatis (2006). Second, the asymptotic variance-covariance matrix of ˆ ,η  

denoted as ( )ˆAV ,η  has the standard sandwich form and is given by 

 ( )      
1

1

0 0 0
ˆAV ( ) Var ( ) ( ) ,n n nE E

−
−  =      

η η Φ η η    

where ( ) ( ) ,n n=  η Φ η η  which depends on the forms of ( , )A

i i = x α  and ( , ).ih x α  The term 

 0Var ( )nΦ η  consists of two components, one due to the propensity score model q  and the other from 

the probability sampling design for .
B

S  More specifically, we have  0 1 2Var ( ) = ( ) ( ),n q pV V+Φ η A A  

where ( )qV   denotes the variance under the propensity score model q  and ( )pV   represents the design-

based variance under the probability sampling design ,p  and  

 1 2

1

0( )1 1
, = .

( , )( , )
B

AN
Bi i

i i A
i i S i ii

y
R d

N N

 

= 

 −  
=    

  
 A A

h x αh x α
  

The analytic expression for 1( )qV A  follows immediately from ( ) (1 )A A

q i i iV R  = −  and the independence 

among 1, , .
N

R R  The design-based variance component 2( )pV A  requires additional information on the 

survey design for BS  or a suitable variance approximation formula with the given design. 

The asymptotic variance formula for the IPW estimator 
IPW 2

̂  is the first diagonal element of the matrix 

ˆAV( ).η  The final variance estimator for 
IPW 2

̂  can then be obtained by replacing various population 

quantities with sample-based moment estimators. Chen et al. (2020) presented the variance estimator with 

explicit expressions when ( , )A

i i = x α  are modelled by the logistic regression and the α̂  is obtained by 

the pseudo maximum likelihood method. 

 
6.3 Variance estimation for doubly robust estimators 
 

It turns out that variance estimation for the doubly robust estimator is a challenging problem. While 

double robustness is a desirable property for point estimation, it creates a dilemma for variance estimation. 
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The estimator 
DR 2

̂  given in (4.11) is consistent if either the propensity score model q  or the outcome 

regression model   is correctly specified. There is no need to know which model is correctly specified, 

which is the most crucial part behind double robustness. This ambiguous feature, however, becomes a 

problem for variance estimation. The asymptotic variance formula under the model q  is usually different 

from the one under the model ,  and consequently, it is difficult to construct a consistent variance 

estimator with unknown scenarios on model specifications. 

There have been several strategies proposed in the literature on variance estimation for the doubly 

robust estimators. A naive approach is to use the variance estimator derived under the assumed propensity 

score model q  and take the risk that such a variance estimator might have non-negligible biases under the 

outcome regression model. One good news is that, under the propensity score model, the estimation of the 

parameters β  for the outcome regression model has no impact asymptotically on the variance of doubly 

robust estimators. This can be seen by using 
DR 1

̂  of (4.10) as an example. Let ( )ˆˆ , ,i im m= x β  where β̂  is 

obtained based on the working model (3.1) which is not necessarily correct. Let *
β  be the probability limit 

of β̂  such that ( )* 1 2ˆ
p AO n−= +β β  regardless of the true outcome regression model (White, 1982). Let 

( )* *,i im m= x β  and ( , ) ( , ) .m=  a x β x β β  It can be seen that  

 ( )  ( ) ( )
*

* * * 1 2ˆ1 1 1 1 ˆˆ ,
ˆ ˆ

B A B A

B Bi i
i i i i p AA A

i S i S i S i Si i

m m
d m d m o n

N N N N 

−

   


− = − + − +    B β β β   

where  

 ( ) ( )
( )*

* *
,1 1

, .
ˆ

B A

iB

i i A
i S i S i

d
N N  

= − 
a x β

B β a x β  (6.2) 

Since the two terms on the right hand side of (6.2) are both consistent estimators of ( )1 *

=1
, ,

N

ii
N −  a x β  

we conclude that ( )* = (1)poB β  and  

 ( )
*

* 1 2ˆ1 1 1 1
ˆ = .

ˆ ˆ
B A B A

B Bi i
i i i i p AA A

i S i S i S i Si i

m m
d m d m o n

N N N N 

−

   

− − +      

It follows that  

 ( )DR1

*
* 1 21 1

ˆ .
ˆ

A B

Bi i
i i p AA

i S i Si

y m
d m o n

N N




−

 

−
= + +    

The same arguments apply to 
DR 2

ˆ .  We can treat β̂  as if it is fixed in deriving the asymptotic variance for 

DR1
̂  and 

DR 2
̂  under the assumed propensity score model. The techniques described in Section 6.2 can be 

directly used where the first estimating function in (6.1) is replaced by the one for defining 
DR1

̂  or 
DR 2

ˆ .  

See Theorem 2 of Chen et al. (2020) for further details. The variance estimator derived under the 

propensity score model, however, is generally biased under the outcome regression model. 
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Chen et al. (2020) also described a technique using the original idea presented in Kim and Haziza 

(2014) for the construction of the so-called doubly robust variance estimator. The technique is a delicate 

one with some theoretical attractiveness but has various issues for practical applications. We use 
DR1

̂  as 

an example to illustrate the steps for the construction of the doubly robust variance estimator. Let  

 ( )
( )

( )
( )

=1

,1 1
ˆ , , .

,
B

N
i i B

i i i

i i Si

y m
R d m

N N


 

−
= + 

x β
α β x β

x α
  

It follows that 
DR1

ˆˆˆ ˆ= ( , )  α β  if α̂  and β̂  are from the original estimation methods. The first step is to 

modify the estimation of α  and β  such that α̂  and β̂  are obtained as solutions to  

 
( ) ( )ˆ ˆ, ,

= and .
  

=
 

α β α β
0 0

α β
 (6.3) 

Under the logistic regression model q  where  logit ( , )i i =x α x α  and the linear regression model   

where ( ), ,i im =x β x β  the equation system (6.3) becomes  

 
( )

( )
=1

1 1
1 ,

,

N

i i i i

i i

R y
N 

  
− − = 

  
 x β x 0

x α
 (6.4) 

 
( )=1

1 1
.

,
B

N
Bi i
i i

i i Si

R
d

N N 

− = 
x

x 0
x α

 (6.5) 

The estimating equations in (6.5) are unbiased under the joint qp -framework. They are identical to (4.5) 

discussed in Section 4.1.2. The estimating equations in (6.4) are also unbiased under the outcome 

regression model, but they are different from the quasi score equations given in (3.2). The estimators α̂  

and β̂  obtained as solutions to (6.4) and (6.5) are less stable than those from standard methods. In 

addition, the equations system (6.4) and (6.5) will not have a solution if α  and β  are not of the same 

dimension, since the number of equations in (6.4) is decided by the dimension of α  and the number of 

equations in (6.5) is the same as the dimension of .β  The final estimator ( )
DR

ˆˆˆ ˆ , = α β  also suffers from 

efficiency losses when α  and β  are estimated by solving (6.4) and (6.5). 

The reason behind the use of the equations system (6.3) is purely technical. It can be shown through a 

first order Taylor series expansion that the estimators α̂  and β̂  obtained from (6.3) have no impact 

asymptotically on the variance of ( )
DR

ˆˆˆ ˆ , . = α β  This technical maneuver enables that simple explicit 

expressions for the variance ( )DR
ˆ

qpV   under the qp  framework and for the prediction variance 

( )DR
ˆ

p yV  −  under the p  framework can easily be obtained. Construction of the doubly robust 

variance estimator for 
DR

̂  starts with the plug-in estimator for ( )DR
ˆ

qpV   under the propensity scores 

model .q  A bias-correction term is then added to obtain a valid estimator for ( )DR
ˆ

p yV  −  under the 

outcome regression model .  The happy ending of the story is that the bias-correction term has the 

analytic form ( )2 2

=1
1

N A

i i ii
N R  − −  where ( )2 ,i i iE y = x  which is negligible under the propensity 
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score model .q  The bias-corrected variance estimator is valid under either the propensity score model or 

the outcome regression model. 

A doubly robust variance estimator for the commonly used 
DR 2

̂  is not available in the literature. A 

practical solution is to use bootstrap methods. Chen et al. (2022) demonstrated that standard with-

replacement bootstrap procedures applied separately to AS  and BS  provide doubly robust confidence 

intervals using the pseudo empirical likelihood approach to non-probability survey samples when the 

reference sample is selected by single stage unequal probability sampling designs. Complications will 

arise when the probability sample BS  uses stratified multi-stage sampling methods, a known challenge for 

variance estimation with complex surveys. Construction of doubly robust variance estimators for the 

doubly robust estimator 
DR 2

̂  under general settings deserves efforts in future research. 

 
7. Assumptions revisited 
 

Our discussions on estimation procedures for non-probability survey samples are under the 

assumptions A1-A4 and the focuses are on the validity and efficiency of estimators for the finite 

population mean under three inferential frameworks. The theoretical results on model-based prediction, 

inverse probability weighting and doubly robust estimation have been rigorously established under those 

assumptions. It seems that researchers are triumphant in dealing with the emerging area of non-probability 

data sources. However, as pointed out by the 2021 ASA President Robert Santos in his opinion article 

entitled “Using Our Superpowers to Contribute to the Public Good” (Amstat News, May 2021), “Our 

superpowers are only as good as their underlying assumptions, assumptions that are all too often 

embraced with aplomb, yet cannot be proven.” How to check assumptions A1-A4 in practical applications 

of the methods is a question that can never be fully answered, and yet there are steps to follow to boost the 

confidence in using the theoretical results. It is also important to understand the potential consequences 

when certain assumptions become seriously questionable. 

 
7.1 Assumption A1 
 

Assumption A1 states that ( ) ( )=1 , 1 .A

i i i i i iP R y P R = = =x x  It is the most crucial assumption for 

the validity of the pseudo maximum likelihood estimator of Chen et al. (2020) and the nonparametric 

kernel smoothing estimator presented in Section 4.1.3 for the propensity scores, although all other 

assumptions are also involved. It is equivalent to the missing at random (MAR) assumption in the missing 

data literature. It is well understood that the MAR assumption cannot be tested using the sample data 

itself. The same statement holds for assumption A1 with non-probability survey samples. 

In a nutshell, assumption A1 indicates that the auxiliary variables x  included in the non-probability 

sample fully characterize the participation behaviour or the sample inclusion mechanism for units in the 

population. Sufficient attention should be given at the study design stage before data collection, if such a 

stage exists, to investigate potential factors and features of units which might be related to participation 
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and sample inclusion. For human populations, the factors and features may include demographical 

variables, social and economic indicators, and geographical variables. 

Assumption A1 leads to the conclusion that the conditional distribution of y  given x  for units in the 

non-probability sample is the same as the conditional distribution of y  given x  for units in the target 

population. It implies that the auxiliary variables x  should include relevant predictors for the study 

variable .y  With the given datasets AS  and ,BS  sensitivity analysis through comparisons of marginal 

distributions and conditional models can be helpful in building confidence on assumption A1. For 

variables which are available in both AS  and ,BS  one can compare the empirical distribution functions (or 

moments) from AS  to the survey weighted empirical distribution functions (or moments) from .BS  

Marked differences between the two indicate that AS  is a non-probability sample with unequal propensity 

scores. One possible sensitivity analysis on assumption A1 is to select a variable z  which has certain 

similarities to ,y  and a set of auxiliary variables u  with both z  and u  available from AS  and .BS  We fit 

a conditional model z u  using data from AS  and a survey weighted conditional model z u  using data 

from .BS  If u  includes all the key auxiliary variables for assumption A1, we should see the two versions 

of fitted models to be similar to each other. Drastic differences between the two fitted models are a strong 

sign that either the z  is itself an important auxiliary variable for assumption A1 or the assumption is 

questionable. 

 
7.2 Assumption A2 
 

A casual look at assumption A2 may have people believe that it should easily be satisfied in practice, 

since a similar assumption is widely used in missing data analysis and causal inference. It turns out that 

the assumption can be highly problematic, and for scenarios where the assumption fails to hold, the target 

population is different from the one assumed for the estimation methods. It is similar to the frame 

undercoverage and nonresponse problems which are discussed extensively in probability sampling. 

Assumption A2 states that ( )1 , 0A

i i i iP R y = = x  for all .i  It is equivalent to stating that every unit 

in the target population has a non-zero probability to be included in the non-probability sample. If the 

sample was taken by a probability sampling method, this would be the scenario where the sampling frame 

is complete and there are no hardcore nonrespondents. For most non-probability samples, the concept of 

“sampling frame” is often irrelevant or simply a convenient list, and the selection and inclusion of units 

for the sample may not have a structured process. In her presentation at the 2021 CANSSI-NISS 

Workshop, Mary Thompson pointed out that “the statement that the sample inclusion indicator R  is a 

random variable is itself an assumption” for non-probability survey samples. 

Let U  be the set of N  units for the target population. Let  0 and 0 .A

iU i i U =    It is apparent 

that 0U U  and 0U U  when assumption A2 is violated. There are two typical scenarios in practice. 

The first can be termed as stochastic undercoverage, where the non-probability sample AS  is selected 

from 0U  and 0U  itself can be viewed as a random sample from .U  For example, the contact list of an 

existing probability survey is used to approach units in the population for participation in the non-
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probability sample. In this case 0U  consists of units from the probability sample. Another example is a 

volunteer survey where the target population consists of adults in a specific city/region but the participants 

are recruited from visitors to major shopping centers in the region over certain period of time. The 

subpopulation 0U  includes visitors to the chosen locations over the sampling period and it is reasonable to 

assume that 0U  is a random sample from the target population. Let 1iD =  if 0i U  and 0iD =  otherwise, 

1, 2, , .i N=  We have  

 ( ) ( )1 , , 1 0 and 1 , , 0 0i i i i i i i iP R y D P R y D= =  = = =x x   

for 1, 2, , .i N=  If the subpopulation 0U  is formed with an underlying stochastic mechanism such that 

( )1 , > 0i i iP D y= x  for all ,i U  we have  

 ( ) ( ) ( )1 , 1 , , 1 1 , 0A

i i i i i i i i i i iP R y P R y D P D y = = = = = = x x x   

for 1, 2, , .i N=  In other words, the assumption A2 is valid under the scenario of stochastic 

undercoverage for non-probability samples. 

The second scenario is termed as deterministic undercoverage where units with certain features will 

never be included in the non-probability sample. Suppose that participation in the non-probability survey 

requires internet access and a valid email address, and 20% of the population have neither access to the 

internet nor an email address, we have an example where the 20% of the population have zero propensity 

scores. There is no simple fix to the inferential procedures developed under A2. Yilin Chen’s PhD 

dissertation at University of Waterloo (Chen, 2020) contained one chapter dealing with some specific 

aspects of the scenario. 

 
7.3 Assumption A3 
 

Among all the assumptions, this one is less crucial to the validity of the proposed inferential 

procedures. Under assumption A3, the full likelihood function for the propensity scores is given in (4.1). 

For any parametric model on ( ), ,A

i i = x α  the quasi log-likelihood function *( )α  given in (4.2) leads 

to the quasi score functions *( ) ( ) ,=  U α α α  which remains unbiased even if assumption A3 is 

violated. There might be some efficiency loss without assumption A3 in estimating the model parameters 

α  but the estimation methods are still valid under the other three assumptions. 

 
7.4 Assumption A4 
 

It is not difficult to find an existing probability sample from the same target population. It might be 

very hard, however, to have a probability survey sample which contains the desirable auxiliary variables. 

Existing probability surveys are designed with specific aims and scientific objectives, and the auxiliary 

variables included in the survey are not necessarily relevant to the analysis of a particular non-probability 

survey sample. The ultimate goal for satisfying assumption A4 is to identify and gain access to an existing 
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probability survey sample with a rich collection of demographical variables, social and economic 

indicators, and geographical variables. 

A rich-people’s problem (when one has too much money) for assumption A4 may also occur in 

practice when two or more existing probability survey samples are available. How to combine all of them 

for more efficient analysis of non-probability survey samples is a research topic that deserves further 

attention. Some practical guidances on choosing one reference probability sample from available 

alternatives include following considerations. 

(i) Check for availability of important auxiliary variables which are relevant to characterizing the 

participation behavor or having prediction power to the study variables in the non-probability 

sample;  

(ii) Give first preference to the one with a larger set of variables that are common to the non-

probability sample;  

(iii) Assign second preference to the probability sample with a larger sample size;  

(iv) And lastly, use the probability sample for which the mode of data collection is the same as the 

one for the non-probability sample.  

 

It was shown by Chen et al. (2020) that two reference probability survey samples with the same set of 

common auxiliary variables tend to produce very similar IPW estimators but the one with a larger sample 

size leads to better mass imputation estimators. 

 
8. Concluding remarks 
 

In the early years of the 21st century, Web-based surveys started to become popular, which generated 

substantial amount of research interest on the topic (Tourangeau, Conrad and Couper, 2013). Issues and 

challenges faced by web-based and other non-probability survey samples led to the “Summary Report of 

the AAPOR Task Force on Non-probability Sampling” by Baker, Brick, Bates, Battaglia, Couper, Dever, 

Gile and Tourangeau (2013). Among other things, the report indicated that (i) unlike probability sampling, 

there is no single framework that adequately encompasses all of non-probability sampling; (ii) making 

inferences for any probability or non-probability survey requires some reliance on modeling assumptions; 

and (iii) if non-probability samples are to gain wider acceptance among survey researchers there must be a 

more coherent framework and accompanying set of measures for evaluating their quality. 

Survey sampling researchers have been answering the call with intensified explorations on statistical 

inference with non-probability survey samples. The current setting of two samples AS  and ,BS  with the 

non-probability sample AS  having measurements on both the study variable y  and auxiliary variables x  

and the probability sample BS  providing information on ,x  was first considered by Rivers (2007) on 

sample matching using nearest neighbor imputation, which is the original idea leading to the mass 
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imputation method (Kim et al., 2021). The weighted logistic regression using the pooled sample for 

estimating the propensity scores proposed by Valliant and Dever (2011) was the first serious attempt on 

the topic, which serves as a motivation for the pseudo maximum likelihood method developed by Chen 

et al. (2020). Brick (2015) considered compositional model inference under the same setting. Elliott and 

Valliant (2017) provided informed discussions on inference for non-probability samples. Yang, Kim and 

Song (2020) addressed issues with high dimensional data in combining probability and non-probability 

survey samples. 

Statistical inference with non-probability survey samples is part of the more general topic on 

combining data from multiple sources. The term “data integration” is frequently used under this context. 

Combining information from independent probability survey samples has been studied extensively in the 

survey literature; see, for instance, Wu (2004), Kim and Rao (2012) and references therein. Inferences 

with samples from multiple frame surveys are another topic which has been heavily investigated by survey 

statisticians; see Lohr and Rao (2006) and Rao and Wu (2010a) and references therein. In her recent 

Waksberg award invited paper, Lohr (2021) provided an overview on multiple-frame surveys and some 

fascinating discussions on using a multiple-frame structure to serve as an organizing principle for other 

data combination methods. With emerging new data sources and reshaped views on traditional data 

sources such as administrative records, data integration has become a very broad area that calls for 

continued research. Further discussions are provided by Lohr and Raghunathan (2017) on combining 

survey data with other data sources and by Thompson (2019) on combining new and traditional sources in 

population surveys. Kim and Tam (2021) and Yang, Kim and Hwang (2021) discussed data integration by 

combining big data and survey sample data for finite population inference. Yang and Kim (2020) 

contained a review on statistical data integration in survey sampling. 

One of the essential messages that the current paper conveys is the concepts of validity and efficiency 

in analyzing non-probability survey samples. Validity refers to the consistency of point estimators and 

efficiency is measured by the asymptotic variance of the point estimator. Validity is of primary concern 

and efficiency pursuit is a secondary goal when valid alternative approaches are available. Discussions on 

validity and efficiency require a suitable inferential framework and rigorous developments of statistical 

procedures, which is another main message from this paper. Non-probability samples do not fit into the 

traditional design-based or model-based inferential framework for probability survey samples. Standard 

statistical concepts and inferential procedures, however, can be built into a suitable framework for valid 

and efficient inference with non-probability survey samples. 

Non-probability samples may have a very large sample size. Large sample sizes are a double-edged 

sword: when the inferential procedures are valid, large sample sizes lead to more efficient inference; when 

the estimators are biased, large sample sizes make the bias even more pronounced. A non-probability 

survey sample with a 80% sampling fraction over the population does not necessarily provide better 

estimation results than a small probability sample (Meng, 2018). 
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The large sample sizes also make non-probability samples connected to the modern big data problems. 

The role of traditional statistical methods in the era of big data was convincingly argued by Richard 

Lockhart (2018): “Huge new computing resources do not put an end to the need for careful modelling, for 

honest assessment of uncertainty, or for good experiment design. Classical statistical ideas continue to 

have a crucial role to play in keeping data analysis honest, efficient, and effective.” 

Jean-François Beaumont (2020) raised the question “Are probability surveys bound to disappear for 

the production of official statistics?” The short answer is that probability sampling methods and 

probability survey samples will remain as an important data collection tool for many fields, including 

official statistics, and design-based inference will play a crucial role for any evolving inferential 

framework. The current trend of using non-probability samples and data from other sources will continue. 

Valid and efficient statistical inference with non-probability samples requires auxiliary information from 

the target population. A few high quality national probability surveys with carefully designed survey 

variables can play a pivotal role in analysis of non-probability survey samples. 
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