Non-response follow-up for business surveys
Section 4. Simulation study

We conducted a simulation study to evaluate the properties of the non-response-adjusted estimator (2.4), Y ^ HHNA , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGjbVlabgkHiTiaaysW7caqGobGa aeyqaaqabaGccaGGSaaaaa@3EED@  under different response scenarios and follow-up sampling designs.

4.1   The simulation setup

Data used to create the sample s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@37E0@

The data used for the simulation study are sample data from an actual business survey: Statistics Canada’s Monthly Survey of Food Services and Drinking Places (MSFSDP). As is typical for business surveys, the MSFSDP is stratified by province, industry and revenue (one take-all and one or more take-some strata within each province/industry combination). For greater detail on the MSFSDP, see Statistics Canada (2017). Each “Take All” stratum within a province/industry combination consists of the large and important businesses, which are usually all followed up. These units are excluded from the simulation study to focus on the follow-up strategy for the “Take some” strata. The set of sample units included in the simulation study is thus the original sample of 2,375 units selected in the L=63 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaays W7cqGH9aqpcaaMe8UaaGOnaiaaiodaaaa@3C55@  “Take some” strata.

Two variables are used for the simulation study: “Revenue” and “Sales”. The first variable, Revenue, comes from the sampling frame (Statistics Canada’s Business Register) and is present for all units selected in the MSFSDP sample. We use Revenue as an auxiliary variable, x, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaacY caaaa@3794@  for sampling the non-respondents to the mail-out (see below). The second variable, Sales, is one of the variables collected by the survey; it is the variable of interest y. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiaac6 caaaa@3797@  Both unit and item non-response are handled by imputation in the MSFSDP; thus Sales are available for all units in the simulation study and is imputed for 15% of the sample units. The correlation between Revenue and Sales is about 83% for both the respondent only data and the fully imputed data.

In our simulation experiments, the sample s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@37C6@  is not randomly generated multiple times from MSFSDP data. Instead, s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@37C6@  is fixed and consists of the set of all n 1 =2,375 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIXaaabeaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabkda caqGSaGaae4maiaabEdacaqG1aaaaa@4102@  units in the original MSFSDP sample. The strata identifier, the design weight, the variable of interest y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@  (Sales) and the auxiliary variable x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36E4@  (Revenue) for each unit of s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@37C6@  are taken from the MSFSDP sample file. Units with imputed y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@  values are included in s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaacYcaaaa@3880@  and imputed values are treated as observed values. This allows us to compute the full sample estimate Y ^ FULL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabAeacaqGvbGaaeitaiaabYeaaeqaaaaa@3A40@  given in (2.1). This estimate is used as a benchmark to evaluate the properties of Y ^ HHNA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaaaaa@3E2F@  for different response scenarios and follow-up sampling designs, as detailed below.

Generation of the set s 1,nr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4CamaaBa aaleaacaaIXaGaaiilaiaaykW7caqGUbGaaeOCaaqabaaaaa@3C01@  of mail-out non-respondents

Next, from s 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaacYcaaaa@3880@  response to the mail-out is generated independently from one unit to another using a Bernoulli distribution with probability p 1hi , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaGaamiAaiaadMgaaeqaaOGaaiilaaaa@3A58@   i s 1h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIXaGaamiAaaqabaGc caGGSaaaaa@3EF9@   h=1,,L. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWGmbGaaiOlaaaa@42CE@  Two response probability scenarios are considered:

  1. Uniform: p 1hi =50% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaGaamiAaiaadMgaaeqaaOGaaGjbVlabg2da9iaaykW7 caaMe8UaaGynaiaaicdacaGGLaaaaa@4175@  for all sample units. Under this scenario, the expected number of non-respondents to the mail-out is 2,375/2 = 1,187.5.
  2. Correlated to the variable of interest: p 1hi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaGaamiAaiaadMgaaeqaaaaa@399E@  is determined using the logit function

log( p 1hi 1 p 1hi )=0.31+0.000004 y hi . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGPaVpaabmaabaWaaSaaaeaacaWGWbWaaSbaaSqaaiaa igdacaWGObGaamyAaaqabaaakeaacaaIXaGaaGjbVlabgkHiTiaays W7caWGWbWaaSbaaSqaaiaaigdacaWGObGaamyAaaqabaaaaaGccaGL OaGaayzkaaGaaGjbVlabg2da9iaaysW7cqGHsislcaqGWaGaaeOlai aabodacaqGXaGaaGjbVlabgUcaRiaaysW7caqGWaGaaeOlaiaabcda caqGWaGaaeimaiaabcdacaqGWaGaaeinaiaaykW7caWG5bWaaSbaaS qaaiaadIgacaWGPbaabeaakiaac6caaaa@5EDB@

The constants -0.31 and 0.000004 are chosen by trial and error so that the expected number of non-respondents to the mail-out is again approximately half of the size of s 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaakiaac6caaaa@3882@  Note that the expected number of non-respondents to the mail-out can be written as h=1 L i s 1h ( 1 p 1hi ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaada aeqaqaamaabmqabaGaaGymaiaaysW7cqGHsislcaaMe8UaamiCamaa BaaaleaacaaIXaGaamiAaiaadMgaaeqaaaGccaGLOaGaayzkaaaale aacaWGPbGaeyicI4Saam4CamaaBaaameaacaaIXaGaamiAaaqabaaa leqaniabggHiLdaaleaacaWGObGaeyypa0JaaGymaaqaaiaadYeaa0 GaeyyeIuoakiaac6caaaa@4D5E@  As a result, the constants are such that h=1 L i s 1h p 1hi 1,187.5, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaada aeqaqaaiaadchadaWgaaWcbaGaaGymaiaadIgacaWGPbaabeaakiaa ysW7cqGHijYUcaaMc8oaleaacaWGPbGaeyicI4Saam4CamaaBaaame aacaaIXaGaamiAaaqabaaaleqaniabggHiLdaaleaacaWGObGaeyyp a0JaaGymaaqaaiaadYeaa0GaeyyeIuoakiaaysW7caqGXaGaaeilai aabgdacaqG4aGaae4naiaab6cacaqG1aGaaiilaaaa@525B@  where p 1hi = [ 1+exp( 0.310.000004 y hi ) ] 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIXaGaamiAaiaadMgaaeqaaOGaaGjbVlabg2da9iaaysW7 daWadaqaaiaaigdacqGHRaWkciGGLbGaaiiEaiaacchacaaMc8+aae WabeaacaqGWaGaaeOlaiaabodacaqGXaGaaGjbVlabgkHiTiaaysW7 caqGWaGaaeOlaiaabcdacaqGWaGaaeimaiaabcdacaqGWaGaaeinai aaykW7caWG5bWaaSbaaSqaaiaadIgacaWGPbaabeaaaOGaayjkaiaa wMcaaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaki aac6caaaa@5AE1@

Selection of the follow-up sample s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4CamaaBa aaleaacaaIYaaabeaaaaa@37E1@

The next step in the simulation is to select a follow-up sample s 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaaaaa@37C7@  from the set of mail-out non-respondents, s 1,nr , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaGaaiilaiaaykW7caqGUbGaaeOCaaqabaGccaGGSaaa aa@3CA1@  generated from one of the two response probability scenarios above. Five different sampling designs are considered for the selection of the follow-up sample:

  1. Census of the mail-out non-respondents;
  2. Simple Random Sampling (SRS) without replacement, ignoring the original stratification;
  3. Stratified SRS without replacement using the original stratification, with sample allocation to strata proportional to the number of mail-out non-respondents;
  4. Systematic sampling with probability proportional to Revenue, x hi , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGObGaamyAaaqabaGccaGGSaaaaa@39A5@  ignoring the original stratification;
  5. Systematic sampling with probability proportional to Revenue multiplied by the initial design weight, w 1hi x hi , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4DamaaBa aaleaacaaIXaGaamiAaiaadMgaaeqaaOGaamiEamaaBaaaleaacaWG ObGaamyAaaqabaGccaGGSaaaaa@3D6D@  ignoring the original stratification.

Note that the size variables used for the two Probability Proportional to Size (PPS) sampling designs are trimmed from below the 5 th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGynamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38B5@  percentile to remove zero-valued observations and some extremely small values that caused instability. On average, there are 1,188 non-respondents to the mail-out. For the first design, all non-respondents are followed up. For the remaining four designs, the follow-up sample sizes used for the simulation are chosen as 100, 200, 300, 400, 500, 700, and 900.

Generation of call outcomes

The outcomes of the telephone follow-up collection procedure are simulated at the call attempt level. For each sample unit i s 1h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIXaGaamiAaaqabaGc caGGSaaaaa@3EF9@   h=1,,L, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWGmbGaaiilaaaa@42CC@  the probabilities P 2hi ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaGGSaaaaa@3C7F@   P 2hi ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaaaaa@3BC6@  and P 2hi ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaaaaa@3BC7@  for the three possible outcomes (see Section 2) are assigned before the start of the simulation and do not vary as data collection progresses. Two response scenarios are considered:

  1. Uniform: P 2hi ( 1 ) =25%, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caaIYaGaaGynai aacwcacaGGSaaaaa@444E@   P 2hi ( 2 ) =5%, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caaI1aGaaiyjai aacYcaaaa@4393@  and P 2hi ( 3 ) =70% MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caaI3aGaaGimai aacwcaaaa@43A0@  for all units. These values were taken from Xie, Godbout, Youn and Lavallée (2011).
  2. Correlated to the variable of interest: The probability of a “response” is based on the following logit function:

log( P 2hi ( 1 ) 1 P 2hi ( 1 ) )=1.29+0.000002 y hi +0.3 z hi , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaac+ gacaGGNbGaaGPaVpaabmaabaWaaSaaaeaacaWGqbWaa0baaSqaaiaa ikdacaWGObGaamyAaaqaamaabmqabaGaaGymaaGaayjkaiaawMcaaa aaaOqaaiaaigdacaaMe8UaeyOeI0IaaGjbVlaadcfadaqhaaWcbaGa aGOmaiaadIgacaWGPbaabaWaaeWabeaacaaIXaaacaGLOaGaayzkaa aaaaaaaOGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8UaeyOeI0Ia aeymaiaab6cacaqGYaGaaeyoaiaaysW7cqGHRaWkcaaMe8Uaaeimai aab6cacaqGWaGaaeimaiaabcdacaqGWaGaaeimaiaabkdacaaMc8Ua amyEamaaBaaaleaacaWGObGaamyAaaqabaGccaaMe8Uaey4kaSIaaG jbVlaabcdacaqGUaGaae4maiaaykW7caWG6bWaaSbaaSqaaiaadIga caWGPbaabeaakiaacYcaaaa@6DDE@

For a given follow-up sample unit, the probabilities P 2hi ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaGGSaaaaa@3C7F@   P 2hi ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaaaaa@3BC6@  and P 2hi ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaaaaa@3BC7@  are used to randomly generate the outcome of each call. After a call attempt, the unit returns to the end of the calling queue unless it is finalized and an outcome of “response” or “final non-response” is obtained. Outcomes are generated independently from one call to another. There is no explicit upper limit on the number of call attempts made to the same unit in our simulation study ( K= ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGlbGaaGjbVlabg2da9iaaysW7cqGHEisPaiaawIcacaGLPaaacaGG Uaaaaa@3E84@

Note that for the response scenario with varying response probabilities, the units that respond to the first call attempt are typically units with a higher response probability. As a result, the units that remain in the calling queue for the second attempt tend to be units with a lower response probability. It follows that the proportion of units that respond in the second attempt tends to be lower than in the first attempt. Similarly, the proportion of units that respond in the third attempt tends to be lower than in the second attempt, and so on. The proportion of units that respond decreases with each call attempt, as the units that remain in the calling queue are those that are harder to reach. Therefore, estimates may suffer from substantial bias if data collection ends prematurely, and if those that are harder to reach tend to have y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@  -values larger or smaller than the other sample units.

The total budget for follow-up is fixed at 3,000 units (monetary or time units) in our study. A cost is charged for each call attempt. The amount charged depends on the outcome of the attempt: a “response” outcome has a cost of 5 units ( c ( 1 ) =5 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGJbWaaWbaaSqabeaadaqadeqaaiaaigdaaiaawIcacaGLPaaaaaGc caaMe8Uaeyypa0JaaGjbVlaaiwdaaiaawIcacaGLPaaacaGGSaaaaa@4064@  a “final non-response” outcome has a cost of 2 units ( c ( 2 ) =2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGJbWaaWbaaSqabeaadaqadeqaaiaaikdaaiaawIcacaGLPaaaaaGc caaMe8Uaeyypa0JaaGjbVlaaikdaaiaawIcacaGLPaaacaGGSaaaaa@4062@  and a “still-in-progress” outcome has a cost of 1 unit ( c ( 3 ) =1 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGJbWaaWbaaSqabeaadaqadeqaaiaaiodaaiaawIcacaGLPaaaaaGc caaMe8Uaeyypa0JaaGjbVlaaigdaaiaawIcacaGLPaaacaGGUaaaaa@4064@  The collection ends when the budget runs out, or when there are no more cases left in the calling queue (i.e., all units are resolved), whichever occurs first. The cost values and budget have been chosen somewhat arbitrarily as they are survey-specific. However, we ensured that c ( 1 )  > c ( 2 ) > c ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaGjbVlaa cckacqGH+aGpcaaMe8Uaam4yamaaCaaaleqabaWaaeWabeaacaaIYa aacaGLOaGaayzkaaaaaOGaaGjbVlabg6da+iaaysW7caWGJbWaaWba aSqabeaadaqadeqaaiaaiodaaiaawIcacaGLPaaaaaaaaa@4974@  as this relation is generally expected to hold in telephone surveys.

Monte Carlo measures

The generation of responses to the mail-out, the selection of the follow-up sample and the generation of responses to the follow-up are repeated independently R=1,000 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaays W7cqGH9aqpcaaMc8UaaGjbVlaabgdacaqGSaGaaeimaiaabcdacaqG Waaaaa@3FE5@  times for each combination of mail-out response scenario, follow-up sampling design and follow-up response scenario described above. The non-response-adjusted estimator (2.4), Y ^ HHNA , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaGccaGGSaaaaa@3EE9@  is computed for each replicate. The non-response weight adjustments a 2hi MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaamiAaiaadMgaaeqaaaaa@3990@  are computed using (2.5) as the inverse of the overall weighted response rate. We use a 2hi = a 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaamiAaiaadMgaaeqaaOGaaGjbVlabg2da9iaaysW7 caWGHbWaaSbaaSqaaiaaikdaaeqaaOGaaiilaaaa@4042@  given in (2.5), rather than a 2hi = a 2h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaamiAaiaadMgaaeqaaOGaaGjbVlabg2da9iaaysW7 caWGHbWaaSbaaSqaaiaaikdacaWGObaabeaakiaacYcaaaa@412F@  given in (2.6), to avoid a few cases where some of the sets s 2hr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaGaamiAaiaadkhaaeqaaaaa@39AB@  are empty, which would lead to infinite values of a 2h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaGaamiAaaqabaGccaGGUaaaaa@395E@  The non-response weight adjustment (2.5) can be viewed as an extreme form of collapsing. Less extreme collapsing could be applied in practice and might show better properties. We choose (2.5) in this simulation study for its simplicity.

Using the 1,000 replicates of Y ^ HHNA , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaGccaGGSaaaaa@3EE9@  the Monte Carlo Relative Bias (RB) and Relative Root Mean Square Error (RRMSE) of Y ^ HHNA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaaaaa@3E2F@  are computed as

RB= 1 R r=1 R E r ×100% MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabk eacaaMe8Uaeyypa0JaaGjbVpaalaaabaGaaGymaaqaaiaadkfaaaGa aGjbVpaaqahabaGaaGPaVlaadweadaWgaaWcbaGaamOCaaqabaaaba GaamOCaiabg2da9iaaigdaaeaacaWGsbaaniabggHiLdGccaaMe8Ua ey41aqRaaGPaVlaaysW7caaIXaGaaGimaiaaicdacaGGLaaaaa@51AB@    and    RRMSE= 1 R r=1 R E r 2 ×100%, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeOuaiaabk facaqGnbGaae4uaiaabweacaaMe8Uaeyypa0JaaGjbVpaakaaabaGa aGPaVpaalaaabaGaaGymaaqaaiaadkfaaaGaaGPaVpaaqahabaGaaG PaVlaadweadaqhaaWcbaGaamOCaaqaaiaaikdaaaaabaGaamOCaiab g2da9iaaigdaaeaacaWGsbaaniabggHiLdaaleqaaOGaaGjbVlabgE na0kaaykW7caaMe8UaaGymaiaaicdacaaIWaGaaiyjaiaacYcaaaa@573A@

where E r = ( Y ^ HHNA r Y ^ FULL )/ Y ^ FULL MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaBa aaleaacaWGYbaabeaakiaaysW7cqGH9aqpcaaMe8+aaSGbaeaadaqa daqaaiqadMfagaqcamaaDaaaleaacaqGibGaaeisaiabgkHiTiaab6 eacaqGbbaabaGaamOCaaaakiaaysW7cqGHsislcaaMe8Uabmywayaa jaWaaSbaaSqaaiaabAeacaqGvbGaaeitaiaabYeaaeqaaaGccaGLOa GaayzkaaGaaGPaVdqaaiqadMfagaqcamaaBaaaleaacaqGgbGaaeyv aiaabYeacaqGmbaabeaaaaaaaa@521F@  is the relative error for the r th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38ED@  simulation replicate, and Y ^ HHNA r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja Waa0baaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqaaiaadkhaaaaaaa@3F27@  is the non-response-adjusted Hansen-Hurwitz estimator for the r th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38ED@  replicate, r=1,,1,000. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caqGXaGaaeilaiaabcdacaqGWaGaaeimaiaac6caaaa@4583@

As pointed out above, the initial sample s 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaaabeaaaaa@37C6@  is fixed for each of the 1,000 replicates to focus on the mail-out and follow-up response mechanisms and the follow-up sampling design. While it could have been possible to create an artificial population and draw a different initial sample at each replicate, it was felt that this additional complexity would not change our main conclusions, except for systematically increasing the variance of Y ^ HHNA . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaGccaGGUaaaaa@3EEB@  Our simulation setup has also the advantage of being conditional on real sample data.

4.2   Simulation results

In this section, we discuss the simulation results for four scenarios of mail-out and follow-up response:

  1. The response probability is uniform for both the mail-out and the follow-up. This serves as a baseline scenario with which to compare the other scenarios.
  2. The response probability is correlated to Sales for the mail-out and uniform for the follow-up.
  3. The response probability is uniform for the mail-out and correlated to Sales for the follow-up.
  4. The response probability is correlated to Sales for both the mail-out and the follow-up. This scenario is probably the most realistic.

Response Scenario 1: Uniform response probability for both the mail-out and the follow-up

Figure 4.1 shows the relative bias versus the follow-up sample size for the five sampling designs. Figure 4.2 shows the RRMSE versus the follow-up sample size. Note that the results for the follow-up of all mail-out non-respondents are given by the last point on the figures (i.e., a sample size of 1,188).

Figure 4.1

Description of Figure 4.1

Figure presenting the relative bias (RB) versus follow-up sample size of the five sampling designs for scenario 1. The RB of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). With the exception of the stratified SRS with a follow-up sample size of 100, the RB is approximately zero for all follow-up sample sizes and designs.

Figure 4.2

Description of Figure 4.2

Figure presenting the relative root mean square error (RRMSE) versus follow-up sample size of the five sampling designs for scenario 1. The RRMSE of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). As the sample size increases from 100 to 400, the RRMSE decreases for all designs. For sample sizes greater than 400, the RRMSE remains roughly constant for the SRS and stratified SRS designs.

The following observations can be made by examining Figures 4.1 and 4.2:

Response Scenario 2: Response probability correlated to Sales for the mail-out and uniform for the follow-up

Figures 4.3 and 4.4 show the relative bias and the RRMSE for Scenario 2, respectively.

Figure 4.3

Description of Figure 4.3

Figure presenting the relative bias (RB) versus follow-up sample size of the five sampling designs for scenario 2. The RB of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). The results show that if the mail-out response probability is correlated to Sales, but the follow-upresponse probability is uniform, the bias can be nearly eliminated through the follow-up sampling design. With the exception of the stratified SRS with a follow-up sample size of 100, the RB is approximately zero for all follow-up sample sizes and designs.

Figure 4.4

Description of Figure 4.4

Figure presenting the relative root mean square error (RRMSE) versus follow-up sample size of the five sampling designs for scenario 2. The RRMSE of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). As the sample size increases from 100 to 400, the RRMSE decreases for all designs. For sample sizes greater than 400, the RRMSE remains roughly constant for the SRS and stratified SRS designs.

The following observations can be made by examining Figures 4.3 and 4.4:

Response Scenario 3: Response probability uniform for the mail-out and correlated to Sales for the follow-up

Figures 4.5 and 4.6 show the relative bias and the RRMSE for Scenario 3, respectively.

Figure 4.5

Description of Figure 4.5

Figure presenting the relative bias (RB) versus follow-up sample size of the five sampling designs for scenario 3. The RB of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). The RB is lowest for sample sizes less than or equal to 400, where we observed that all the units were finalized before the budget ran out. For sample sizes greater than 400, we observed a diminution of the average response rate as the sample size increases, explaining the increase of the RB as the sample size increases.

Figure 4.6

Description of Figure 4.6

Figure presenting the relative root mean square error (RRMSE) versus follow-up sample size of the five sampling designs for scenario 3. The RRMSE of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). The RRMSE is minimized for a sample size of 400. For sample sizes greater than 400, we observed a diminution of the average response rate as the sample size increases, explaining the increase of the RRMSE as the sample size increases. The PPS designs seem to be more efficient than the SRS and stratified SRS designs. However, for sample sizes greater than 400, the gains in efficiency diminish as the sample size increases.

The following observations can be made by examining Figures 4.5 and 4.6:

Response Scenario 4: Response probability correlated to Sales for both the mail-out and the follow-up

Figures 4.7 and 4.8 show the relative bias and the RRMSE for Scenario 4, respectively.

Figures 4.7 and 4.8 are similar to Figures 4.5 and 4.6. The observations given for Scenario 3 apply to Scenario 4 as well.

Figure 4.7

Description of Figure 4.7

Figure presenting the relative bias (RB) versus follow-up sample size of the five sampling designs for scenario 4. The RB of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). The RB is lowest for sample sizes less than or equal to 400, where we observed that all the units were finalized before the budget ran out. For sample sizes greater than 400, we observed a diminution of the average response rate as the sample size increases, explaining the increase of the RB as the sample size increases.

Figure 4.8

Description of Figure 4.8

Figure presenting the relative root mean square error (RRMSE) versus follow-up sample size of the five sampling designs for scenario 4. The RRMSE of the first sampling design, which is the census of the mail-out non-respondents, is given by the last point on the figure (i.e., a sample size of 1,188). The RRMSE is minimized for a sample size of 400. For sample sizes greater than 400, we observed a diminution of the average response rate as the sample size increases, explaining the increase of the RRMSE as the sample size increases. The PPS designs seem to be more efficient than the SRS and stratified SRS designs. However, for sample sizes greater than 400, the gains in efficiency diminish as the sample size increases.

4.3   Remarks on the simulation results

We observed that for follow-up sample sizes smaller than or equal to 400, and for all sampling designs and response scenarios, all the units were finalized with an outcome of “response” or “final non-response” before the budget was exhausted, except for two simulation replicates. As a result, the follow-up response rate remained roughly constant whereas the number of respondents increased as the follow-up sample size increased from 100 to 400, reducing the variance and mean square error of the estimator Y ^ HHNA . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaGccaGGUaaaaa@3EEB@

For sample sizes of 500 or over, the follow-up budget always ran out before all the units were finalized. As the follow-up sample size increased, the number of respondents and finalized units remained roughly constant. On average, between 430 and 445 cases were finalized at the end of data collection depending on the sampling design and response scenario; the other units were left in the calling queue with an outcome of “still-in-progress”. It thus appears that the follow-up budget used for the simulation study was just large enough to finalize around 440 units for sample sizes greater than or equal to 500. Given that the number of respondents remained roughly constant as the sample size increased, the response rate decreased. The reduction of the response rate can be explained by a smaller average number of call attempts per sample unit as the follow-up sample size increases. This has the undesirable consequence of increasing the bias and mean square error of Y ^ HHNA MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaaaaa@3E2F@  for the non-uniform follow-up response mechanism.

From Figures 4.2, 4.4, 4.6 and 4.8, we also observe that the RRMSE reaches a minimum for a sample size of 400 or 500 depending on the response scenario and sampling design. The sample size that minimizes the RRMSE seems to correspond roughly to the minimum sample size that expends the follow-up budget on average. As discussed above, a smaller sample size increases the variance of Y ^ HHNA , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaGccaGGSaaaaa@3EE9@  due to a smaller number of respondents, whereas a larger sample size may increase the bias due to a reduced response rate. The minimum sample size to expend the follow-up budget appears to be the same as the expected number of resolved units, which was around 440 in our simulation study for sample sizes of 500 or above.

The theory developed in Section 3 supports the above empirical observations for uniform response to the follow-up. Table 4.1 provides values of the sample size (3.7), the expected number of respondents (3.8), the expected response rate (3.9), and the expected number of resolved units (3.10) for different values of K, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacY caaaa@3767@  and for the values of C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@   c ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FB@   c ( 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FC@   c ( 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FD@   P 2 ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGa aiilaaaa@3AA4@   P 2 ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaaaa @39EB@  and P 2 ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaaaa @39EC@  used in the simulation study: C=3,000, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaays W7cqGH9aqpcaaMc8UaaGjbVlaabodacaqGSaGaaeimaiaabcdacaqG WaGaaiilaaaa@4088@   c ( 1 ) =5, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaGjbVlab g2da9iaaysW7caaI1aGaaiilaaaa@3EDA@   c ( 2 ) =2, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGaaGjbVlab g2da9iaaysW7caaIYaGaaiilaaaa@3ED8@   c ( 3 ) =1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGaaGjbVlab g2da9iaaysW7caaIXaGaaiilaaaa@3ED8@   P 2 ( 1 ) =0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGa aGjbVlabg2da9iaaykW7caaMe8Uaaeimaiaab6cacaqGYaGaaeynai aacYcaaaa@4320@   P 2 ( 2 ) =0.05 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGa aGjbVlabg2da9iaaykW7caaMe8Uaaeimaiaab6cacaqGWaGaaeynaa aa@426F@  and P 2 ( 3 ) =0.70. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGa aGjbVlabg2da9iaaykW7caaMe8Uaaeimaiaab6cacaqG3aGaaeimai aac6caaaa@4324@  The minimum sample size n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  and the expected number of resolved units n ˜ 2,res ( C,K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaabkhacaqGLbGaae4Caaqa baGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7caWGlbaacaGLOa Gaayzkaaaaaa@43D3@  are equal to 439; this agrees with the simulation results.

As shown in Table 4.1, a small value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  may reduce significantly the expected response rate whereas the expected number of respondents does not vary with K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  provided the budget is expended. Therefore, under uniform response to the follow-up, there does not seem to be any advantage to using a follow-up sample size larger than n 2 ( C, ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaiaacYcaaaa@4007@  the minimum sample size to expend the budget on average, which is 439 in this scenario. This choice maximizes the expected response rate without reducing the expected number of respondents. Under moderate departure from uniform response, choosing a sample size close to n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  (or a large value of K) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacM caaaa@3764@  would ensure the non-response bias is better controlled.

Our simulation results indicate that the conclusions drawn from Table 4.1 hold approximately for non-uniform response to the follow-up. In particular, the minimum sample size that expends the budget was close to 439 and the expected number of respondents and resolved units stayed roughly constant when the follow-up sample size increased. As a result, incorrectly assuming uniform response when it is not uniform leads to an appropriate sample size in our simulation setup. Another conclusion of our simulation study is that choosing a follow-up sample size close to n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  appears to minimize both the non-response bias and mean square error of Y ^ HHNA . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaaGPaVlabgkHiTiaaykW7caqGobGa aeyqaaqabaGccaGGUaaaaa@3EEB@  However, we will show in the next two examples that our conclusions may not always hold under larger departures from uniform response.

Suppose that there are exactly 1,188 mail-out non-respondents and that the values of C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@   c ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FB@   c ( 2 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FC@   c ( 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FD@   P 2 ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGa aiilaaaa@3AA4@   P 2 ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaaaa @39EB@  and P 2 ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaaabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaaaa @39EC@  are exactly the same as those used in the simulation study and Table 4.1. However, for one of the 1,188 units, unit j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36D6@  say, the probabilities P 2j ( 1 ) =0.25, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamOAaaqaamaabmqabaGaaGymaaGaayjkaiaawMca aaaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabcdacaqGUaGaaeOmai aabwdacaGGSaaaaa@440F@   P 2j ( 2 ) =0.05 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamOAaaqaamaabmqabaGaaGOmaaGaayjkaiaawMca aaaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabcdacaqGUaGaaeimai aabwdaaaa@435E@  and P 2j ( 3 ) =0.70 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamOAaaqaamaabmqabaGaaG4maaGaayjkaiaawMca aaaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabcdacaqGUaGaae4nai aabcdaaaa@4361@  are replaced with P 2j ( 1 ) =0.000005, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamOAaaqaamaabmqabaGaaGymaaGaayjkaiaawMca aaaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabcdacaqGUaGaaeimai aabcdacaqGWaGaaeimaiaabcdacaqG1aGaaiilaaaa@46D9@   P 2j ( 2 ) =0.000001 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamOAaaqaamaabmqabaGaaGOmaaGaayjkaiaawMca aaaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabcdacaqGUaGaaeimai aabcdacaqGWaGaaeimaiaabcdacaqGXaaaaa@4626@  and P 2j ( 3 ) =0.999994, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamOAaaqaamaabmqabaGaaG4maaGaayjkaiaawMca aaaakiaaysW7cqGH9aqpcaaMc8UaaGjbVlaabcdacaqGUaGaaeyoai aabMdacaqG5aGaaeyoaiaabMdacaqG0aGaaiilaaaa@4707@  respectively. The response mechanism is almost uniform, except for one unit with a very small probability of being resolved. For simplicity, we assume that the follow-up sample is selected using simple random sampling without replacement. For this scenario, Table 4.2 shows the sample size (3.3), the expected number of respondents (3.4), the expected response rate (3.5) and the expected number of resolved units (3.6) for different values of K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@


Table 4.1
Sample size, expected response rate, and expected number of respondents and resolved units for different values of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@36B1@ under uniform response to the follow-up
Table summary
This table displays the results of Sample size. The information is grouped by (équation) (appearing as row headers), Sample size (3.7), Expected response rate (3.9), Expected number of respondents (3.8) and Expected number of resolved units (3.10) (appearing as column headers).
K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@38E4@ Sample size (3.7) Expected response rate (3.9) Expected number of respondents (3.8) Expected number of resolved units (3.10)
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@397B@ 439 83.3% 366 439
20 439 83.3% 366 439
10 452 81.0% 366 439
6 498 73.5% 366 439
5 528 69.3% 366 439
4 578 63.3% 366 439
3 668 54.8% 366 439
2 861 42.5% 366 439
1Note * 1.188 25.0% 297 356

Table 4.2
Sample size, expected response rate, and expected number of respondents and resolved units for different values of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@36B1@ when one unit has a very small probability of being resolved
Table summary
This table displays the results of Sample size. The information is grouped by K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@36B1@ (appearing as row headers), Sample size (3.3), Expected response rate (3.5), Expected number of respondents (3.4) and Expected number of resolved units (3.6) (appearing as column headers).
K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@38E4@ Sample size (3.3) Expected response rate (3.5) Expected number of respondents (3.4) Expected number of resolved units (3.6)
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@397B@ 20 83.3% 17 20
20 439 83.2% 365 438
10 452 80.9% 365 438
6 498 73.5% 366 439
5 528 69.3% 366 439
4 578 63.3% 366 439
3 668 54.7% 366 439
2 861 42.5% 366 439
1Note * 1.188 25.0% 297 356

The minimum sample size to expend the budget, on average, is n 2 ( C, )=20 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8UaaGOmai aaicdaaaa@44ED@  in that scenario. It is significantly smaller than 439, the corresponding value for uniform response shown in Table 4.1. As pointed out in Section 3, using a finite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  may avoid spending too large a portion of the budget on a few units with a very small probability of being resolved (unit j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36D6@  in this example). Indeed, Table 4.2 shows that the expected response rate decreases marginally by reducing the value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  from infinity to 20 whereas the expected number of respondents drastically increases from 17 to 365. Using a finite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  seems desirable in this scenario as it may substantially reduce the variance of Y ^ HHNA . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaabIeacaqGibGaeyOeI0IaaeOtaiaabgeaaeqaaOGa aiOlaaaa@3BD5@  The impact on non-response bias is likely to be negligible unless the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@  value of unit j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaaaa@36D6@  is extremely different from other units. Incorrectly assuming uniform response for all units would lead to choosing a sample size of 439, as shown in Table 4.1. This choice appears to remain appropriate for this non-uniform follow-up response mechanism.

Suppose again that there are 1,188 mail-out non-respondents, the values of C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@   c ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FB@   c ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaaaa@3942@  and c ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaaaa@3943@  are the same as those used in the simulation study and Table 4.1, and the follow-up sample is selected using simple random sampling without replacement. Suppose now the 1,188 mail-out non-respondents can be divided into two response homogeneous groups, each of size 594. The probabilities are P 2hi ( 1 ) =0.45, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caqGWaGaaeOlai aabsdacaqG1aGaaiilaaaa@44FD@   P 2hi ( 2 ) =0.09 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caqGWaGaaeOlai aabcdacaqG5aaaaa@444E@  and P 2hi ( 3 ) =0.46 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caqGWaGaaeOlai aabsdacaqG2aaaaa@4450@  for the 594 units in the first group and P 2hi ( 1 ) =0.05, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caqGWaGaaeOlai aabcdacaqG1aGaaiilaaaa@44F9@   P 2hi ( 2 ) =0.01 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caqGWaGaaeOlai aabcdacaqGXaaaaa@4446@  and P 2hi ( 3 ) =0.94 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGPaVlaaysW7caaIWaGaaiOlai aaiMdacaaI0aaaaa@4469@  for the remaining 594 units. The response mechanism is not uniform; it is uniform within each of the two response homogeneous groups. The average probabilities over the 1,188 mail-out non-respondents are the same as those given in the uniform response scenario. Table 4.3 shows the sample size (3.3), the expected number of respondents (3.4), the expected response rate (3.5), and the expected number of resolved units (3.6) for different values of K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@


Table 4.3
Sample size, expected response rate, and expected number of respondents and resolved units for different values of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@36B1@ under uniform response within groups
Table summary
This table displays the results of Sample size. The information is grouped by K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@36B1@ (appearing as row headers), Sample size (3.3), Expected response rate (3.5), Expected number of respondents (3.4) and Expected number of resolved units (3.6) (appearing as column headers).
K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaam4saaaa@38E4@ Sample size (3.3) Expected response rate (3.5) Expected number of respondents (3.4) Expected number of resolved units (3.6)
MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOhIukaaa@397B@ 235 83.3% 196 235
20 305 71.2% 217 261
10 409 60.9% 249 299
6 519 54.2% 281 338
5 566 51.9% 294 352
4 629 48.9% 308 370
3 727 44.7% 325 390
2 914 37.7% 344 413
1Note * 1.188 25.0% 297 356

The minimum sample size to expend the budget, on average, is n 2 ( C, )=235, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8UaaGOmai aaiodacaaI1aGaaiilaaaa@465F@  which is much smaller than the corresponding value of 439 for uniform response. In this scenario, using a finite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  does not seem advantageous. By decreasing the value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  from infinity to 20, the expected number of respondents only increases by 21 whereas the expected response rate decreases by more than 10%. The small variance reduction could possibly be offset by a larger increase of non-response bias. The magnitude of non-response bias depends on the strength of the association between the y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaaaa@36E5@  variable and the response homogeneous groups. A small value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  (a large sample size) might be appropriate if this association is weak so as to benefit from a larger expected number of respondents. However, this is a risky choice as the expected response rate would drop significantly, thereby offering a reduced protection against departure from the assumed response mechanism. Therefore, a sample size of 439 in this scenario might not be appropriate due to the increased risk of non-response bias. Then non-response bias can be dampened at the estimation stage, at least asymptotically, by computing the non-response weight adjustment (2.5) separately for each response homogeneous group. This weighting strategy is standard and should be used when response homogeneous groups can be identified; yet it does not offer full protection against departure from the assumed response mechanism. It is for this reason that a large value of K, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacY caaaa@3767@  even infinite, may be preferable in this scenario.

As pointed out in Section 3, plots of the expected response rate and the expected number of respondents as a function of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  may be useful to determine a suitable trade-off between the maximization of the expected response rate ( K= ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGlbGaaGjbVlabg2da9iaaysW7cqGHEisPaiaawIcacaGLPaaaaaa@3DD2@  and the maximization of the expected number of respondents, as illustrated in the above examples. An infinite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  should be the default as it minimizes non-response bias. However, a large finite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  might be appropriate if it sharply increases the expected number of respondents with minimal impact on the expected response rate.


Date modified: