Non-response follow-up for business surveys
Section 3. Some theoretical properties of the proposed follow‑up strategy

Let C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36AF@  be the total budget allocated for non-response follow-up, which could be defined in terms of monetary or time units. A cost is incurred for each call attempt and depends on the call outcome. We denote by c ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FB@   c ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaaaa@3942@  and c ( 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FD@  the cost per call attempt for a “response”, “final non-response” and “still-in-progress” outcome, respectively. To simplify our derivations, we assume that these costs are the same for each sample unit and do not vary during data collection. Let c hi = k=1 K c hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGObGaamyAaaqabaGccaaMe8Uaeyypa0JaaGjbVpaaqada baGaaGPaVlaadogadaWgaaWcbaGaamiAaiaadMgacaWGRbaabeaaae aacaWGRbGaaGPaVlabg2da9iaaykW7caaIXaaabaGaam4saaqdcqGH ris5aaaa@4AF8@  be the cost of either resolving unit i s 2h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIYaGaamiAaaqabaaa aa@3E40@  or reaching the maximum number of call attempts for that unit, where c hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGObGaamyAaiaadUgaaeqaaaaa@39C6@  is the cost of the k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38E6@  call attempt for unit i s 2h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIYaGaamiAaaqabaGc caGGUaaaaa@3EFC@  If a unit i s 2h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIYaGaamiAaaqabaaa aa@3E40@  is resolved at the l th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiBamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38E7@  attempt, c hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGObGaamyAaiaadUgaaeqaaaaa@39C6@  is defined to be zero for all k>l. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaays W7cqGH+aGpcaaMe8UaamiBaiaac6caaaa@3C9C@  Therefore, the cost c hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGObGaamyAaiaadUgaaeqaaaaa@39C6@  is either zero, if unit i s 2h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIYaGaamiAaaqabaaa aa@3E40@  has been resolved before the k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38E6@  attempt, or c ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FB@   c ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaaaa@3942@  or c ( 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaCa aaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGaaiilaaaa @39FD@  depending on the call outcome. For a given sample size n 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaaaaa@37C2@  and a fixed value of K, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacY caaaa@3767@  the total follow-up cost, h=1 L i s 2h c hi , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaada aeqaqaaiaadogadaWgaaWcbaGaamiAaiaadMgaaeqaaaqaaiaadMga caaMc8UaeyicI4SaaGPaVlaadohadaWgaaadbaGaaGOmaiaadIgaae qaaaWcbeqdcqGHris5aaWcbaGaamiAaiabg2da9iaaigdaaeaacaWG mbaaniabggHiLdGccaGGSaaaaa@494A@  is a random variable when each sample unit is followed up until it is resolved or the maximum number of call attempts has been reached. Taking the expectation of the total cost with respect to the follow-up sampling design and non-response mechanism, conditionally on s 1,nr , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIXaGaaiilaiaaykW7caqGUbGaaeOCaaqabaGccaGGSaaa aa@3CA1@  we obtain the expected follow-up cost:

C ˜ ( n 2 ,K )= h=1 L i s 1h,nr π 2hi c ˜ hi ( K ) ,(3.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4qayaaia GaaGPaVpaabmqabaGaamOBamaaBaaaleaacaaIYaaabeaakiaacYca caaMe8Uaam4saaGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8+aaa bmaeaadaaeqaqaaiabec8aWnaaBaaaleaacaaIYaGaamiAaiaadMga aeqaaOGabm4yayaaiaWaaSbaaSqaaiaadIgacaWGPbaabeaakmaabm qabaGaam4saiaaygW7aiaawIcacaGLPaaaaSqaaiaadMgacaaMc8Ua eyicI4SaaGPaVlaadohadaWgaaadbaGaaGymaiaadIgacaGGSaGaaG PaVlaab6gacaqGYbaabeaaaSqab0GaeyyeIuoaaSqaaiaadIgacqGH 9aqpcaaIXaaabaGaamitaaqdcqGHris5aOGaaiilaiaaywW7caaMf8 UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGymaiaacMca aaa@6E42@

where c ˜ hi ( K )= k=1 K c ˜ hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaia WaaSbaaSqaaiaadIgacaWGPbaabeaakmaabmqabaGaam4saiaaygW7 aiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVpaaqadabaGabm4yay aaiaWaaSbaaSqaaiaadIgacaWGPbGaam4AaaqabaaabaGaam4Aaiab g2da9iaaigdaaeaacaWGlbaaniabggHiLdaaaa@4A59@  is the expected cost of either resolving unit i s 1h,nr MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIXaGaamiAaiaacYca caaMc8UaaeOBaiaabkhaaeqaaaaa@4260@  or reaching the maximum number of call attempts, when that unit is selected in s 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa aaleaacaaIYaaabeaakiaacYcaaaa@3881@  and c ˜ hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaia WaaSbaaSqaaiaadIgacaWGPbGaam4Aaaqabaaaaa@39D5@  is the expected cost of the k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38E6@  attempt, kK, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaays W7cqGHKjYOcaaMe8Uaam4saiaacYcaaaa@3D26@  for that unit. Given c hik 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaWGObGaamyAaiaadUgaaeqaaOGaaGjbVlabgcMi5kaaysW7 caaIWaaaaa@3F6B@  only if unit i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaaaa@36D5@  has not been resolved before the k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaCa aaleqabaGaaeiDaiaabIgaaaaaaa@38E6@  attempt, it is easy to see that the expected cost c ˜ hik MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaia WaaSbaaSqaaiaadIgacaWGPbGaam4Aaaqabaaaaa@39D5@  is

c ˜ hik = ( P 2hi ( 3 ) ) k1 ( c ( 1 ) P 2hi ( 1 ) + c ( 2 ) P 2hi ( 2 ) + c ( 3 ) P 2hi ( 3 ) ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaia WaaSbaaSqaaiaadIgacaWGPbGaam4AaaqabaGccaaMe8Uaeyypa0Ja aGjbVpaabmaabaGaamiuamaaDaaaleaacaaIYaGaamiAaiaadMgaae aadaqadeqaaiaaiodaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaa daahaaWcbeqaaiaadUgacaaMc8UaeyOeI0IaaGPaVlaaigdaaaGcda qadaqaaiaadogadaahaaWcbeqaamaabmqabaGaaGymaaGaayjkaiaa wMcaaaaakiaadcfadaqhaaWcbaGaaGOmaiaadIgacaWGPbaabaWaae WabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaGjbVlabgUcaRiaaysW7 caWGJbWaaWbaaSqabeaadaqadeqaaiaaikdaaiaawIcacaGLPaaaaa GccaWGqbWaa0baaSqaaiaaikdacaWGObGaamyAaaqaamaabmqabaGa aGOmaaGaayjkaiaawMcaaaaakiaaysW7cqGHRaWkcaaMe8Uaam4yam aaCaaaleqabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaOGaamiu amaaDaaaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaai aawIcacaGLPaaaaaaakiaawIcacaGLPaaacaGGUaaaaa@7173@

The expected cost c ˜ hi ( K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaia WaaSbaaSqaaiaadIgacaWGPbaabeaakmaabmqabaGaam4saiaaygW7 aiaawIcacaGLPaaaaaa@3CD3@  reduces to

c ˜ hi ( K )= k=1 K c ˜ hik =( c ( 1 ) P 2hi ( 1 ) + c ( 2 ) P 2hi ( 2 ) + c ( 3 ) P 2hi ( 3 ) ) k=0 K1 ( P 2hi ( 3 ) ) k =( c ( 1 ) P 2hi ( 1 ) + c ( 2 ) P 2hi ( 2 ) + c ( 3 ) P 2hi ( 3 ) ) 1 ( P 2hi ( 3 ) ) K 1 P 2hi ( 3 ) .(3.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaceWGJb GbaGaadaWgaaWcbaGaamiAaiaadMgaaeqaaOWaaeWabeaacaWGlbGa aGzaVdGaayjkaiaawMcaaiabg2da9maaqadabaGaaGPaVlqadogaga acamaaBaaaleaacaWGObGaamyAaiaadUgaaeqaaaqaaiaadUgacqGH 9aqpcaaIXaaabaGaam4saaqdcqGHris5aaGcbaGaeyypa0ZaaeWaae aacaWGJbWaaWbaaSqabeaadaqadeqaaiaaigdaaiaawIcacaGLPaaa aaGccaWGqbWaa0baaSqaaiaaikdacaWGObGaamyAaaqaamaabmqaba GaaGymaaGaayjkaiaawMcaaaaakiaaysW7cqGHRaWkcaaMe8Uaam4y amaaCaaaleqabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGaam iuamaaDaaaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikda aiaawIcacaGLPaaaaaGccaaMe8Uaey4kaSIaaGjbVlaadogadaahaa WcbeqaamaabmqabaGaaG4maaGaayjkaiaawMcaaaaakiaadcfadaqh aaWcbaGaaGOmaiaadIgacaWGPbaabaWaaeWabeaacaaIZaaacaGLOa GaayzkaaaaaaGccaGLOaGaayzkaaGaaGjbVpaaqadabaWaaeWaaeaa caWGqbWaa0baaSqaaiaaikdacaWGObGaamyAaaqaamaabmqabaGaaG 4maaGaayjkaiaawMcaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGa am4AaaaaaeaacaWGRbGaeyypa0JaaGimaaqaaiaadUeacqGHsislca aIXaaaniabggHiLdaakeaacqGH9aqpdaqadaqaaiaadogadaahaaWc beqaamaabmqabaGaaGymaaGaayjkaiaawMcaaaaakiaadcfadaqhaa WcbaGaaGOmaiaadIgacaWGPbaabaWaaeWabeaacaaIXaaacaGLOaGa ayzkaaaaaOGaaGjbVlabgUcaRiaaysW7caWGJbWaaWbaaSqabeaada qadeqaaiaaikdaaiaawIcacaGLPaaaaaGccaWGqbWaa0baaSqaaiaa ikdacaWGObGaamyAaaqaamaabmqabaGaaGOmaaGaayjkaiaawMcaaa aakiaaysW7cqGHRaWkcaaMe8Uaam4yamaaCaaaleqabaWaaeWabeaa caaIZaaacaGLOaGaayzkaaaaaOGaamiuamaaDaaaleaacaaIYaGaam iAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIcacaGLPaaaaaaakiaa wIcacaGLPaaacaaMe8+aaSaaaeaacaaIXaGaaGjbVlabgkHiTiaays W7daqadaqaaiaadcfadaqhaaWcbaGaaGOmaiaadIgacaWGPbaabaWa aeWabeaacaaIZaaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaWaaW baaSqabeaacaWGlbaaaaGcbaGaaGymaiaaysW7cqGHsislcaaMe8Ua amiuamaaDaaaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaio daaiaawIcacaGLPaaaaaaaaOGaaiOlaiaaywW7caaMf8UaaGzbVlaa ywW7caaMf8UaaiikaiaaiodacaGGUaGaaGOmaiaacMcaaaaa@CC84@

Using π 2hi = n 2 π 2hi * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiWda3aaS baaSqaaiaaikdacaWGObGaamyAaaqabaGccaaMe8Uaeyypa0JaaGjb Vlaad6gadaWgaaWcbaGaaGOmaaqabaGccqaHapaCdaqhaaWcbaGaaG OmaiaadIgacaWGPbaabaGaaiOkaaaaaaa@45A5@  along with condition (2.2), we can determine the follow-up sample size necessary to expend the budget C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@  on average, while ensuring each unit is resolved or has reached the maximum number of attempts, K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@  That is, we can determine the follow-up sample size such that the expected follow-up cost (3.1) is exactly equal to the budget C. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaac6 caaaa@3761@  This sample size is

n 2 ( C,K )= C h=1 L i s 1h,nr π 2hi * c ˜ hi ( K ) ,(3.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakmaabmqabaGaam4qaiaacYcacaaMe8Uaam4s aaGaayjkaiaawMcaaiaaysW7cqGH9aqpcaaMe8+aaSaaaeaacaWGdb aabaWaaabmaeaadaaeqaqaaiabec8aWnaaDaaaleaacaaIYaGaamiA aiaadMgaaeaacaGGQaaaaOGabm4yayaaiaWaaSbaaSqaaiaadIgaca WGPbaabeaakmaabmqabaGaam4saiaaygW7aiaawIcacaGLPaaaaSqa aiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaaigdacaWGObGaaiilai aaykW7caqGUbGaaeOCaaqabaaaleqaniabggHiLdaaleaacaWGObGa eyypa0JaaGymaaqaaiaadYeaa0GaeyyeIuoaaaGccaGGSaGaaGzbVl aaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaIZaGa aiykaaaa@6B1B@

where c ˜ hi ( K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabm4yayaaia WaaSbaaSqaaiaadIgacaWGPbaabeaakmaabmqabaGaam4saiaaygW7 aiaawIcacaGLPaaaaaa@3CD3@  is given in (3.2). For a fixed budget C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@  the sample size n 2 ( C,K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakmaabmqabaGaam4qaiaacYcacaaMe8Uaam4s aaGaayjkaiaawMcaaaaa@3D2B@  is inversely related to K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  and is a minimum when K=; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaays W7cqGH9aqpcaaMe8UaeyOhIuQaai4oaaaa@3D07@  i.e., when there is no upper limit on the number of calls. This means that, for a fixed cost C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@  choosing a sample size larger than n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  has an effect similar to reducing the value of K, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaacY caaaa@3767@  thereby increasing the expected number of unresolved units. Also, if a sample size smaller than n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  is chosen, the expected cost (3.1) is smaller than the budget C; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacU daaaa@376E@  i.e., on average, the budget is not entirely expended. The sample size n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  is thus the minimum sample size that expends the budget C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@  on average.

From the sample size n 2 ( C,K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb VlaadUeaaiaawIcacaGLPaaaaaa@3EB6@  in (3.3), the expected number of respondents to the follow-up survey is

n ˜ 2r ( C,K )= h=1 L i s 1h,nr π 2hi p 2hi ( K ) =C h=1 L i s 1h,nr π 2hi * p 2hi ( K ) h=1 L i s 1h,nr π 2hi * c ˜ hi ( K ) ,(3.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaaceWGUb GbaGaadaWgaaWcbaGaaGOmaiaadkhaaeqaaOGaaGPaVpaabmqabaGa am4qaiaacYcacaaMe8Uaam4saaGaayjkaiaawMcaaiabg2da9maaqa dabaWaaabeaeaacaaMc8UaeqiWda3aaSbaaSqaaiaaikdacaWGObGa amyAaaqabaGccaWGWbWaaSbaaSqaaiaaikdacaWGObGaamyAaaqaba GcdaqadeqaaiaadUeacaaMb8oacaGLOaGaayzkaaaaleaacaWGPbGa eyicI4Saam4CamaaBaaameaacaaIXaGaamiAaiaacYcacaaMc8Uaae OBaiaabkhaaeqaaaWcbeqdcqGHris5aaWcbaGaamiAaiabg2da9iaa igdaaeaacaWGmbaaniabggHiLdaakeaacqGH9aqpcaWGdbGaaGjbVp aalaaabaWaaabmaeaadaaeqaqaaiabec8aWnaaDaaaleaacaaIYaGa amiAaiaadMgaaeaacaGGQaaaaOGaamiCamaaBaaaleaacaaIYaGaam iAaiaadMgaaeqaaOWaaeWabeaacaWGlbGaaGzaVdGaayjkaiaawMca aaWcbaGaamyAaiabgIGiolaadohadaWgaaadbaGaaGymaiaadIgaca GGSaGaaGPaVlaab6gacaqGYbaabeaaaSqab0GaeyyeIuoaaSqaaiaa dIgacqGH9aqpcaaIXaaabaGaamitaaqdcqGHris5aaGcbaWaaabmae aadaaeqaqaaiabec8aWnaaDaaaleaacaaIYaGaamiAaiaadMgaaeaa caGGQaaaaOGabm4yayaaiaWaaSbaaSqaaiaadIgacaWGPbaabeaakm aabmqabaGaam4saiaaygW7aiaawIcacaGLPaaaaSqaaiaadMgacqGH iiIZcaWGZbWaaSbaaWqaaiaaigdacaWGObGaaiilaiaaykW7caqGUb GaaeOCaaqabaaaleqaniabggHiLdaaleaacaWGObGaeyypa0JaaGym aaqaaiaadYeaa0GaeyyeIuoaaaGccaGGSaGaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI0aGaaiykaaaaaa@A979@

where p 2hi ( K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCamaaBa aaleaacaaIYaGaamiAaiaadMgaaeqaaOGaaGPaVpaabmqabaGaam4s aiaaygW7aiaawIcacaGLPaaaaaa@3F18@  is given in (2.7), and the expected response rate is

n ˜ 2r ( C,K ) n 2 ( C,K ) = h=1 L i s 1h,nr π 2hi * p 2hi ( K ) .(3.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaace WGUbGbaGaadaWgaaWcbaGaaGOmaiaadkhaaeqaaOGaaGPaVpaabmqa baGaam4qaiaacYcacaaMe8Uaam4saaGaayjkaiaawMcaaaqaaiaad6 gadaWgaaWcbaGaaGOmaaqabaGccaaMc8+aaeWabeaacaWGdbGaaiil aiaaysW7caWGlbaacaGLOaGaayzkaaaaaiaaysW7cqGH9aqpcaaMe8 +aaabmaeaadaaeqaqaaiabec8aWnaaDaaaleaacaaIYaGaamiAaiaa dMgaaeaacaGGQaaaaOGaamiCamaaBaaaleaacaaIYaGaamiAaiaadM gaaeqaaOGaaGPaVpaabmqabaGaam4saiaaygW7aiaawIcacaGLPaaa aSqaaiaadMgacqGHiiIZcaWGZbWaaSbaaWqaaiaaigdacaWGObGaai ilaiaaykW7caqGUbGaaeOCaaqabaaaleqaniabggHiLdaaleaacaWG ObGaeyypa0JaaGymaaqaaiaadYeaa0GaeyyeIuoakiaac6cacaaMf8 UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIZaGaaiOlaiaaiwda caGGPaaaaa@77FC@

From (2.7) and (3.5), we observe that the expected response rate does not depend on the budget C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36AF@  and decreases as K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  decreases. It was noted above that choosing a sample size larger than the minimum sample size n 2 ( C, ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaiaacYcaaaa@4007@  for a fixed cost C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@  has an effect similar to reducing the value of K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@  Consequently, choosing a sample size larger than n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  would also have the effect of reducing the expected response rate.

We can also obtain the expected number of resolved units in a way similar to (3.4) as

n ˜ 2,res ( C,K )=C h=1 L i s 1h,nr π 2hi * ( 1 ( P 2hi ( 3 ) ) K ) h=1 L i s 1h,nr π 2hi * c ˜ hi ( K ) .(3.6) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaabkhacaqGLbGaae4Caaqa baGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7caWGlbaacaGLOa GaayzkaaGaaGjbVlabg2da9iaaysW7caWGdbWaaSaaaeaadaaeWaqa amaaqababaGaeqiWda3aa0baaSqaaiaaikdacaWGObGaamyAaaqaai aacQcaaaGcdaqadaqaaiaaigdacaaMe8UaeyOeI0IaaGjbVpaabmaa baGaamiuamaaDaaaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaai aaiodaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqa aiaadUeaaaaakiaawIcacaGLPaaaaSqaaiaadMgacqGHiiIZcaWGZb WaaSbaaWqaaiaaigdacaWGObGaaiilaiaaykW7caqGUbGaaeOCaaqa baaaleqaniabggHiLdaaleaacaWGObGaeyypa0JaaGymaaqaaiaadY eaa0GaeyyeIuoaaOqaamaaqadabaWaaabeaeaacqaHapaCdaqhaaWc baGaaGOmaiaadIgacaWGPbaabaGaaiOkaaaakiqadogagaacamaaBa aaleaacaWGObGaamyAaaqabaGcdaqadeqaaiaadUeacaaMb8oacaGL OaGaayzkaaaaleaacaWGPbGaeyicI4Saam4CamaaBaaameaacaaIXa GaamiAaiaacYcacaaMc8UaaeOBaiaabkhaaeqaaaWcbeqdcqGHris5 aaWcbaGaamiAaiabg2da9iaaigdaaeaacaWGmbaaniabggHiLdaaaO GaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaioda caGGUaGaaGOnaiaacMcaaaa@96A0@

It can be easily seen that n ˜ 2,res ( C,K ) n 2 ( C,K ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaabkhacaqGLbGaae4Caaqa baGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7caWGlbaacaGLOa GaayzkaaGaaGjbVlabgsMiJkaaysW7caWGUbWaaSbaaSqaaiaaikda aeqaaOGaaGPaVpaabmqabaGaam4qaiaacYcacaaMe8Uaam4saaGaay jkaiaawMcaaaaa@5171@  and that n ˜ 2,res ( C, )= n 2 ( C, ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaabkhacaqGLbGaae4Caaqa baGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7cqGHEisPaiaawI cacaGLPaaacaaMe8Uaeyypa0JaaGjbVlaad6gadaWgaaWcbaGaaGOm aaqabaGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7cqGHEisPai aawIcacaGLPaaacaGGUaaaaa@52B6@  If the follow-up sample size is chosen to be smaller than n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  then the expected cost h=1 L i s 1h,nr π 2hi c ˜ hi ( ) = C * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabmaeaada aeqaqaaiabec8aWnaaBaaaleaacaaIYaGaamiAaiaadMgaaeqaaOGa bm4yayaaiaWaaSbaaSqaaiaadIgacaWGPbaabeaaaeaacaWGPbGaey icI4Saam4CamaaBaaameaacaaIXaGaamiAaiaacYcacaaMc8UaaeOB aiaabkhaaeqaaaWcbeqdcqGHris5aOWaaeWabeaacqGHEisPcaaMb8 oacaGLOaGaayzkaaaaleaacaWGObGaeyypa0JaaGymaaqaaiaadYea a0GaeyyeIuoakiaaysW7cqGH9aqpcaaMe8Uaam4qamaaCaaaleqaba GaaiOkaaaakiaacYcaaaa@5949@  with C * <C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaCa aaleqabaGaaiOkaaaakiaaysW7cqGH8aapcaaMe8Uaam4qaiaacYca aaa@3D2A@  and, from (3.4) and (3.6), both the expected number of respondents and resolved units decrease.

If the probability P 2hi ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaaaaa@3BC7@  is very close to 1 for a few units i s 1h,nr , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIXaGaamiAaiaacYca caaMc8UaaeOBaiaabkhaaeqaaOGaaiilaaaa@431A@   h=1,,L, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWGmbGaaiilaaaa@42CC@  the minimum sample size n 2 ( C, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaaaa@3F57@  could become very small. In this situation, it may be appropriate to choose a finite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  to avoid spending too large a portion of the budget on a few units. This would reduce the expected response rate, as noted above, and possibly increase the bias of estimates. However, using a finite value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  might also significantly increase the expected number of respondents and reduce the variance of estimates. Plots of the expected response rate and the expected number of respondents as a function of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  may be useful to determine a suitable trade-off between the maximization of the expected response rate ( K= ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWabeaaca WGlbGaaGjbVlabg2da9iaaysW7cqGHEisPaiaawIcacaGLPaaaaaa@3DD2@  and the maximization of the expected number of respondents, which could be reached at a finite value of K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@  A small reduction of the expected response rate might be tolerated if it yields a significant increase in the expected number of respondents.

Under uniform follow-up response, we have: P 2hi ( 1 ) = P 2 ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfadaqhaaWcbaGaaG OmaaqaamaabmqabaGaaGymaaGaayjkaiaawMcaaaaakiaacYcaaaa@44AC@   P 2hi ( 2 ) = P 2 ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfadaqhaaWcbaGaaG OmaaqaamaabmqabaGaaGOmaaGaayjkaiaawMcaaaaaaaa@43F4@  and P 2hi ( 3 ) = P 2 ( 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaGccaaMe8Uaeyypa0JaaGjbVlaadcfadaqhaaWcbaGaaG OmaaqaamaabmqabaGaaG4maaGaayjkaiaawMcaaaaakiaacYcaaaa@44B0@  for each unit i s 1h,nr , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGHiiIZcaaMe8Uaam4CamaaBaaaleaacaaIXaGaamiAaiaacYca caaMc8UaaeOBaiaabkhaaeqaaOGaaiilaaaa@431A@   h=1,,L. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWGmbGaaiOlaaaa@42CE@  The follow-up sample size (3.3), the expected number of respondents (3.4), the expected response rate (3.5) and the expected number of resolved units (3.6) reduce to

n 2 ( C,K )= C ( c ( 1 ) P 2 ( 1 ) + c ( 2 ) P 2 ( 2 ) + c ( 3 ) P 2 ( 3 ) ) 1 P 2 ( 3 ) 1 ( P 2 ( 3 ) ) K ,(3.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb VlaadUeaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaGjbVpaalaaaba Gaam4qaaqaamaabmaabaGaam4yamaaCaaaleqabaWaaeWabeaacaaI XaaacaGLOaGaayzkaaaaaOGaamiuamaaDaaaleaacaaIYaaabaWaae WabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaGjbVlabgUcaRiaaysW7 caWGJbWaaWbaaSqabeaadaqadeqaaiaaikdaaiaawIcacaGLPaaaaa GccaWGqbWaa0baaSqaaiaaikdaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaGccaaMe8Uaey4kaSIaaGjbVlaadogadaahaaWcbeqaam aabmqabaGaaG4maaGaayjkaiaawMcaaaaakiaadcfadaqhaaWcbaGa aGOmaaqaamaabmqabaGaaG4maaGaayjkaiaawMcaaaaaaOGaayjkai aawMcaaaaacaaMe8UaaGPaVpaalaaabaGaaGymaiaaysW7cqGHsisl caaMe8UaamiuamaaDaaaleaacaaIYaaabaWaaeWabeaacaaIZaaaca GLOaGaayzkaaaaaaGcbaGaaGymaiaaysW7cqGHsislcaaMe8+aaeWa aeaacaWGqbWaa0baaSqaaiaaikdaaeaadaqadeqaaiaaiodaaiaawI cacaGLPaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaadUeaaaaa aOGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaaio dacaGGUaGaaG4naiaacMcaaaa@86E0@

n ˜ 2r ( C,K )= C ( c ( 1 ) P 2 ( 1 ) + c ( 2 ) P 2 ( 2 ) + c ( 3 ) P 2 ( 3 ) ) P 2 ( 1 ) ,(3.8) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaWGYbaabeaakiaaykW7daqadeqaaiaadoea caGGSaGaaGjbVlaadUeaaiaawIcacaGLPaaacaaMe8Uaeyypa0JaaG jbVpaalaaabaGaam4qaaqaamaabmaabaGaam4yamaaCaaaleqabaWa aeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaamiuamaaDaaaleaaca aIYaaabaWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaGjbVlab gUcaRiaaysW7caWGJbWaaWbaaSqabeaadaqadeqaaiaaikdaaiaawI cacaGLPaaaaaGccaWGqbWaa0baaSqaaiaaikdaaeaadaqadeqaaiaa ikdaaiaawIcacaGLPaaaaaGccaaMe8Uaey4kaSIaaGjbVlaadogada ahaaWcbeqaamaabmqabaGaaG4maaGaayjkaiaawMcaaaaakiaadcfa daqhaaWcbaGaaGOmaaqaamaabmqabaGaaG4maaGaayjkaiaawMcaaa aaaOGaayjkaiaawMcaaaaacaaMe8UaamiuamaaDaaaleaacaaIYaaa baWaaeWabeaacaaIXaaacaGLOaGaayzkaaaaaOGaaiilaiaaywW7ca aMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaiodacaGGUaGaaGioaiaa cMcaaaa@7628@

n ˜ 2r ( C,K ) n 2 ( C,K ) = P 2 ( 1 ) 1 ( P 2 ( 3 ) ) K 1 P 2 ( 3 ) ,(3.9) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaace WGUbGbaGaadaWgaaWcbaGaaGOmaiaadkhaaeqaaOGaaGPaVpaabmqa baGaam4qaiaacYcacaaMe8Uaam4saaGaayjkaiaawMcaaaqaaiaad6 gadaWgaaWcbaGaaGOmaaqabaGccaaMc8+aaeWabeaacaWGdbGaaiil aiaaysW7caWGlbaacaGLOaGaayzkaaaaaiaaysW7cqGH9aqpcaaMe8 UaamiuamaaDaaaleaacaaIYaaabaWaaeWabeaacaaIXaaacaGLOaGa ayzkaaaaaOWaaSaaaeaacaaIXaGaaGjbVlabgkHiTiaaysW7daqada qaaiaadcfadaqhaaWcbaGaaGOmaaqaamaabmqabaGaaG4maaGaayjk aiaawMcaaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaam4saaaaaO qaaiaaigdacaaMe8UaeyOeI0IaaGjbVlaadcfadaqhaaWcbaGaaGOm aaqaamaabmqabaGaaG4maaGaayjkaiaawMcaaaaaaaGccaGGSaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaG4maiaac6cacaaI 5aGaaiykaaaa@710B@

and

n ˜ 2,res ( C,K )= C ( c ( 1 ) P 2 ( 1 ) + c ( 2 ) P 2 ( 2 ) + c ( 3 ) P 2 ( 3 ) ) ( 1 P 2 ( 3 ) ),(3.10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaabkhacaqGLbGaae4Caaqa baGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7caWGlbaacaGLOa GaayzkaaGaaGjbVlabg2da9iaaysW7daWcaaqaaiaadoeaaeaadaqa daqaaiaadogadaahaaWcbeqaamaabmqabaGaaGymaaGaayjkaiaawM caaaaakiaadcfadaqhaaWcbaGaaGOmaaqaamaabmqabaGaaGymaaGa ayjkaiaawMcaaaaakiaaysW7cqGHRaWkcaaMe8Uaam4yamaaCaaale qabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGaamiuamaaDaaa leaacaaIYaaabaWaaeWabeaacaaIYaaacaGLOaGaayzkaaaaaOGaaG jbVlabgUcaRiaaysW7caWGJbWaaWbaaSqabeaadaqadeqaaiaaioda aiaawIcacaGLPaaaaaGccaWGqbWaa0baaSqaaiaaikdaaeaadaqade qaaiaaiodaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaaaaGaaGjb VpaabmaabaGaaGymaiaaysW7cqGHsislcaaMe8UaamiuamaaDaaale aacaaIYaaabaWaaeWabeaacaaIZaaacaGLOaGaayzkaaaaaaGccaGL OaGaayzkaaGaaiilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaai ikaiaaiodacaGGUaGaaGymaiaaicdacaGGPaaaaa@813E@

respectively. It is worth pointing out that the expected number of respondents (3.8) and the expected number of resolved units (3.10) no longer depend on K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@  The expected number of resolved units, n ˜ 2,res ( C,K ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmOBayaaia WaaSbaaSqaaiaaikdacaGGSaGaaGPaVlaabkhacaqGLbGaae4Caaqa baGccaaMc8+aaeWabeaacaWGdbGaaiilaiaaysW7caWGlbaacaGLOa GaayzkaaGaaiilaaaa@4483@  is therefore equal to the minimum sample size to expend the budget C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaiaacY caaaa@375F@   n 2 ( C, ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaiaacYcaaaa@4007@  for every value of K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaac6 caaaa@3769@  As noted for the general expected response rate (3.5), the expected response rate (3.9) does not depend on the budget C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qaaaa@36AF@  and decreases as K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  decreases. Given the above observations, the value of K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saaaa@36B7@  that maximizes both the expected response rate and the expected number of respondents is K= MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaays W7cqGH9aqpcaaMe8UaeyOhIukaaa@3C48@  under uniform response, which leads to choosing the sample size n 2 ( C, ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOBamaaBa aaleaacaaIYaaabeaakiaaykW7daqadeqaaiaadoeacaGGSaGaaGjb Vlabg6HiLcGaayjkaiaawMcaaiaac6caaaa@4009@

The probabilities P 2hi ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaGGSaaaaa@3C7F@   P 2hi ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaaaaa@3BC6@  and P 2hi ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaaaaa@3BC7@  are unknown. In practice, these probabilities must be replaced with estimates in the above expressions. Because they are needed before selecting the follow-up sample and collecting data, estimates of P 2hi ( 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaigdaaiaawIca caGLPaaaaaGccaGGSaaaaa@3C7F@   P 2hi ( 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaikdaaiaawIca caGLPaaaaaaaaa@3BC6@  and P 2hi ( 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaaIYaGaamiAaiaadMgaaeaadaqadeqaaiaaiodaaiaawIca caGLPaaaaaaaaa@3BC7@  could be obtained from previous survey data.


Date modified: