The anchoring method: Estimation of interviewer effects in the absence of interpenetrated sample assignment
Section 4. Simulation study

We first consider an empirical simulation study of the proposed “anchoring” approach. We repeatedly simulated samples of data from a quadrivariate normal distribution, ( Y 1ij * Y 2ij * Y 3ij * Z ij )~ N 4 ( μ,Σ ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGzbWaa0baaSqaaiaaigdacaWGPbGaamOAaaqaaiaacQcaaaGccaaM e8UaaGjbVlaadMfadaqhaaWcbaGaaGOmaiaadMgacaWGQbaabaGaai OkaaaakiaaysW7caaMe8UaamywamaaDaaaleaacaaIZaGaamyAaiaa dQgaaeaacaGGQaaaaOGaaGjbVlaaysW7caWGAbWaaSbaaSqaaiaadM gacaWGQbaabeaaaOGaayjkaiaawMcaaiaaysW7ieaacaWF+bGaaGjb Vlaad6eadaWgaaWcbaGaaGinaaqabaGccaaMe8+aaeWaaeaacaWH8o GaaiilaiaaysW7cqqHJoWuaiaawIcacaGLPaaacaGGSaaaaa@5F7C@  where j=1,,J=30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWGkbGaaGjbVlabg2da9iaaysW7caaIZaGaaGimaaaa@47B3@  indexes hypothetical respondents nested within i=1,,I=30 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiaays W7cqGH9aqpcaaMe8UaaGymaiaacYcacaaMe8UaeSOjGSKaaiilaiaa ysW7caWGjbGaaGjbVlabg2da9iaaysW7caaIZaGaaGimaaaa@47B1@  interviewers, Y kij( z ) = Y kij( z ) * +I( k=3 ) b i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGRbGaamyAaiaadQgacaaMc8+aaeWabeaacaWG6bGaaGza VdGaayjkaiaawMcaaaqabaGccaaMe8Uaeyypa0JaaGjbVlaadMfada qhaaWcbaGaam4AaiaadMgacaWGQbGaaGPaVpaabmqabaGaamOEaiaa ygW7aiaawIcacaGLPaaaaeaacaGGQaaaaOGaaGjbVlabgUcaRiaays W7caWGjbGaaGjbVpaabmqabaGaam4AaiaaysW7cqGH9aqpcaaMe8Ua aG4maaGaayjkaiaawMcaaiaaysW7caWGIbWaaSbaaSqaaiaadMgaae qaaaaa@5EF0@  for b i ~N( 0, σ b 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaakiaaysW7ieaacaWF+bGaaGjbVlaad6eacaaM e8+aaeWabeaacaaIWaGaaiilaiaaysW7cqaHdpWCdaqhaaWcbaGaam OyaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGSaaaaa@4742@  and Y kij( z ) * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaDa aaleaacaWGRbGaamyAaiaadQgacaaMc8+aaeWabeaacaWG6bGaaGza VdGaayjkaiaawMcaaaqaaiaacQcaaaaaaa@400B@  is ordered by the values of Z ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38CF@  prior to assignment of respondents to the 30 interviewers. Y 1ij( z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaGaamyAaiaadQgacaaMc8+aaeWabeaacaWG6bGaaGza VdGaayjkaiaawMcaaaqabaaaaa@3F27@  and Y 2ij( z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaGaamyAaiaadQgacaaMc8+aaeWabeaacaWG6bGaaGza VdGaayjkaiaawMcaaaqabaaaaa@3F28@  are the observed values without interviewer-induced measurement error, while Y 3ij( z ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaGaamyAaiaadQgacaaMc8+aaeWabeaacaWG6bGaaGza VdGaayjkaiaawMcaaaqabaaaaa@3F29@  is observed with interviewer-induced measurement error, and Z ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38CF@  is a (nuisance and unobserved) covariate that induces extraneous variability when the design is treated as interpenetrated. (One might think of Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37AC@  and Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37AD@  as measurement-error free demographic variables and Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37AE@  as a continuous self-reported overall health measure, which is potentially prone to interviewer effects, and Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@36C6@  as amount of time spent at home, which is associated with interviewer scheduling by shift.)

Given this data generating model, we note that a higher correlation of Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@36C6@  with the other measurements will introduce what appears to be interviewer variance because of the ordering of Y kij( z ) * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaDa aaleaacaWGRbGaamyAaiaadQgacaaMc8+aaeWabeaacaWG6bGaaGza VdGaayjkaiaawMcaaaqaaiaacQcaaaaaaa@400B@  by the values of Z ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa aaleaacaWGPbGaamOAaaqabaaaaa@38CF@  above and beyond the true random interviewer effects on Y 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaaaaa@37AD@  (given by b i ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaakiaacMcacaGGUaaaaa@3951@  This is the lack of interpenetrated assignment that we wish to adjust for with the proposed anchoring method, which aims to isolate the unique interviewer variance σ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaaaa@397A@  that does not arise from simple assignment of cases to interviewers. For simplicity, we assume that μ Y 1 = μ Y 2 = μ Y 3 = μ z =μ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaadMfadaWgaaadbaGaaGymaaqabaaaleqaaOGaaGjbVlab g2da9iaaysW7cqaH8oqBdaWgaaWcbaGaamywamaaBaaameaacaaIYa aabeaaaSqabaGccaaMe8Uaeyypa0JaaGjbVlabeY7aTnaaBaaaleaa caWGzbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaaysW7cqGH9aqpca aMe8UaeqiVd02aaSbaaSqaaiaadQhaaeqaaOGaaGjbVlabg2da9iaa ysW7cqaH8oqBcaGGSaaaaa@56F2@   σ Y 1 2 = σ Y 2 2 = σ Y 3 2 = σ Z 2 =1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadMfadaWgaaadbaGaaGymaaqabaaaleaacaaIYaaaaOGa aGjbVlabg2da9iaaysW7cqaHdpWCdaqhaaWcbaGaamywamaaBaaame aacaaIYaaabeaaaSqaaiaaikdaaaGccaaMe8Uaeyypa0JaaGjbVlab eo8aZnaaDaaaleaacaWGzbWaaSbaaWqaaiaaiodaaeqaaaWcbaGaaG OmaaaakiaaysW7cqGH9aqpcaaMe8Uaeq4Wdm3aa0baaSqaaiaadQfa aeaacaaIYaaaaOGaaGjbVlabg2da9iaaysW7caaIXaaaaa@584F@  and ρ Y 1 Y 2 = ρ Y 1 Y 3 = ρ Y 1 Z = ρ Y 2 Y 3 = ρ Y 2 Z = ρ Y 3 Z =ρ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaS baaSqaaiaadMfadaWgaaadbaGaaGymaaqabaWccaWGzbWaaSbaaWqa aiaaikdaaeqaaaWcbeaakiaaysW7cqGH9aqpcaaMe8UaeqyWdi3aaS baaSqaaiaadMfadaWgaaadbaGaaGymaaqabaWccaWGzbWaaSbaaWqa aiaaiodaaeqaaaWcbeaakiaaysW7cqGH9aqpcaaMe8UaeqyWdi3aaS baaSqaaiaadMfadaWgaaadbaGaaGymaaqabaWccaWGAbaabeaakiaa ysW7cqGH9aqpcaaMe8UaeqyWdi3aaSbaaSqaaiaadMfadaWgaaadba GaaGOmaaqabaWccaWGzbWaaSbaaWqaaiaaiodaaeqaaaWcbeaakiaa ysW7cqGH9aqpcaaMe8UaeqyWdi3aaSbaaSqaaiaadMfadaWgaaadba GaaGOmaaqabaWccaWGAbaabeaakiaaysW7cqGH9aqpcaaMe8UaeqyW di3aaSbaaSqaaiaadMfadaWgaaadbaGaaG4maaqabaWccaWGAbaabe aakiaaysW7cqGH9aqpcaaMe8UaeqyWdiNaaiOlaaaa@6FDC@

We consider four models used to estimate the mean of Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37AE@  and the associated interviewer effect variance:

Unadjusted: Y 3ij ~N( μ 3 + b i , σ 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaGaamyAaiaadQgaaeqaaOGaaGjbVJqaaiaa=5hacaaM e8UaamOtaiaaysW7daqadeqaaiabeY7aTnaaBaaaleaacaaIZaaabe aakiaaysW7cqGHRaWkcaaMe8UaamOyamaaBaaaleaacaWGPbaabeaa kiaacYcacaaMe8Uaeq4Wdm3aa0baaSqaaiaaiodaaeaacaaIYaaaaa GccaGLOaGaayzkaaaaaa@5000@

Adjusted: Y 3ij ~N( μ 3 + β 1 y 1ij + β 2 y 2ij + b i , σ 3 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaGaamyAaiaadQgaaeqaaOGaaGjbVJqaaiaa=5hacaaM e8UaamOtaiaaysW7daqadeqaaiabeY7aTnaaBaaaleaacaaIZaaabe aakiaaysW7cqGHRaWkcaaMe8UaeqOSdi2aaSbaaSqaaiaaigdaaeqa aOGaamyEamaaBaaaleaacaaIXaGaamyAaiaadQgaaeqaaOGaaGjbVl abgUcaRiaaysW7cqaHYoGydaWgaaWcbaGaaGOmaaqabaGccaWG5bWa aSbaaSqaaiaaikdacaWGPbGaamOAaaqabaGccaaMe8Uaey4kaSIaaG jbVlaadkgadaWgaaWcbaGaamyAaaqabaGccaGGSaGaaGjbVlabeo8a ZnaaDaaaleaacaaIZaaabaGaaGOmaaaaaOGaayjkaiaawMcaaaaa@64B6@

Anchoring: ( Y 1ij Y 2ij Y 3ij )~ N 3 ( [ μ 1 μ 2 μ 3 + b i ],Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeWabaaabaGaamywamaaBaaaleaacaaIXaGaamyAaiaadQgaaeqa aaGcbaGaamywamaaBaaaleaacaaIYaGaamyAaiaadQgaaeqaaaGcba GaamywamaaBaaaleaacaaIZaGaamyAaiaadQgaaeqaaaaaaOGaayjk aiaawMcaaiaaysW7ieaacaWF+bGaaGjbVlaad6eadaWgaaWcbaGaaG 4maaqabaGccaaMe8+aaeWaaeaadaWadaqaauaabeqadeaaaeaacqaH 8oqBdaWgaaWcbaGaaGymaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG OmaaqabaaakeaacqaH8oqBdaWgaaWcbaGaaG4maaqabaGccaaMe8Ua ey4kaSIaaGjbVlaadkgadaWgaaWcbaGaamyAaaqabaaaaaGccaGLBb GaayzxaaGaaiilaiaaysW7cqqHJoWuaiaawIcacaGLPaaaaaa@5F44@

Anchoring-Linear Predictor: ( Y ^ 3ij Y 3ij )~ N 2 ( [ μ 1 μ 2 + b i ],Σ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaafa qabeGabaaabaGabmywayaajaWaaSbaaSqaaiaaiodacaWGPbGaamOA aaqabaaakeaacaWGzbWaaSbaaSqaaiaaiodacaWGPbGaamOAaaqaba aaaaGccaGLOaGaayzkaaGaaGjbVJqaaiaa=5hacaaMe8UaamOtamaa BaaaleaacaaIYaaabeaakiaaysW7daqadaqaamaadmaabaqbaeqabi qaaaqaaiabeY7aTnaaBaaaleaacaaIXaaabeaaaOqaaiabeY7aTnaa BaaaleaacaaIYaaabeaakiaaysW7cqGHRaWkcaaMe8UaamOyamaaBa aaleaacaWGPbaabeaaaaaakiaawUfacaGLDbaacaGGSaGaaGjbVlab fo6atbGaayjkaiaawMcaaaaa@58FB@

where y kij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaBa aaleaacaWGRbGaamyAaiaadQgaaeqaaaaa@39DE@  is the observed realization of Y kij , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaWGRbGaamyAaiaadQgaaeqaaOGaaiilaaaa@3A78@   b i ~N( 0, σ b 2 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyamaaBa aaleaacaWGPbaabeaakiaaysW7ieaacaWF+bGaaGjbVlaad6eacaaM e8+aaeWabeaacaaIWaGaaiilaiaaysW7cqaHdpWCdaqhaaWcbaGaam OyaaqaaiaaikdaaaaakiaawIcacaGLPaaacaGGSaaaaa@4742@  and, in the anchoring-linear predictor model, Y ^ 3ij = β ^ 0 + β ^ 1 y 1ij + β ^ 2 y 2ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmywayaaja WaaSbaaSqaaiaaiodacaWGPbGaamOAaaqabaGccaaMe8Uaeyypa0Ja aGjbVlqbek7aIzaajaWaaSbaaSqaaiaaicdaaeqaaOGaaGjbVlabgU caRiaaysW7cuaHYoGygaqcamaaBaaaleaacaaIXaaabeaakiaadMha daWgaaWcbaGaaGymaiaadMgacaWGQbaabeaakiaaysW7cqGHRaWkca aMe8UafqOSdiMbaKaadaWgaaWcbaGaaGOmaaqabaGccaWG5bWaaSba aSqaaiaaikdacaWGPbGaamOAaaqabaaaaa@5532@  where β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabCOSdyaaja aaaa@3735@  is obtained from the linear regression of Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37AE@  on Y 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaaabeaaaaa@37AC@  and Y 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaaabeaakiaac6caaaa@3869@  We estimate the mean of Y 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaaabeaaaaa@37AE@  as the REML estimator of μ 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd02aaS baaSqaaiaaiodaaeqaaaaa@3886@  and similarly the associated interviewer effect variance as the REML estimator of σ b 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaOGaaiOlaaaa@3A36@

We consider the power to reject the null hypothesis that the mean of the observed variables is zero (at the 0.05 level) and the empirical bias in the estimation of the variance of the random interviewer effects, σ b 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaOGaaiOlaaaa@3A36@  We evaluated the empirical bias by computing the difference between the mean of the simulated estimates of the variance component and the true value of the variance component specific to a given simulation scenario. Our simulation study design considers a full factorial design where μ={ 0,0.5 }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiVd0MaaG jbVlabg2da9iaaysW7daGadeqaaiaaicdacaGGSaGaaGjbVlaabcda caqGUaGaaeynaaGaay5Eaiaaw2haaiaacYcaaaa@43B2@   ρ={ 0.25,0.5,0.75 }, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaaG jbVlabg2da9iaaysW7daGadeqaaiaabcdacaqGUaGaaeOmaiaabwda caGGSaGaaGjbVlaabcdacaqGUaGaaeynaiaacYcacaaMe8Uaaeimai aab6cacaqG3aGaaeynaaGaay5Eaiaaw2haaiaacYcaaaa@4AE6@  and σ b 2 ={ 0.1,0.5,0.9 }. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaOGaaGjbVlabg2da9iaaysW7daGa deqaaiaabcdacaqGUaGaaeymaiaacYcacaaMe8Uaaeimaiaab6caca qG1aGaaiilaiaaysW7caqGWaGaaeOlaiaabMdaaiaawUhacaGL9baa caGGUaaaaa@4B56@  We generated 200 independent simulations for each of the 18 cross-classifications of values on these parameters. Table 4.1 presents the results of the simulation study.


Table 4.1
Results of the empirical simulation study. Best performing method italicized (note that when μ=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG jbVlabg2da9iaaysW7caaIWaGaaiilaaaa@3D21@ ideal power if 0.05)
Table summary
This table displays the results of Results of the empirical simulation study. Best performing method italicized (note that when μ=0, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0MaaG jbVlabg2da9iaaysW7caaIWaGaaiilaaaa@3D21@ ideal power if 0.05) True values of model parameters, Power: H 0 :μ=0vs. H A :μ0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamisamaaBa aaleaacaaIWaaabeaakiaacQdacaaMe8UaeqiVd0MaaGjbVlabg2da 9iaaysW7caaIWaGaaGjbVlaadAhacaWGZbGaaiOlaiaaysW7caWGib WaaSbaaSqaaiaadgeaaeqaaOGaaiOoaiaaysW7cqaH8oqBcaaMe8Ua eyiyIKRaaGjbVlaaicdaaaa@55FE@ and Empirical Bias of σ ^ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamOyaaqaaiaaikdaaaaaaa@3DE5@ (appearing as column headers).
True values of model parameters Power: H 0 :μ=0vs. H A :μ0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaamisamaaBa aaleaacaaIWaaabeaakiaacQdacaaMe8UaeqiVd0MaaGjbVlabg2da 9iaaysW7caaIWaGaaGjbVlaadAhacaWGZbGaaiOlaiaaysW7caWGib WaaSbaaSqaaiaadgeaaeqaaOGaaiOoaiaaysW7cqaH8oqBcaaMe8Ua eyiyIKRaaGjbVlaaicdaaaa@55FE@ Empirical Bias of σ ^ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGafq4WdmNbaK aadaqhaaWcbaGaamOyaaqaaiaaikdaaaaaaa@3DE5@
μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqiVd0gaaa@3BF8@ ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeqyWdihaaa@3C02@ σ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpu0de9LqFHe9Lq pepeea0xd9q8as0=LqLs=Jirpepeea0=as0Fb9pgea0lrP0xe9Fve9 Fve9qapdbeqabeWacmGabiqabeqabmqabeabbaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaaaa@3DD5@ Unadjusted Adjusted Anchor Anchor-Linear Predictor Unadjusted Adjusted Anchor Anchor-Linear Predictor
0 0.25 0.1 0.03 0.04 0.04 0.04 0.063 0.029 0.027 0.027
0 0.25 0.5 0.03 0.08 0.04 0.04 0.070 0.022 0.033 0.032
0 0.25 0.9 0.07 0.04 0.06 0.06 0.078 0.037 0.044 0.043
0 0.5 0.1 0.00 0.03 0.02 0.02 0.255 0.061 0.056 0.056
0 0.5 0.5 0.01 0.04 0.03 0.03 0.247 0.058 0.054 0.053
0 0.5 0.9 0.02 0.04 0.04 0.04 0.251 0.049 0.061 0.061
0 0.75 0.1 0.00 0.02 0.01 0.01 0.568 0.074 0.078 0.076
0 0.75 0.5 0.00 0.04 0.05 0.05 0.555 0.098 0.084 0.084
0 0.75 0.9 0.04 0.04 0.06 0.06 0.602 0.099 0.103 0.103
0.5 0.25 0.1 1.00 1.00 1.00 1.00 0.069 0.025 0.032 0.032
0.5 0.25 0.5 0.96 0.68 0.96 0.96 0.072 0.044 0.034 0.034
0.5 0.25 0.9 0.76 0.48 0.75 0.75 0.075 0.040 0.039 0.037
0.5 0.5 0.1 1.00 0.87 1.00 1.00 0.261 0.062 0.062 0.061
0.5 0.5 0.5 0.92 0.44 0.96 0.96 0.269 0.062 0.067 0.067
0.5 0.5 0.9 0.75 0.24 0.80 0.80 0.248 0.068 0.064 0.063
0.5 0.75 0.1 1.00 0.62 1.00 1.00 0.567 0.079 0.078 0.077
0.5 0.75 0.5 0.81 0.27 0.96 0.96 0.507 0.103 0.082 0.082
0.5 0.75 0.9 0.58 0.22 0.70 0.70 0.598 0.100 0.106 0.106

Several notable patterns emerge from the simulation results in Table 4.1. First, as the values of ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@37A7@  increase, the anchoring method produces larger reductions in the overestimation of interviewer variance relative to the unadjusted model. Recall that this was expected by design, given the initial ordering of the observations by Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaaaa@36C6@  prior to assignment to interviewers, which introduces artificial variance among the interviewers. Similarly, as anticipated, estimation of the interviewer variance using covariate adjustment is similar to the anchoring method when this variance is not large, although there is evidence of a somewhat larger reduction in bias when the variance is large.

In addition, for the non-zero values of μ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaQaeqiVd0 Maaiilaaaa@38F6@  higher values of ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@37A7@  yield larger improvements in power when using the anchoring method when compared with the unadjusted estimator, since more of the extraneous variance is correctly allocated. Both the unadjusted and an anchoring method yield higher power than the adjusted estimator, since the adjusted estimator is biased for non-zero means of Y 1ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaGaamyAaiaadQgaaeqaaaaa@3989@  and Y 2ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaGaamyAaiaadQgaaeqaaaaa@398A@  when they are correlated with Y 3ij . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaGaamyAaiaadQgaaeqaaOGaaiOlaaaa@3A47@  Smaller values of ρ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdihaaa@37A7@  approximate an interpenetrated design, and as a result, the unadjusted estimation approach does not produce substantially different results from the adjusted or anchoring approach. The empirical bias in the estimation of σ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaaaa@397A@  is unrelated to the value of σ b 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aa0 baaSqaaiaadkgaaeaacaaIYaaaaaaa@397A@  but is entirely a function of ρ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdiNaai ilaaaa@3857@  since that drives the spurious within-interviewer correlation due to the unobserved Z. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwaiaac6 caaaa@3778@  Finally, we note that replacing the actual values of Y 1ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIXaGaamyAaiaadQgaaeqaaaaa@3989@  and Y 2ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIYaGaamyAaiaadQgaaeqaaaaa@398A@  with a summary measure based on their linear prediction of Y 3ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamywamaaBa aaleaacaaIZaGaamyAaiaadQgaaeqaaaaa@398B@  yields virtually identical results to their direct use in the anchoring method. This is partly a function of their common normality; we discuss this limitation in the Discussion section below.


Date modified: