Inférence bayésienne pour les données multinomiales issues de petits domaines et intégrant l’incertitude sur la restriction d’ordre
Section 6. Conclusion

Le modèle multinomial de Dirichlet comportant des restrictions d’ordre mixte constitue une extension de M 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaO GaaiOlaaaa@3423@  Il augmente la robustesse et la souplesse grâce à son incertitude. Nous avons également montré la façon d’obtenir des échantillons du modèle comportant une restriction d’ordre mixte. Dans notre application et notre simulation, nous trouvons que, avec l’incertitude, le modèle multinomial de Dirichlet comportant des restrictions d’ordre mixte peut s’avérer le meilleur modèle pour tous les cas ayant une unimodalité variée et inconnue. Dans la plupart des cas, nous ne pourrions pas connaître la restriction d’ordre unimodal, même si nous croyons qu’elle existe. Il est nécessaire d’introduire l’incertitude dans le modèle. Nous remarquons aussi qu’en raison de sa complexité, il est difficile de calculer sa vraisemblance marginale. Nous montrons une méthode pour estimer les probabilités a posteriori de l’emplacement du mode, qui est P( L pos = |n ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGqbGaaGPaVpaabmqabaGaamitam aaBaaaleaacaqGWbGaae4BaiaabohaaeqaaOGaaGjbVlaai2dacaaM e8+aaqGabeaacqWItecBcaaMe8oacaGLiWoacaaMe8UaaCOBaaGaay jkaiaawMcaaiaac6caaaa@44E5@  Il y a toutefois un compromis entre la précision et l’efficacité.

Cependant, comme le montrent les figures 4.2 et 4.3, la même restriction d’ordre unimodal pour tous les comtés peut rester forte malgré l’incertitude. Certains comtés ont plus de personnes se situant dans le niveau d’IMC normal, et certains comtés ont plus de personnes dans le niveau d’IMC en surpoids. Nandram et Sedransk (1995) et Nandram, Sedransk et Smith (1997) ont présenté une bonne discussion sur la restriction d’ordre unimodal dans une population stratifiée. À l’aide de l’incertitude, ils ont effectué des inférences sur la proportion d’entreprises et de poissons appartenant à chacune des multiples catégories lorsqu’il existe des relations d’ordre unimodal entre les proportions. Dans le présent article, les hyperparamètres sont précisés et il n’existe aucun problème d’estimation sur petits domaines; notre problème est beaucoup plus difficile même si nous envisageons une structure de modèle d’incertitude similaire.

Dans la section 4.2.2, le modèle comportant des restrictions d’ordre fixe constitue un meilleur modèle pour les données de l’IMC en raison de sa plus grande PVML. Cependant, sans aucun contexte, assumer la position modale est risqué et peut entraîner une inférence erronée. Le modèle multinomial de Dirichlet comportant des restrictions d’ordre, et incorporant l’incertitude, peut réduire le risque et est plus robuste. Dans la simulation, le modèle M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@  est le meilleur modèle pour les données IMC simulées. Le modèle M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3369@  montre une meilleure cohérence pour les données d’IMC simulées et les données d’IMC réelles.

L’ensemble définitif de données relatives à l’IMC pour la présente étude repose uniquement sur les 35 plus grands comtés ayant une population d’au moins 500 000 habitants pour des catégories d’âge sélectionnées par sexe (hommes, femmes) et par race (personnes blanches non hispaniques, personnes noires non hispaniques, personnes hispaniques, autres). Nous pouvons facilement appliquer notre méthode aux petits domaines formés par la race, l’âge et le sexe, comme les données sur l’IMC des hommes hispaniques. Mais les cellules des tables multinomiales deviendront clairsemées. Nous pouvons éliminer certains comtés qui deviennent petits ou nous pouvons en combiner certains. Cependant, en raison des structures des modèles multinomiaux de Dirichlet comportant des restrictions d’ordre, nous ne pouvons pas ajouter la race, l’âge et le sexe comme covariables dans le modèle.

Puisque les données relatives à l’IMC proviennent de l’échantillonnage de l’enquête et que les personnes sont sélectionnées avec des probabilités différentes, il nous faut tenir compte des poids d’enquête. Il est également possible d’inclure les poids d’enquête dans notre modèle. Laissons W ig MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGxbWaaSbaaSqaaiaadMgacaWGNb aabeaaaaa@348F@  correspondre au poids d’enquête, ce qui équivaut à la taille de la population dans chaque comté, i=1,,, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlabg2da9iaaysW7ca aIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlabloriSjaacYca aaa@3EFF@  à l’indice de l’échantillon g=1,, n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGNbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGUbWaaSbaaSqa aiaadMgaaeqaaaaa@3EEA@  et à l’indice des cellules j=1,,K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGlbGaaiOlaaaa @3E62@  Yang (2021) a fourni les poids ajustés suivants :

ω ig = n i W ig g=1 n i W ig , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHjpWDdaWgaaWcbaGaamyAaiaadE gaaeqaaOGaaGjbVlaai2dacaaMe8UaamOBamaaBaaaleaacaWGPbaa beaakiaaysW7daWcaaqaaiaadEfadaWgaaWcbaGaamyAaiaadEgaae qaaaGcbaWaaabmaeaacaaMc8Uaam4vamaaBaaaleaacaWGPbGaam4z aaqabaaabaGaam4zaiaaysW7cqGH9aqpcaaMe8UaaGymaaqaaiaad6 gadaWgaaadbaGaamyAaaqabaaaniabggHiLdaaaOGaaiilaaaa@4EFE@

et g=1 n i ω ig = n i. = j=1 K n ij . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaaeWaqaaiaaykW7cqaHjpWDdaWgaa WcbaGaamyAaiaadEgaaeqaaaqaaiaadEgacaaMc8UaaGypaiaaykW7 caaIXaaabaGaamOBamaaBaaameaacaWGPbaabeaaa0GaeyyeIuoaki aaysW7caaI9aGaaGjbVlaad6gadaWgaaWcbaGaamyAaiaai6caaeqa aOGaaGjbVlaai2dacaaMe8+aaabmaeaacaaMc8UaamOBamaaBaaale aacaWGPbGaamOAaaqabaaabaGaamOAaiaai2dacaaIXaaabaGaam4s aaqdcqGHris5aOGaaiOlaaaa@55AA@  Yang (2021) a utilisé des distributions de vraisemblance pondérées pour un modèle multinomial unique; voir également Nandram, Choi et Liu (2021). Yang (2021) a découvert qu’il existe une très petite différence entre la probabilité pondérée normalisée et non normalisée.

Nous pouvons transformer les données de l’IMC en utilisant les poids ajustés en comptes ajustés. Laissons I igj MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGjbWaaSbaaSqaaiaadMgacaWGNb GaamOAaaqabaaaaa@3570@  correspondre à l’indicateur de catégorie d’IMC pour la personne g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGNbaaaa@3299@  dans le comté i,i=1,, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGilaiaaysW7caWGPbGaaG jbVlaai2dacaaMe8UaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7cqWItecBaaa@4141@  à la cellule j,j=1,,K. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGilaiaaysW7caWGQbGaaG jbVlaai2dacaaMe8UaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGlbGaaiOlaaaa@4194@  Nous définissons I igj =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGjbWaaSbaaSqaaiaadMgacaWGNb GaamOAaaqabaGccaaMe8UaaGypaiaaysW7caaIWaaaaa@3A15@  ou 1 avec j=1 K I igj =1, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaaeWaqaaiaaykW7caWGjbWaaSbaaS qaaiaadMgacaWGNbGaamOAaaqabaaabaGaamOAaiaaykW7caaI9aGa aGPaVlaaigdaaeaacaWGlbaaniabggHiLdGccaaMe8Uaeyypa0JaaG jbVlaaigdacaGGSaaaaa@44DE@  par exemple, si une personne répond dans la cellule j, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaiilaaaa@334C@  une valeur « 1 » est déclarée, et toutes les autres cellules ont des valeurs « 0 ». Pour simplifier, nous pouvons avoir la distribution conjointe a posteriori pondérée non normalisée sous la forme suivante :

π( θ,μ,τ,p, ϕ|n ) i=1 { ( j=1 K g=1 n i I igj ω ig )! j=1 K ( g=1 n i I igj ω ig ) ! j=1 K θ ij g=1 n i I igj w ig [ p i Dirichlet( μτ ) θ i C Dirichlet( μτ )d θ i ( K1 )! ( 1+τ ) 2 +( 1 p i )Dirichlet( 1,,1 ) ] p i ϕ τ 0 1 ( 1 p i ) ( 1ϕ ) τ 0 1 B( ϕ τ 0 ,( 1ϕ ) τ 0 ) }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaafaqaaeWacaaabaGaeqiWdaNaaGPaVp aabmqabaGaaCiUdiaaiYcacaaMe8UaaCiVdiaaiYcacaaMe8UaeqiX dqNaaGilaiaaysW7caWHWbGaaGilaiaaysW7daabceqaaiabew9aMj aaysW7aiaawIa7aiaaysW7caWHUbaacaGLOaGaayzkaaaabaGaeyyh IuRaaGjbVlaaykW7daqeWbqaamaaceqabaWaaSaaaeaadaqadeqaam aaqadabaGaaGPaVpaaqadabaGaaGPaVlaadMeadaWgaaWcbaGaamyA aiaadEgacaWGQbaabeaakiabeM8a3naaBaaaleaacaWGPbGaam4zaa qabaaabaGaam4zaiaaykW7caaI9aGaaGPaVlaaigdaaeaacaWGUbWa aSbaaWqaaiaadMgaaeqaaaqdcqGHris5aaWcbaGaamOAaiaaykW7ca aI9aGaaGPaVlaaigdaaeaacaWGlbaaniabggHiLdaakiaawIcacaGL PaaacaaMe8UaaiyiaaqaamaaradabaGaaGPaVpaabmqabaWaaabmae aacaaMc8UaamysamaaBaaaleaacaWGPbGaam4zaiaadQgaaeqaaOGa eqyYdC3aaSbaaSqaaiaadMgacaWGNbaabeaaaeaacaWGNbGaaGypai aaigdaaeaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaqdcqGHris5aaGc caGLOaGaayzkaaaaleaacaWGQbGaaGypaiaaigdaaeaacaWGlbaani abg+GivdGccaaMe8UaaGyiaaaacaaMe8+aaebCaeaacaaMc8UaeqiU de3aa0baaSqaaiaadMgacaWGQbaabaWaaabmaeaacaaMc8Uaamysam aaBaaameaacaWGPbGaam4zaiaadQgaaeqaaSGaam4DamaaBaaameaa caWGPbGaam4zaaqabaaabaGaam4zaiaaykW7cqGH9aqpcaaMc8UaaG ymaaqaaiaad6gadaWgaaqaaiaadMgaaeqaaaGdcqGHris5aaaaaSqa aiaadQgacaaI9aGaaGymaaqaaiaadUeaa0Gaey4dIunaaOGaay5Eaa aaleaacaWGPbGaaGPaVlaai2dacaaMc8UaaGymaaqaaiabloriSbqd cqGHpis1aaGcbaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7ca aMe8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7daWadeqaaiaadcha daWgaaWcbaGaamyAaaqabaGccaaMe8+aaSaaaeaacaqGebGaaeyAai aabkhacaqGPbGaae4yaiaabIgacaqGSbGaaeyzaiaabshacaaMc8+a aeWabeaacaWH8oGaeqiXdqhacaGLOaGaayzkaaaabaWaa8qeaeaaca qGebGaaeyAaiaabkhacaqGPbGaae4yaiaabIgacaqGSbGaaeyzaiaa bshacaaMc8+aaeWabeaacaWH8oGaeqiXdqhacaGLOaGaayzkaaGaaG PaVlaadsgacqaH4oqCdaWgaaWcbaGaamyAaaqabaaabaGaeqiUde3a aSbaaWqaaiaadMgaaeqaaSGaaGPaVlabgIGiolaaykW7caWGdbaabe qdcqGHRiI8aaaakiaaykW7daWcaaqaamaabmqabaGaam4saiaaysW7 cqGHsislcaaMe8UaaGymaaGaayjkaiaawMcaaiaaysW7caGGHaaaba WaaeWabeaacaaIXaGaaGjbVlabgUcaRiaaysW7cqaHepaDaiaawIca caGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaaGjbVlabgUcaRiaays W7daqadeqaaiaaigdacaaMe8UaeyOeI0IaamiCamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaiaaysW7caqGebGaaeyAaiaabkhaca qGPbGaae4yaiaabIgacaqGSbGaaeyzaiaabshacaaMc8+aaeWabeaa caaIXaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGjbVlaaigdaaiaawI cacaGLPaaaaiaawUfacaGLDbaaaeaaaeaadaGaceqaaiaaysW7caaM e8UaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaGjbVpaaCa aaleqabaWaaWbaaWqabeaadaahaaqabeaadaahaaqabeaadaahaaqa beaadaahaaqabeaadaahaaqabeaadaahaaqabeaacaaMc8oaaaaaaa aaaaaaaaaaaaaakmaalaaabaGaamiCamaaDaaaleaacaWGPbaabaGa eqy1dyMaeqiXdq3aaSbaaWqaaiaaicdaaeqaaSGaeyOeI0IaaGymaa aakmaabmqabaGaaGymaiabgkHiTiaadchadaWgaaWcbaGaamyAaaqa baaakiaawIcacaGLPaaadaahaaWcbeqaamaabmqabaGaaGymaiabgk HiTiabew9aMbGaayjkaiaawMcaaiaaykW7cqaHepaDdaWgaaadbaGa aGimaaqabaWccqGHsislcaaIXaaaaaGcbaGaamOqaiaaykW7daqade qaaiabew9aMjabes8a0naaBaaaleaacaaIWaaabeaakiaaiYcacaaM e8+aaeWabeaacaaIXaGaeyOeI0Iaeqy1dygacaGLOaGaayzkaaGaaG jbVlabes8a0naaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa aiaaw2haaiaac6caaaaaaa@68A2@

Nos approches peuvent être appliquées directement aux comptes ajustés.

Il est possible d’assouplir quelque peu la restriction de l’ordre unimodal. Il est possible de restreindre la position du mode sans aucun ordre à sa gauche ou à sa droite; nous pouvons toujours avoir le mode à 2 ou 3 pour les données de l’IMC pour fournir un modèle comportant une incertitude sur la position modale. Cela peut être fait dans le même esprit que celui de nos travaux actuels.

Nous remarquons que la même structure unimodale pour tous les comtés n’est pas respectée. L’emprunt de renseignements dans ces domaines peut avoir un effet négatif sur l’inférence du modèle. Neuenschwander, Wandel, Roychoudhury et Bailey (2016) ont présenté une approche différente pour augmenter la robustesse du modèle dans la mise au point de médicaments. Ils ont proposé l’approche échangeabilité non-échangeabilité (EXNEX) pour réduire le risque d’un rétrécissement trop important et d’un emprunt excessif pour les strates extrêmes. Nous pouvons emprunter leur approche pour accroître la robustesse de notre modèle statistique. Nous pensons toutefois qu’il est très difficile de faire des inférences en utilisant le modèle multinomial de Dirichlet comportant une valeur a priori EXNEX, puisque la complexité du modèle augmente considérablement.

Annexe

A.1   Échantillonneur de Gibbs pour μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWH8oaaaa@3331@  et τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacqaHepaDaaa@33AE@  dans M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@33A3@  et M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@33A4@

Nous présentons l’échantillonneur de Gibbs à grille, un algorithme de la méthode de Monte Carlo par chaîne de Markov (MCMC), pour μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  avec la restriction d’ordre et τ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDcaGGUaaaaa@3424@

Liu et Sabatti (2000) ont présenté une discussion complète de l’échantillonneur général de Gibbs, qui est une MCMC plus efficace pour l’inférence bayésienne. Ils ont étudié son lien avec la méthode Monte Carlo multigrille et son utilisation pour concevoir des échantillonneurs plus efficaces. L’échantillonneur de Gibbs peut être plus efficace dans notre modèle hiérarchique. Nous utilisons donc l’échantillonneur de Gibbs pour générer les échantillons a posteriori pour l’inférence bayésienne.

Nous présentons l’échantillonneur de Gibbs modifié pour μ C μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdiaaysW7cqGHiiIZca aMe8Uaam4qamaaBaaaleaacaWH8oaabeaaaaa@3B60@  et τ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDcaGGUaaaaa@3424@  La densité a posteriori conjointe est :

π( θ,μ, τ|n ) i=1 I { j=1 K θ ij n ij + μ j τ1 I C I C μ D( μτ )C( μτ ) } 1 ( 1 + τ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH4o GaaGilaiaaysW7caWH8oGaaGilaiaaysW7daabceqaaiabes8a0jaa ysW7aiaawIa7aiaaysW7caWHUbaacaGLOaGaayzkaaGaaGjbVlaays W7cqGHDisTcaaMe8UaaGjbVpaarahabaGaaGPaVpaacmqabaWaaSaa aeaadaqeWaqaaiaaykW7cqaH4oqCdaqhaaWcbaGaamyAaiaadQgaae aacaWGUbWaaSbaaWqaaiaadMgacaWGQbaabeaaliabgUcaRiabeY7a TnaaBaaameaacaWGQbaabeaaliabes8a0jabgkHiTiaaigdaaaGcca WGjbWaaSbaaSqaaiaadoeaaeqaaOGaamysamaaBaaaleaacaWGdbWa aSbaaWqaaiaahY7aaeqaaaWcbeaaaeaacaWGQbGaaGypaiaaigdaae aacaWGlbaaniabg+GivdaakeaacaWGebGaaGPaVpaabmqabaGaaCiV diaayIW7cqaHepaDaiaawIcacaGLPaaacaaMe8Uaam4qaiaaykW7da qadeqaaiaahY7acaaMi8UaeqiXdqhacaGLOaGaayzkaaaaaaGaay5E aiaaw2haaiaaysW7daWcaaqaaiaaigdaaeaacaaIOaGaaGymaiabgU caRiabes8a0jaaiMcadaahaaWcbeqaaiaaikdaaaaaaOGaaiilaaWc baGaamyAaiaai2dacaaIXaaabaGaamysaaqdcqGHpis1aaaa@8AFB@

C( μτ )= θ i C Γ( j=1 K μ j τ ) j=1 K Γ( μ j τ ) j=1 K θ ij μ j τ1 d θ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbGaaGPaVpaabmqabaGaaCiVdi abes8a0bGaayjkaiaawMcaaiaaysW7caaMe8UaaGypaiaaysW7caaM e8+aa8qeaeaacaaMc8+aaSaaaeaacqqHtoWrcaaMe8+aaeWabeaada aeWaqaaiaaykW7cqaH8oqBdaWgaaWcbaGaamOAaaqabaGccqaHepaD aSqaaiaadQgacaaI9aGaaGymaaqaaiaadUeaa0GaeyyeIuoaaOGaay jkaiaawMcaaaqaamaaradabaGaaGPaVlabfo5ahjaaykW7daqadeqa aiabeY7aTnaaBaaaleaacaWGQbaabeaakiabes8a0bGaayjkaiaawM caaaWcbaGaamOAaiaai2dacaaIXaaabaGaam4saaqdcqGHpis1aaaa kiaaysW7caaMe8+aaebCaeaacaaMc8UaeqiUde3aa0baaSqaaiaadM gacaWGQbaabaGaeqiVd02aaSbaaWqaaiaadQgaaeqaaSGaeqiXdqNa eyOeI0IaaGymaaaakiaadsgacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaaaeaacaWGQbGaaGypaiaaigdaaeaacaWGlbaaniabg+Givdaa leaacaWH4oWaaSbaaWqaaiaadMgaaeqaaSGaaGPaVlabgIGiolaays W7caWGdbaabeqdcqGHRiI8aOGaaGOlaaaa@8499@

Il n’existe pas de distribution conditionnelle reconnaissable de μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  et τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDaaa@3372@  pour créer des échantillons. Nous utilisons donc la méthode de la grille pour établir μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  ainsi que τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDaaa@3372@  à partir de π( μ, τ|n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH8o GaaGjcVlaaiYcacaaMe8+aaqGabeaacqaHepaDcaaMe8oacaGLiWoa caaMe8UaaCOBaaGaayjkaiaawMcaaaaa@4308@  après une intégration par rapport à θ, MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdiaacYcaaaa@3531@  nous obtenons :

π( μ, τ|n ) i=1 I { D( μτ+ n i )C( μτ+ n i ) D( μτ )C( μτ ) } I C μ ( 1+τ ) 2 i=1 I { θ i C j=1 K θ ij μ j τ+ n ij 1 d θ i θ i C j=1 K θ ij μ j τ1 d θ i } I C μ ( 1+τ ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaafaqaaeGacaaabaGaeqiWdaNaaGPaVp aabmqabaGaaCiVdiaayIW7caaISaGaaGjbVpaaeiqabaGaeqiXdqNa aGjbVdGaayjcSdGaaGjbVlaah6gaaiaawIcacaGLPaaaaeaacqGHDi sTcaaMe8UaaGjbVpaarahabaGaaGPaVpaacmqabaWaaSaaaeaacaWG ebGaaGPaVpaabmqabaGaaCiVdiabes8a0jaaysW7cqGHRaWkcaaMe8 UaaCOBamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiaaysW7 caWGdbGaaGPaVpaabmqabaGaaCiVdiabes8a0jaaysW7cqGHRaWkca aMe8UaaCOBamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqa aiaadseacaaMc8+aaeWabeaacaWH8oGaeqiXdqhacaGLOaGaayzkaa GaaGjbVlaadoeacaaMc8+aaeWabeaacaWH8oGaeqiXdqhacaGLOaGa ayzkaaaaaaGaay5Eaiaaw2haaaWcbaGaamyAaiaai2dacaaIXaaaba GaamysaaqdcqGHpis1aOGaaGjbVlaaysW7daWcaaqaaiaadMeadaWg aaWcbaGaam4qamaaBaaameaacaWH8oaabeaaaSqabaaakeaadaqade qaaiaaigdacqGHRaWkcqaHepaDaiaawIcacaGLPaaadaahaaWcbeqa aiaaikdaaaaaaaGcbaaabaGaeyyhIuRaaGjbVlaaysW7daqeWbqaai aaykW7daGadeqaamaalaaabaWaa8qeaeaadaqeWaqaaiaaykW7cqaH 4oqCdaqhaaWcbaGaamyAaiaadQgaaeaacqaH8oqBdaWgaaadbaGaam OAaaqabaWccqaHepaDcqGHRaWkcaWGUbWaaSbaaWqaaiaadMgacaWG QbaabeaaliabgkHiTiaaigdaaaGccaWGKbGaaGjcVlaahI7adaWgaa WcbaGaamyAaaqabaaabaGaamOAaiaai2dacaaIXaaabaGaam4saaqd cqGHpis1aaWcbaGaaCiUdmaaBaaameaacaWGPbaabeaaliaaykW7cq GHiiIZcaaMe8Uaam4qaaqab0Gaey4kIipaaOqaamaapebabaWaaebm aeaacaaMc8UaeqiUde3aa0baaSqaaiaadMgacaWGQbaabaGaeqiVd0 2aaSbaaWqaaiaadQgaaeqaaSGaeqiXdqNaeyOeI0IaaGymaaaakiaa dsgacaaMi8UaaCiUdmaaBaaaleaacaWGPbaabeaaaeaacaWGQbGaaG ypaiaaigdaaeaacaWGlbaaniabg+GivdaaleaacaWH4oWaaSbaaWqa aiaadMgaaeqaaSGaaGPaVlabgIGiolaaysW7caWGdbaabeqdcqGHRi I8aaaaaOGaay5Eaiaaw2haaaWcbaGaamyAaiaai2dacaaIXaaabaGa amysaaqdcqGHpis1aOGaaGjbVpaalaaabaGaamysamaaBaaaleaaca WGdbWaaSbaaWqaaiaahY7aaeqaaaWcbeaaaOqaamaabmqabaGaaGym aiabgUcaRiabes8a0bGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaa aaaaGccaaIUaaaaaaa@E487@

Chen et Shao (1997) ont mentionné que l’échantillonnage par importance pouvait être utilisé pour estimer le rapport :

θ i C j=1 K θ ij μ j τ+ n ij 1 d θ i θ i C j=1 K θ ij μ j τ1 d θ i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaamaapebabaWaaebmaeaaca aMc8UaeqiUde3aa0baaSqaaiaadMgacaWGQbaabaGaeqiVd02aaSba aWqaaiaadQgaaeqaaSGaeqiXdqNaey4kaSIaamOBamaaBaaameaaca WGPbGaamOAaaqabaWccqGHsislcaaIXaaaaOGaamizaiaayIW7caWH 4oWaaSbaaSqaaiaadMgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqaai aadUeaa0Gaey4dIunaaSqaaiaahI7adaWgaaadbaGaamyAaaqabaWc caaMc8UaeyicI4SaaGjbVlaadoeaaeqaniabgUIiYdaakeaadaWdra qaamaaradabaGaaGPaVlabeI7aXnaaDaaaleaacaWGPbGaamOAaaqa aiabeY7aTnaaBaaameaacaWGQbaabeaaliabes8a0jabgkHiTiaaig daaaGccaWGKbGaaGjcVlaahI7adaWgaaWcbaGaamyAaaqabaaabaGa amOAaiaai2dacaaIXaaabaGaam4saaqdcqGHpis1aaWcbaGaaCiUdm aaBaaameaacaWGPbaabeaaliaaykW7cqGHiiIZcaaMe8Uaam4qaaqa b0Gaey4kIipaaaGccaGGUaaaaa@7559@

Nous considérons Dirichlet ( r n ¯ j ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiaadkhaceWGUbGbaebada WgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaaa@365E@  comme notre fonction d’importance de tous les comtés, où r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGYbaaaa@32A4@  est un rapport ajustable et où

n ¯ j = i=1 I n ij I . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWGUbGbaebadaWgaaWcbaGaamOAaa qabaGccaaMe8UaaGPaVlaai2dacaaMc8UaaGjbVpaalaaabaWaaabm aeaacaaMc8UaamOBamaaBaaaleaacaWGPbGaamOAaaqabaaabaGaam yAaiaai2dacaaIXaaabaGaamysaaqdcqGHris5aaGcbaGaamysaaaa caGGUaaaaa@462A@

Il combine des renseignements. Comme notre fonction d’importance ne dépend pas des inconnues μ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3485@  et τ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDcaGGSaaaaa@3422@  nous pouvons créer un seul ensemble de nombres pour toutes les itérations. Dans notre exemple numérique, il a été prouvé qu’il s’agit d’un moyen efficace de générer des échantillons a posteriori.

Étapes de l’échantillonneur Gibbs :

  1.    Établissons τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDaaa@3372@  à partir de π( τ|μ,n ); MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaadaabce qaaiabes8a0jaaysW7aiaawIa7aiaaysW7caWH8oGaaiilaiaaysW7 caWHUbaacaGLOaGaayzkaaGaai4oaaaa@4230@
  2.    Pour j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbaaaa@329C@  de m1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaeyOeI0IaaGymaaaa@3447@  à 1, établissons μ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamOAaaqaba aaaa@347E@  à partir de π( μ j | μ ( j ) ,τ,n ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaadaabce qaaiabeY7aTnaaBaaaleaacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7caaMc8UaaCiVdmaaCaaaleqabaWaaeWabeaacqGHsislcaWGQb aacaGLOaGaayzkaaaaaOGaaGilaiaaysW7cqaHepaDcaaISaGaaGjb Vlaah6gacaaMi8oacaGLOaGaayzkaaGaaiilaaaa@4DFA@  où

    0< μ j <min{ μ j+1 , 1 t=1,tm,tj K μ t 2 }; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlabgYda8iaaysW7cq aH8oqBdaWgaaWcbaGaamOAaaqabaGccaaMe8UaeyipaWJaaGjbVlGa c2gacaGGPbGaaiOBamaacmqabaGaeqiVd02aaSbaaSqaaiaadQgacq GHRaWkcaaIXaaabeaakiaaiYcacaaMe8+aaSaaaeaacaaIXaGaeyOe I0YaaabmaeaacaaMc8UaeqiVd02aaSbaaSqaaiaadshaaeqaaaqaai aadshacaaI9aGaaGymaiaaiYcacaaMe8UaamiDaiabgcMi5kaad2ga caaISaGaaGjbVlaadshacqGHGjsUcaWGQbaabaGaam4saaqdcqGHri s5aaGcbaGaaGOmaaaaaiaawUhacaGL9baacaGG7aaaaa@6208@

  3.    Pour j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbaaaa@329C@  de m+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaey4kaSIaaGymaaaa@343C@  à K, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGlbGaaiilaaaa@332D@  établissons μ j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamOAaaqaba aaaa@347E@  à partir de π( μ j | μ ( j ) ,τ,n ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaadaabce qaaiabeY7aTnaaBaaaleaacaWGQbaabeaakiaaykW7aiaawIa7aiaa ykW7caaMc8UaaCiVdmaaCaaaleqabaWaaeWabeaacqGHsislcaWGQb aacaGLOaGaayzkaaaaaOGaaGilaiaaysW7cqaHepaDcaaISaGaaGjb Vlaah6gacaaMi8oacaGLOaGaayzkaaGaaiilaaaa@4DFA@  où

    0< μ j <min{ μ j1 , 1 t=1,tm,tj K μ t 2 }; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlabgYda8iaaysW7cq aH8oqBdaWgaaWcbaGaamOAaaqabaGccaaMe8UaeyipaWJaaGjbVlGa c2gacaGGPbGaaiOBamaacmqabaGaeqiVd02aaSbaaSqaaiaadQgacq GHsislcaaIXaaabeaakiaaiYcacaaMe8+aaSaaaeaacaaIXaGaeyOe I0YaaabmaeaacaaMc8UaeqiVd02aaSbaaSqaaiaadshaaeqaaaqaai aadshacaaI9aGaaGymaiaaiYcacaaMe8UaamiDaiabgcMi5kaad2ga caaISaGaaGjbVlaadshacqGHGjsUcaWGQbaabaGaam4saaqdcqGHri s5aaGcbaGaaGOmaaaaaiaawUhacaGL9baacaGG7aaaaa@6213@

  4.    Obtenons μ m =1 j=1,jm K μ j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamyBaaqaba GccaaMe8UaaGypaiaaysW7caaIXaGaaGjbVlabgkHiTiaaysW7daae WaqaaiaaykW7cqaH8oqBdaWgaaWcbaGaamOAaaqabaaabaGaamOAai aai2dacaaIXaGaaGilaiaaysW7caWGQbGaeyiyIKRaamyBaaqaaiaa dUeaa0GaeyyeIuoakiaacYcaaaa@4D67@  répétons l’étape 1 à l’étape 4 jusqu’à convergence,

    μ ( j ) =( μ 1 ,, μ j1 , μ j+1 ,, μ K ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaahaaWcbeqaamaabmqaba GaeyOeI0IaamOAaaGaayjkaiaawMcaaaaakiaaysW7caaMe8Uaeyyp a0JaaGjbVlaaysW7daqadeqaaiabeY7aTnaaBaaaleaacaaIXaaabe aakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7cqaH8oqBdaWgaaWc baGaamOAaiabgkHiTiaaigdaaeqaaOGaaGilaiaaysW7cqaH8oqBda WgaaWcbaGaamOAaiabgUcaRiaaigdaaeqaaOGaaGilaiaaysW7cqWI MaYscaaISaGaaGjbVlabeY7aTnaaBaaaleaacaWGlbaabeaaaOGaay jkaiaawMcaaiaac6caaaa@5C66@

A.2   Échantillonnage θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaaMi8UaaCiUdaaa@34BE@  dans M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@33A3@  et M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@33A4@

L’aspect a posteriori de θ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdaaa@3481@  a une distribution reconnaissable, soit la distribution de Dirichlet comportant la restriction d’ordre. Au lieu de tirer des échantillons directement de la distribution de Dirichlet comportant la restriction d’ordre, Chen et Nandram (2019) présentent un échantillonnage direct à partir de distributions Gamma tronquées, où Nadarajah et Kotz (2006) ont proposé une méthode pour les Gamma tronqués.

Désignons β=( β 1 ,, β K ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCOSdiaaysW7caaI9aGaaG jbVpaabmqabaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa ysW7cqWIMaYscaaISaGaaGjbVlabek7aInaaBaaaleaacaWGlbaabe aaaOGaayjkaiaawMcaaiaacYcaaaa@4578@  si 0 θ 1 θ 2 θ m θ K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlaaykW7cqGHKjYOca aMe8UaaGPaVlabeI7aXnaaBaaaleaacaaIXaaabeaakiaaysW7caaM c8UaeyizImQaaGjbVlaaykW7cqaH4oqCdaWgaaWcbaGaaGOmaaqaba GccaaMe8UaaGPaVlabgsMiJkaaysW7caaMc8UaeSOjGSKaaGjbVlaa ykW7cqGHKjYOcaaMe8UaaGPaVlabeI7aXnaaBaaaleaacaWGTbaabe aakiaaysW7caaMc8UaeyyzImRaaGjbVlaaykW7cqWIMaYscaaMe8Ua aGPaVlabgwMiZkaaysW7caaMc8UaeqiUde3aaSbaaSqaaiaadUeaae qaaaaa@6F0A@  et le mode est θ m , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCdaWgaaWcbaGaamyBaaqaba GccaGGSaaaaa@353B@  alors nous supposons 0 β 1 β 2 β m β K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlaaykW7cqGHKjYOca aMe8UaaGPaVlabek7aInaaBaaaleaacaaIXaaabeaakiaaysW7caaM c8UaeyizImQaaGjbVlaaykW7cqaHYoGydaWgaaWcbaGaaGOmaaqaba GccaaMe8UaaGPaVlabgsMiJkaaysW7caaMc8UaeSOjGSKaaGjbVlaa ykW7cqGHKjYOcaaMe8UaaGPaVlabek7aInaaBaaaleaacaWGTbaabe aakiaaysW7caaMc8UaeyyzImRaaGjbVlaaykW7cqWIMaYscaaMe8Ua aGPaVlabgwMiZkaaysW7caaMc8UaeqOSdi2aaSbaaSqaaiaadUeaae qaaOGaaiilaaaa@6F70@  le mode est β m . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaamyBaaqaba GccaGGUaaaaa@3528@

Étapes de l’échantillonnage de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacqaH4oqCaaa@339F@  à partir de Dirichlet ( α 1 ,, α K ): MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaaIOaGaeqySde2aaSbaaSqaaiaaig daaeqaaOGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlabeg7aHnaa BaaaleaacaWGlbaabeaakiaaiMcacaaMe8UaaiOoaaaa@4075@

  1.    Établissons β m ~Gamma( α m ,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaamyBaaqaba GccaaMe8ocbaGaa8NFaiaaysW7caqGhbGaaeyyaiaab2gacaqGTbGa aeyyaiaaykW7daqadeqaaiabeg7aHnaaBaaaleaacaWGTbaabeaaki aaiYcacaaMe8UaaGymaaGaayjkaiaawMcaaiaacYcaaaa@4693@  où 0 β m <; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlabgsMiJkaaysW7cq aHYoGydaWgaaWcbaGaamyBaaqabaGccaaMe8UaeyipaWJaaGjbVlab g6HiLkaacUdaaaa@404C@
  2.    Établissons à partir de β m1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaamyBaiaays W7cqGHsislcaaMe8UaaGymaaqabaaaaa@392E@  jusqu’à β 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaaGymaaqaba GccaGGSaaaaa@34EF@

    β m1 ~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaamyBaiaays W7cqGHsislcaaMe8UaaGymaaqabaGccaaMe8ocbaGaa8NFaiaaysW7 aaa@3D59@  Gamma tronqué ( α m1 ,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiabeg7aHnaaBaaaleaaca WGTbGaaGjbVlabgkHiTiaaysW7caaIXaaabeaakiaaiYcacaaMe8Ua aGymaaGaayjkaiaawMcaaiaacYcaaaa@3E6D@  où 0 β m1 β m , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlaaykW7cqGHKjYOca aMe8UaaGPaVlabek7aInaaBaaaleaacaWGTbGaaGjbVlabgkHiTiaa ysW7caaIXaaabeaakiaaysW7caaMc8UaeyizImQaaGjbVlaaykW7cq aHYoGydaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@4D34@

    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqWIMaYsaaa@32CE@

    β 1 ~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaaGymaaqaba GccaaMe8ocbaGaa8NFaiaaysW7aaa@3860@  Gamma tronqué ( α 1 ,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiabeg7aHnaaBaaaleaaca aIXaaabeaakiaaiYcacaaMe8UaaGymaaGaayjkaiaawMcaaiaacYca aaa@3974@  où 0 β 1 β 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlaaykW7cqGHKjYOca aMe8UaaGPaVlabek7aInaaBaaaleaacaaIXaaabeaakiaaysW7caaM c8UaeyizImQaaGjbVlaaykW7cqaHYoGydaWgaaWcbaGaaGOmaaqaba GccaGG7aaaaa@4814@

  3.    Établissons à partir de β m+1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaamyBaiaays W7cqGHRaWkcaaMe8UaaGymaaqabaaaaa@3923@  jusqu’à β K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaam4saaqaba GccaGGSaaaaa@3504@

    β m+1 ~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaamyBaiaays W7cqGHRaWkcaaMe8UaaGymaaqabaGccaaMe8ocbaGaa8NFaiaaysW7 aaa@3D4E@  Gamma tronqué ( α m+1 ,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiabeg7aHnaaBaaaleaaca WGTbGaaGjbVlabgUcaRiaaysW7caaIXaaabeaakiaaiYcacaaMe8Ua aGymaaGaayjkaiaawMcaaiaacYcaaaa@3E62@  où 0 β m+1 β m , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlaaykW7cqGHKjYOca aMe8UaaGPaVlabek7aInaaBaaaleaacaWGTbGaaGjbVlabgUcaRiaa ysW7caaIXaaabeaakiaaysW7caaMc8UaeyizImQaaGjbVlaaykW7cq aHYoGydaWgaaWcbaGaamyBaaqabaGccaGGSaaaaa@4D29@

    MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqWIMaYsaaa@32CE@

    β K ~ MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHYoGydaWgaaWcbaGaam4saaqaba GccaaMe8ocbaGaa8NFaiaaysW7aaa@3875@  Gamma tronqué ( α K ,1 ), MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiabeg7aHnaaBaaaleaaca WGlbaabeaakiaaiYcacaaMe8UaaGymaaGaayjkaiaawMcaaiaacYca aaa@3989@  où 0 β K β K1 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaIWaGaaGjbVlaaykW7cqGHKjYOca aMe8UaaGPaVlabek7aInaaBaaaleaacaWGlbaabeaakiaaysW7caaM c8UaeyizImQaaGjbVlaaykW7cqaHYoGydaWgaaWcbaGaam4saiabgk HiTiaaigdaaeqaaOGaaiOlaaaa@49D8@

Alors,

θ 1 = β 1 β 1 + β 2 ++ β K ,, θ K1 = β K1 β 1 + β 2 ++ β K , θ K =1 i=1 K1 θ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCdaWgaaWcbaGaaGymaaqaba GccaaMe8UaaGypaiaaysW7daWcaaqaaiabek7aInaaBaaaleaacaaI XaaabeaaaOqaaiabek7aInaaBaaaleaacaaIXaaabeaakiabgUcaRi abek7aInaaBaaaleaacaaIYaaabeaakiabgUcaRiablAciljabgUca Riabek7aInaaBaaaleaacaWGlbaabeaaaaGccaaISaGaaGjbVlablA ciljaaiYcacaaMe8UaeqiUde3aaSbaaSqaaiaadUeacqGHsislcaaI XaaabeaakiaaysW7caaI9aGaaGjbVpaalaaabaGaeqOSdi2aaSbaaS qaaiaadUeacqGHsislcaaIXaaabeaaaOqaaiabek7aInaaBaaaleaa caaIXaaabeaakiabgUcaRiabek7aInaaBaaaleaacaaIYaaabeaaki abgUcaRiablAciljabgUcaRiabek7aInaaBaaaleaacaWGlbaabeaa aaGccaaISaGaaGjbVlabeI7aXnaaBaaaleaacaWGlbaabeaakiaays W7caaI9aGaaGjbVlaaigdacaaMe8UaeyOeI0IaaGjbVpaaqahabaGa aGPaVlabeI7aXnaaBaaaleaacaWGPbaabeaaaeaacaWGPbGaaGypai aaigdaaeaacaWGlbGaeyOeI0IaaGymaaqdcqGHris5aOGaaGOlaaaa @7E28@

A.3   Diagnostics bayésiens de M 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaO Gaaiilaaaa@345D@   M 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaO Gaaiilaaaa@345E@  et M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@33A5@

Comme la seule différence entre M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@  et M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@3368@  est l’hypothèse de restriction d’ordre et que les OPC de M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@  et M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@3368@  sont similaires, nous ne présentons ici que l’OPC de M 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaO Gaaiilaaaa@3421@

                 OPC ^ i ( M 2 ) = [ 1 M h=1 M j=1 K n ij ! n i. ! D( μ (h) τ (h) )C( μ (h) τ (h) ) D( n i + μ (h) τ (h) )C( n i + μ (h) τ (h) ) ] 1 = [ 1 M h=1 M j=1 K n ij ! n i. ! θ i C j=1 K θ ij μ (h) τ (h) 1 d θ i θ i C j=1 K θ ij n ij + μ (h) τ (h) 1 d θ i ] 1 = [ 1 M h=1 M j=1 K n ij ! n i. ! θ i C j=1 K θ ij μ (h) τ (h) 1 j=1 K θ ij n ij + μ (h) τ (h) 1 j=1 K θ ij n ij + μ (h) τ (h) 1 θ i C j=1 K θ ij n ij + μ (h) τ (h) 1 d θ i ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8GqFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGaaiaadaaakeaafaqaaeWacaaabaWaaecaaeaaqaaaaa aaaaWdbiaab+eacaqGqbGaae4qaaWdaiaawkWaamaaBaaaleaapeGa amyAaiaacckadaqadaWdaeaapeGaamyta8aadaWgaaadbaWdbiaaik daa8aabeaaaSWdbiaawIcacaGLPaaaa8aabeaaaOqaaiaai2dadaWa daqaamaalaaabaGaaGymaaqaaiaad2eaaaGaaGjbVpaaqahabaGaaG PaVpaalaaabaWaaebmaeaacaaMc8UaamOBamaaBaaaleaacaWGPbGa amOAaaqabaGccaaMc8UaaiyiaaWcbaGaamOAaiaai2dacaaIXaaaba Gaam4saaqdcqGHpis1aaGcbaGaamOBamaaBaaaleaacaWGPbGaaGOl aaqabaGccaaIHaaaaaWcbaGaamiAaiaai2dacaaIXaaabaGaamytaa qdcqGHris5aOGaaGjbVpaalaaabaGaamiraiaaykW7daqadeqaaiaa hY7adaahaaWcbeqaaiaacIcacaWGObGaaiykaaaakiabes8a0naaCa aaleqabaGaaiikaiaadIgacaGGPaaaaaGccaGLOaGaayzkaaGaaGjb VlaadoeacaaMc8+aaeWabeaacaWH8oWaaWbaaSqabeaacaGGOaGaam iAaiaacMcaaaGccqaHepaDdaahaaWcbeqaaiaacIcacaWGObGaaiyk aaaaaOGaayjkaiaawMcaaaqaaiaadseacaaMc8+aaeWabeaacaWHUb WaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgUcaRiaaysW7caWH8oWa aWbaaSqabeaacaGGOaGaamiAaiaacMcaaaGccqaHepaDdaahaaWcbe qaaiaacIcacaWGObGaaiykaaaaaOGaayjkaiaawMcaaiaaysW7caWG dbGaaGPaVpaabmqabaGaaCOBamaaBaaaleaacaWGPbaabeaakiaays W7cqGHRaWkcaaMe8UaaCiVdmaaCaaaleqabaGaaiikaiaadIgacaGG PaaaaOGaeqiXdq3aaWbaaSqabeaacaGGOaGaamiAaiaacMcaaaaaki aawIcacaGLPaaaaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsisl caaIXaaaaaGcbaaabaGaaGypamaadmaabaWaaSaaaeaacaaIXaaaba GaamytaaaacaaMe8+aaabCaeaacaaMc8+aaSaaaeaadaqeWaqaaiaa ykW7caWGUbWaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7caGGHa aaleaacaWGQbGaaGypaiaaigdaaeaacaWGlbaaniabg+Givdaakeaa caWGUbWaaSbaaSqaaiaadMgacaaIUaaabeaakiaaigcaaaaaleaaca WGObGaaGypaiaaigdaaeaacaWGnbaaniabggHiLdGccaaMe8+aaSaa aeaadaWdraqaaiaaykW7daqeWaqaaiaaykW7cqaH4oqCdaqhaaWcba GaamyAaiaadQgaaeaacqaH8oqBdaWgaaadbaGaaiikaiaadIgacaGG Paaabeaaliabes8a0naaBaaameaacaGGOaGaamiAaiaacMcaaeqaaS GaeyOeI0IaaGymaaaakiaadsgacaaMc8UaaCiUdmaaBaaaleaacaWG PbaabeaaaeaacaWGQbGaaGypaiaaigdaaeaacaWGlbaaniabg+Givd aaleaacqaH4oqCdaWgaaadbaGaamyAaaqabaWccaaMc8UaeyicI4Sa aGPaVlaadoeaaeqaniabgUIiYdaakeaadaWdraqaaiaaykW7daqeWa qaaiaaykW7cqaH4oqCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGUbWa aSbaaWqaaiaadMgacaWGQbaabeaaliabgUcaRiabeY7aTnaaBaaame aacaGGOaGaamiAaiaacMcaaeqaaSGaeqiXdq3aaSbaaWqaaiaacIca caWGObGaaiykaaqabaWccqGHsislcaaIXaaaaOGaamizaiaaykW7ca WH4oWaaSbaaSqaaiaadMgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqa aiaadUeaa0Gaey4dIunaaSqaaiabeI7aXnaaBaaameaacaWGPbaabe aaliaaykW7cqGHiiIZcaaMc8Uaam4qaaqab0Gaey4kIipaaaaakiaa wUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaaaeaaca aI9aWaamWaaeaadaWcaaqaaiaaigdaaeaacaWGnbaaaiaaysW7daae WbqaaiaaykW7daWcaaqaamaaradabaGaaGPaVlaad6gadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaGPaVlaacgcaaSqaaiaadQgacaaI9aGa aGymaaqaaiaadUeaa0Gaey4dIunaaOqaaiaad6gadaWgaaWcbaGaam yAaiaai6caaeqaaOGaaGyiaaaaaSqaaiaadIgacaaI9aGaaGymaaqa aiaad2eaa0GaeyyeIuoakiaaysW7daWdraqaamaalaaabaGaaGPaVp aaradabaGaaGPaVlabeI7aXnaaDaaaleaacaWGPbGaamOAaaqaaiab eY7aTnaaBaaameaacaGGOaGaamiAaiaacMcaaeqaaSGaeqiXdq3aaS baaWqaaiaacIcacaWGObGaaiykaaqabaWccqGHsislcaaIXaaaaaqa aiaadQgacaaI9aGaaGymaaqaaiaadUeaa0Gaey4dIunaaOqaamaara dabaGaaGPaVlabeI7aXnaaDaaaleaacaWGPbGaamOAaaqaaiaad6ga daWgaaadbaGaamyAaiaadQgaaeqaaSGaey4kaSIaeqiVd02aaSbaaW qaaiaacIcacaWGObGaaiykaaqabaWccqaHepaDdaWgaaadbaGaaiik aiaadIgacaGGPaaabeaaliabgkHiTiaaigdaaaaabaGaamOAaiaai2 dacaaIXaaabaGaam4saaqdcqGHpis1aaaakiaaysW7daWcaaqaamaa radabaGaaGPaVlabeI7aXnaaDaaaleaacaWGPbGaamOAaaqaaiaad6 gadaWgaaadbaGaamyAaiaadQgaaeqaaSGaey4kaSIaeqiVd02aaSba aWqaaiaacIcacaWGObGaaiykaaqabaWccqaHepaDdaWgaaadbaGaai ikaiaadIgacaGGPaaabeaaliabgkHiTiaaigdaaaaabaGaamOAaiaa i2dacaaIXaaabaGaam4saaqdcqGHpis1aaGcbaWaa8qeaeaacaaMc8 +aaebmaeaacaaMc8UaeqiUde3aa0baaSqaaiaadMgacaWGQbaabaGa amOBamaaBaaameaacaWGPbGaamOAaaqabaWccqGHRaWkcqaH8oqBda WgaaadbaGaaiikaiaadIgacaGGPaaabeaaliabes8a0naaBaaameaa caGGOaGaamiAaiaacMcaaeqaaSGaeyOeI0IaaGymaaaaaeaacaWGQb GaaGypaiaaigdaaeaacaWGlbaaniabg+GivdaaleaacqaH4oqCdaWg aaadbaGaamyAaaqabaWccaaMc8UaeyicI4SaaGPaVlaadoeaaeqani abgUIiYdaaaOGaaGjbVlaadsgacaaMc8UaaCiUdmaaBaaaleaacaWG PbaabeaaaeaacqaH4oqCdaWgaaadbaGaamyAaaqabaWccaaMc8Uaey icI4SaaGPaVlaadoeaaeqaniabgUIiYdaakiaawUfacaGLDbaadaah aaWcbeqaaiabgkHiTiaaigdaaaGccaaISaaaaaaa@A97C@

j=1 K θ ij n ij + μ (h) τ (h) 1 θ i C j=1 K θ ij n ij + μ (h) τ (h) 1 d θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaamaaradabaGaaGPaVlabeI 7aXnaaDaaaleaacaWGPbGaamOAaaqaaiaad6gadaWgaaadbaGaamyA aiaadQgaaeqaaSGaey4kaSIaeqiVd02aaSbaaWqaaiaacIcacaWGOb GaaiykaaqabaWccqaHepaDdaWgaaadbaGaaiikaiaadIgacaGGPaaa beaaliabgkHiTiaaigdaaaaabaGaamOAaiaai2dacaaIXaaabaGaam 4saaqdcqGHpis1aaGcbaWaa8qeaeaacaaMc8+aaebmaeaacaaMc8Ua eqiUde3aa0baaSqaaiaadMgacaWGQbaabaGaamOBamaaBaaameaaca WGPbGaamOAaaqabaWccqGHRaWkcqaH8oqBdaWgaaadbaGaaiikaiaa dIgacaGGPaaabeaaliabes8a0naaBaaameaacaGGOaGaamiAaiaacM caaeqaaSGaeyOeI0IaaGymaaaakiaadsgacaaMi8UaaCiUdmaaBaaa leaacaWGPbaabeaaaeaacaWGQbGaaGypaiaaigdaaeaacaWGlbaani abg+GivdaaleaacqaH4oqCdaWgaaadbaGaamyAaaqabaWccaaMc8Ua eyicI4SaaGPaVlaadoeaaeqaniabgUIiYdaaaaaa@7372@

est la fonction de densité de θ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaakiaacYcaaaa@3656@  et θ i C. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaakiaaysW7cqGHiiIZcaaMe8Uaam4qaiaac6caaaa@3BBE@

Nous remarquons que μ (h) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdmaaCaaaleqabaGaaG ikaiaadIgacaaIPaaaaaaa@3705@  et τ (h) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDdaahaaWcbeqaaiaaiIcaca WGObGaaGykaaaakiaacYcaaaa@36AB@  sont les échantillons a posteriori de la section 7.2. Pour chaque paire de μ (h) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdmaaCaaaleqabaGaaG ikaiaadIgacaaIPaaaaaaa@3705@  et τ (h) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDdaahaaWcbeqaaiaaiIcaca WGObGaaGykaaaakiaacYcaaaa@36AB@  nous pouvons établir θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaaaaa@359C@  à partir de ( n i + μ (h) τ (h) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiaah6gadaWgaaWcbaGaam yAaaqabaGccaaMe8Uaey4kaSIaaGjbVlaahY7adaahaaWcbeqaaiaa iIcacaWGObGaaGykaaaakiabes8a0naaCaaaleqabaGaaGikaiaadI gacaaIPaaaaaGccaGLOaGaayzkaaaaaa@416D@  de Dirichlet,

  OPC ^ i( M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbWaaeWaa8aa baWdbiaad2eapaWaaSbaaWqaa8qacaaIYaaapaqabaaal8qacaGLOa Gaayzkaaaapaqabaaaaa@39EE@ = [ 1 M h=1 M j=1 K n ij ! n i.! ( 1 M h =1 M j=1 K θ ij ( h ) n ij ) ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaI9aGaaGjbVlaaysW7daWadeqaam aalaaabaGaaGymaaqaaiaad2eaaaGaaGjbVpaaqahabaGaaGPaVpaa laaabaWaaebmaeaacaaMc8UaamOBamaaBaaaleaacaWGPbGaamOAaa qabaGccaaMc8UaaGyiaaWcbaGaamOAaiaai2dacaaIXaaabaGaam4s aaqdcqGHpis1aaGcbaGaamOBamaaBaaaleaacaWGPbGaaGOlaaqaba GccaaIHaaaaaWcbaGaamiAaiaaykW7caaI9aGaaGPaVlaaigdaaeaa caWGnbaaniabggHiLdGccaaMe8+aaeWabeaadaWcaaqaaiaaigdaae aaceWGnbGbauaaaaGaaGjbVpaaqahabaGaaGPaVpaarahabaGaaGPa VlabeI7aXnaaDaaaleaacaWGPbGaamOAaaqaamaabmqabaGabmiAay aafaaacaGLOaGaayzkaaWaaWbaaWqabeaacqGHsislcaWGUbWaaSba aeaacaWGPbGaamOAaaqabaaaaaaaaSqaaiaadQgacaaMc8UaaGypai aaykW7caaIXaaabaGaam4saaqdcqGHpis1aaWcbaGabmiAayaafaGa aGPaVlaai2dacaaMc8UaaGymaaqaaiqad2eagaqbaaqdcqGHris5aa GccaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaaGilaaaa@7BEF@

θ i ( h ) ~Dirichlet( n i + μ (h) τ (h) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaDaaaleaacaWGPb aabaWaaeWabeaaceWGObGbauaaaiaawIcacaGLPaaaaaGccaaMe8oc baGaa8NFaiaaysW7caqGebGaaeyAaiaabkhacaqGPbGaae4yaiaabI gacaqGSbGaaeyzaiaabshacaaMe8+aaeWabeaacaWHUbWaaSbaaSqa aiaadMgaaeqaaOGaey4kaSIaaCiVdmaaCaaaleqabaGaaGikaiaadI gacaaIPaaaaOGaeqiXdq3aaWbaaSqabeaacaaIOaGaamiAaiaaiMca aaaakiaawIcacaGLPaaaaaa@52B2@  comportant une restriction d’ordre. Nous obtenons alors la PVML comme PVML ^  = i=1 I log ( OPC ^ i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaaeiuai aabAfacaqGnbGaaeitaaWdaiaawkWaa8qacaGGGcWdaiaai2dacaaM e8+aaabmaeaacaaMc8UaaeiBaiaab+gacaqGNbaaleaacaWGPbGaaG ypaiaaigdaaeaacaWGjbaaniabggHiLdGcpeWaaeWaa8aabaWaaeca aeaapeGaae4taiaabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qaca WGPbaapaqabaaak8qacaGLOaGaayzkaaaaaa@4967@ .

Cependant, il n’est pas facile de calculer directement OPC i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGpbGaaeiuaiaaboeadaWgaaWcba GaamyAaaqabaaaaa@3532@  ou OPC ^ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbaapaqabaaa aa@3642@  Nous présentons la façon d’utiliser les OPC connues, telles que OPC i( M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGpbGaaeiuaiaaboeadaWgaaWcba GaamyAaiaaykW7daqadeqaaiaad2eadaWgaaadbaGaaGOmaaqabaaa liaawIcacaGLPaaaaeqaaaaa@3A0D@ et OPC i( M 3 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGpbGaaeiuaiaaboeadaWgaaWcba GaamyAaiaaykW7daqadeqaaiaad2eadaWgaaadbaGaaG4maaqabaaa liaawIcacaGLPaaaaeqaaOGaaiilaaaa@3AC8@  pour calculer OPC i( M 4 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGpbGaaeiuaiaaboeadaWgaaWcba GaamyAaiaaykW7daqadeqaaiaad2eadaWgaaadbaGaaGinaaqabaaa liaawIcacaGLPaaaaeqaaOGaaiilaaaa@3AC9@

OPC i ( M 4 ) = f ( n i | n ( i ) ) = ( f ( n ( i ) ) f ( n ) ) 1 = [ = 1 K P ( L = ) f ( n ( i ) | μ , τ , L = ) f ( μ , τ | L = ) d μ d τ f ( n ) ] 1 = [ = 1 K P ( L = ) f ( n ( i ) | μ , τ , L = ) f ( μ , τ | L = ) f ( n ) d μ d τ ] 1 = [ = 1 K P ( L = ) f ( n i | μ , τ , L = ) f ( n ( i ) | μ , τ , L = ) f ( μ , τ | L = ) f ( n i | μ , τ , L = ) f ( n ) d μ d τ ] 1 = [ = 1 K P ( L = ) f ( n | μ , τ , L = ) f ( μ , τ | L = ) f ( n i | μ , τ , L = ) f ( n ) d μ d τ ] 1 = [ = 1 K P ( L = ) f ( n | L = ) f ( n i | μ , τ , L = ) f ( n ) f ( n | μ , τ , L = ) f ( μ , τ | L = ) f ( n | L = ) d μ d τ ] 1 = [ = 1 K P ( L = ) f ( n | L = ) f ( n ) 1 f ( n i | μ , τ , L = ) f ( n | μ , τ , L = ) f ( μ , τ | L = ) f ( n | L = ) d μ d τ ] 1 = [ = 1 K P ( L = ) f ( n | L = ) = 1 K P ( L = ) f ( n | ) 1 f ( n i | μ , τ , L = ) f ( μ , τ | n , L = ) d μ d τ ] 1 = [ = 1 K P ( L = | n ) 1 f ( n i | μ , τ , L = ) f ( μ , τ | n , L = ) d μ d τ ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9q8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGabiWadaaakeaafaqaaeqcbaaaaaqaaiaaboeacaqGqb Gaae4tamaaBaaaleaacaWGPbGaaGPaVlaacIcacaWGnbWaaSbaaWqa aiaaisdaaeqaaSGaaiykaaqabaGccaaMe8UaaGjbVlaai2dacaaMe8 UaaGjbVlaadAgacaaMe8UaaiikamaaeiqabaGaamOBamaaBaaaleaa caWGPbaabeaakiaaykW7aiaawIa7aiaaykW7caWGUbWaaSbaaSqaai aacIcacaWGPbGaaiykaaqabaGccaGGPaGaaGjbVlaaysW7caaI9aGa aGjbVlaaysW7daqadaqaamaalaaabaGaamOzaiaaykW7caGGOaGaam OBamaaBaaaleaacaGGOaGaamyAaiaacMcaaeqaaOGaaiykaaqaaiaa dAgacaaMc8Uaaiikaiaad6gacaGGPaaaaaGaayjkaiaawMcaamaaCa aaleqabaGaeyOeI0IaaGymaaaaaOqaaiaaysW7caaMe8UaaGjbVlaa i2dadaWadaqaamaalaaabaWaaabmaeaacaaMc8UaamiuaiaaykW7ca GGOaGaamitaiaai2dacqWItecBcaGGPaaaleaacqWItecBcaaI9aGa aGymaaqaaiaadUeaa0GaeyyeIuoakiaaysW7daWdbaqaamaapeaaba GaaGPaVlaadAgacaaMc8UaaiikamaaeiqabaGaamOBamaaBaaaleaa caGGOaGaamyAaiaacMcaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlaahY 7acaaISaGaaGjbVlabes8a0jaaiYcacaaMe8UaamitaiaaysW7caaI 9aGaaGjbVlabloriSjaacMcacaaMe8UaamOzaiaaykW7caGGOaGaaC iVdiaaiYcacaaMe8+aaqGabeaacqaHepaDcaaMe8oacaGLiWoacaaM e8Uaamitaiabg2da9iabloriSjaacMcacaaMe8UaaGPaVlaadsgaca aMi8UaaCiVdiaayIW7caWGKbGaeqiXdqhaleqabeqdcqGHRiI8aaWc beqab0Gaey4kIipaaOqaaiaadAgacaaMc8Uaaiikaiaad6gacaGGPa aaaaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiaaysW7caaMe8UaaGjbVlaai2dadaWadaqaamaaqahabaGaaGPaVl aadcfacaaMc8UaaiikaiaadYeacaaI9aGaeS4eHWMaaiykaaWcbaGa eS4eHWMaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGccaaMe8+aa8 qaaeaadaWdbaqaamaalaaabaGaamOzaiaaykW7caGGOaWaaqGabeaa caWGUbWaaSbaaSqaaiaacIcacaWGPbGaaiykaaqabaGccaaMc8oaca GLiWoacaaMc8UaaCiVdiaaiYcacaaMe8UaeqiXdqNaaGilaiaaysW7 caWGmbGaaGjbVlaai2dacaaMe8UaeS4eHWMaaiykaiaaysW7caWGMb GaaGPaVlaacIcacaWH8oGaaGilaiaaysW7daabceqaaiabes8a0jaa ysW7aiaawIa7aiaaysW7caWGmbGaeyypa0JaeS4eHWMaaiykaaqaai aadAgacaaMc8Uaaiikaiaad6gacaGGPaaaaiaaysW7caaMc8Uaamiz aiaayIW7caWH8oGaaGjcVlaadsgacqaHepaDaSqabeqaniabgUIiYd aaleqabeqdcqGHRiI8aaGccaGLBbGaayzxaaWaaWbaaSqabeaacqGH sislcaaIXaaaaaGcbaGaaGjbVlaaysW7caaMe8UaaGypamaadmaaba WaaabCaeaacaaMc8UaamiuaiaaykW7caGGOaGaamitaiaai2dacqWI tecBcaGGPaaaleaacqWItecBcaaI9aGaaGymaaqaaiaadUeaa0Gaey yeIuoakiaaysW7daWdbaqaamaapeaabaWaaSaaaeaacaWGMbGaaGPa VlaacIcadaabceqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccaaMc8 oacaGLiWoacaaMc8UaaCiVdiaaiYcacaaMe8UaeqiXdqNaaGilaiaa ysW7caWGmbGaaGjbVlaai2dacaaMe8UaeS4eHWMaaiykaiaaysW7ca WGMbGaaGPaVlaacIcadaabceqaaiaad6gadaWgaaWcbaGaaiikaiaa dMgacaGGPaaabeaakiaaykW7aiaawIa7aiaaykW7caWH8oGaaGilai aaysW7cqaHepaDcaaISaGaaGjbVlaadYeacaaMe8UaaGypaiaaysW7 cqWItecBcaGGPaGaamOzaiaaykW7caGGOaGaaCiVdiaaiYcacaaMe8 +aaqGabeaacqaHepaDcaaMe8oacaGLiWoacaaMe8Uaamitaiabg2da 9iabloriSjaacMcaaeaacaWGMbGaaGPaVlaacIcadaabceqaaiaad6 gadaWgaaWcbaGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiV diaaiYcacaaMe8UaeqiXdqNaaGilaiaaysW7caWGmbGaaGjbVlaai2 dacaaMe8UaeS4eHWMaaiykaiaaysW7caWGMbGaaGPaVlaacIcacaWG UbGaaiykaaaacaaMe8UaaGPaVlaadsgacaaMi8UaaCiVdiaayIW7ca WGKbGaeqiXdqhaleqabeqdcqGHRiI8aaWcbeqab0Gaey4kIipaaOGa ay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaays W7caaMe8UaaGjbVlaai2dadaWadaqaamaaqahabaGaaGPaVlaadcfa caaMc8UaaiikaiaadYeacaaI9aGaeS4eHWMaaiykaaWcbaGaeS4eHW MaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGccaaMe8+aa8qaaeaa daWdbaqaamaalaaabaGaamOzaiaaykW7caGGOaWaaqGabeaacaWGUb GaaGPaVdGaayjcSdGaaGPaVlaahY7acaaISaGaaGjbVlabes8a0jaa iYcacaaMe8UaamitaiaaysW7caaI9aGaaGjbVlabloriSjaacMcaca aMe8UaamOzaiaaykW7caGGOaGaaCiVdiaaiYcacaaMe8+aaqGabeaa cqaHepaDcaaMe8oacaGLiWoacaaMe8Uaamitaiabg2da9iabloriSj aacMcaaeaacaWGMbGaaGPaVlaacIcadaabceqaaiaad6gadaWgaaWc baGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiVdiaaiYcaca aMe8UaeqiXdqNaaGilaiaaysW7caWGmbGaaGjbVlaai2dacaaMe8Ua eS4eHWMaaiykaiaaysW7caWGMbGaaGPaVlaacIcacaWGUbGaaiykaa aacaaMc8UaaGjbVlaadsgacaaMi8UaaCiVdiaayIW7caWGKbGaeqiX dqhaleqabeqdcqGHRiI8aaWcbeqab0Gaey4kIipaaOGaay5waiaaw2 faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaaiaaysW7caaMe8Ua aGjbVlaai2dadaWadaqaamaaqahabaGaaGPaVlaadcfacaaMc8Uaai ikaiaadYeacaaI9aGaeS4eHWMaaiykaaWcbaGaeS4eHWMaaGypaiaa igdaaeaacaWGlbaaniabggHiLdGccaaMe8+aa8qaaeaadaWdbaqaam aalaaabaGaamOzaiaaykW7caGGOaWaaqGabeaacaWGUbGaaGPaVdGa ayjcSdGaaGPaVlaadYeacaaMe8UaaGypaiaaysW7cqWItecBcaGGPa aabaGaamOzaiaaykW7caGGOaWaaqGabeaacaWGUbWaaSbaaSqaaiaa dMgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlaahY7acaaISaGaaGjbVl abes8a0jaaiYcacaaMe8UaamitaiaaysW7caaI9aGaaGjbVlablori SjaacMcacaaMe8UaamOzaiaaykW7caGGOaGaamOBaiaacMcaaaGaaG jbVpaalaaabaGaamOzaiaaykW7caGGOaWaaqGabeaacaWGUbGaaGPa VdGaayjcSdGaaGPaVlaahY7acaaISaGaaGjbVlabes8a0jaaiYcaca aMe8UaamitaiaaysW7caaI9aGaaGjbVlabloriSjaacMcacaaMe8Ua amOzaiaaykW7caGGOaGaaCiVdiaaiYcacaaMe8+aaqGabeaacqaHep aDcaaMe8oacaGLiWoacaaMe8Uaamitaiabg2da9iabloriSjaacMca aeaacaWGMbGaaGPaVlaacIcadaabceqaaiaad6gacaaMc8oacaGLiW oacaaMc8UaamitaiaaysW7caaI9aGaaGjbVlabloriSjaacMcaaaGa aGjbVlaaykW7caWGKbGaaGjcVlaahY7acaaMi8Uaamizaiabes8a0b Wcbeqab0Gaey4kIipaaSqabeqaniabgUIiYdaakiaawUfacaGLDbaa daahaaWcbeqaaiabgkHiTiaaigdaaaaakeaacaaMe8UaaGjbVlaays W7caaI9aWaamWaaeaadaaeWbqaaiaaykW7caWGqbGaaGPaVlaacIca caWGmbGaaGypaiabloriSjaacMcaaSqaaiabloriSjaai2dacaaIXa aabaGaam4saaqdcqGHris5aOGaaGjbVpaalaaabaGaamOzaiaaykW7 caGGOaWaaqGabeaacaWGUbGaaGPaVdGaayjcSdGaaGPaVlaadYeaca aMe8UaaGypaiaaysW7cqWItecBcaGGPaaabaGaamOzaiaaykW7caGG OaGaamOBaiaacMcaaaWaa8qaaeaadaWdbaqaaiaaysW7daWcaaqaai aaigdaaeaacaWGMbGaaGPaVlaacIcadaabceqaaiaad6gadaWgaaWc baGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiVdiaaiYcaca aMe8UaeqiXdqNaaGilaiaaysW7caWGmbGaaGjbVlaai2dacaaMe8Ua eS4eHWMaaiykaaaacaaMe8+aaSaaaeaacaWGMbGaaGPaVlaacIcada abceqaaiaad6gacaaMc8oacaGLiWoacaaMc8UaaCiVdiaaiYcacaaM e8UaeqiXdqNaaGilaiaaysW7caWGmbGaaGjbVlaai2dacaaMe8UaeS 4eHWMaaiykaiaaysW7caWGMbGaaGPaVlaacIcacaWH8oGaaGilaiaa ysW7daabceqaaiabes8a0jaaysW7aiaawIa7aiaaysW7caWGmbGaey ypa0JaeS4eHWMaaiykaaqaaiaadAgacaaMc8UaaiikamaaeiqabaGa amOBaiaaykW7aiaawIa7aiaaykW7caWGmbGaaGjbVlaai2dacaaMe8 UaeS4eHWMaaiykaaaacaaMe8UaaGPaVlaadsgacaaMi8UaaCiVdiaa yIW7caWGKbGaeqiXdqhaleqabeqdcqGHRiI8aaWcbeqab0Gaey4kIi paaOGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqa aiaaysW7caaMe8UaaGjbVlaai2dadaWadaqaamaaqahabaGaaGPaVp aalaaabaGaamiuaiaaykW7caGGOaGaamitaiaai2dacqWItecBcaGG PaGaamOzaiaaykW7caGGOaWaaqGabeaacaWGUbGaaGPaVdGaayjcSd GaaGPaVlaadYeacaaMe8UaaGypaiaaysW7cqWItecBcaGGPaaabaWa aabmaeaacaaMc8UaamiuaiaaykW7caGGOaGaamitaiabg2da9iablo riSjaacMcacaaMc8UaamOzaiaaykW7caGGOaWaaqGabeaacaWGUbGa aGPaVdGaayjcSdGaaGPaVlabloriSjaacMcaaSqaaiabloriSjabg2 da9iaaigdaaeaacaWGlbaaniabggHiLdaaaaWcbaGaeS4eHWMaaGyp aiaaigdaaeaacaWGlbaaniabggHiLdGccaaMe8+aa8qaaeaadaWdba qaaiaaykW7daWcaaqaaiaaigdaaeaacaWGMbGaaGPaVlaacIcadaab ceqaaiaad6gadaWgaaWcbaGaamyAaaqabaGccaaMc8oacaGLiWoaca aMc8UaaCiVdiaaiYcacaaMe8UaeqiXdqNaaGilaiaaysW7caWGmbGa aGjbVlaai2dacaaMe8UaeS4eHWMaaiykaaaacaaMe8UaamOzaiaayk W7caGGOaGaaCiVdiaacYcacaaMe8+aaqGabeaacqaHepaDcaaMc8oa caGLiWoacaaMc8UaamOBaiaacYcacaaMe8Uaamitaiabg2da9iaays W7cqWItecBcaGGPaGaaGjbVlaaykW7caWGKbGaaGjcVlaahY7acaaM i8Uaamizaiabes8a0bWcbeqab0Gaey4kIipaaSqabeqaniabgUIiYd aakiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaa caaMe8UaaGjbVlaaysW7caaI9aWaamWaaeaadaaeWbqaaiaaykW7ca WGqbGaaGPaVlaacIcacaWGmbGaaGypamaaeiqabaGaeS4eHWMaaGjb VdGaayjcSdGaamOBaiaacMcaaSqaaiabloriSjaai2dacaaIXaaaba Gaam4saaqdcqGHris5aOGaaGjbVpaapeaabaWaa8qaaeaadaWcaaqa aiaaigdaaeaacaWGMbGaaGPaVlaacIcadaabceqaaiaad6gadaWgaa WcbaGaamyAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiVdiaaiYca caaMe8UaeqiXdqNaaGilaiaaysW7caWGmbGaaGjbVlaai2dacaaMe8 UaeS4eHWMaaiykaaaacaaMe8UaamOzaiaaykW7caGGOaGaaCiVdiaa iYcacaaMe8+aaqGabeaacqaHepaDcaaMc8oacaGLiWoacaaMc8Uaam OBaiaaiYcacaaMe8UaamitaiaaysW7caaI9aGaaGjbVlabloriSjaa cMcacaaMe8UaaGPaVlaadsgacaaMi8UaaCiVdiaayIW7caWGKbGaeq iXdqhaleqabeqdcqGHRiI8aaWcbeqab0Gaey4kIipaaOGaay5waiaa w2faamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiYcaaaaaaa@11BB@

puis OPC ^ i ( M 4 ) [ =1 K P ( L= ^  | n ) 1 OPC ^ i ( L pos = ) ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbGaaiiOamaa bmaapaqaa8qacaWGnbWdamaaBaaameaapeGaaGinaaWdaeqaaaWcpe GaayjkaiaawMcaaaWdaeqaaOGaaGjbVlabgIKi7kaaysW7daWadaqa amaaqadabaGaamiuaaWcbaGaeS4eHWMaaGPaVlaai2dacaaMc8UaaG ymaaqaaiaadUeaa0GaeyyeIuoak8qadaqadaWdaeaadaqiaaqaa8qa caWGmbGaeyypa0JaeS4eHWgapaGaayPadaWdbiaacckacaqG8bGaai iOaiaad6gaaiaawIcacaGLPaaadaWcaaWdaeaapeGaaGymaaWdaeaa daqiaaqaa8qacaqGpbGaaeiuaiaaboeaa8aacaGLcmaadaWgaaWcba WdbiaadMgacaGGGcWaaeWaa8aabaWdbiaadYeapaWaaSbaaWqaa8qa caqGWbGaae4Baiaabohaa8aabeaal8qacqGH9aqpcqWItecBaiaawI cacaGLPaaaa8aabeaaaaaakiaawUfacaGLDbaadaahaaWcbeqaaiab gkHiTiaaigdaaaGcpeGaaiilaaaa@667B@ OPC ^ i ( L pos = ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbGaaiiOamaa bmaapaqaa8qacaWGmbWdamaaBaaameaapeGaaeiCaiaab+gacaqGZb aapaqabaWcpeGaeyypa0JaeS4eHWgacaGLOaGaayzkaaaapaqabaaa aa@3F67@  sont connus, comme OPC ^ i ( M 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbGaaiiOamaa bmaapaqaa8qacaWGnbWdamaaBaaameaapeGaaGOmaaWdaeqaaaWcpe GaayjkaiaawMcaaaWdaeqaaaaa@3B12@  et OPC ^ i ( M 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbGaaiiOamaa bmaapaqaa8qacaWGnbWdamaaBaaameaapeGaaG4maaWdaeqaaaWcpe GaayjkaiaawMcaaaWdaeqaaaaa@3B13@ . Sans calcul supplémentaire, en profitant des OPC connues de M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@  et M 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaO Gaaiilaaaa@3422@  nous pouvons facilement obtenir l’OPC de M 4 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaO GaaiOlaaaa@3425@

A.4   Sommaire a posteriori de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8urps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeqabeqadiWa ceGabeqabeGabiWadeaakeaacqaH4oqCaaa@339F@


Tableau A.1
Partie I : comtés 1 à 11
Sommaire du tableau
Le tableau montre les résultats de Partie I : comtés 1 à 11. Les données sont présentées selon ID du comté (titres de rangée) et Modèle, Poids insuffisant, Poids normal, Surpoids, Obésité de classe I et Obésité de classe II(figurant comme en-tête de colonne).
ID du comté Modèle Poids insuffisant Poids normal Surpoids Obésité de classe I Obésité de classe II
MP ETP CV MP ETP CV MP ETP CV MP ETP CV MP ETP CV
1 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,026 0,013 0,501 0,399 0,040 0,101 0,394 0,040 0,102 0,143 0,029 0,206 0,039 0,016 0,408
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,021 0,009 0,425 0,421 0,023 0,056 0,376 0,021 0,056 0,148 0,023 0,153 0,033 0,010 0,316
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,021 0,009 0,431 0,376 0,019 0,051 0,418 0,023 0,055 0,152 0,023 0,153 0,033 0,011 0,323
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,021 0,009 0,431 0,393 0,030 0,076 0,404 0,030 0,075 0,150 0,023 0,156 0,033 0,010 0,315
2 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,014 0,010 0,704 0,390 0,040 0,102 0,417 0,041 0,098 0,160 0,030 0,189 0,019 0,011 0,580
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,007 0,490 0,422 0,024 0,056 0,381 0,019 0,049 0,159 0,024 0,152 0,023 0,009 0,386
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,015 0,007 0,494 0,375 0,020 0,055 0,426 0,025 0,059 0,161 0,023 0,143 0,023 0,010 0,405
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,007 0,476 0,391 0,031 0,079 0,409 0,031 0,077 0,161 0,024 0,147 0,024 0,010 0,405
3 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,028 0,014 0,489 0,282 0,039 0,137 0,495 0,042 0,085 0,149 0,029 0,192 0,047 0,017 0,368
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,024 0,011 0,459 0,393 0,021 0,054 0,378 0,018 0,047 0,166 0,028 0,167 0,040 0,015 0,368
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,021 0,009 0,440 0,334 0,035 0,106 0,458 0,036 0,079 0,151 0,022 0,146 0,037 0,012 0,320
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,022 0,010 0,452 0,354 0,042 0,118 0,429 0,050 0,117 0,156 0,026 0,163 0,038 0,013 0,342
4 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,007 0,004 0,543 0,356 0,022 0,062 0,421 0,022 0,053 0,183 0,018 0,096 0,034 0,009 0,252
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,009 0,004 0,461 0,394 0,014 0,035 0,381 0,011 0,029 0,182 0,020 0,112 0,034 0,008 0,224
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,009 0,004 0,451 0,363 0,018 0,050 0,422 0,019 0,046 0,174 0,017 0,098 0,032 0,007 0,220
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,009 0,004 0,456 0,374 0,023 0,061 0,407 0,026 0,063 0,177 0,018 0,104 0,032 0,007 0,221
5 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,016 0,011 0,708 0,370 0,042 0,112 0,400 0,042 0,104 0,180 0,033 0,181 0,035 0,016 0,453
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,008 0,515 0,413 0,024 0,057 0,372 0,021 0,057 0,168 0,027 0,158 0,032 0,012 0,360
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,015 0,007 0,490 0,366 0,023 0,063 0,419 0,027 0,063 0,169 0,026 0,152 0,032 0,011 0,341
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,008 0,493 0,382 0,032 0,084 0,402 0,033 0,083 0,169 0,026 0,154 0,032 0,011 0,356
6 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,009 0,009 0,943 0,380 0,045 0,118 0,402 0,044 0,108 0,147 0,032 0,217 0,063 0,021 0,339
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,586 0,417 0,025 0,059 0,375 0,020 0,054 0,151 0,024 0,160 0,046 0,017 0,362
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,012 0,007 0,569 0,371 0,023 0,061 0,423 0,026 0,061 0,151 0,023 0,150 0,043 0,015 0,355
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,590 0,387 0,032 0,083 0,406 0,034 0,083 0,151 0,024 0,158 0,044 0,016 0,370
7 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,009 0,009 0,943 0,376 0,044 0,117 0,400 0,045 0,113 0,183 0,035 0,191 0,032 0,016 0,502
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,575 0,416 0,025 0,059 0,374 0,022 0,058 0,169 0,028 0,163 0,030 0,012 0,389
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,013 0,007 0,578 0,367 0,023 0,062 0,422 0,027 0,065 0,169 0,025 0,150 0,030 0,011 0,359
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,590 0,384 0,033 0,087 0,405 0,034 0,084 0,169 0,027 0,156 0,030 0,011 0,372
8 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,019 0,014 0,726 0,387 0,048 0,123 0,443 0,050 0,112 0,126 0,033 0,265 0,025 0,015 0,597
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,017 0,009 0,520 0,426 0,025 0,058 0,386 0,020 0,051 0,143 0,024 0,170 0,027 0,011 0,406
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,016 0,008 0,488 0,376 0,023 0,061 0,437 0,029 0,066 0,144 0,023 0,160 0,027 0,010 0,387
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,017 0,009 0,520 0,394 0,035 0,088 0,418 0,035 0,083 0,144 0,023 0,162 0,027 0,011 0,401
9 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,016 0,011 0,686 0,391 0,045 0,116 0,398 0,044 0,110 0,174 0,035 0,203 0,021 0,012 0,584
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,008 0,504 0,421 0,027 0,064 0,373 0,021 0,058 0,165 0,025 0,152 0,026 0,010 0,389
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,016 0,008 0,492 0,372 0,021 0,056 0,420 0,025 0,059 0,167 0,025 0,149 0,025 0,010 0,389
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,008 0,496 0,390 0,033 0,084 0,403 0,033 0,081 0,166 0,025 0,148 0,026 0,010 0,383
10 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,008 0,007 0,940 0,396 0,041 0,103 0,403 0,042 0,104 0,180 0,033 0,184 0,013 0,010 0,760
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,011 0,007 0,574 0,423 0,024 0,057 0,377 0,022 0,058 0,167 0,025 0,151 0,021 0,010 0,453
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,012 0,007 0,573 0,376 0,021 0,055 0,422 0,024 0,057 0,169 0,025 0,146 0,021 0,009 0,438
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,579 0,393 0,033 0,083 0,406 0,032 0,079 0,168 0,025 0,146 0,021 0,009 0,447
11 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,026 0,013 0,515 0,365 0,037 0,102 0,385 0,038 0,098 0,181 0,030 0,167 0,044 0,016 0,366
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,021 0,009 0,420 0,407 0,024 0,058 0,367 0,021 0,057 0,169 0,025 0,148 0,036 0,012 0,323
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,021 0,009 0,435 0,363 0,022 0,062 0,411 0,026 0,064 0,169 0,024 0,144 0,037 0,012 0,326
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,021 0,009 0,440 0,379 0,031 0,081 0,395 0,031 0,078 0,169 0,024 0,140 0,036 0,012 0,322

Tableau A.2
Partie II : comtés 12 à 23
Sommaire du tableau
Le tableau montre les résultats de Partie II : comtés 12 à 23. Les données sont présentées selon ID du comté (titres de rangée) et Modèle, Poids insuffisant, Poids normal, Surpoids, Obésité de classe I et Obésité de classe II(figurant comme en-tête de colonne).
ID du comté Modèle Poids insuffisant Poids normal Surpoids Obésité de classe I Obésité de classe II
MP ETP CV MP ETP CV MP ETP CV MP ETP CV MP PSD CV
12 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,008 0,007 0,937 0,415 0,041 0,099 0,439 0,042 0,095 0,113 0,027 0,235 0,026 0,013 0,507
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,581 0,434 0,024 0,055 0,392 0,020 0,050 0,135 0,023 0,171 0,028 0,010 0,360
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,012 0,007 0,557 0,386 0,022 0,056 0,438 0,026 0,059 0,137 0,024 0,173 0,027 0,010 0,355
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,583 0,403 0,033 0,082 0,422 0,033 0,078 0,135 0,024 0,176 0,028 0,010 0,357
13 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,012 0,007 0,563 0,432 0,030 0,070 0,378 0,029 0,076 0,142 0,021 0,146 0,036 0,012 0,323
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,013 0,006 0,426 0,434 0,023 0,053 0,375 0,020 0,053 0,146 0,018 0,123 0,033 0,009 0,272
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,013 0,006 0,423 0,388 0,014 0,037 0,413 0,017 0,042 0,152 0,019 0,122 0,034 0,009 0,277
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,013 0,006 0,426 0,405 0,028 0,069 0,399 0,025 0,063 0,150 0,019 0,124 0,033 0,009 0,273
14 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,024 0,013 0,545 0,425 0,045 0,106 0,399 0,044 0,110 0,131 0,030 0,228 0,022 0,012 0,567
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,019 0,009 0,465 0,434 0,027 0,062 0,378 0,023 0,059 0,144 0,023 0,162 0,025 0,010 0,380
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,019 0,009 0,463 0,383 0,021 0,055 0,426 0,024 0,057 0,147 0,024 0,162 0,026 0,010 0,389
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,019 0,009 0,465 0,400 0,033 0,082 0,409 0,032 0,078 0,146 0,024 0,162 0,025 0,010 0,378
15 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,022 0,012 0,532 0,357 0,041 0,114 0,444 0,041 0,093 0,131 0,028 0,214 0,047 0,018 0,384
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,018 0,008 0,438 0,412 0,021 0,050 0,384 0,017 0,045 0,148 0,025 0,166 0,039 0,013 0,334
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,018 0,008 0,462 0,368 0,025 0,068 0,433 0,028 0,064 0,145 0,023 0,155 0,037 0,012 0,325
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,018 0,008 0,448 0,383 0,032 0,083 0,416 0,035 0,083 0,146 0,024 0,167 0,037 0,012 0,327
16 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,013 0,009 0,695 0,372 0,037 0,100 0,439 0,041 0,092 0,158 0,029 0,183 0,018 0,010 0,584
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,007 0,482 0,416 0,020 0,048 0,386 0,017 0,044 0,160 0,024 0,150 0,023 0,009 0,406
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,014 0,007 0,480 0,371 0,023 0,062 0,436 0,028 0,063 0,157 0,021 0,135 0,023 0,009 0,383
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,014 0,007 0,481 0,386 0,031 0,080 0,418 0,035 0,083 0,158 0,023 0,147 0,023 0,009 0,381
17 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,039 0,016 0,405 0,351 0,039 0,111 0,426 0,041 0,095 0,161 0,030 0,187 0,024 0,012 0,507
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,028 0,012 0,418 0,406 0,021 0,051 0,378 0,017 0,045 0,161 0,025 0,153 0,027 0,010 0,362
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,026 0,011 0,420 0,362 0,024 0,066 0,428 0,028 0,064 0,157 0,021 0,132 0,027 0,009 0,351
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,027 0,012 0,425 0,377 0,030 0,080 0,410 0,034 0,083 0,159 0,023 0,142 0,027 0,010 0,365
18 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,009 0,009 0,964 0,420 0,045 0,108 0,376 0,043 0,114 0,164 0,036 0,220 0,032 0,017 0,519
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,581 0,430 0,028 0,065 0,370 0,024 0,066 0,158 0,026 0,163 0,030 0,011 0,373
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,013 0,007 0,552 0,378 0,019 0,051 0,417 0,024 0,056 0,162 0,025 0,153 0,031 0,011 0,362
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,013 0,007 0,568 0,396 0,034 0,086 0,400 0,033 0,082 0,161 0,025 0,159 0,031 0,011 0,366
19 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,019 0,013 0,693 0,416 0,048 0,116 0,384 0,047 0,123 0,164 0,035 0,214 0,016 0,012 0,767
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,016 0,008 0,507 0,431 0,030 0,070 0,372 0,025 0,066 0,157 0,026 0,162 0,023 0,010 0,430
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,017 0,009 0,532 0,378 0,020 0,053 0,420 0,025 0,059 0,162 0,025 0,158 0,024 0,010 0,407
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,017 0,009 0,533 0,397 0,036 0,091 0,402 0,034 0,085 0,161 0,027 0,166 0,024 0,010 0,422
20 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,009 0,009 0,935 0,335 0,044 0,132 0,494 0,047 0,095 0,139 0,031 0,225 0,023 0,013 0,564
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,013 0,008 0,610 0,413 0,020 0,048 0,390 0,017 0,043 0,157 0,027 0,171 0,027 0,011 0,406
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,012 0,007 0,551 0,359 0,029 0,082 0,454 0,035 0,077 0,149 0,023 0,156 0,026 0,010 0,380
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,599 0,378 0,037 0,098 0,432 0,043 0,100 0,152 0,025 0,166 0,026 0,010 0,396
21 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,048 0,021 0,431 0,431 0,050 0,116 0,353 0,051 0,145 0,123 0,033 0,269 0,046 0,021 0,453
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,029 0,012 0,432 0,436 0,032 0,074 0,363 0,029 0,079 0,138 0,025 0,179 0,035 0,013 0,363
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,029 0,014 0,485 0,377 0,020 0,052 0,412 0,024 0,058 0,146 0,025 0,174 0,036 0,013 0,364
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,029 0,014 0,459 0,398 0,038 0,096 0,394 0,035 0,090 0,143 0,026 0,180 0,036 0,013 0,372
22 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,016 0,010 0,660 0,431 0,044 0,102 0,391 0,043 0,109 0,134 0,030 0,226 0,029 0,015 0,512
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,008 0,500 0,434 0,027 0,062 0,378 0,023 0,060 0,145 0,024 0,163 0,028 0,010 0,369
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,015 0,008 0,500 0,384 0,019 0,050 0,423 0,023 0,055 0,149 0,023 0,151 0,029 0,011 0,362
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,008 0,508 0,402 0,034 0,083 0,407 0,032 0,078 0,147 0,024 0,160 0,029 0,011 0,376
23 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,011 0,011 0,979 0,379 0,048 0,126 0,426 0,048 0,112 0,149 0,034 0,230 0,035 0,018 0,516
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,013 0,007 0,560 0,422 0,025 0,060 0,379 0,021 0,055 0,155 0,026 0,171 0,031 0,011 0,352
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,013 0,007 0,568 0,371 0,024 0,064 0,431 0,029 0,068 0,154 0,025 0,162 0,032 0,012 0,378
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,013 0,007 0,570 0,388 0,035 0,089 0,413 0,037 0,089 0,155 0,026 0,171 0,032 0,012 0,365

Tableau A.3
Partie III : Comtés 24 à 35
Sommaire du tableau
Le tableau montre les résultats de Partie III : Comtés 24 à 35. Les données sont présentées selon ID du comté (titres de rangée) et Modèle, Poids insuffisant, Poids normal, Surpoids, Obésité de classe I et Obésité de classe II(figurant comme en-tête de colonne).
ID du comté Modèle Poids insuffisant Poids normal Surpoids Obésité de classe I Obésité de classe II
MP ETP CV MP ETP CV MP ETP CV MP ETP CV MP ETP CV
24 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,008 0,008 1,005 0,375 0,044 0,116 0,397 0,043 0,107 0,182 0,034 0,189 0,038 0,017 0,445
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,596 0,414 0,024 0,058 0,373 0,021 0,055 0,167 0,027 0,160 0,033 0,011 0,339
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,012 0,007 0,551 0,368 0,023 0,062 0,418 0,026 0,061 0,169 0,025 0,145 0,033 0,011 0,339
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,581 0,385 0,033 0,085 0,403 0,032 0,079 0,168 0,026 0,153 0,032 0,011 0,343
25 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,018 0,012 0,676 0,449 0,047 0,103 0,402 0,045 0,112 0,117 0,029 0,248 0,015 0,011 0,751
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,016 0,008 0,483 0,444 0,030 0,068 0,383 0,023 0,060 0,135 0,025 0,185 0,022 0,010 0,435
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,016 0,008 0,512 0,390 0,020 0,050 0,428 0,024 0,055 0,143 0,025 0,177 0,023 0,010 0,422
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,016 0,008 0,510 0,411 0,036 0,087 0,412 0,033 0,080 0,139 0,026 0,188 0,023 0,009 0,421
26 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,027 0,016 0,595 0,373 0,045 0,120 0,432 0,046 0,107 0,136 0,032 0,232 0,032 0,016 0,514
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,021 0,010 0,483 0,417 0,023 0,056 0,383 0,019 0,050 0,148 0,026 0,173 0,031 0,012 0,378
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,020 0,009 0,477 0,370 0,025 0,066 0,433 0,029 0,066 0,148 0,024 0,161 0,029 0,010 0,357
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,020 0,009 0,463 0,387 0,034 0,087 0,415 0,035 0,084 0,148 0,025 0,168 0,030 0,011 0,365
27 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,030 0,018 0,582 0,302 0,045 0,148 0,473 0,049 0,103 0,170 0,037 0,219 0,026 0,016 0,600
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,022 0,011 0,492 0,401 0,023 0,056 0,378 0,019 0,050 0,171 0,030 0,176 0,028 0,011 0,377
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,020 0,009 0,463 0,346 0,034 0,099 0,446 0,037 0,082 0,160 0,024 0,150 0,027 0,011 0,386
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,021 0,010 0,479 0,366 0,041 0,112 0,423 0,046 0,109 0,163 0,027 0,163 0,028 0,011 0,391
28 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,019 0,013 0,687 0,410 0,047 0,115 0,389 0,048 0,122 0,156 0,035 0,221 0,025 0,015 0,594
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,017 0,008 0,494 0,429 0,028 0,066 0,374 0,025 0,066 0,154 0,026 0,168 0,027 0,010 0,389
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,017 0,008 0,504 0,377 0,022 0,058 0,421 0,025 0,059 0,159 0,027 0,167 0,027 0,010 0,373
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,017 0,009 0,508 0,395 0,034 0,087 0,404 0,035 0,086 0,157 0,026 0,168 0,027 0,011 0,394
29 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,009 0,008 0,980 0,391 0,042 0,107 0,429 0,041 0,096 0,150 0,032 0,211 0,022 0,013 0,575
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,621 0,424 0,023 0,055 0,384 0,020 0,051 0,155 0,024 0,156 0,025 0,010 0,394
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,012 0,007 0,566 0,376 0,023 0,060 0,433 0,027 0,062 0,154 0,023 0,147 0,025 0,009 0,370
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,012 0,007 0,591 0,393 0,033 0,083 0,416 0,033 0,081 0,155 0,023 0,149 0,025 0,009 0,372
30 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,015 0,010 0,702 0,338 0,041 0,121 0,420 0,044 0,104 0,207 0,034 0,166 0,020 0,012 0,590
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,016 0,007 0,471 0,401 0,022 0,055 0,373 0,019 0,052 0,186 0,032 0,171 0,025 0,010 0,380
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,015 0,007 0,466 0,355 0,027 0,075 0,427 0,028 0,066 0,179 0,028 0,155 0,024 0,009 0,386
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,007 0,468 0,371 0,033 0,090 0,407 0,037 0,090 0,183 0,030 0,165 0,025 0,009 0,386
31 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,023 0,013 0,578 0,399 0,043 0,107 0,391 0,043 0,110 0,158 0,031 0,199 0,030 0,015 0,491
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,019 0,009 0,462 0,423 0,026 0,062 0,373 0,022 0,060 0,156 0,025 0,161 0,029 0,011 0,374
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,019 0,009 0,478 0,373 0,022 0,058 0,420 0,025 0,060 0,160 0,025 0,155 0,028 0,010 0,351
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,019 0,009 0,472 0,391 0,033 0,083 0,403 0,033 0,082 0,159 0,025 0,158 0,029 0,010 0,355
32 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,007 0,007 0,941 0,319 0,037 0,116 0,450 0,039 0,086 0,200 0,032 0,159 0,024 0,012 0,511
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,012 0,007 0,569 0,397 0,020 0,051 0,378 0,016 0,042 0,186 0,031 0,164 0,027 0,010 0,370
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,011 0,006 0,576 0,348 0,029 0,084 0,439 0,030 0,068 0,177 0,026 0,144 0,026 0,009 0,345
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,011 0,006 0,579 0,365 0,036 0,097 0,417 0,039 0,094 0,181 0,029 0,159 0,026 0,009 0,352
33 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,011 0,007 0,662 0,367 0,037 0,101 0,419 0,035 0,084 0,177 0,029 0,164 0,026 0,012 0,458
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,014 0,007 0,510 0,411 0,020 0,049 0,381 0,017 0,044 0,168 0,024 0,140 0,027 0,009 0,331
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,013 0,006 0,502 0,370 0,021 0,058 0,424 0,024 0,056 0,167 0,022 0,133 0,027 0,009 0,346
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,013 0,007 0,519 0,384 0,029 0,076 0,408 0,031 0,076 0,169 0,023 0,135 0,027 0,009 0,352
34 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,015 0,010 0,695 0,373 0,041 0,110 0,452 0,042 0,092 0,134 0,030 0,222 0,026 0,013 0,503
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,008 0,496 0,420 0,021 0,051 0,389 0,017 0,044 0,148 0,023 0,158 0,028 0,011 0,390
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,015 0,007 0,485 0,372 0,024 0,065 0,443 0,029 0,065 0,144 0,022 0,153 0,027 0,010 0,363
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,007 0,495 0,388 0,033 0,086 0,424 0,036 0,085 0,145 0,023 0,157 0,028 0,011 0,381
35 M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@380D@ 0,014 0,010 0,705 0,419 0,040 0,095 0,435 0,040 0,092 0,121 0,028 0,228 0,012 0,010 0,790
M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@380E@ 0,015 0,007 0,488 0,436 0,024 0,055 0,392 0,020 0,050 0,138 0,022 0,162 0,020 0,009 0,447
M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@380F@ 0,014 0,007 0,474 0,388 0,021 0,055 0,437 0,026 0,059 0,140 0,023 0,166 0,020 0,009 0,433
M 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacOqpw0le9 v8qqaqFD0xXdHaVhbbf9v8WrFr0xc9fs0xc9q8qqaqFn0dXdir=xcv k9pIe9q8qqaq=dir=f0=yqaqVeLsFr0=vr0=vr0db8meaabaqaciGa caGaaeqabaGabiWadaaakeaacaWGnbWaaSbaaSqaaiaaisdaaeqaaa aa@3810@ 0,015 0,007 0,486 0,406 0,032 0,080 0,421 0,033 0,077 0,139 0,023 0,167 0,020 0,009 0,439

Bibliographie

Chen, X., et Nandram, B. (2019). Order-restricted Bayesian estimation of multinomial cell counts for small areas. Dans JSM 2019, Section on Bayesian Statistical Science, Alexandrie, VA: American Statistical Association, 1024-1030.

Chen, X., et Nandram, B. (2021). Bayesian order-restricted inference of multinomial counts from small areas. Recent Advances in Applied Statistics. David Hangal, Raosahed Laptate, Hukum Chandra et Girish Chandra, Springer Nature (dans la presse).

Chen, M.-H., et Shao, Q.-M. (1997). On Monte Carlo methods for estimating ratios of normalizing constants. The Annals of Statistics, 25(4), 1563-1594.

Gelfand, A.E., Dey, D.K. et Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. Rapport technique, Stanford University, Department of Statistics.

Gelfand, A.E., Smith, A.F.M. et Lee, T.-M. (1992). Bayesian analysis of constrained parameter and truncated data problems using Gibbs sampling. Journal of the American Statistical Association, 87(418), 523-532.

Geweke, J. (1991). Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments, Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN, 196.

Ghosh, M., et Rao, J.N.K. (1994). Small area estimation: An appraisal. Statistical Science, 9(1), 55-76.

Heck, D.W., et Davis-Stober, C.P. (2019). Multinomial models with linear inequality constraints: Overview and improvements of computational methods for Bayesian inference. Journal of Mathematical Psychology, 91, 70-87.

Liu, J., et Sabatti, C. (2000). Generalised Gibbs sampler and multigrid Monte Carlo for Bayesian computation. Biometrika, 87(2), 353-369.

Mair, P., Hornik, K. et de Leeuw, J. (2009). Isotone optimization in r: pool-adjacent-violators algorithm (PAVA) and active set methods. Journal of Statistical Software, 32(5), 1-24.

Maples, J. (2019). Small area estimates for child population and poverty in school districts using Dirichlet-Multinomial models. Dans JSM 2019. Alexandrie, VA: American Statistical Association.

Nadarajah, S., et Kotz, S. (2006). R programs for truncated distributions. Journal of Statistical Software, 16(1), 1-8.

Nandram, B. (1997). Bayesian inference for the best ordinal multinomial population in a taste test. Dans Case Studies in Bayesian Statistics, (Éds., C. Gatsonis, J.S. Hodges, R.E. Kass, R. McCulloch, P. Rossi et N.D. Singpurwalla), New York: Springer, 399-418.

Nandram, B. (1998). A Bayesian analysis of the three-stage hierarchical multinomial model. Journal of Statistical Computation and Simulation, 61(1-2), 97-126.

Nandram, B., et Sedransk, J. (1995). Bayesian inference for the mean of a stratified population when there are order restrictions. Dans Case Studies in Bayesian Statistics, Volume II, Springer, 309-322.

Nandram, B., Choi, J.W. et Liu, Y. (2021). Integration of nonprobability and probability samples via survey weights. International Journal of Statistics and Probability, 10(6), 5-21.

Nandram, B., Erciulescu, A.L. et Cruze, N.B. (2019). Réconciliation bayésienne dans le modèle de Fay-Herriot par suppression aléatoire. Technique denquête, 45, 2, 389-416. Article accessible à l’adresse https://www150.statcan.gc.ca/n1/fr/pub/12-001-x/2019002/article/00004-fra.pdf.

Nandram, B., Kim, D. et Zhou, J. (2019). A pooled Bayes test of independence for sparse contingency tables from small areas. Journal of Statistical Computation and Simulation, 89(5), 899-926.

Nandram, B., Sedransk, J. et Smith, S.J. (1997). Order-restricted Bayesian estimation of the age composition of a population of Atlantic cod. Journal of the American Statistical Association, 92(437), 33-40.

Neuenschwander, B., Wandel, S., Roychoudhury, S. et Bailey, S. (2016). Robust exchangeability designs for early phase clinical trials with multiple strata. Pharmaceutical Statistics, 15(2), 123-134.

Rao, J., et Molina, I. (2015). Small Area Estimation. Wiley Series in Survey Methodology, Wiley.

Sedransk, J., Monahan, J. et Chiu, H.Y. (1985). Bayesian estimation of finite population parameters in categorical data models incorporating order restrictions. Journal of the Royal Statistical Society. Series B (Methodological), 47(3), 519-527.

Trevisani, M., et Torelli, N. (2007). Hierarchical Bayesian models for small area estimation with count data. Open Journal of Statistics, 07.

Wang, X., Berg, E., Zhu, Z., Sun, D. et Demuth, G. (2018). Small area estimation of proportions with constraint for national resources inventory survey. Journal of Agricultural, Biological and Environmental Statistics, 23(4), 509-528.

Wu, J., Meyer, M.C. et Opsomer, J.D. (2016). Survey estimation of domain means that respect natural orderings. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 44(4), 431-444.

Yang, L. (2021). Bayesian predictive inference with survey weights. Thèse de doctorat, Department of Mathematical Science, Worcester Polytechnic Institute.

You, Y., et Rao, J.N.K. (2002). A pseudo-empirical best linear unbiased prediction approach to small area estimation using survey weights. The Canadian Journal of Statistics/La Revue Canadienne de Statistique, 30(3), 431-439.


Signaler un problème sur cette page

Quelque chose ne fonctionne pas? L'information n'est plus à jour? Vous ne trouvez pas ce que vous cherchez?

S'il vous plaît contactez-nous et nous informer comment nous pouvons vous aider.

Avis de confidentialité

Date de modification :