Inférence bayésienne pour les données multinomiales issues de petits domaines et intégrant l’incertitude sur la restriction d’ordre
Section 2. Modèle multinomial hiérarchique de Dirichlet

Dans la section qui suit, nous passons brièvement en revue le modèle multinominal de Dirichlet et de ses extensions avec la restriction d’ordre. Pour étudier l’association entre la densité minérale osseuse et l’indice de masse corporelle (IMC) de plusieurs comtés américains, Nandram, Kim et Zhou (2019) ont fourni une analyse claire du modèle général multinomial hiérarchique de Dirichlet et de la méthodologie qu’ils ont adoptée pour l’estimation sur petits domaines. Soit n i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34A9@  correspondant à la fréquence par cellule, qui renvoie aux nombres dans chaque catégorie j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbaaaa@329C@  pour chaque domaine i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaiilaaaa@334B@   θ i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@356C@  sont les probabilités dans les cellules correspondantes, i = 1, 2, , I , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGjbGaaiilaaaa@415C@   j = 1, 2, , K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGlbGaaiilaaaa@415F@  et le nombre total pour chaque domaine i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  est n i . = j = 1 K n i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadMgacaaIUa aabeaakiaaysW7caaI9aGaaGjbVpaaqadabaGaaGPaVlaad6gadaWg aaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacaaI9aGaaGymaaqaai aadUeaa0GaeyyeIuoakiaac6caaaa@42D8@  Le modèle général multinomial hiérarchique de Dirichlet est :

n i | θ i ~ ind Multinomial ( n i . , θ i ) , n i = ( n i 1 , , n i K ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaabceqaaiaah6gadaWgaaWcbaGaam yAaaqabaGccaaMe8oacaGLiWoacaaMe8UaaCiUdmaaBaaaleaacaWG PbaabeaakiaaysW7caaMc8+aaybyaeqaleqabaGaaeyAaiaab6gaca qGKbaabaacbaqcLbwacaWF+baaaOGaaGjbVlaaykW7caqGnbGaaeyD aiaabYgacaqG0bGaaeyAaiaab6gacaqGVbGaaeyBaiaabMgacaqGHb GaaeiBaiaaykW7daqadeqaaiaah6gadaWgaaWcbaGaamyAaiaac6ca aeqaaOGaaiilaiaaysW7caWH4oWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaGaaiilaiaaysW7caWHUbWaaSbaaSqaaiaadMgaaeqa aOGaaGjbVlaai2dacaaMe8+aaeWabeaacaWGUbWaaSbaaSqaaiaadM gacaaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWG UbWaaSbaaSqaaiaadMgacaWGlbaabeaaaOGaayjkaiaawMcaaiaaiY caaaa@70CC@

θ i | μ , τ ~ ind Dirichlet ( μ τ ) , θ i = ( θ i 1 , , θ i k ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8+aaqGabeaacaWH4oWaaSbaaS qaaiaadMgaaeqaaOGaaGjbVdGaayjcSdGaaGjbVlaahY7acaGGSaGa aGjbVlabes8a0jaaysW7caaMc8+aaybyaeqaleqabaGaaeyAaiaab6 gacaqGKbaabaacbaqcLbwacaWF+baaaOGaaGjbVlaaykW7caqGebGa aeyAaiaabkhacaqGPbGaae4yaiaabIgacaqGSbGaaeyzaiaabshaca aMc8+aaeWabeaacaWH8oGaeqiXdqhacaGLOaGaayzkaaGaaGilaiaa ysW7caWH4oWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlaai2dacaaMe8 +aaeWabeaacqaH4oqCdaWgaaWcbaGaamyAaiaaigdaaeqaaOGaaGil aiaaysW7cqWIMaYscaaISaGaaGjbVlabeI7aXnaaBaaaleaacaWGPb Gaam4AaaqabaaakiaawIcacaGLPaaacaaISaaaaa@7127@

π ( μ , τ ) = ( K 1 ) ! ( 1 + τ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH8o GaaGjcVlaaiYcacaaMe8UaeqiXdqhacaGLOaGaayzkaaGaaGjbVlaa ykW7caaI9aGaaGjbVlaaykW7daWcaaqaamaabmqabaGaam4saiaays W7cqGHsislcaaMe8UaaGymaaGaayjkaiaawMcaaiaaysW7caGGHaaa baWaaeWabeaacaaIXaGaaGjbVlabgUcaRiaaysW7cqaHepaDaiaawI cacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@5763@

où les hyperparamètres μ = ( μ 1 , , μ K ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdiaaysW7caaI9aGaaG jbVpaabmqabaGaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaGilaiaa ysW7cqWIMaYscaaISaGaaGjbVlabeY7aTnaaBaaaleaacaWGlbaabe aaaOGaayjkaiaawMcaaiaacYcaaaa@45AC@ μ j > 0, j = 1 K μ j = 1 , τ > 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH8oqBdaWgaaWcbaGaamOAaaqaba GccaaMe8UaeyOpa4JaaGjbVlaaicdacaaISaGaaGjbVlaaykW7daae WaqaaiaaykW7cqaH8oqBdaWgaaWcbaGaamOAaaqabaGccaaMe8UaaG ypaiaaysW7caaIXaaaleaacaWGQbGaaGPaVlaai2dacaaMc8UaaGym aaqaaiaadUeaa0GaeyyeIuoakiaaiYcacaaMe8UaeqiXdqNaaGjbVl abg6da+iaaysW7caaIWaGaaiOlaaaa@582C@

Ils suggèrent la distribution a priori non informative, laquelle sera facile à paramétrer de nouveau. Sans aucune donnée a priori, ils estiment que μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@ et τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDaaa@3372@ sont indépendants, E ( θ i j ) = μ j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbGaaGPaVpaabmqabaGaeqiUde 3aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaaysW7 caaI9aGaaGjbVlabeY7aTnaaBaaaleaacaWGQbaabeaakiaacYcaaa a@40C1@ j = 1 K μ j = 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaaeWaqaaiaaykW7cqaH8oqBdaWgaa WcbaGaamOAaaqabaGccaaMe8UaaGypaiaaysW7caaIXaaaleaacaWG QbGaaGPaVlaai2dacaaMc8UaaGymaaqaaiaadUeaa0GaeyyeIuoaki aac6caaaa@43C4@ En guise d’interprétation des hyperparamètres, μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@ est lié aux moyennes des cellules et τ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDaaa@3372@ est lié à une taille d’échantillon a priori. Ce modèle comprend une stratification et des hyperparamètres permettant de regrouper les données de différentes strates.

Ce modèle multinomial hiérarchique de Dirichlet est un point de départ pratique pour l’estimation sur petits domaines. Pour des raisons de commodité, nous le désignons par le modèle M 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaa aa@3366@ pour les analyses à venir.

2.1 Modèle multinomial hiérarchique de Dirichlet comportant des restrictions d’ordre

Chen et Nandram (2019) intègrent la restriction d’ordre dans le modèle multinomial hiérarchique bayésien de Dirichlet. Laissons n i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34A9@ correspondre à la fréquence par cellule, θ i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@356C@ les probabilités de fréquence par cellule correspondantes, i = 1, 2, , I , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGjbGaaiilaaaa@415C@ j = 1, 2, , K , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGlbGaaiilaaaa@415F@ n i . = j = 1 K n i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHUbWaaSbaaSqaaiaadMgacaGGUa aabeaakiaaysW7caaI9aGaaGjbVpaaqadabaGaaGPaVlaad6gadaWg aaWcbaGaamyAaiaadQgaaeqaaaqaaiaadQgacaaMc8UaaGypaiaayk W7caaIXaaabaGaam4saaqdcqGHris5aaaa@4530@ et supposons que la position modale de θ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaaaaa@359C@ est θ i m , 1 m K . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCdaWgaaWcbaGaamyAaiaad2 gaaeqaaOGaaGilaiaaysW7caaIXaGaaGjbVlaaykW7cqGHKjYOcaaM e8UaaGPaVlaad2gacaaMe8UaaGPaVlabgsMiJkaaysW7caaMc8Uaam 4saiaac6caaaa@4AB5@

Plus précisément, ils supposent

n i | θ i ~ ind Multinomial ( n i . , θ i ) , θ i C , i = 1, , I , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaabceqaaiaah6gadaWgaaWcbaGaam yAaaqabaGccaaMe8oacaGLiWoacaaMe8UaaCiUdmaaBaaaleaacaWG PbaabeaakiaaysW7caaMc8+aaybyaeqaleqabaGaaeyAaiaab6gaca qGKbaabaacbaqcLbwacaWF+baaaOGaaGjbVlaaykW7caqGnbGaaeyD aiaabYgacaqG0bGaaeyAaiaab6gacaqGVbGaaeyBaiaabMgacaqGHb GaaeiBaiaaykW7daqadeqaaiaah6gadaWgaaWcbaGaamyAaiaac6ca aeqaaOGaaiilaiaaysW7caWH4oWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaGaaGilaiaaywW7caWH4oWaaSbaaSqaaiaadMgaaeqa aOGaaGjbVlaaykW7cqGHiiIZcaaMe8UaaGPaVlaadoeacaaISaGaaG zbVlaadMgacaaMe8UaaGypaiaaysW7caaIXaGaaGilaiaaysW7cqWI MaYscaaISaGaaGjbVlaadMeacaaISaaaaa@7714@

C = { θ i : θ i 1 θ i m θ i K , i = 1, , I } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbGaaGjbVlaai2dacaaMe8+aai WabeaacaaMc8UaaCiUdmaaBaaaleaacaWGPbaabeaakiaayIW7caaI 6aGaaGjbVlabeI7aXnaaBaaaleaacaWGPbGaaGymaaqabaGccaaMe8 UaaGPaVlabgsMiJkaaysW7caaMc8UaeSOjGSKaaGjbVlaaykW7cqGH KjYOcaaMe8UaaGPaVlabeI7aXnaaBaaaleaacaWGPbGaamyBaaqaba GccaaMe8UaaGPaVlabgwMiZkaaysW7caaMc8UaeSOjGSKaaGjbVlaa ykW7cqGHLjYScaaMe8UaaGPaVlabeI7aXnaaBaaaleaacaWGPbGaam 4saaqabaGccaaISaGaaGjbVlaadMgacaaMe8UaaGypaiaaysW7caaI XaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadMeacaaMc8oaca GL7bGaayzFaaGaaiilaaaa@7DE0@ et supposent que la position modale de m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbaaaa@329F@ dans C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbaaaa@3275@ est connue.

Dans un deuxième temps, ils supposent

θ i | μ , τ ~ ind Dirichlet ( μ τ ) , i = 1, , I , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaabceqaaiaahI7adaWgaaWcbaGaam yAaaqabaGccaaMc8oacaGLiWoacaaMc8UaaCiVdiaacYcacaaMe8Ua aGPaVlabes8a0jaaysW7caaMc8+aaybyaeqaleqabaGaaeyAaiaab6 gacaqGKbaabaacbaqcLbwacaWF+baaaOGaaGjbVlaaykW7caqGebGa aeyAaiaabkhacaqGPbGaae4yaiaabIgacaqGSbGaaeyzaiaabshaca aMc8+aaeWabeaacaWH8oGaeqiXdqhacaGLOaGaayzkaaGaaGilaiaa ysW7caaMc8UaamyAaiaaysW7caaI9aGaaGjbVlaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamysaiaaiYcaaaa@69CE@

π ( μ , τ ) = K ( m 1 ) ! ( K m ) ! ( 1 + τ ) 2 , μ j > 0, j = 1 K μ j = 1 , μ C μ . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH8o GaaGjcVlaaiYcacaaMe8UaeqiXdqhacaGLOaGaayzkaaGaaGjbVlaa i2dacaaMe8+aaSaaaeaacaWGlbGaaGPaVpaabmqabaGaamyBaiaays W7cqGHsislcaaMe8UaaGymaaGaayjkaiaawMcaaiaaysW7caaIHaGa aGjbVpaabmqabaGaam4saiaaysW7cqGHsislcaaMe8UaamyBaaGaay jkaiaawMcaaiaaysW7caaIHaaabaWaaeWabeaacaaIXaGaaGjbVlab gUcaRiaaysW7cqaHepaDaiaawIcacaGLPaaadaahaaWcbeqaaiaaik daaaaaaOGaaGilaiaaywW7cqaH8oqBdaWgaaWcbaGaamOAaaqabaGc caaMe8UaeyOpa4JaaGjbVlaaicdacaaISaGaaGzbVpaaqahabaGaaG PaVlabeY7aTnaaBaaaleaacaWGQbaabeaakiaai2dacaaIXaaaleaa caWGQbGaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGccaaISaGaaG zbVlaahY7acaaMe8UaeyicI4SaaGjbVlaadoeadaWgaaWcbaGaaCiV daqabaGccaaIUaaaaa@840E@

Puisque E ( θ i j ) = μ j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbGaaGPaVpaabmqabaGaeqiUde 3aaSbaaSqaaiaadMgacaWGQbaabeaaaOGaayjkaiaawMcaaiaaysW7 caaI9aGaaGjbVlabeY7aTnaaBaaaleaacaWGQbaabeaakiaacYcaaa a@40C1@ μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@ devrait avoir la même restriction d’ordre que θ i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaakiaacYcaaaa@3656@ qui est μ C μ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdiaaysW7cqGHiiIZca aMe8Uaam4qamaaBaaaleaacaWH8oaabeaakiaacYcaaaa@3C1A@

C μ = { μ : μ 1 μ m μ K } , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbWaaSbaaSqaaiaahY7aaeqaaO GaaGjbVlaai2dacaaMe8+aaiWabeaacaWH8oGaaGjcVlaaiQdacaaM e8UaeqiVd02aaSbaaSqaaiaaigdaaeqaaOGaaGjbVlaaykW7cqGHKj YOcaaMe8UaaGPaVlablAciljaaysW7caaMc8UaeyizImQaaGjbVlaa ykW7cqaH8oqBdaWgaaWcbaGaamyBaaqabaGccaaMe8UaaGPaVlabgw MiZkaaysW7caaMc8UaeSOjGSKaaGjbVlaaykW7cqGHLjYScaaMe8Ua aGPaVlabeY7aTnaaBaaaleaacaWGlbaabeaaaOGaay5Eaiaaw2haai aaiYcaaaa@6A20@

et nous supposons que la position modale m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbaaaa@329F@ dans C μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbWaaSbaaSqaaiabeY7aTbqaba aaaa@3457@ est connue.

Distribution a posteriori θ i | μ , τ , n i ~ ind Dirichlet ( n i + μ τ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaabceqaaiaahI7adaWgaaWcbaGaam yAaaqabaGccaaMe8oacaGLiWoacaaMe8UaaCiVdiaaiYcacaaMe8Ua eqiXdqNaaGilaiaaysW7caWHUbWaaSbaaSqaaiaadMgaaeqaaOGaaG jbVlaaykW7daGfGbqabSqabeaacaqGPbGaaeOBaiaabsgaaeaaieaa jugybiaa=5haaaGccaaMe8UaaGPaVlaabseacaqGPbGaaeOCaiaabM gacaqGJbGaaeiAaiaabYgacaqGLbGaaeiDaiaaykW7daqadeqaaiaa h6gadaWgaaWcbaGaamyAaaqabaGccaaMe8Uaey4kaSIaaGjbVlaahY 7acqaHepaDaiaawIcacaGLPaaacaGGSaaaaa@62EF@   θ i C i , i = 1, , I , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWGPb aabeaakiaaysW7cqGHiiIZcaaMe8Uaam4qamaaBaaaleaacaWGPbaa beaakiaaiYcacaaMe8UaamyAaiaaysW7caaI9aGaaGjbVlaaigdaca aISaGaaGjbVlablAciljaaiYcacaaMe8UaamysaiaacYcaaaa@4B23@

f θ i | μ , τ , n = Γ [ j = 1 K ( n i j + μ j τ ) ] j = 1 K Γ ( n i j + μ j τ ) j = 1 K θ i j n i j + μ j τ 1 C ( n i + μ τ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaSbaaSqaamaaeiqabaGaaC iUdmaaBaaameaacaWGPbaabeaaliaaykW7aiaawIa7aiaaykW7caaM c8UaaCiVdiaaiYcacaaMe8UaeqiXdqNaaGilaiaaysW7caWHUbaabe aakiaaysW7caaMc8UaaGypaiaaysW7caaMc8+aaSaaaeaadaWcbaWc baGaeu4KdCKaaGjbVpaadmqabaWaaabmaeaacaaMc8+aaeWabeaaca WGUbWaaSbaaWqaaiaadMgacaWGQbaabeaaliaaysW7cqGHRaWkcaaM e8UaeqiVd02aaSbaaWqaaiaadQgaaeqaaSGaeqiXdqhacaGLOaGaay zkaaaameaacaWGQbGaaGPaVlaai2dacaaMc8UaaGymaaqaaiaadUea a4GaeyyeIuoaaSGaay5waiaaw2faaaqaamaaradabaGaaGPaVlabfo 5ahnaabmqabaGaamOBamaaBaaameaacaWGPbGaamOAaaqabaWccaaM e8Uaey4kaSIaaGjbVlabeY7aTnaaBaaameaacaWGQbaabeaaliabes 8a0bGaayjkaiaawMcaaaadbaGaamOAaiaaykW7caaI9aGaaGPaVlaa igdaaeaacaWGlbaaoiabg+GivdaaaOGaaGjbVlaaykW7daqeWaqaai aaykW7cqaH4oqCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGUbWaaSba aWqaaiaadMgacaWGQbaabeaaliaaysW7cqGHRaWkcaaMe8UaeqiVd0 2aaSbaaWqaaiaadQgaaeqaaSGaeqiXdqNaaGjbVlabgkHiTiaaysW7 caaIXaaaaaqaaiaadQgacaaMe8UaaGypaiaaysW7caaIXaaabaGaam 4saaqdcqGHpis1aaGcbaGaam4qaiaaykW7daqadeqaaiaah6gadaWg aaWcbaGaamyAaaqabaGccqGHRaWkcaWH8oGaeqiXdqhacaGLOaGaay zkaaaaaiaaiYcaaaa@AB4F@

C ( n i + μ τ ) = θ i C Γ [ j = 1 K ( n i j + μ j τ ) ] j = 1 K Γ ( n i j + μ j τ ) j = 1 K θ i j n i j + μ j τ 1 d θ i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbGaaGPaVpaabmqabaGaaCOBam aaBaaaleaacaWGPbaabeaakiaaysW7cqGHRaWkcaaMe8UaaCiVdiab es8a0bGaayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaykW7caaMc8 +aa8qeaeaacaaMc8+aaSaaaeaacqqHtoWrcaaMe8+aamWabeaadaae WaqaaiaaykW7daqadeqaaiaad6gadaWgaaWcbaGaamyAaiaadQgaae qaaOGaaGjbVlabgUcaRiaaysW7cqaH8oqBdaWgaaWcbaGaamOAaaqa baGccqaHepaDaiaawIcacaGLPaaaaSqaaiaadQgacaaMc8UaaGypai aaykW7caaIXaaabaGaam4saaqdcqGHris5aaGccaGLBbGaayzxaaaa baWaaebmaeaacaaMc8Uaeu4KdCKaaGPaVpaabmqabaGaamOBamaaBa aaleaacaWGPbGaamOAaaqabaGccaaMe8Uaey4kaSIaaGjbVlabeY7a TnaaBaaaleaacaWGQbaabeaakiabes8a0bGaayjkaiaawMcaaaWcba GaamOAaiaai2dacaaIXaaabaGaam4saaqdcqGHpis1aaaaaSqaaiaa hI7adaWgaaadbaGaamyAaaqabaWccaaMe8UaeyicI4SaaGjbVlaado eaaeqaniabgUIiYdGccaaMe8UaaGPaVpaarahabaGaaGPaVlabeI7a XnaaDaaaleaacaWGPbGaamOAaaqaaiaad6gadaWgaaadbaGaamyAai aadQgaaeqaaSGaaGjbVlabgUcaRiaaysW7cqaH8oqBdaWgaaadbaGa amOAaaqabaWccqaHepaDcaaMe8UaeyOeI0IaaGjbVlaaigdaaaGcca WGKbGaaGjcVlaahI7adaWgaaWcbaGaamyAaaqabaaabaGaamOAaiaa i2dacaaIXaaabaGaam4saaqdcqGHpis1aOGaaGOlaaaa@A7D5@

Dans notre application de données sur l’IMC, il existe cinq catégories d’IMC. Nous nous intéressons uniquement au niveau d’IMC normal et en surpoids. Nous utilisons le modèle M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@ qui vise à représenter le modèle comportant des restrictions d’ordre, et sa position modale est la deuxième, qui correspond à un poids normal. Le modèle M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@3368@ représente le modèle comportant des restrictions d’ordre, et sa position modale est la troisième, ce qui correspond à un surpoids. M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@ et M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@3368@ sont le même modèle multinomial hiérarchique de Dirichlet, mais comportant des restrictions d’ordre différentes.

La densité a posteriori conjointe de M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@ ou M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@3368@ est la suivante :

π( θ,μ, τ|n ) i=1 I { j=1 K θ ij n ij 1 D( μτ )C( μτ ) j=1 K θ ij μ j τ1 } K( m1 )!( Km )! ( 1+τ ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH4o GaaGilaiaaysW7caWH8oGaaGilaiaaysW7daabceqaaiabes8a0jaa ykW7aiaawIa7aiaaykW7caWHUbaacaGLOaGaayzkaaGaaGjbVlaayk W7cqGHDisTcaaMe8UaaGPaVpaarahabaWaaiWabeaadaqeWbqaaiaa ykW7cqaH4oqCdaqhaaWcbaGaamyAaiaadQgaaeaacaWGUbWaaSbaaW qaaiaadMgacaWGQbaabeaaaaGcdaWcaaqaaiaaigdaaeaacaWGebGa aGPaVpaabmqabaGaaCiVdiaayIW7cqaHepaDaiaawIcacaGLPaaaca aMe8Uaam4qaiaaykW7daqadeqaaiaahY7acqaHepaDaiaawIcacaGL PaaaaaGaaGPaVlaaysW7daqeWbqaaiaaykW7cqaH4oqCdaqhaaWcba GaamyAaiaadQgaaeaacqaH8oqBdaWgaaadbaGaamOAaaqabaWccqaH epaDcaaMe8UaeyOeI0IaaGjbVlaaigdaaaaabaGaamOAaiaai2daca aIXaaabaGaam4saaqdcqGHpis1aaWcbaGaamOAaiaai2dacaaIXaaa baGaam4saaqdcqGHpis1aaGccaGL7bGaayzFaaaaleaacaWGPbGaaG ypaiaaigdaaeaacaWGjbaaniabg+GivdGccaaMe8UaaGPaVpaalaaa baGaam4samaabmqabaGaamyBaiaaysW7cqGHsislcaaMe8UaaGymaa GaayjkaiaawMcaaiaaysW7caaIHaGaaGjbVpaabmqabaGaam4saiaa ysW7cqGHsislcaaMe8UaamyBaaGaayjkaiaawMcaaiaaysW7caaIHa aabaWaaeWabeaacaaIXaGaaGjbVlabgUcaRiaaysW7cqaHepaDaiaa wIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaaaOGaaGilaaaa@AD43@

D ( μ τ ) = j = 1 K Γ ( μ j τ ) Γ ( j = 1 K μ j τ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGebGaaGPaVpaabmqabaGaaCiVdi aayIW7cqaHepaDaiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7daWc aaqaamaaradabaGaaGPaVlabfo5ahjaaykW7daqadeqaaiabeY7aTn aaBaaaleaacaWGQbaabeaakiabes8a0bGaayjkaiaawMcaaaWcbaGa amOAaiaaykW7caaI9aGaaGPaVlaaigdaaeaacaWGlbaaniabg+Givd aakeaacqqHtoWrcaaMc8+aaeWabeaadaaeWaqaaiaaykW7cqaH8oqB daWgaaWcbaGaamOAaaqabaGccqaHepaDaSqaaiaadQgacaaMc8UaaG ypaiaaykW7caaIXaaabaGaam4saaqdcqGHris5aaGccaGLOaGaayzk aaaaaaaa@641F@

est la constante de normalisation de la distribution de Dirichlet,

C ( μ τ ) = θ i C Γ ( j = 1 K μ j τ ) j = 1 K Γ ( μ j τ ) j = 1 K θ i j μ j τ 1 d θ i , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbGaaGPaVpaabmqabaGaaCiVdi aayIW7cqaHepaDaiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7daWd raqaaiaaykW7daWcaaqaaiabfo5ahjaaykW7daqadeqaamaaqadaba GaaGPaVlabeY7aTnaaBaaaleaacaWGQbaabeaakiabes8a0bWcbaGa amOAaiaaykW7caaI9aGaaGPaVlaaigdaaeaacaWGlbaaniabggHiLd aakiaawIcacaGLPaaaaeaadaqeWaqaaiaaykW7cqqHtoWrcaaMc8+a aeWabeaacqaH8oqBdaWgaaWcbaGaamOAaaqabaGccqaHepaDaiaawI cacaGLPaaaaSqaaiaadQgacaaMc8UaaGypaiaaykW7caaIXaaabaGa am4saaqdcqGHpis1aaaaaSqaaiaahI7adaWgaaadbaGaamyAaaqaba WccaaMe8UaeyicI4SaaGjbVlaadoeaaeqaniabgUIiYdGccaaMe8Ua aGPaVpaarahabaGaaGPaVlabeI7aXnaaDaaaleaacaWGPbGaamOAaa qaaiabeY7aTnaaBaaameaacaWGQbaabeaaliabes8a0jabgkHiTiaa igdaaaGccaWGKbGaaGjcVlaahI7adaWgaaWcbaGaamyAaaqabaaaba GaamOAaiaai2dacaaIXaaabaGaam4saaqdcqGHpis1aOGaaGilaaaa @8938@

est la constante de normalisation de la distribution de Dirichlet tronquée, θ C , μ C μ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdiaaysW7cqGHiiIZca aMe8Uaam4qaiaaiYcacaaMe8UaaCiVdiaaysW7cqGHiiIZcaaMe8Ua am4qamaaBaaaleaacqaH8oqBaeqaaOGaaiOlaaaa@4577@

Nandram (1998) a montré la façon de générer des échantillons à partir du modèle M 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaO GaaiOlaaaa@3422@ En fait, en utilisant l’échantillonneur de Gibbs à grille, on peut le faire plus facilement que la méthode de Nandram (1998). Chen et Nandram (2019) présentent des méthodes d’échantillonnage pour μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@ et θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdaaa@3482@ comportant des restrictions d’ordre à partir de la distribution conjointe a posteriori du modèle M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@ et M 3 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaO Gaaiilaaaa@3422@ comme dans l’annexe A.1 et l’annexe A.2.

Gelfand, Dey et Chang (1992) ont utilisé des distributions prédictives pour aborder les questions d’adéquation et de sélection des modèles. Ils ont proposé l’ordonnée prédictive conditionnelle (OPC) pour la détermination du modèle. L’OPC est basée sur une validation croisée avec retrait d’un élément. L’OPC estime la probabilité d’observer n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaa aa@33BA@ dans le futur si, après avoir déjà observé n ( i ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbWaaSbaaSqaamaabmqabaGaaG jcVlaadMgacaaMi8oacaGLOaGaayzkaaaabeaakiaacYcaaaa@3920@ la somme de l’OPC logarithmique est un estimateur de la vraisemblance marginale logarithmique. Le « meilleur » modèle parmi les modèles concurrents présente la pseudo-vraisemblance marginale logarithmique (PVML) le plus important.

Chen et Nandram (2021) ont présenté une méthode pour calculer l’OPC et le PVML comme critères de sélection de modèles bayésiens. Dans l’annexe A.3, nous avons amélioré l’estimation en intégrant la restriction d’ordre θ ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGG7aaaaa@3422@ l’OPC estimée de M 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaikdaaeqaaa aa@3367@ et M 3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGnbWaaSbaaSqaaiaaiodaaeqaaa aa@3368@ sont les suivants :

                                   OPC ^ i ( M 2  ou  M 3 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqiaaqaaabaaaaaaaaapeGaae4tai aabcfacaqGdbaapaGaayPadaWaaSbaaSqaa8qacaWGPbGaaeiOamaa bmaapaqaa8qacaWGnbWdamaaBaaameaapeGaaGOmaaWdaeqaaSWdbi aabckacaqGVbGaaeyDaiaabckacaWGnbWdamaaBaaameaapeGaaG4m aaWdaeqaaaWcpeGaayjkaiaawMcaaaWdaeqaaaaa@4146@ = [ 1 M h=1 M j=1 K n ij ! n i ! ( 1 M h =1 M j=1 K θ ij ( h ) n ij ) ] 1 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaI9aGaaGjbVlaaykW7daWadeqaam aalaaabaGaaGymaaqaaiaad2eaaaGaaGjbVpaaqahabaWaaSaaaeaa daqeWaqaaiaaykW7caWGUbWaaSbaaSqaaiaadMgacaWGQbaabeaaki aaykW7caGGHaaaleaacaWGQbGaaGypaiaaigdaaeaacaWGlbaaniab g+GivdaakeaacaWGUbWaaSbaaSqaaiaadMgacqGHflY1aeqaaOGaaG PaVlaaigcaaaaaleaacaWGObGaaGypaiaaigdaaeaacaWGnbaaniab ggHiLdGccaaMe8UaaGPaVpaabmqabaWaaSaaaeaacaaIXaaabaGabm ytayaafaaaaiaaysW7daaeWbqaaiaaykW7daqeWbqaaiaaykW7cqaH 4oqCdaqhaaWcbaGaamyAaiaadQgaaeaacaaIOaGabmiAayaafaGaaG ykamaaCaaameqabaGaeyOeI0IaaGPaVlaad6gadaWgaaqaaiaadMga caWGQbaabeaaaaaaaaWcbaGaamOAaiaaykW7caaI9aGaaGPaVlaaig daaeaacaWGlbaaniabg+GivdaaleaaceWGObGbauaacaaMc8UaaGyp aiaaykW7caaIXaaabaGabmytayaafaaaniabggHiLdaakiaawIcaca GLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaGc caaISaaaaa@7D54@

θ i ( h ) ~ Dirichlet ( n i + μ ( h ) τ ( h ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaDaaaleaacaWGPb aabaGaaGikaiqadIgagaqbaiaaiMcaaaGccaaMe8UaaGPaVJqaaiaa =5hacaaMe8UaaGPaVlaabseacaqGPbGaaeOCaiaabMgacaqGJbGaae iAaiaabYgacaqGLbGaaeiDaiaaykW7daqadeqaaiaah6gadaWgaaWc baGaamyAaaqabaGccaaMe8Uaey4kaSIaaGjbVlaahY7adaahaaWcbe qaamaabmqabaGaaGzaVlaadIgacaaMb8oacaGLOaGaayzkaaaaaOGa eqiXdq3aaWbaaSqabeaadaqadeqaaiaaygW7caWGObGaaGzaVdGaay jkaiaawMcaaaaaaOGaayjkaiaawMcaaaaa@5F2D@ comporte la restriction d’ordre, μ ( h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdmaaCaaaleqabaWaae WabeaacaaMb8UaamiAaiaaygW7aiaawIcacaGLPaaaaaaaaa@3A3E@ et τ ( h ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHepaDdaahaaWcbeqaamaabmqaba GaaGzaVlaadIgacaaMb8oacaGLOaGaayzkaaaaaaaa@392A@ sont les échantillons a posteriori de la densité a posteriori conjointe.


Signaler un problème sur cette page

Quelque chose ne fonctionne pas? L'information n'est plus à jour? Vous ne trouvez pas ce que vous cherchez?

S'il vous plaît contactez-nous et nous informer comment nous pouvons vous aider.

Avis de confidentialité

Date de modification :