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Relative performance of methods based on model-assisted survey 

regression estimation: A simulation study 

Erin R. Lundy and J.N.K. Rao1 

Abstract 

Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted 

survey regression estimation has received considerable attention in recent years. Generalized regression 

(GREG) estimators, based on a working linear regression model, are currently used in establishment surveys 

at Statistics Canada and several other statistical agencies. GREG estimators use common survey weights for 

all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many 

auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights 

when all the available auxiliary variables, including interactions among categorical variables, are used in the 

working linear regression model. On the other hand, new machine learning methods, such as regression trees 

and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and 

possible efficiency gains over GREG. In this paper, a simulation study, based on a real business survey 

sample data set treated as the target population, is conducted to study the relative performance of GREG, 

regression trees and lasso in terms of efficiency of the estimators and properties of associated regression 

weights. Both probability sampling and non-probability sampling scenarios are studied. 

 

Key Words: Model assisted inference, Calibration estimation; Model selection; Generalized regression estimator. 

 

 

1. Introduction 
 

At Statistics Canada and several other statistical agencies, there is a growing interest in leveraging 

auxiliary data, possibly from administrative sources, to improve the efficiency of estimators. Machine 

learning techniques have become a popular tool in various disciplines for utilizing such auxiliary 

information. These methods often do not require the distributional assumptions of more traditional 

methods and are able to adapt to complex non-linear and non-additive relationships between the outcomes 

and auxiliary variables. Machine learning methods have been applied to survey data in a variety of 

contexts such as response/adaptive designs, data processing, nonresponse adjustment and weighting 

(Buskirk, Kirchner, Eck and Signorino, 2018; Kern, Klausch and Kreuter, 2019).  

Recently, the use of machine learning techniques to improve the efficiency of estimators of totals and 

means through model-assisted survey regression estimation under probability sampling has been 

considered. Model-assisted survey regression estimators of finite population totals may reduce variability 

and lead to significant gains in efficiency if the available auxiliary variables are strongly associated with 

the survey variable of interest. Increasingly, a large number of auxiliary variables are available, some of 

which may be extraneous. In this case, variable selection followed by regression estimation based on the 

selected model may improve efficiency of the survey regression estimators of finite population totals. We 

consider finite population estimation using the generalized regression (GREG) estimator with various 

linear working models (Särndal, Swensson and Wretman, 1992). Model-assisted estimators, using lasso 
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and adaptive lasso methods (McConville, Breidt, Lee and Moisen, 2017) and regression trees (McConville 

and Toth, 2019), have been applied to survey data. Other nonlinear models, such as penalized splines and 

neural networks, have been explored for model-assisted estimation; see Breidt and Opsomer (2017) for a 

survey of these techniques.  

Another field of research where the use of model-assisted estimators has been proposed is estimation 

from non-probability samples. Increasing costs and declining response rates are leading to an expanding 

interest in the use of non-probability samples. However, the process generating a non-probability sample 

is unknown and such samples are subject to selection bias. Two commonly used approaches to estimation 

from non-probability samples are quasi-randomization and superpopulation modeling. In the first, the 

sample is treated as if it was obtained from probability sampling but with unknown selection probabilities. 

The pseudo-inclusion probabilities are estimated via a propensity model that uses the sample data in 

combination with some external data set that covers the targeted population. Machine learning techniques 

have been employed in the estimation of pseudo-inclusion probabilities or, equivalently, in the 

construction of pseudo-weights. Kern, Li and Wang (2020) investigated several machine learning 

techniques to construct pseudo-weights using a propensity score-based kernel weighting for non-

probability samples. Rafei, Flannagan and Elliott (2020) developed a pseudo-weighting approach using 

Bayesian Additive Regression Trees.  

In the superpopulation approach, observed values of the variables of interest are assumed to be 

generated by some model. The model is estimated from the data and, along with external population 

control data, is used to project the sample to the population. Under this framework, calibration to known 

population totals of auxiliary variables provides a means of potentially reducing the effect of sample 

selection bias. Chen, Valliant and Elliott (2018) discussed the implementation of model calibration using 

adaptive lasso for data based on non-probability sampling. In scenarios where the population totals are 

estimated, Chen, Valliant and Elliott (2019), incorporated the sampling uncertainty of the benchmarked 

data, obtained from a probability sample survey, into the variance component of a model-assisted 

calibration estimator using adaptive lasso regression. Therefore, unlike in the probability sampling context 

where the use of model-assisted estimation seeks to improve the efficiency of estimators, the use of these 

techniques in a non-probability sampling context aims to diminish the impact of selection bias.  

We consider several lasso-based estimators as well as a regression tree estimator and evaluate their 

performance in both a probability sampling context and a non-probability sampling set up. In Section 2, 

the model-assisted estimators considered are discussed. The set up for a simulation study under probability 

sampling is described in Section 3. The results of the simulation study on the root mean square error of the 

estimators, relative bias of variance estimators and properties of survey weights are presented in Section 4. 

Except for the GREG estimator, all the model-assisted estimators considered here involve variable 

selection and yield, if applicable, regression weights that depend on the survey variable of interest, .y  The 

impact of using a single set of regression weights for multiple related study variables is also investigated 

in this section. The results of the simulation study using a non-probability sampling scenario are detailed 

in Section 5. We conclude with a summary of the findings in Section 6.  
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2. Model-assisted estimation under probability sampling 
 

2.1 GREG estimators 
 

Consider the estimation of a finite population total ,y ii U
t y


=  where  1, ,U N=   is the set of 

units of the finite population and iy  is the value of the survey variable of interest for the unit .i U  Let 

s U  be a sample selected according to a sampling design ( ). ,p  where ( )p s  is the probability of 

selecting .s  For   ,i U  let  Pri i s =   denote the first-order inclusion probabilities of the design. We 

assume 0i   for all .i U  Additionally, assume d  auxiliary variables, ( )1 2, , ,
T

i i i idx x x= x  are known 

for each   .i U  A standard approach is to use the Horvitz-Thompson estimator  

 
,HT

ˆ i
y i i

i s i si

y
t d y

 

= =    

where 1

i id  −=  denotes design weights. Under this strictly design-based framework, the auxiliary data do 

not impact the form of the estimator but can impact the design weights, ,id  through the specification of 

the sampling design.  

One strategy to use auxiliary data in estimation is to employ a model-assisted estimator of yt  by 

specifying a working model for the mean of y  given x  and use this model to predict y  values. 

Specifying a linear regression working model leads to the generalized regression (GREG) estimator 

(Cassel, Särndal and Wretman, 1976). The GREG estimator typically has smaller variance than the 

Horvitz-Thompson estimator if the working model has some predictor power for .y  Here, we consider the 

GREG estimator under a linear regression working model  

 T

i i iy = +x β  (2.1) 

with ( )0 1 ,, , ,
T

p  =β i  independent and identically distributed with mean zero and variance 2  and 

( )1 .1,  , ,
T

i i ipx x= x  The GREG estimator is given by  

 ,GREG
ˆˆ

ˆT
Ti i

y i

i s i Ui

y
t

 

−
= + 

x β
x βs

s  (2.2) 

with the regression coefficients β  estimated as  

 ( ) ( ) ( )
1

1 1 1ˆ ,argmin
T T T

s s s s s s s s s s s s


−
− − −= − − =β Y X β Π Y X β X Π X X Π Y  (2.3) 

where sX  is a ( )1n p +  matrix, sY  is a n -vector and Π s  is an n n  diagonal matrix of first-order 

inclusion probabilities for the sampled units.  

The GREG estimator can also be written as a weighted sum of the variable of interest, ,y  yielding 

regression weights that are independent of y  and, therefore, can be applied to any study variable, :y  

 ( )
1

,GREG ,HT
ˆˆ 1

T
T

y x x k k k i i i i i

i s k s i s

t d d y w y

−

  

  
 = + − = 
   

  t t x x x  (2.4) 
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where xt  is the known population total vector of the covariates x  and 
,HT

ˆ
xt  is the Horvitz-Thompson 

estimator vector of the covariate population totals .x ii U
=t x  The regression weights, ,iw  are termed 

calibration weights because they satisfy the calibration constraint .i i ii s i U
w

 
= x x  The calibration 

weight iw  does not depend on the study variable .iy  Note that the GREG estimator (2.4) can alternatively 

be expressed as 

 ( ),GREG ,HT ,HT
ˆˆˆ ˆ

T

y y x xt t= + −t t βs
  

which only requires known population totals .xt  For the GREG estimator, the individual population 

values , i i Ux  are not needed. 

If a variable selection procedure, such as a forward stepwise procedure, is implemented prior to fitting 

the linear regression model, then the calibration weights will depend on y  as the selected models may 

vary across study variables. This type of stepwise survey regression estimator is calibrated to the auxiliary 

variables selected by the variable selection procedure for a specific variable of interest, .y  

Using a working linear regression model with many auxiliary variables, including interactions of 

categorical auxiliary variables, can produce substantially variable weights, and greatly increase the 

variance of the GREG estimator. Furthermore, some of the regression weights, ,iw ,i s  may be negative, 

thus losing the interpretation of a weight as the number of population units represented by the sampled 

unit.  

 
2.2 Survey regression estimator with Lasso 
 

If the linear regression model in (2.1) is sparse, i.e., p  is large, and, say, only 0p  of the p  regression 

coefficients are nonzero, then the estimation of the zero coefficients in (2.3) leads to extra variation in the 

GREG estimator (2.2). In this case, model selection to remove extraneous variables could reduce the 

overall design variance of the GREG estimator, leading to more efficient estimates of finite population 

totals. The least absolute shrinkage and selection operator (lasso) method, developed by Tibshirani (1996), 

simultaneously performs model selection and coefficient estimation by shrinking some regression 

coefficients to zero. The lasso approach estimates coefficients by minimizing the sum of squared residuals 

subject to a penalty constraint on the sum of the absolute value of the regression coefficients.  

McConville et al. (2017) proposed using survey-weight lasso estimated regression coefficients given 

by 

 ( ) ( )1

,

1

,ˆ argmin  
p

T

s L s s s s s j

j

 −

=

= − − + β Y X β Π Y X β   

where 0.   The lasso survey regression estimator for the total yt  is then given by  

 
,

, LASSO ,

ˆ
ˆˆ .

T

i i s L T

y i s L

i s i Ui

y
t

 

−
= + 

x β
x β   
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The value of the penalty parameter   must be selected prior to obtaining the estimated coefficients. In 

general, this process of specifying hyperparameters prior to fitting the final model is called 

hyperparameter tuning. There are several potential selection criteria that can used to select the value of 

hyperparameters including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) or 

cross-validation. We used a version of cross-validation which incorporates the design weights in our 

simulation study; see McConville (2011) for discussion of the selection of the penalty parameter for 

survey-weighted lasso coefficient estimates. 

 
2.3 Survey regression estimator with adaptive Lasso 
 

An issue with the use of the lasso criterion is that by shrinking the regression coefficients towards zero 

it yields biased estimates for regression coefficients that are far from zero. Under the adaptive lasso 

criterion (Zou, 2006), the coefficients in the 1l  penalty are weighted by the inverse of a root- n  consistent 

estimator of .β  Therefore, the bias for large coefficients tends to be smaller.  

McConville et al. (2017) considered an adaptive lasso survey regression estimator 

 
, AL

, ALASSO , AL ,
ˆ

ˆˆ
T

i i s T

y i s

i s i Ui

y
t

 

−
= + 

x β
x β   

where  

 ( ) ( )1

, AL

1

mˆ arg in  
ˆ

p
T j

s s s s s s

j sj







−

=

= − − + β Y X β Π Y X β   

and β̂s  is given by (2.3). The reliance of the adaptive lasso method on the standard weighted linear 

regression coefficient estimates, ˆ ,β s  leads to a loss of efficiency in settings when p  is large because the 

estimates β̂s  tend to be very unstable.  

 
2.4 Lasso calibration estimators 
 

The lasso and adaptive lasso methods do not produce regression weights directly, as the estimators 

cannot be expressed as weighted combinations of the y -values. McConville et al. (2017) developed lasso 

survey regression weights using a model calibration approach and a ridge regression approximation. These 

lasso regression weights depend on the variable of interest, .y  

The lasso calibration estimator is calculated by regressing the variable of interest, ,iy  on an intercept 

and the lasso-fitted mean function ,
ˆ .T

i s Lx β  The lasso calibration estimator can be written in the same form 

as (2.4), where ix  is replaced by ( ), :, ˆ1
T

T

i s L=x x β
*

i
 

 ( )* *

1

* * *

, CLASSO , HT
ˆˆ .1

T
T

y k k k i i ix x
i s k s

t d d y

−

 

  
 = + −  
   

 t t x x x  (2.5) 
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Similarly, the adaptive lasso calibration estimator is given by  

 ( )** **

1

** ** **

, CALASSO , HT
ˆˆ ,1

T
T

y k k k i i ix x
i s k s

t d d y

−

 

  
= + −  

   
 t t x x x   

where the lasso-fitted mean for *

ix  in (2.5) is replaced by the adaptive lasso fit, ( )**

,AL
ˆ1, .

T
T

i i s=x x β  The 

weights for the lasso calibration estimators are calibrated to the population size N  and to the population 

total of the lasso-fitted mean functions.  

 
2.5 Regression tree estimator  
 

The GREG estimator can also be expressed as  

 
( )

( ), ,
ˆ

ˆˆ i n i

y r n i

i s i Ui

y h
t h

 

−
= + 

x
x  (2.6) 

where ( )ˆ
n ih x  is an estimator of the mean function of iY  given ,i i=X x ( ) ( ),i i i ih E Y= =x X x  based on 

the sample data ( ), , .i iy i sx  As an alternative to a linear regression model, McConville and Toth (2019) 

proposed estimating ( )h x  with a regression tree model using the following algorithm: 

1. Let ( )k n  be the minimum box size and   be a specified significance level. 

2. If the dataset contains at least ( )2k n  observations then continue to step 3; otherwise, stop. 

3. Among the auxiliary variables ,  1, , ,lx l d=   choose a variable to split the data. The chosen lx  

is the variable that shows the largest significance difference after testing the null-hypothesis of 

homogeneous .lE y x    If no variable leads to a significant difference, then stop. 

4. Split the data into two sets LS  and RS  by splitting based on the value of the selected variable lx  

that results in the largest decrease in the estimated mean square error, while satisfying the 

requirement that each subset contains at least ( )k n  units. 

5. For each of the resulting subsets of the data, return to step 1. 

 

The resulting regression tree model groups the categories of an auxiliary variable based on their 

relationship to the variable of interest and only includes auxiliary variables and interactions associated 

with this variable. Importantly, including a categorical variable does not require a split for each category, 

potentially reducing the model size substantially while still capturing important interactions.  

After fitting a regression tree model, we obtain a set of boxes  1 2, , ,n n n nqQ B B B=   which partition 

the data. Let ( ) 1i nkI B =x  if i nkBx  and 0 otherwise, for 1, , .k q=  This means that ( ) 1i nkI B =x  

for exactly one box nk nB Q  for every .i s  For every ,i nkBx  the estimator of ( )ih x  is given by  

 ( ) ( ) ( )
1 1# ,n i nk i i i nk nk

i s

h B y I B 
− −



=  =x x  (2.7) 

where 
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 ( )# nkB = ( )1

i i nk

i s

I B −



 x

 

 

is the HT estimator of the population size in box .nkB  The regression tree estimator , TREEŷt  is obtained by 

inserting equation (2.7) into the generalized regression estimator, given in equation (2.6), leading to the 

post stratified estimator 

 , TREE ,ŷ k nk

k

t N =   

where kN  is the number of units in U  that belong to box .k  

Since ( )n ih x  can be written as a linear regression estimator with q  indicator function covariates, the 

regression tree estimator is also a post-stratified estimator, where each box  nkB  represents a post-stratum. 

This implies that this estimator is calibrated to the population total of each box, providing a data-driven 

mechanism, dependent on ,y  for selecting post-strata that ensures that none of them are empty. As a 

result, the regression weights are guaranteed to be non-negative. The weights produced by this estimation 

procedure depend on the variable of interest, .y  Therefore, unlike the GREG approach, a single set of 

generic weights to apply to all study variables is not available. Instead, a set of weights for each survey 

variable of interest is produced.  

 
2.6 Variance estimation under stratified simple random sampling 
 

Under stratified simple random sampling, a variance estimator of the model-assisted survey regression 

estimators described above is obtained by the Taylor linearization method and given by 

 ( )
( )

( )
21ˆ   ,ˆ

1
h

h h h

hi h

h i sh h

y

N N n
V e e

n
t

n 

−
= −

−
   (2.8) 

where h  indexes the strata, hN  is the number of population units in stratum ,h hn  is the number of 

sampled units hs  in stratum ,h ( )ˆ
hi hi n hie y h= − x  is the residual of sample unit i  in stratum h  under the 

regression model and he  is the average residual in stratum .h  

The variance estimators readily extend to more complex sampling designs, but for simplicity we have 

given the expression only for stratified simple random sampling which is used in the simulation study of 

Section 3. 

 
3. Simulation study using Financing and Growth of Small and 

Medium Enterprises Survey data 
 

In this section, we describe a simulation study used to compare the performance of model-assisted 

survey regression estimators relative to the purely design-based HT estimator. Using the Survey of 

Financing and Growth of Small and Medium Enterprises data as the population, we compare the 
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estimators in repeated samples of the data to produce estimates of the total amount requested for trade 

credit which is a particular type of financing.  

 
3.1 Simulation population 
 

The Survey of Financing and Growth of Small and Medium Enterprises (SFGSME) is a periodic 

survey of enterprises which occurs approximately every three years and collects information on the types 

of financing businesses use. The sample is stratified by size, defined by the number of employees, the age 

of the business, industry at the 2-digit North American Industry Classification System (NAICS) and 

geography. A sample of approximately 17,000 enterprises was selected for the 2017 iteration of the 

survey.  

The Business Register (BR) is the primary source of auxiliary information for business surveys at 

Statistics Canada. The frame used by the SFGSME was constructed by selecting from Statistic’s Canada 

BR all enterprises with between 1 and 499 employees and a minimum gross revenue of $30,000. Non-

profit enterprises as well as enterprises belonging to certain industry subgroups were excluded from the 

target population. The BR contains information on the location, number of employees, industry as well as 

revenue for each enterprise in the population.  

 
3.2 Simulation methodology 
 

We conducted a simulation study to compare the relative performance of several model-assisted survey 

regression estimators, using three and four categorical auxiliary variables. We considered sample sizes of 

 200; 500;1,000n =  from the 9,115 respondents in the SFGSME dataset. This dataset was treated as the 

target population and repeated samples were drawn using stratified simple random sampling as this is the 

design commonly used by statistical agencies for business surveys. We assumed there are two strata, 

where stratum A consists of units with revenue of less than $2.5 million and stratum B consists of units 

with revenue greater than $2.5 million. We assumed equal sample sizes in each stratum but most of the 

units in the population, approximately 70%, belong to stratum A. Under this sampling design, larger 

revenue units are over-represented, resulting in an unequal probability sampling design. Preliminary 

simulations using a simple random sample design were also considered and yielded similar results. The 

minimum sample size considered was 200n =  because for smaller sample sizes and 28 categories of x -

variables, there were often categories without a sampled unit. In this case, it is not possible to calibrate the 

GREG estimator to all the pre-specified marginal totals.  

For each sample, models using three x -variables, industry (10 categories), employment size (4 

categories) and region (6 categories) were used to estimate total amount of trade credit requested and 

results were compared to the true total. We also considered a fourth variable, revenue, with 8 categories. 

For each combination of the three different sample sizes, and the two sets of auxiliary variables, with 20 

and 28 main effects categories, we drew 5,000 repeated stratified random samples from the target 
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population. For each sample, we implemented the HT estimator and several model-assisted survey 

estimators as summarized in Table 3.1 below: 

 
Table 3.1 

Summary of model assisted estimators considered in simulation study 
 

Estimator Auxiliary Data  Regression Weights Calibration Totals 

GREG Marginal totals 

Considered main effects 

only 

Independent of y  All auxiliary variables 

GREG with forward 

variable selection (FSTEP) 

Individual values 

Considered main effects 

only 

Dependent on y  Selected auxiliary variables 

Regression Tree (TREE) Individual values Dependent on ,y  strictly 

positive 

Population size of each box 

Lasso (LASSO) Individual values  

Considered main effects 

(1-way) and two-way 

interactions (2-way) 

  

Calibrated lasso 

(CLASSO) 

Individual values 

Considered main effects 

(1-way) and two-way 

interactions (2-way) 

Dependent on y  Population size and lasso-

fitted mean function  

Adaptive lasso (ALASSO) Individual values 

Considered main effects 

only 

  

Calibrated adaptive lasso 

(CALASSO) 

Individual values 

Considered main effects 

only 

Dependent on y  Population size and lasso-

fitted mean function 

 
We initially also considered adaptive lasso and adaptive lasso calibration estimators using all main 

effects and 2-way interactions, but estimates of the coefficients under the GREG linear model, ˆ ,sβ  were 

highly unstable leading to singularity issues.  

All computations were completed in R (Version 3.4.0, 2017). The HT, GREG, regression tree and 

lasso estimators were calculated using the package mase (McConville, Tang, Zhu, Li, Cheung and Toth, 

2018) and the adaptive lasso coefficients were computed using the package glmnet (Friedman, Hastie, 

Simon, Qian and Tibshirani, 2017). The function cv.glmnet was used to select the value of the penalty 

parameter for the lasso estimators. We used a 10-fold cross validation procedure which allows for the 

inclusion of design weights. For the regression tree estimator, the minimum box size ( )k n  was specified 

as 25 and the level of significance   was 0.05. We also considered a minimum box size of 10 units. For 

small sample sizes, there was a small gain in efficiency relative to a minimum box size of 25. For sample 

sizes of 1,000,n =  different choices for the minimum box size yielded similar results in term of mean 

square error. Forward stepwise selection for the FSTEP estimator was based on minimizing the Akaike 

Information Criteria (AIC) and was performed using the function stepAIC in the MASS package 

(Ripley, Venables, Bates, Hornik, Gebhardt and Firth, 2017). 
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In regressing the amount of trade credit requested for the entire finite population on the 28 marginal 

categories, the adjusted coefficient of determination was approximately 2 0.22R =  when both main effects 

and two-way interaction effects were considered. For the population model with main effects only the 

number of significant effects was 15 and for the population model with main effects and two-way 

interactions, there were 2 significant main effects and 29 significant interaction effects. These population-

level results indicate that useful predictive models should be sparse and that there may be important two-

way interactions.  

Fitting regression tree models to the amount of trade credit requested resulted in 25 splits. The first 

split was based on revenue, indicating that this is the auxiliary data that is most strongly related to the 

amount of trade credit requested. There were splits based on all four of the auxiliary variables considered: 

revenue, industry, employment size and geography. This is consistent with the conclusions that useful 

predictive models should be sparse but allow for higher order interactions.  

 
4. Results of the simulation study 

 
4.1 Performance of estimators in terms of design MSE 
 

We computed design bias and design mean square error (MSE) from the 5,000 total estimates by 

sample size and number of marginal categories. The percentage absolute relative design bias was less than 

2 percent for all the estimators for all scenarios. As expected, for all estimators, the bias decreases as the 

sample size increases.  

Figure 4.1 displays the MSE of the HT, GREG, GREG with forward variable selection, regression tree 

and calibrated lasso estimators by sample size, based on the 5,000 simulated samples. The MSE values are 

similar for the adaptive and non-calibrated versions of the lasso estimators. For all the estimators, the 

decrease in MSE is much more pronounced from 200n =  to 500n =  than from 500n =  to 1,000.n =  

This is likely due to the small sample size, relative to the number of categories for the auxiliary variables. 

It may not be possible to explore all the potential effects, particularly higher order effects, with only 200 

sampled units.  

Table 4.1 displays the ratio the design MSE of each estimator to the MSE of the HT estimator for the 

total amount of trade credit requested. For 200,n =  the regression tree estimator and the lasso (2-way) 

estimator with two factor interaction effects are the only model-assisted estimators that provide any 

efficiency gains, relative to the HT estimator, when the number of categories of auxiliary variables used is 

large. As the sample size increases, the gains in efficiency of the model-assisted survey regression 

estimators, relative to the HT estimator, are essentially equal. Using any of the model-assisted estimators 

when 1,000n =  results in a slight gain in efficiency, relative the HT estimator. There is little efficiency 

advantage for model-assisted estimators over the HT estimator, indicating that the auxiliary variables are 

not strongly related to the variable of interest.  
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Figure 4.1 Comparison of mean square error for HT, GREG, FSTEP, regression tree and calibrated lasso 

estimators (1-way and 2-way) for the total amount of trade credit requested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.1 

Ratio of MSE of each estimator to MSE of HT estimator with 20 and 28 marginal categories 
 

 20 categories 28 categories 

n= 200 n= 500 n= 1,000 n= 200 n= 500 n= 1,000 

GREG 1.067 1.011 0.994 1.084 0.959 0.954 

FSTEP 1.036 1.009 0.994 1.040 0.945 0.958 

TREE 1.023 1.007 0.977 0.983 0.963 0.949 

LASSO (1-way) 1.020 0.995 0.986 1.009 0.946 0.947 

CLASSO (1-way) 1.047 1.004 0.990 1.042 0.952 0.949 

LASSO (2-way) 0.999 0.995 0.952 0.981 0.935 0.936 

CLASSO (2-way) 1.061 1.029 0.966 1.045 0.959 0.950 

ALASSO 1.024 0.999 0.986 1.021 0.948 0.948 

CALASSO 1.040 1.005 0.989 1.037 0.951 0.949 

 
The potential gains in efficiency for model-assisted estimators depend on the predictive power of the 

working model. In our simulation population, the strength of the relationship between the variable of 

interest and the available auxiliary variables is weak, leading to only slight efficiency gains relative to the 

purely design-based HT estimator. Therefore, to further explore the differences between the various 

model-assisted survey estimators, we ran additional simulations using different survey variables of 

interest, generated according to the following procedure: 

1. Assuming a lasso model with main effects only, we obtained the lasso coefficient estimates for 

the amount of trade credit requested, ,iy  using the population values for the auxiliary variables 

,ix  including revenue. 

 

                          n = 200                                             n = 500                                           n = 1,000  

 
        Regression Tree       HT                                FSTEP                        CLASSO (1-way)         CLASSO (2-way)           GREG 
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3.00E+15 
 

2.50E+15 
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2. We used the coefficient estimates ˆ
L  obtained in step 1 and the population values for ix  to 

generate a new survey variable of interest 

 * ˆ ,T

i i L iy = +x β u   

where iu  is a normally distributed random variable with mean 0 and standard deviation   

chosen such that the adjusted coefficient of determination is approximately 2 0.5.R =  

3. We drew 5,000 repeated samples from the target population and calculated the mean square 

error of each estimator of the total * .
y

t  

4. Steps 1-3 were repeated by fitting a lasso regression model with main effects and 2-way 

interactions and a regression tree model using the algorithm detailed in Section 2.5. 

 

Table 4.2 displays the ratio the design MSE of each estimator to that of the HT under the three 

different models generating the survey variable of interest for a sample size of 1,000.n =  As expected, the 

estimator based on the correctly specified working model is the most efficient. In the case where the true 

generating model contains only main effects, assuming a working model with higher order interactions 

results in a slight loss in efficiency. If two-way or higher order interactions are present, the regression tree 

and lasso-based estimators fitted with two-way interactions are more efficient than the model-assisted 

estimators based on working models with only main effects. When the generating model is a regression 

tree, the regression tree estimator yields modest efficiency gains over the 2-way lasso-based estimators. 

This can be explained by the fact that the regression tree model groups the categories of an auxiliary 

variable based on their relationship to the variable of interest and, therefore, reduces the model size. In all 

cases, significant efficiency gains, relative to the design-based HT estimator, are achieved. 

 
Table 4.2 

Ratio of MSE for each estimator to MSE of HT under different models generating survey variable of interest 
 

 LASSO (1-way) LASSO (2-way) Regression Tree 

GREG 0.749 0.855 0.878 

FSTEP 0.749 0.855 0.876 

TREE 0.803 0.821 0.778 

LASSO (1-way) 0.747 0.850 0.871 

CLASSO (1-way) 0.747 0.851 0.873 

LASSO (2-way) 0.763 0.761 0.826 

CLASSO (2-way) 0.763 0.765 0.833 

ALASSO 0.750 0.849 0.872 

CALASSO 0.750 0.851 0.873 

 
4.2 Performance under other scenarios 
 

We also examined the performance of the lasso-based and regression tree estimators under scenarios 

where there are no main effects, only 2-way interactions. We generated a fourth survey variable of interest 
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using the lasso regression model with main effects and 2-way interactions as described in the procedure 

above. However, in step 2, we set all coefficients estimates corresponding to main effects equal to 0.  

The first column of Table 4.3 (called no multicollinearity) shows the ratio the design MSE of the 

estimators to that of the HT estimator, where the survey variable is generated from a model with no main 

effects for sample sizes of 1,000.n =  Under this scenario, the lasso estimators with 2-way interactions and 

the regression tree estimator are significantly more efficient than model-assisted estimators based on main 

effects only models. Relative to the commonly used GREG estimator, the efficiency gains for the lasso 

estimators with 2-way interactions and the regression tree estimator are significantly greater when there 

are no main effects. This is evident by comparing LASSO 2-way column in Table 4.2 to first column in 

Table 4.3. The relative MSE is very similar for the 2-way lasso and regression tree estimators but closer to 

1 for GREG and 1-way lasso estimators. 

 
Table 4.3 

Ratio of MSE for each estimator to MSE of HT under generating model with no main effects and in the 

absence/presence of multicollinearity 
 

 No Multicollinearity Duplicated Variable Collapsed Categories 

GREG 0.935 - - 

TREE 0.824 0.850 0.842 

LASSO (1-way) 0.930 0.945 0.942 

CLASSO (1-way) 0.936 0.953 0.951 

LASSO (2-way) 0.783 0.795 0.773 

CLASSO (2-way) 0.795 0.809 0.781 

 
For administrative data with many variables, it is not uncommon for some variables to be colinear or 

nearly colinear. For example, information on both the total number of employees and the number of full-

time equivalent employees is often available. The GREG estimator, and by extension the FSTEP estimator 

and adaptive lasso estimators, fail in the presence of collinearity as the design matrix is singular. We 

investigated the performance for regression tree and lasso estimators in the presence of multicollinearity. 

We considered two types of multicollinearity: 

• Duplicate of existing categorical variable. We created three new indicator variables 

corresponding to employment size.  

• Collapsed categories of existing auxiliary variable: We created a new indicator variable 

corresponding to the three highest categories of revenue.  

 

The MSE, relative to the HT estimator, for 1,000n =  is shown in columns 2 and 3 of Table 4.3. These 

results are very similar to those in the first column of Table 4.3 without the presence of multicollinearity. 

The regression tree and lasso estimators provide an automatic way of removing colinear auxiliary 

variables without impacting the potential efficiency gains. It should be noted that other methods, such as 

principal component analysis, can be used to eliminate collinearity but require some expertise.  
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4.3 Performance of variance estimators in terms of relative bias 
 

Variance estimators based on (2.8) were constructed for each estimator. Table 4.4 displays the 

percentage relative bias of each estimator for the total amount of trade credit requested. For comparison 

purposes, the theoretically unbiased variance estimator of the HT estimator is included in this table. This 

variance estimator is equivalent to the expression provided in (2.8) where .i i se y y= −  The variance 

estimators for the model-assisted survey regression estimators have substantial negative bias which 

increases as the number of auxiliary variables, ,p  increases. The magnitude of negative bias is largest for 

the lasso-based estimators fitted using 2-way interactions. For small sample sizes, the negative bias is 

smallest for the regression tree estimator. As well, for small sample sizes, there is a substantial difference 

in bias between the GREG and FSTEP estimators. Performing variable selection prior to calculating the 

standard GREG calibration estimator appears to reduce the bias of the variance estimator in this case. The 

bias reduces for all model-assisted survey regression estimators as the sample size increases. 

 
Table 4.4 

Percent relative bias of variance estimators 
 

 20 categories 28 categories 

n = 200 n = 500 n = 1,000 n = 200 n = 500 n = 1,000 

GREG -12.44 -4.16 -1.60 -22.23 -10.86 -6.99 

FSTEP -7.05 -3.60 -1.62 -14.07 -7.71 -6.73 

TREE -5.79 -5.53 -2.81 -8.45 -12.93 -10.83 

LASSO (1-way) -7.79 -2.96 -1.14 -12.42 -9.49 -6.44 

CLASSO (1-way) -10.08 -3.74 -1.61 -16.01 -9.84 -6.52 

LASSO (2-way) -11.94 -11.57 -7.62 -16.12 -15.14 -13.08 

CLASSO (2-way) -19.99 -15.09 -9.06 -25.87 -19.04 -15.14 

ALASSO -8.69 -3.61 -1.41 -14.52 -9.43 -6.38 

CALASSO -9.40 -3.78 -1.48 -15.80 -9.64 -6.46 

HT 5.19 5.72 5.82 4.90 -0.11 1.66 

 
Given the bias of the variance estimators seen here, particularly for small sample sizes, a possible 

concern is the quality of the first-order Taylor expansion approximation. For a large number of categorical 

auxiliary variables, the remainder term in the Taylor expansion may no longer be negligible for small 

sample sizes. An alternative variance estimator for the lasso estimators was considered by McConville 

et al. (2017) but yielded only slight improvements in terms of bias reduction. An additional concern is 

properly accounting for the inherently data driven procedure used to estimate the regression tree and lasso 

models. The regression tree model has splits while the lasso models have a penalty parameter both 

depending on the sample.  

 
4.4 Properties of the survey weights 
 

Regression weights are directly available for the GREG, FSTEP, regression tree, lasso calibration (1-

way and 2-way) and adaptive lasso calibration estimators. We investigated the properties of the weights 

for these estimators in our simulations.  
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Large variation in the values of weights is undesirable as they allow some units to be much more 

influential than others. Positive weights are preferred by national statistical organizations as a negative 

weight no longer holds the interpretation of the number of population units represented by the sampled 

unit.  

First, we computed the average, over repeated samples, of the empirical within-sample variance of the 

weights: 
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Table 4.5 displays the average variance and average CV for the weights across samples when revenue 

was included as an auxiliary variable. The weights for the GREG estimator and, to a lesser extent the 

FSTEP estimator, are much more variable than the weights for the regression tree and lasso-based 

estimators, particularly for small sample sizes. The variability of the weights for the three lasso-based 

approaches is very similar and is always slightly lower than the variability of the weights for the 

regression tree estimator.  

 
Table 4.5 

Average variance (CV) for weights across samples 
 

 n = 200 n = 500 n = 1,000 

GREG 728.18 (0.59) 77.14 (0.48) 16.41 (0.44) 

FSTEP 462.81 (0.47) 67.45 (0.45) 15.90 (0.44) 

TREE 374.43 (0.42) 59.35 (0.42) 14.70 (0.42) 

CLASSO (1-way) 354.57 (0.41) 56.21 (0.41) 14.03 (0.41) 

CLASSO (2-way) 361.83 (0.42) 56.60 (0.41) 14.06 (0.41) 

CALASSO 354.29 (0.41) 56.28 (0.41) 14.03 (0.41) 

 
We also computed the proportion of simulated samples where the regression weights contained 

negative values. As mentioned in Section 2.5, by construction, the weights for the regression tree 

estimator are guaranteed to be strictly positive. When the sample size was 200, the GREG estimator 

calibrated to 20 marginal categories yielded negative weights for approximately 3% of the repeated 

samples. There were no negative weights when the sample size was 500 or 1,000. For the GREG estimator 

calibrated to 28 marginal categories, approximately 27% of the repeated samples of size 200 contained 

negative weights and less than 0.5% of the repeated samples of size 500 contained negative weights. The 

GREG weights are unstable when the sample size is small, especially if the GREG estimator is calibrated 
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to auxiliary variables with many categories. Using forward stepwise variable selection with the GREG 

estimator resulted in a substantial decrease in the number of simulated samples with negative weights for 

small sample sizes. The FSTEP estimator applied to the 28 marginal categories yielded negative weights 

in approximately 0.5% of the repeated samples of size 200. There were no negative weights observed for 

the lasso calibration estimator with only main effects or adaptive lasso calibration estimator. Using the 

lasso calibration estimator with 2-way interactions resulted in negative weights in less than 0.05% of the 

simulated samples. 

 
4.5 Estimation based on a single set of weights  
 

A major drawback in the implementation of the regression tree and the calibrated lasso-based 

approaches is that the estimation procedures yield variable-specific weights. We conducted additional 

simulations in which a single set of variable-specific weights was applied to other related survey variables 

of interest. In the context our business survey data, we considered four survey variables of interest, the 

amount of trade credit requested as well as the amount requested for three additional types of financing: 

line of credit, business credit card and leasing financing. We examined the impact on bias and loss of 

efficiency in using a single set of weights, determined by a primary variable of interest, to estimate the 

total amount requested for the remaining three survey variables of interest. Specifically, we calculated the 

percentage absolute relative design bias for the estimators of the total amount requested and the variance 

estimators. We also calculated the ratio of the MSE for the regression tree and three calibrated lasso-based 

approaches using the set of weights corresponding to a primary variable of interest to the MSE for the 

estimators using variable-specific weights. For brevity, we considered only settings with 28 marginal 

categories. 

The percentage absolute relative design bias was less than 2 percent for all of the estimators for all 

scenarios. For all estimators and primary variable of interest, the bias decreases as the sample size 

increases. 

Unlike the bias of the variance estimators based on variable-specific weights, the bias of the variance 

estimators based on a single set of weights for a primary variable of interest does not necessarily decrease 

as the sample size increases. As well, the bias is not strictly in one direction and may be positive or 

negative. For the regression tree and calibrated lasso-based approaches, the bias of the variance estimators 

is substantially larger for the primary variable of interest used to calculate the single set of weights than 

for the other study variables. The data driven nature of these estimators means that the estimated variance 

for the primary variable of interest is underestimated, as shown in Table 4.4.  

Table 4.6 displays the ratio of the design MSE of each estimator with weights determined by a primary 

variable of interest to that of the estimator with variable-specific weights, calculated separately for each of 

the four study variables for n  equal to 200 and 500. Using a single set of weights determined by a primary 

variable of interest results in a similar or slightly higher MSE than using variable-specific weights. Here, 
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the loss in efficiency is modest, less than 8% in all settings considered. Similar results were obtained for 

the case 1,000.n =  There is no clear pattern in terms of loss of efficiency and sample size.  

 

Table 4.6 

Ratio of MSE for each estimator with weights determined by primary variable of interest to MSE for 

estimator with variable-specific weights 
 

 

n  

Trade Credit Line of Credit Business Credit 

Card 

Lease Financing 

200 500 200 500 200 500 200 500 

Primary 

variable: 

Trade Credit 

TREE - - 1.01 0.97 0.99 1.00 0.99 1.00 

CLASSO (1-way) - - 0.99 0.99 1.01 0.99 1.00 1.01 

CLASSO (2-way) - - 0.93 0.94 0.92 0.98 0.92 0.97 

CALASSO - - 0.97 0.99 1.01 0.99 0.96 1.00 

Primary 

variable: Line 

of Credit 

TREE 1.06 0.97 - - 0.98 1.00 0.98 0.97 

CLASSO (1-way) 0.96 0.98 - - 0.99 1.01 0.99 0.99 

CLASSO (2-way) 0.95 0.96 - - 0.92 0.98 0.93 0.96 

CALASSO 0.97 0.98 - - 0.99 1.00 0.96 0.98 

Primary 

variable: 

Business 

Credit Card 

TREE 1.06 1.01 1.06 0.97 - - 0.99 1.02 

CLASSO (1-way) 0.99 1.02 0.98 0.97 - - 0.99 1.02 

CLASSO (2-way) 0.98 1.00 0.95 0.93 - - 0.92 0.99 

CALASSO 1.00 1.02 0.97 0.97 - - 1.00 1.01 

Primary 

variable: 

Lease 

Financing 

TREE 1.07 1.03 1.06 1.05 0.99 1.02 - - 

CLASSO (1-way) 0.99 1.05 0.98 1.04 0.99 1.02 - - 

CLASSO (2-way) 0.97 1.02 0.96 1.01 0.92 0.99 - - 

CALASSO 1.00 1.05 0.98 1.05 1.00 1.01 - - 

 
5. Estimation under non-probability sampling 
 

In this section, we study the effect of selection bias on the survey regression estimators under non-

probability sampling. For this purpose, we studied two types of selection bias possibly present in non-

probability samples. In particular, we considered a scenario in which the probability of selection depends 

only on the auxiliary data available for all units in the population, and a scenario in which the probability 

of selection depends on the survey variable of interest. In both scenarios, we evaluated the absolute 

relative bias (ARB), ,ŷ y yt t t−  for each estimator of the total. Following Chen, Valliant and Elliott 

(2018), we treat the non-probability sample as a simple random sample and set the design weights equal to 

id N n=  for the estimation of total yt  as the selection process for non-probability samples is unknown in 

practice.  

 
5.1 Selection probabilities depend on auxiliary data 
 

We drew repeated samples using the same stratified SRS design as in Section 4. Table 5.1 displays the 

ARB of each estimator of the total amount of trade credit requested assuming ,id N n=  when the sample 

is in fact selected using disproportionate stratified random sampling. 

As expected, the wholly designed-based HT estimator has the largest bias, and this bias does not 

decrease as the sample size increases. The ARB of model-assisted estimators decreases as the sample size 
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n  increases. The GREG estimator has the smallest bias, particularly for small sample sizes. Furthermore, 

the GREG estimator is approximately unbiased if revenue is included as one of the auxiliary variables for 

calibration. However, if stepwise variable selection is used, the GREG estimator is no longer unbiased for 

small sample sizes. On the other hand, if revenue is not included as a calibration variable, the GREG 

estimator is slightly biased. The lasso-based and, to a smaller extent, the regression tree estimators suffer 

from small sample bias for 200n =  when revenue is correctly included as an auxiliary variable. This is 

most apparent for the standard lasso estimators that do not include calibration to known population totals. 

For n  equal to 500 or 1,000, including revenue as an auxiliary variable, substantially decreases the bias 

for the regression tree and calibrated lasso estimators but only slightly decreases the bias for the lasso 

estimators without calibration. This indicates that the additional calibration step is important for 

diminishing the effect of selection bias, especially if the sample size is small.  

 
Table 5.1 

Percent ARB of each estimator under stratified sampling with revenue and without revenue included as an 

auxiliary variable  
 

 Revenue Without Revenue 

n = 200 n = 500 n = 1,000 n = 200 n = 500 n = 1,000 

GREG 0.31 0.06 0.06 4.84 5.12 4.71 

FSTEP 2.67 0.44 0.06 9.20 5.18 4.92 

TREE 4.15 1.04 0.50 17.40 10.20 8.94 

LASSO (1-way) 17.42 5.10 2.32 16.32 8.88 6.49 

CLASSO (1-way) 7.99 0.83 0.20 9.04 5.22 4.59 

LASSO (2-way) 25.36 14.28 8.40 26.31 15.16 9.89 

CLASSO (2-way) 10.72 1.44 1.02 14.19 5.56 3.84 

ALASSO 14.95 5.63 3.00 14.35 8.64 6.51 

CALASSO 9.63 2.54 1.25 9.27 5.77 4.92 

HT 49.45 48.84 48.81 49.08 49.29 48.60 

 

These results indicate that when the selection probability depends on a known auxiliary variable, 

including it in the working model for the GREG estimator effectively diminishes the effect of selection 

bias. This was not the case for the model-assisted estimators that involved variable selection. Performing 

variable selection may increase bias as auxiliary variables that are predictive in terms of selection 

probability may not be selected and properly accounted for. The lasso estimators can be constructed such 

that user-specified variables are always included in the working regression model. These user-specified 

variables can be added to *

ix  in equation (2.5) to force calibration to corresponding population totals. 

Unfortunately, the underlying selection mechanism is unknown in practice and, therefore, correctly 

identifying variables which impact selection probability is challenging. 

 

5.2 Selection probabilities depend on the study variable 
 

Next, we drew repeated samples using Poisson sampling where the sampling probabilities depends on 

the survey variable of interest. We assume the Poisson sampling probabilities are given by: 
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 ( ) 0 1logit i ip y = +   

where iy  is the amount of trade credit requested in millions of dollars, 1 0.5 =  and 

0 3.80, 2.85, 2.10. = − − −  The intercept values, 0 ,  were chosen such that we obtained sample sizes of 

approximately 200, 500 and 1,000 units, averaged over the simulated samples. Under this sampling 

design, units with larger amounts requested for trade credit have a higher probability of being sampled 

and, therefore, are over-represented. Table 5.2 displays the ARB of each estimator of the total amount of 

trade credit requested assuming ,id N n=  when the sample is selected using the above informative 

Poisson sampling. Here, all the estimators are heavily biased because the population model does not hold 

due to informative sampling. The magnitude of the bias is very similar across estimators and does not 

substantially decrease as the sample size increases. The inclusion or exclusion of revenue as an auxiliary 

variable does not impact the bias.  

 
Table 5.2 

Percent ARB of each estimator under Poisson sampling with revenue and without revenue included as an 

auxiliary variable 
 

 Revenue Without Revenue 

0
 = -3.8 

0
 = -2.85 

0
 = -2.1 

0
 = -3.8 

0
 = -2.85 

0
 = -2.1 

GREG 23.53 22.27 20.45 24.74 22.91 21.21 

FSTEP 24.54 22.55 20.58 25.16 23.24 21.15 

TREE 24.07 22.73 20.15 24.93 22.47 20.55 

LASSO (1-way) 24.29 22.73 20.65 25.45 23.29 21.38 

CLASSO (1-way) 23.02 22.30 20.47 24.74 22.99 21.23 

LASSO (2-way) 23.15 22.06 20.17 24.66 22.73 20.62 

CLASSO (2-way) 20.11 20.18 19.01 22.62 21.63 19.98 

ALASSO 24.44 22.72 20.66 25.50 23.21 21.36 

CALASSO 23.91 22.46 20.53 25.10 23.01 21.25 

HT 29.12 27.95 25.57 29.36 27.53 25.45 

 
6. Conclusions  
 

We have evaluated the performance of several model-assisted survey regression estimators, in the 

context of both probability and non-probability sampling, through a simulation study. First, we discuss the 

overall conclusions from our simulation study using probability samples with a stratified SRS design. In 

the context of our business survey data with all categorical auxiliary variables, the regression tree 

estimator and the lasso (2-way) estimator with two factor interaction effects are the only model-assisted 

estimators that provide any efficiency gains, relative to the HT estimator, when the sample size is small 

and the number of categories of auxiliary variables used is large. As well, the variance estimator for the 

regression tree estimator is the least biased in this scenario. As the sample size increases, the difference in 

efficiency between the model-assisted survey regression estimators becomes negligible and all are slightly 

more efficient than the HT estimator. In general, the potential gains in efficiency for model-assisted 

estimators over the HT estimator depend on the predictive power of the model. In our simulation 
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population, the strength of the relationship between the study variable and the available categorical 

auxiliary variables is somewhat weak as judged by the adjusted coefficient of determination 2R  around 

0.20. We therefore generated study variables leading to larger 2R  values around 0.50 by making the 

model error variance smaller. As expected, model-assisted estimators led to significant efficiency gains 

over the HT estimator in all cases, as reported in Table 4.2 which shows that the regression tree estimator 

and the lasso estimator with interaction effects yield improved efficiency over the commonly used GREG 

estimator if two-factor interactions are present. Moreover, the regression weights for the tree estimator and 

the calibration weights for the lasso calibration estimators are much less variable, particularly for small 

sample sizes, than the weights for the GREG. We also examined the performance of the lasso-based and 

regression trees estimators under a scenario with no main effects and only two-factor interactions are 

present and another scenario where multi-collinearity among the auxiliary variables is present. In the latter 

scenario, GREG is not applicable, and we show that the regression tree and lasso estimators provide an 

automatic way of removing colinear auxiliary variables without impacting the potential efficiency gains. 

Overall, we recommend using either lasso (2-way) or regression tree estimators in terms of efficiency 

when two factor interactions are likely to be present among the categorical auxiliary variables. Even in the 

case of models with only main effects, both methods perform well relative to GREG in terms of MSE 

because the lasso (2-way) estimator automatically shrinks regression coefficients associated with the 

interactions to zero while the regression tree estimator does not require specification of the mean function. 

In other contexts where there is evidence of complex non-linear and non-additive relationships between 

the survey variable of interest and auxiliary variables, the use of other tree-based machine learning 

methods, such as xgboost and random forests, should be studied.  

In Section 4.3, we studied the performance of variance estimators in terms of relative bias and showed 

that all the variance estimators exhibit significant underestimation for sample size 200n =  and 28 x -

categories. Relative bias of the regression tree variance estimator did not decrease as the sample size 

increased, unlike in the other cases, and it could be due to overfitting. In the context of random forests 

method, Dagdoug, Goga and Haziza (2021) examined a procedure based on cross-validation which led to 

small relative biases and good coverage rates. It would be worthwhile to study a similar procedure for 

variance estimation of the regression tree estimator. 

A major drawback of the regression tree and lasso-based approaches is that the estimation procedures 

do not yield a set of generic weights that can be applied to all study variables, .y  A possible alternative 

approach is to derive regression weights based on a primary variable of interest and apply that set of 

weights to related study variables. In the survey context considered here, using a single set of weights for 

a group of related variables resulted in little loss of efficiency, relative to the use of variable-specific 

weights. As well, the bias of the estimators remained negligible. Under this approach, the desirable 

properties of the regression weights, low variability and, in the case of the regression tree estimator, 

strictly positive weights are maintained. However, the asymptotic properties of the lasso and regression 
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tree survey estimators have not been derived for a single set of weights, applied to multiple study 

variables.  

We also considered the use of model-assisted survey regression estimators for data from mis-specified 

probability sampling, treated as a non-probability sample. When the probability of selection depends on an 

observed auxiliary variable, the bias of the model-assisted estimators decreases as the sample size 

increases. Including the appropriate auxiliary variable in the working model for the GREG estimator 

effectively removes the selection bias. Achieving this in practice is difficult as the selection process is 

unknown. Performing variable selection can increase the bias for model-assisted survey regression 

estimators as the auxiliary variables related to the selection probability may not be included in the 

regression model. In fact, in our simulations, correctly including revenue as a potential auxiliary variable 

did not necessarily decrease the bias of the lasso estimators.  

When the probability of selection depends on the survey variable of interest, all the estimators are 

heavily biased. The magnitude of the bias is similar across estimators and does not greatly decrease as the 

sample size increases. In our simulation population, the auxiliary variables are not highly predictive for 

the survey variables of interest. Examining the impact of the strength of the relationship between the 

auxiliary variables and the variable of interest when informative selection is present warrants more 

investigation.  

Sample selection bias may not be reduced by using a non-probability sample alone, as demonstrated in 

our simulation study. Methods based on integrating a non-probability sample observing the study 

variables and associated auxiliary variables with a probability sample observing only the same auxiliary 

variables have the potential of reducing selection bias through modeling the participation probabilities 

(Chen, Li and Wu, 2020). Dual frame screening methods are also available when the study variable is 

observed in both samples and the units in the probability sample belonging to the non-probability sample 

can be identified without linkage errors without the need to model the participation probabilities (Kim and 

Tam, 2020; Rao, 2021 and Beaumont, 2020). However, the dual frame method is effective only when the 

sampling fraction for the non-probability sample is large. We are studying the above methods in the 

context of business surveys, for example integrating survey data with incomplete administrative data 

treated as a non-probability sample. 
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