Inférence bayésienne pour un modèle des composantes de la variance fondée sur la vraisemblance composite par paire à partir des données d’enquête
Section 2. Vraisemblance complète, vraisemblance par paire et mise en œuvre bayésienne

2.1  Modèle et formule

Comme à la section 1, supposons que Y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3494@  désigne la variable de réponse pour l’unité de deuxième degré j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbaaaa@329C@  dans l’unité de premier degré i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbaaaa@329B@  pour i=1,,n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGUbGaaiilaaaa @3E82@  et j=1,,m. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGTbGaaiOlaaaa @3E7E@  Nous utilisons la lettre minuscule y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG5bWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@34B4@  pour représenter les valeurs réalisées de Y ij . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaac6caaaa@3550@  Supposons que y( n )={ y 1 ,, y n } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH5bGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaGaaGjbVlaaykW7caaI9aGaaGjb VlaaykW7daGadeqaaiaahMhadaWgaaWcbaGaaGymaaqabaGccaaISa GaaGjbVlablAciljaaiYcacaaMe8UaaCyEamaaBaaaleaacaWGUbaa beaaaOGaay5Eaiaaw2haaaaa@4CC8@  désigne les données d’échantillon avec y i = ( y i1 ,, y im ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH5bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8+aaeWabeaacaWG5bWaaSbaaSqaaiaadMga caaIXaaabeaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWG5b WaaSbaaSqaaiaadMgacaWGTbaabeaaaOGaayjkaiaawMcaamaaCaaa leqabaGaaGjcVlaabsfaaaaaaa@476C@  pour i=1,,n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGUbGaaiilaaaa @3E82@  où T désigne la transposée.

Dans un modèle à effets aléatoires plus général, nous pourrions supposer que, en fonction des effets aléatoires u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@33C1@  pour i=1,,n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGUbGaaiilaaaa @3E7C@  les Y ij MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3494@  sont distribuées indépendamment comme suit :

Y ij ~ f y|u ( y ij | u i ; θ y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaysW7ieaacaWF+bGaaGjbVlaadAgadaWgaaWcbaWaaqGa beaacaWG5bGaaGjcVdGaayjcSdGaaGjcVlaadwhaaeqaaOWaaeWabe aadaabceqaaiaadMhadaWgaaWcbaGaamyAaiaadQgaaeqaaOGaaGjc VdGaayjcSdGaaGjbVlaadwhadaWgaaWcbaGaamyAaaqabaGccaaI7a GaaGjbVlaahI7adaWgaaWcbaGaamyEaaqabaaakiaawIcacaGLPaaa aaa@50C9@    pour    j=1,,m,(2.1) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGTbGaaGilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG ymaiaacMcaaaa@49C9@

f y|u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaSbaaSqaamaaeiqabaGaam yEaiaayIW7aiaawIa7aiaayIW7caWG1baabeaaaaa@3975@  est une fonction de densité connue et θ y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4oWaaSbaaSqaaiaadMhaaeqaaa aa@341B@  est le vecteur de paramètres connexe. Ensuite, nous modélisons les effets aléatoires en supposant que les u i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaa aa@33C1@  sont indépendants et identiquement distribués comme suit :

u i ~ f u ( u i | θ u ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVJqaaiaa=5hacaaMe8UaamOzamaaBaaaleaacaWG1baabeaa kmaabmqabaWaaqGabeaacaWG1bWaaSbaaSqaaiaadMgaaeqaaOGaaG jcVdGaayjcSdGaaGjcVlaayIW7caWH4oWaaSbaaSqaaiaadwhaaeqa aaGccaGLOaGaayzkaaaaaa@466D@    pour    i=1,,n,(2.2) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGPbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaiilaiaaysW7caWGUbGaaGilaiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG OmaiaacMcaaaa@49CA@

f u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaSbaaSqaaiaadwhaaeqaaa aa@33BE@  est une fonction de densité connue indexée par le vecteur de paramètres θ u . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWG1b aabeaakiaac6caaaa@3664@

Soit η= ( θ y T , θ u T ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaGjbVlaai2dacaaMe8+aae WabeaacaWH4oWaa0baaSqaaiaadMhaaeaacaqGubaaaOGaaiilaiaa ysW7caWH4oWaa0baaSqaaiaadwhaaeaacaqGubaaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacaqGubaaaaaa@4238@  le vecteur des paramètres du modèle d’intérêt. Dans le cadre fréquentiste, la méthode du maximum de vraisemblance est couramment utilisée pour faire des inférences au sujet de η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  en maximisant la fonction de vraisemblance

L( η )= i=1 n f( y i ;η ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbGaaGPaVpaabmqabaGaaC4Tda GaayjkaiaawMcaaiaaysW7caaI9aGaaGjbVpaarahabaGaaGPaVlaa dAgadaqadeqaaiaahMhadaWgaaWcbaGaamyAaaqabaGccaaI7aGaaG jbVlaahE7aaiaawIcacaGLPaaaaSqaaiaadMgacaaI9aGaaGymaaqa aiaad6gaa0Gaey4dIunakiaaiYcaaaa@4AC5@

f( y i ;η )= { j=1 m i f y|u ( y ij | u i ; θ y ) } f u ( u i | θ u )d u i .(2.3) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaeWabeaacaWH5bWaaSbaaS qaaiaadMgaaeqaaOGaaG4oaiaaysW7caWH3oaacaGLOaGaayzkaaGa aGjbVlaai2dacaaMe8+aa8qaaeaadaGadeqaamaarahabaGaaGPaVd WcbaGaamOAaiaai2dacaaIXaaabaGaamyBamaaBaaameaacaWGPbaa beaaa0Gaey4dIunakiaadAgadaWgaaWcbaGaamyEaiaaiYhacaWG1b aabeaakmaabmqabaWaaqGabeaacaWG5bWaaSbaaSqaaiaadMgacaWG QbaabeaakiaaykW7aiaawIa7aiaaysW7caWG1bWaaSbaaSqaaiaadM gaaeqaaOGaaG4oaiaayIW7caaMe8UaaCiUdmaaBaaaleaacaWG5baa beaaaOGaayjkaiaawMcaaaGaay5Eaiaaw2haaaWcbeqab0Gaey4kIi pakiaaysW7caWGMbWaaSbaaSqaaiaadwhaaeqaaOWaaeWabeaadaab ceqaaiaadwhadaWgaaWcbaGaamyAaaqabaGccaaMi8oacaGLiWoaca aMi8UaaGjbVlaahI7adaWgaaWcbaGaamyDaaqabaaakiaawIcacaGL PaaacaaMe8UaamizaiaadwhadaWgaaWcbaGaamyAaaqabaGccaaIUa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6ca caaIZaGaaiykaaaa@80BA@

Une solution de rechange à la méthode de vraisemblance est l’approche fondée sur la vraisemblance composite (Lindsay, 1988). Plus particulièrement, la méthode fondée sur la vraisemblance par paire a souvent été employée. Soit L ij ( η )=f( y ij ;η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaaykW7daqadeqaaiaahE7aaiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7caWGMbGaaGPaVpaabmqabaGaamyEamaaBaaaleaaca WGPbGaamOAaaqabaGccaaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaa aaa@4770@  la densité de Y ij , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGzbWaaSbaaSqaaiaadMgacaWGQb aabeaakiaacYcaaaa@354D@  déterminée au moyen de

f( y ij ;η )= f y|u ( y ij | u i ; θ y ) f u ( u i | θ u )d u i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbGaaGPaVpaabmqabaGaamyEam aaBaaaleaacaWGPbGaamOAaaqabaGccaaI7aGaaGjcVlaaysW7caWH 3oaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8+aa8qaaeaacaaMc8 UaamOzamaaBaaaleaadaabceqaaiaadMhacaaMc8oacaGLiWoacaaM c8UaamyDaaqabaGcdaqadeqaamaaeiqabaGaamyEamaaBaaaleaaca WGPbGaamOAaaqabaGccaaMc8oacaGLiWoacaaMe8UaamyDamaaBaaa leaacaWGPbaabeaakiaaiUdacaaMi8UaaGjbVlaahI7adaWgaaWcba GaamyEaaqabaaakiaawIcacaGLPaaacaaMe8UaamOzamaaBaaaleaa caWG1baabeaakmaabmqabaWaaqGabeaacaWG1bWaaSbaaSqaaiaadM gaaeqaaOGaaGPaVdGaayjcSdGaaGjbVlaahI7adaWgaaWcbaGaamyD aaqabaaakiaawIcacaGLPaaacaaMe8UaamizaiaadwhadaWgaaWcba GaamyAaaqabaaabeqab0Gaey4kIipakiaac6caaaa@7281@

Pour jk, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGQbGaaGjbVlabgcMi5kaaysW7ca WGRbGaaiilaaaa@391D@  soit L ijk ( η )=f( y ij , y ik ;η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGcdaqadeqaaiaahE7aaiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7caWGMbWaaeWabeaacaWG5bWaaSbaaSqaaiaadMgaca WGQbaabeaakiaaiYcacaaMe8UaamyEamaaBaaaleaacaWGPbGaam4A aaqabaGccaaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaaaaa@4A9F@  la densité conjointe pour les réponses appariées ( Y ij , Y ik ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiaadMfadaWgaaWcbaGaam yAaiaadQgaaeqaaOGaaGilaiaaysW7caWGzbWaaSbaaSqaaiaadMga caWGRbaabeaaaOGaayjkaiaawMcaaiaacYcaaaa@3C0D@  déterminée au moyen de

f( y ij , y ik ;η )= f y|u ( y ij | u i ; θ y ) f y|u ( y ik | u i ; θ y ) f u ( u i | θ u )d u i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbWaaeWabeaacaWG5bWaaSbaaS qaaiaadMgacaWGQbaabeaakiaaiYcacaaMe8UaamyEamaaBaaaleaa caWGPbGaam4AaaqabaGccaaI7aGaaGjbVlaahE7aaiaawIcacaGLPa aacaaMe8UaaGypaiaaysW7daWdbaqaaiaaykW7caWGMbWaaSbaaSqa amaaeiqabaGaamyEaiaaykW7aiaawIa7aiaaykW7caWG1baabeaakm aabmqabaWaaqGabeaacaWG5bWaaSbaaSqaaiaadMgacaWGQbaabeaa kiaaykW7aiaawIa7aiaaysW7caWG1bWaaSbaaSqaaiaadMgaaeqaaO GaaG4oaiaaysW7caWH4oWaaSbaaSqaaiaadMhaaeqaaaGccaGLOaGa ayzkaaGaaGjbVlaadAgadaWgaaWcbaWaaqGabeaacaWG5bGaaGPaVd GaayjcSdGaaGPaVlaadwhaaeqaaOWaaeWabeaadaabceqaaiaadMha daWgaaWcbaGaamyAaiaadUgaaeqaaOGaaGPaVdGaayjcSdGaaGjbVl aadwhadaWgaaWcbaGaamyAaaqabaGccaaI7aGaaGjbVlaahI7adaWg aaWcbaGaamyEaaqabaaakiaawIcacaGLPaaacaaMe8UaamOzamaaBa aaleaacaWG1baabeaakmaabmqabaWaaqGabeaacaWG1bWaaSbaaSqa aiaadMgaaeqaaOGaaGPaVdGaayjcSdGaaGjbVlaahI7adaWgaaWcba GaamyDaaqabaaakiaawIcacaGLPaaacaaMe8UaamizaiaadwhadaWg aaWcbaGaamyAaaqabaaabeqab0Gaey4kIipakiaai6caaaa@8CB5@

Une fonction de vraisemblance par paire marginale peut alors être formulée comme suit :

C( η )= i=1 n j<k L ijk d jk ( η )× L ij d j ( η )× L ik d k ( η ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGdbGaaGPaVpaabmqabaGaaC4Tda GaayjkaiaawMcaaiaaysW7caaI9aGaaGjbVpaarahabaGaaGPaVpaa rafabaGaaGPaVlaadYeadaqhaaWcbaGaamyAaiaadQgacaWGRbaaba GaamizamaaBaaameaacaWGQbGaam4AaaqabaaaaOWaaeWabeaacaWH 3oaacaGLOaGaayzkaaGaaGjbVlaaykW7cqGHxdaTcaaMe8UaaGPaVl aadYeadaqhaaWcbaGaamyAaiaadQgaaeaacaWGKbWaaSbaaWqaaiaa dQgaaeqaaaaakmaabmqabaGaaC4TdaGaayjkaiaawMcaaiaaysW7ca aMc8Uaey41aqRaaGjbVlaaykW7caWGmbWaa0baaSqaaiaadMgacaWG RbaabaGaamizamaaBaaameaacaWGRbaabeaaaaGcdaqadeqaaiaahE 7aaiaawIcacaGLPaaaaSqaaiaadQgacaaMe8UaaGipaiaaysW7caWG RbaabeqdcqGHpis1aaWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaa qdcqGHpis1aOGaaGilaaaa@757D@

d jk , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgacaWGRb aabeaakiaacYcaaaa@355B@   d j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgaaeqaaa aa@33B1@  et d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaa aa@33B2@  sont des poids qui peuvent être précisés par l’utilisateur pour accroître l’efficacité ou faciliter certains aspects précis de la formulation. Une discussion portant sur le choix des poids figure dans Cox et Reid (2004), Lindsay, Yi et Sun (2011), Varin, Reid et Firth (2011), et Yi (2017). Pour limiter notre attention à l’utilisation de vraisemblances par paire marginales, conformément à l’approche de Rao, Verret et Hidiroglou, nous examinons ici le cas avec d j = d k =0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgaaeqaaO GaaGjbVlaai2dacaaMe8UaamizamaaBaaaleaacaWGRbaabeaakiaa ysW7caaI9aGaaGjbVlaaicdaaaa@3E46@  et d jk =1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGKbWaaSbaaSqaaiaadQgacaWGRb aabeaakiaaysW7caaI9aGaaGjbVlaaigdacaGGUaaaaa@39F9@

Si nous revenons au cas spécial du modèle (1.1), supposons que σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyzaaqaai aaikdaaaaaaa@3543@  est connue et prenons η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  qui est formé de θ y =θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4oWaaSbaaSqaaiaadMhaaeqaaO GaaGjbVlaai2dacaaMe8UaeqiUdehaaa@39BC@  et de θ u = σ u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiUdmaaBaaaleaacaWG1b aabeaakiaaysW7caaI9aGaaGjbVlabeo8aZnaaDaaaleaacaWG1baa baGaaGOmaaaakiaac6caaaa@3DF5@  Selon une approche bayésienne, il est nécessaire de choisir une loi a priori pour η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiOlaaaa@33A2@  Nous supposerons une loi a priori dans laquelle θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  et σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  sont indépendantes, avec une loi uniforme soutenant largement θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  et une loi pour σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  qui est presque uniforme dans un intervalle qui est censé contenir le soutien de la fonction de vraisemblance complète pour σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  avec une forte probabilité. Gelman (2006) présente un traitement rigoureux pour choisir une loi a priori de σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  dans le modèle à effets aléatoires (1.1). Il recommande d’utiliser une loi a priori uniforme pour σ u MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba aaaa@3496@  pour des valeurs modérées à grandes de n, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbGaaiilaaaa@3350@  mais une loi a priori demi-Cauchy pour de faibles valeurs de n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbaaaa@32A0@  (voir, en particulier, les sections 3.2 et 5.2 de Gelman, 2006). La loi a priori demi-Cauchy est appuyée sur ( 0, ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiaaicdacaaISaGaaGjbVl abg6HiLcGaayjkaiaawMcaaaaa@37A5@  et est donnée par :

π( σ u ) ( 1+ ( σ u A ) 2 ) 1 ,(2.4) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacqaHdp WCdaWgaaWcbaGaamyDaaqabaaakiaawIcacaGLPaaacaaMe8Uaeyyh IuRaaGjbVpaabmaabaGaaGymaiaaysW7cqGHRaWkcaaMe8+aaeWaae aadaWcaaqaaiabeo8aZnaaBaaaleaacaWG1baabeaaaOqaaiaadgea aaaacaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaGccaGLOaGaay zkaaWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGilaiaaywW7caaM f8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGinaiaacM caaaa@5870@

A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGbbaaaa@3273@  est un hyperparamètre d’échelle.

2.2 Vraisemblance composite par paire non ajustée

Prenons encore une fois le modèle (1.1) et, en supposant que σ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyzaaqaai aaikdaaaaaaa@3543@  est connue, soit η= ( θ, σ u 2 ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaGjbVlaai2dacaaMe8+aae WabeaacqaH4oqCcaaISaGaaGjbVlabeo8aZnaaDaaaleaacaWG1baa baGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaeivaaaaaa a@4108@  le vecteur des paramètres du modèle. Nous voulons comparer le rendement de la loi a posteriori de η MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32EF@  en fonction de l’utilisation de la vraisemblance complète (VC) ou de la vraisemblance par paire (VP), de même que de la loi a posteriori de la vraisemblance par paire ajustée décrite ci-dessous.

D’abord, considérons une situation simple où l’on suppose également que σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  est connue et que seule θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  est inconnue. Soit π( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaaMi8 UaeqiUdeNaaGjcVdGaayjkaiaawMcaaaaa@3B57@  la densité a priori de θ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGUaaaaa@3415@  La densité a posteriori de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  est donc

p VC ( θ|y( n ) )π( θ ) i=1 n f( y i ;θ ) ,(2.5) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb Gaae4qaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGPaVlabg2Hi1kaa ysW7caaMc8UaeqiWda3aaeWabeaacaaMi8UaeqiUdeNaaGjcVdGaay jkaiaawMcaaiaaysW7daqeWbqaaiaaykW7caWGMbGaaGPaVpaabmqa baGaaCyEamaaBaaaleaacaWGPbaabeaakiaaiUdacaaMe8UaeqiUde hacaGLOaGaayzkaaaaleaacaWGPbGaaGypaiaaigdaaeaacaWGUbaa niabg+GivdGccaaISaGaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7ca GGOaGaaGOmaiaac6cacaaI1aGaaiykaaaa@74D5@

où l’indice VC indique qu’elle repose sur la vraisemblance complète. En revanche, nous considérons

L i,VP ( θ )= 1j<km L ijk ( θ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaaISa GaaGjbVlaabAfacaqGqbaabeaakmaabmqabaGaaGjcVlabeI7aXjaa yIW7aiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7daqeqbqaaiaayk W7caWGmbWaaSbaaSqaaiaadMgacaWGQbGaam4AaaqabaGcdaqadeqa aiaayIW7cqaH4oqCcaaMi8oacaGLOaGaayzkaaaaleaacaaIXaGaaG jbVlabgsMiJkaaysW7caWGQbGaaGjbVlaaiYdacaaMe8Uaam4Aaiaa ysW7cqGHKjYOcaaMe8UaamyBaaqab0Gaey4dIunakiaaiYcaaaa@6170@

L ijk ( θ )= f y|u ( y ij | u i ;θ ) f y|u ( y ik | u i ;θ ) f u ( u i )d u i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGmbWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGcdaqadeqaaiaayIW7cqaH4oqCcaaMi8oacaGLOaGa ayzkaaGaaGjbVlaai2dacaaMe8+aa8qaaeaacaaMc8UaamOzamaaBa aaleaadaabceqaaiaadMhacaaMc8oacaGLiWoacaaMc8UaamyDaaqa baGcdaqadeqaamaaeiqabaGaamyEamaaBaaaleaacaWGPbGaamOAaa qabaGccaaMc8oacaGLiWoacaaMc8UaamyDamaaBaaaleaacaWGPbaa beaakiaaiUdacaaMe8UaeqiUdehacaGLOaGaayzkaaGaaGjbVlaadA gadaWgaaWcbaWaaqGabeaacaWG5bGaaGPaVdGaayjcSdGaaGPaVlaa dwhaaeqaaOWaaeWabeaadaabceqaaiaadMhadaWgaaWcbaGaamyAai aadUgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlaadwhadaWgaaWcbaGa amyAaaqabaGccaaI7aGaaGjbVlabeI7aXbGaayjkaiaawMcaaiaays W7caWGMbWaaSbaaSqaaiaadwhaaeqaaOWaaeWabeaacaWG1bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlaadsgacaWG1b WaaSbaaSqaaiaadMgaaeqaaaqabeqaniabgUIiYdGccaGGSaaaaa@7FC9@  puis nous définissons

p VP ( θ|y( n ) )π( θ ) i=1 n L i,VP ( θ ) (2.6) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb GaaeiuaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhadaqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaaysW7caaMc8UaeyyhIuRaaGjbVlaa ykW7cqaHapaCcaaMc8+aaeWabeaacaaMi8UaeqiUdeNaaGjcVdGaay jkaiaawMcaaiaaysW7daqeWbqaaiaaykW7caWGmbWaaSbaaSqaaiaa dMgacaaISaGaaGjbVlaabAfacaqGqbaabeaakmaabmqabaGaaGjcVl abeI7aXjaayIW7aiaawIcacaGLPaaaaSqaaiaadMgacaaI9aGaaGym aaqaaiaad6gaa0Gaey4dIunakiaaywW7caaMf8UaaGzbVlaaywW7ca aMf8UaaiikaiaaikdacaGGUaGaaGOnaiaacMcaaaa@7645@

comme la densité a posteriori « par paire » de θ. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCcaGGUaaaaa@3415@  Nous voulons comparer les variances de θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  dérivées de p VC ( θ|y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb Gaae4qaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@4621@  et de p VP ( θ|y( n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb GaaeiuaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@46DE@  démontrées dans le théorème suivant, dont les calculs sont simples.

Théorème : Supposons que π( θ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaaMi8 UaeqiUdeNaaGjcVdGaayjkaiaawMcaaaaa@3B57@  est une loi a priori uniforme. Alors

Le théorème démontre que, lorsque m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbaaaa@329F@  est supérieure à 2, la variance dérivée de la densité a posteriori « par paire » p VP ( θ|y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb GaaeiuaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7ai aawIcacaGLPaaaaiaawIcacaGLPaaaaaa@462E@  est inférieure à celle de la densité a posteriori p VC ( θ|y( n ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb Gaae4qaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhadaqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaac6caaaa@4548@  Cette constatation semble raisonnable, car la vraisemblance par paire suppose dans les faits que toutes les paires d’observations m( m1 )/ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcgaqaaiaad2gacaaMc8+aaeWabe aacaWGTbGaaGjbVlabgkHiTiaaysW7caaIXaaacaGLOaGaayzkaaGa aGPaVdqaaiaaykW7caaIYaaaaaaa@3F50@  dans chaque grappe sont indépendantes. Cela nous amène à nous pencher sur une version ajustée de p PL ( θ|y( n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGqb GaaeitaaqabaGcdaqadeqaamaaeiqabaGaeqiUdeNaaGPaVdGaayjc SdGaaGPaVlaahMhadaqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaaGaayjkaiaawMcaaiaacYcaaaa@4549@  qui sera examinée par la suite.

Dans le cas où σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  est également inconnue, on peut démontrer qu’un type d’ajustement semblable est nécessaire. En supposant des lois a priori uniformes indépendantes pour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  et σ u 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaGccaGGSaaaaa@360D@  il est simple de démontrer que

p VC ( θ, σ u 2 |y( n ) ) | Σ m | n/ 2 exp[ 0,5tr( Σ m 1 S 0 ) ](2.7) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb Gaae4qaaqabaGcdaqadeqaaiabeI7aXjaaiYcacaaMe8+aaqGabeaa cqaHdpWCdaqhaaWcbaGaamyDaaqaaiaaikdaaaGccaaMc8oacaGLiW oacaaMc8UaaCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGa ayjkaiaawMcaaaGaayjkaiaawMcaaiaaysW7cqGHDisTcaaMe8+aaq WabeaacaaMi8UaaC4OdmaaBaaaleaacaWGTbaabeaakiaayIW7aiaa wEa7caGLiWoadaahaaWcbeqaaiabgkHiTmaalyaabaGaamOBaiaayk W7aeaacaaMc8UaaGOmaaaaaaGccaqGLbGaaeiEaiaabchacaaMe8+a amWabeaacqGHsislcaqGWaGaaeilaiaabwdacaaMc8UaaeiDaiaabk hacaaMc8+aaeWabeaacaWHJoWaa0baaSqaaiaad2gaaeaacqGHsisl caaIXaaaaOGaaC4uamaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawM caaaGaay5waiaaw2faaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaikdacaGGUaGaaG4naiaacMcaaaa@804B@

S 0 = i=1 n ( y i μ m ) ( y i μ m ) T ,μ m =θ 1 m , Σ m = σ e 2 I m + σ u 2 1 m 1 m T , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHtbWaaSbaaSqaaiaaicdaaeqaaO GaaGjbVlaai2dacaaMe8+aaabmaeaacaaMc8+aaeWabeaacaWH5bWa aSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgkHiTiaaysW7caWH8oWaaS baaSqaaiaad2gaaeqaaaGccaGLOaGaayzkaaGaaGPaVlaaykW7daqa deqaaiaahMhadaWgaaWcbaGaamyAaaqabaGccaaMe8UaeyOeI0IaaG jbVlaahY7adaWgaaWcbaGaamyBaaqabaaakiaawIcacaGLPaaadaah aaWcbeqaaiaabsfaaaaabaGaamyAaiaai2dacaaIXaaabaGaamOBaa qdcqGHris5aOGaaGilaiaaysW7caWH8oGaaGjcVpaaBaaaleaacaWG TbaabeaakiaaysW7caaI9aGaaGjbVlabeI7aXjaayIW7caaMe8UaaC ymamaaBaaaleaacaWGTbaabeaakiaaiYcacaaMe8UaaC4OdmaaBaaa leaacaWGTbaabeaakiaaysW7caaI9aGaaGjbVlabeo8aZnaaDaaale aacaWGLbaabaGaaGOmaaaakiaaykW7caWHjbWaaSbaaSqaaiaad2ga aeqaaOGaaGjbVlabgUcaRiaaysW7cqaHdpWCdaqhaaWcbaGaamyDaa qaaiaaikdaaaGccaaMe8UaaCymamaaBaaaleaacaWGTbaabeaakiaa ysW7caWHXaWaa0baaSqaaiaad2gaaeaacaqGubaaaOGaaiilaaaa@873E@   1 m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCymamaaBaaaleaacaWGTb aabeaaaaa@3516@  représente le vecteur unitaire m×1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlabgEna0kaaysW7ca aIXaaaaa@388B@  et I m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHjbWaaSbaaSqaaiaad2gaaeqaaa aa@339D@  désigne la matrice d’identité m×m. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlabgEna0kaaysW7ca WGTbGaaiOlaaaa@3974@

Après quelques calculs algébriques, on peut démontrer que la loi a posteriori de la vraisemblance composite par paire (VP) est

p VP ( θ, σ u 2 |y( n ) ) | Σ 2 | nm( m1 )/ 4 exp[ 0,5tr( Σ 2 1 S 0VP ) ](2.8) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGWbWaaSbaaSqaaiaayIW7caqGwb GaaeiuaaqabaGccaaMc8+aaeWabeaacqaH4oqCcaaISaGaaGjbVpaa eiqabaGaeq4Wdm3aa0baaSqaaiaadwhaaeaacaaIYaaaaOGaaGPaVd GaayjcSdGaaGPaVlaayIW7caWH5bGaaGPaVpaabmqabaGaaGjcVlaa d6gacaaMi8oacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGjbVlaayk W7cqGHDisTcaaMe8UaaGPaVpaaemqabaGaaGjcVlaaho6adaWgaaWc baGaaGOmaaqabaGccaaMi8oacaGLhWUaayjcSdWaaWbaaSqabeaada Wcgaqaaiaad6gacaWGTbGaaGPaVpaabmqabaGaamyBaiaaykW7cqGH sislcaaMc8UaaGymaaGaayjkaiaawMcaaiaaykW7aeaacaaMc8UaaG inaaaaaaGccaqGLbGaaeiEaiaabchacaaMc8+aamWabeaacqGHsisl caqGWaGaaeilaiaabwdacaaMc8UaaeiDaiaabkhacaaMc8+aaeWabe aacaWHJoGaaGjcVpaaDaaaleaacaaIYaaabaGaeyOeI0IaaGymaaaa kiaahofadaWgaaWcbaGaaGimaiaabAfacaqGqbaabeaaaOGaayjkai aawMcaaaGaay5waiaaw2faaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaikdacaGGUaGaaGioaiaacMcaaaa@9226@

où, avec z ijk = ( y ij θ, y ik θ ) T , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH6bWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccaaMe8UaaGypaiaaysW7daqadeqaaiaadMhadaWg aaWcbaGaamyAaiaadQgaaeqaaOGaaGjbVlabgkHiTiaaysW7cqaH4o qCcaaISaGaaGjbVlaaysW7caWG5bWaaSbaaSqaaiaadMgacaWGRbaa beaakiaaysW7cqGHsislcaaMe8UaeqiUdehacaGLOaGaayzkaaWaaW baaSqabeaacaqGubaaaOGaaGilaaaa@524F@

S 0VP = i=1 n j<k z ijk z ijk T . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHtbWaaSbaaSqaaiaaicdacaqGwb GaaeiuaaqabaGccaaMe8UaaGypaiaaysW7daaeWbqaaiaaykW7daae qbqaaiaaykW7caWH6bWaaSbaaSqaaiaadMgacaWGQbGaam4Aaaqaba GccaWH6bWaa0baaSqaaiaadMgacaWGQbGaam4Aaaqaaiaabsfaaaaa baGaamOAaiaaysW7caaI8aGaaGjbVlaadUgaaeqaniabggHiLdaale aacaWGPbGaaGjbVlaai2dacaaMe8UaaGymaaqaaiaad6gaa0Gaeyye Iuoakiaai6caaaa@564D@

Il importe de souligner que Σ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4OdmaaBaaaleaacaaIYa aabeaaaaa@3555@  est définie dans l’équation (2.7) par m=2. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlaai2dacaaMe8UaaG Omaiaac6caaaa@37EE@

En supposant des lois a priori uniformes indépendantes pour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  et σ u 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaGccaGGSaaaaa@360D@  nous considérons la densité a posteriori de σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  avec θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  éliminée par intégration. Pour évaluer les précisions relatives de l’inférence bayésienne dans les deux cas, nous devons utiliser des approximations en raison de la complexité des deux densités a posteriori. Plus précisément, nous comparons la courbure de la log-densité a posteriori et de la log-densité a posteriori par paire pour σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  avec leurs modes. On peut démontrer que le rapport entre le dernier et le premier est égal pour un grand n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbaaaa@32A0@  à

2( m1 ) ( σ e 2 +m σ u 2 ) 2 m ( σ e 2 +2 σ u 2 ) 2 , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaWcaaqaaiaaikdacaaMc8+aaeWabe aacaWGTbGaaGjbVlabgkHiTiaaysW7caaIXaaacaGLOaGaayzkaaGa aGPaVpaabmqabaGaeq4Wdm3aa0baaSqaaiaadwgaaeaacaaIYaaaaO GaaGjbVlabgUcaRiaaysW7caWGTbGaeq4Wdm3aa0baaSqaaiaadwha aeaacaaIYaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaaaa GcbaGaamyBaiaaykW7daqadeqaaiabeo8aZnaaDaaaleaacaWGLbaa baGaaGOmaaaakiaaysW7cqGHRaWkcaaMe8UaaGOmaiabeo8aZnaaDa aaleaacaWG1baabaGaaGOmaaaaaOGaayjkaiaawMcaamaaCaaaleqa baGaaGOmaaaaaaGccaaISaaaaa@5D3F@

ce qui laisse croire que la densité a posteriori par paire non ajustée pour m>2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGTbGaaGjbVlaai6dacaaMe8UaaG Omaaaa@373D@  surestimerait la précision de l’estimation de σ u 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaGccaGGUaaaaa@360F@

Ainsi, pour θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaH4oqCaaa@3363@  et σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  (ou σ u ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGPaGaaiilaaaa@35FD@  le fait de fonder un logarithme du rapport de vraisemblance approximatif pour l’inférence bayésienne directement sur la vraisemblance composite par paire mènerait à des intervalles a posteriori qui sont trop étroits.

Note : À la section 3, le vecteur de paramètres η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4Tdaaa@3481@  correspond à ( θ, σ u ) T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaadaqadeqaaiabeI7aXjaaiYcacaaMe8 Uaeq4Wdm3aaSbaaSqaaiaadwhaaeqaaaGccaGLOaGaayzkaaWaaWba aSqabeaacaqGubaaaaaa@3B27@  (la variance σ u 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaqhaaWcbaGaamyDaaqaai aaikdaaaaaaa@3553@  étant remplacée par l’écart-type σ u ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGPaGaaiilaaaa@35FD@  et une loi a priori demi-Cauchy est utilisée pour σ u . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHdpWCdaWgaaWcbaGaamyDaaqaba GccaGGUaaaaa@3552@  Cependant, la comparaison de la densité a posteriori complète et de la log-densité a posteriori par paire demeurera semblable lorsque les transformations appropriées seront mises en application.

2.3 Ajustement de la courbure pour le logarithme du rapport de vraisemblance par paire

Dans la présente section, nous justifions l’ajustement de la courbure du logarithme du rapport de vraisemblance par paire du point de vue de la théorie des fonctions d’estimation, telle qu’elle est présentée, par exemple, par Jørgensen et Knudsen (2004).

D’abord, nous soulignons que si X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHybaaaa@328E@  a une distribution normale q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGXbaaaa@32A3@  -variée comportant un vecteur moyen μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  et une matrice de variance-covariance Σ, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHJoGaaiilaaaa@338C@  le logarithme de la densité multivariée de X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHybaaaa@328E@  prend la forme suivante :

q 2 log( 2π ) 1 2 log| Σ | 1 2 ( xμ ) T Σ 1 ( xμ ).(2.9) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHsisldaWcaaqaaiaadghaaeaaca aIYaaaaiaaysW7caqGSbGaae4BaiaabEgadaqadeqaaiaayIW7caaI YaGaeqiWdaNaaGjcVdGaayjkaiaawMcaaiaaysW7cqGHsislcaaMe8 +aaSaaaeaacaaIXaaabaGaaGOmaaaacaaMe8UaaeiBaiaab+gacaqG NbGaaGjbVpaaemqabaGaaGjcVlaaho6acaaMi8oacaGLhWUaayjcSd GaaGjbVlaaykW7cqGHsislcaaMe8UaaGPaVpaalaaabaGaaGymaaqa aiaaikdaaaWaaeWabeaacaWH4bGaaGjbVlabgkHiTiaaysW7caWH8o aacaGLOaGaayzkaaWaaWbaaSqabeaacaqGubaaaOGaaC4OdmaaCaaa leqabaGaeyOeI0IaaGymaaaakmaabmqabaGaaCiEaiaaysW7cqGHsi slcaaMe8UaaCiVdaGaayjkaiaawMcaaiaai6cacaaMf8UaaGzbVlaa ywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaiMdacaGGPaaaaa@7B3B@

L’expression dans l’équation (2.9) sous forme de fonction de x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH4baaaa@32AE@  est à son maximum à μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaCiVdaaa@3486@  et la courbure ou la matrice des dérivées secondes (hessienne) est au maximum égal à Σ 1 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHsislcaaMi8UaaC4OdmaaCaaale qabaGaeyOeI0IaaGymaaaakiaac6caaaa@37EB@  Intuitivement, on peut s’attendre à ce que cette correspondance entre la courbure de la log-densité au maximum et l’inverse de la matrice de covariance soit vérifiée approximativement pour une densité multivariée qui est presque normale.

Considérons un modèle dans lequel la distribution de la variable d’observation Y( n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHzbGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaaaaa@39B9@  dépend d’un paramètre vectoriel η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiOlaaaa@33A2@  Soit une observation Y( n )=y( n ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHzbGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8UaaCyE aiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaai aacYcaaaa@4676@  le logarithme du rapport de vraisemblance est désigné l( η;y( n ) )=log( f( y( n );η ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqWItecBcaaMc8UaaGPaVpaabmqaba GaaC4TdiaayIW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaM i8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8 UaaGypaiaaysW7caqGSbGaae4BaiaabEgacaaMc8+aaeWabeaacaWG MbGaaGPaVpaabmqabaGaaCyEaiaaykW7daqadeqaaiaayIW7caWGUb GaaGjcVdGaayjkaiaawMcaaiaaiUdacaaMe8UaaC4TdaGaayjkaiaa wMcaaaGaayjkaiaawMcaaaaa@5E52@  où f MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGMbaaaa@3298@  est la densité de Y( n ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHzbGaaGPaVpaabmqabaGaaGjcVl aad6gacaaMi8oacaGLOaGaayzkaaGaaiOlaaaa@3A6B@  Sous des conditions de régularité (par exemple Lehmann, 1999, chapitre 7), l’EMV η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  est calculée en résolvant le système

s( η;y( n ) )=0,(2.10) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHZbGaaGjbVpaabmqabaGaaC4Tdi aaykW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOB aiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGypai aaysW7caWHWaGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaikdacaGGUaGaaGymaiaaicdacaGGPaaaaa@545D@

s( η;y( n ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHZbGaaGjbVpaabmqabaGaaC4Tdi aaykW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOB aiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaaaaa@430C@  désigne la fonction de score, le gradient de l( η;y( n ) ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqWItecBcaaMe8+aaeWabeaacaWH3o GaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7caWG UbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaac6caaaa@43F3@  Le système (2.10) est une équation d’estimation (vectorielle) sans biais et a une efficacité optimale, présentant une matrice de variance-covariance asymptotique minimale (du point de vue de la différence définie positive) parmi les solutions des systèmes d’équations d’estimation sans biais. Dans les cas ordinaires (par exemple Lehmann, 1999, chapitre 7), la fonction de score satisfait à la deuxième identité de Bartlett (par exemple Lindsay, 1988) :

Var η [ s( η;y( n ) ) ]= E η [ s( η;y( n ) ) ]= E η [ 2 l( η;y( n ) ) ],(2.11) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGccaaMe8+aamWabeaacaWHZbGaaGPaVpaabmqabaGa aC4TdiaaykW7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8 UaamOBaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUfa caGLDbaacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlabgkHiTiaadw eadaWgaaWcbaGaaC4TdaqabaGccaaMc8+aamWabeaacqGHhis0caWH ZbGaaGPaVpaabmqabaGaaC4TdiaaykW7caaI7aGaaGjbVlaahMhaca aMc8+aaeWabeaacaaMi8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaa wIcacaGLPaaaaiaawUfacaGLDbaacaaMe8UaaGPaVlaai2dacaaMe8 UaaGPaVlabgkHiTiaadweadaWgaaWcbaGaaC4TdaqabaGccaaMc8+a amWabeaacqGHhis0daahaaWcbeqaaiaaikdaaaGccqWItecBcaaMc8 +aaeWabeaacaWH3oGaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqa deqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawM caaaGaay5waiaaw2faaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8Ua aGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaIXaGaaiykaaaa@99A5@

où Var désigne une matrice de variance-covariance et MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHhis0aaa@3333@  représente un gradient. De plus, asymptotiquement, au moyen d’une approximation par série de Taylor de s( η ^ ;y( n ) )s( η;y( n ) )=0s( η;y( n ) ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHZbGaaGPaVpaabmqabaGabC4Tdy aajaGaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7 caWGUbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaysW7cq GHsislcaaMe8UaaC4CaiaaykW7daqadeqaaiaahE7acaaMc8UaaG4o aiaaysW7caWH5bGaaGPaVpaabmqabaGaaGjcVlaad6gacaaMi8oaca GLOaGaayzkaaaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8UaaCim aiaaysW7cqGHsislcaaMe8UaaC4CaiaaykW7daqadeqaaiaahE7aca aMc8UaaG4oaiaaysW7caWH5bGaaGPaVpaabmqabaGaaGjcVlaah6ga caaMi8oacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiilaaaa@7330@  nous avons :

η ^ η [ s( η;y( n ) ) ] 1 s( η;y( n ) ).(2.12) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaacaaMe8UaeyOeI0IaaG jbVlaahE7acaaMe8UaeS4qISJaeyOeI0YaamWabeaacqGHhis0caWH ZbGaaGPaVpaabmqabaGaaC4TdiaaykW7caaI7aGaaGjbVlaahMhaca aMc8+aaeWabeaacaaMi8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaa wIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaig daaaGccaWHZbGaaGPaVpaabmqabaGaaC4TdiaaykW7caaI7aGaaGjb VlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaayIW7aiaawIcaca GLPaaaaiaawIcacaGLPaaacaaIUaGaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caGGOaGaaGOmaiaac6cacaaIXaGaaGOmaiaacMcaaaa@70C2@

Ainsi, l’inférence fondée sur la vraisemblance (fréquentiste) standard permet d’estimer la variance-covariance de η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  comme la réciproque de la matrice d’information de Fisher observée :

I= 2 η η T l( η;y( n ) )| η ^ = 2 l( η;y( n ) )| η ^ ,(2.13) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHjbGaaGjbVlaaykW7caaI9aGaaG jbVlaaykW7cqGHsisldaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOm aaaaaOqaaiabgkGi2kaayIW7caWH3oGaaGjcVlabgkGi2kaayIW7ca WH3oWaaWbaaSqabeaacaqGubaaaaaakiaaysW7daabceqaaiablori SjaaysW7daqadeqaaiaahE7acaaMc8UaaG4oaiaaysW7caWH5bWaae WabeaacaaMi8UaamOBaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGL PaaacaaMe8oacaGLiWoadaWgaaWcbaGabC4Tdyaajaaabeaakiaays W7caaMc8UaaGypaiaaysW7caaMc8UaeyOeI0Iaey4bIe9aaWbaaSqa beaacaaIYaaaaOWaaqGabeaacqWItecBcaaMe8+aaeWabeaacaWH3o GaaGPaVlaaiUdacaaMe8UaaCyEaiaaykW7daqadeqaaiaayIW7caWG UbGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaawMcaaiaaykW7aiaawI a7amaaBaaaleaaceWH3oGbaKaaaeqaaOGaaGilaiaaywW7caaMf8Ua aGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaiodaca GGPaaaaa@8B78@

qui est la négative de la matrice hessienne (matrice de courbure) de la fonction du logarithme du rapport de vraisemblance à son maximum.

Dans le cas de l’inférence bayésienne, si π( η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqaHapaCcaaMc8+aaeWabeaacaWH3o aacaGLOaGaayzkaaaaaa@37C2@  est une densité a priori pour η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiilaaaa@33A0@  le logarithme de la densité a posteriori pour η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  est

logπ( η|y( n ) )=logπ( η )+l( η;y( n ) )K( y( n ) ),(2.14) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGSbGaae4BaiaabEgacaaMi8UaaG PaVlabec8aWjaaykW7daqadeqaamaaeiqabaGaaC4TdiaaykW7aiaa wIa7aiaaykW7caWH5bWaaeWabeaacaaMi8UaamOBaiaayIW7aiaawI cacaGLPaaaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2dacaaMe8Ua aGPaVlaabYgacaqGVbGaae4zaiaayIW7caaMc8UaeqiWdaNaaGPaVp aabmqabaGaaC4TdaGaayjkaiaawMcaaiaaysW7caaMc8Uaey4kaSIa aGjbVlaaykW7cqWItecBcaaMc8+aaeWabeaacaWH3oGaaGPaVlaayI W7caaI7aGaaGjbVlaahMhacaaMc8+aaeWabeaacaaMi8UaamOBaiaa yIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8UaeyOeI0IaaG jbVlaadUeacaaMc8+aaeWabeaacaWH5bGaaGPaVpaabmqabaGaaGjc Vlaad6gacaaMi8oacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGilai aaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGa aGymaiaaisdacaGGPaaaaa@92F2@

K( y( n ) )=log{ π( η )f( y( n );η )dη }. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGlbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaaGa ayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8UaaeiBai aab+gacaqGNbGaaGjbVpaacmaabaWaa8qaaeaacaaMc8UaeqiWdaNa aGPaVpaabmqabaGaaC4TdaGaayjkaiaawMcaaiaaykW7caWGMbGaaG PaVpaabmqabaGaaCyEamaabmqabaGaaGjcVlaad6gacaaMi8oacaGL OaGaayzkaaGaaGPaVlaaiUdacaaMe8UaaC4TdaGaayjkaiaawMcaai aaysW7caWGKbGaaGjcVlaahE7acaaMi8oaleqabeqdcqGHRiI8aaGc caGL7bGaayzFaaGaaGOlaaaa@6DC1@

Si la densité a priori est plane dans les zones de vraisemblance appréciable, la densité a posteriori de η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiilaaaa@33A0@  qui quantifie l’inférence au sujet de η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiilaaaa@33A0@  correspond à une densité ayant un mode égal à η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  et la courbure de son logarithme est égale à la négative de la matrice d’information de Fisher, ce qui fait en sorte que la variance-covariance a posteriori de η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  est approximativement égale à la réciproque de I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHjbaaaa@327F@  dans l’équation (2.13). Ainsi, l’estimation bayésienne de η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  est efficace du point de vue fréquentiste; autrement, l’inférence fréquentiste se rapproche de l’inférence bayésienne.

Supposons que, dans le contexte fréquentiste, la fonction de score est remplacée par une autre fonction d’estimation g( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448F@  qui est sans biais dans le sens où elle a une espérance nulle. Voir, par exemple, Lindsay, Yi et Sun (2011). L’estimateur η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  n’a alors plus une efficacité optimale. Cependant, il est convergent, et sa variance peut être estimée au moyen de la méthode delta ou de la linéarisation de la fonction g. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaiOlaaaa@334F@  Nous pourrions vouloir considérer g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  en remplacement d’un vecteur de score ou comme le gradient à l’égard de η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  d’un substitut de la fonction de logarithme du rapport de vraisemblance. En particulier, on pourrait considérer les équations fondées sur la vraisemblance composite en remplacement des équations d’estimation de score.

Une question qui se pose est alors celle de savoir si un substitut de la fonction du logarithme du rapport de vraisemblance comportant le gradient g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  pourrait jouer le rôle du logarithme du rapport de vraisemblance dans l’inférence bayésienne et mener à une loi a posteriori approximativement exacte dans l’équation (2.14) et, dans la négative, s’il existe des moyens fondés sur des principes de le corriger.

Ainsi, supposons que nous avons une solution de rechange à la fonction de score, à savoir la fonction d’estimation g( y( n );η ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaGaaiilaa aa@453F@  qui est sans biais pour η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  en ce sens que :

E η [ g( y( n );η ) ]=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGfbWaaSbaaSqaaiaahE7aaeqaaO WaamWabeaacaWHNbGaaGPaVpaabmqabaGaaCyEaiaaykW7daqadeqa aiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaaykW7caaI7aGaaG jbVlaahE7aaiaawIcacaGLPaaaaiaawUfacaGLDbaacaaMe8UaaGyp aiaaysW7caWHWaGaaGOlaaaa@4C85@

Supposons que la solution η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  de l’équation g( y( n );η )=0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaGaaGjbVl aaykW7caaI9aGaaGjbVlaaykW7caWHWaaaaa@4C3F@  maximise une fonction h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  que nous voudrions considérer comme une solution de rechange à la fonction du logarithme du rapport de vraisemblance; par exemple, h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  pourrait être une fonction du logarithme du rapport de vraisemblance composite par paire et g( y( n );η )=h( y( n );η ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaGaaGjbVl aaykW7caaI9aGaaGjbVlaaykW7cqGHhis0caWGObGaaGPaVpaabmqa baGaaCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkai aawMcaaiaaykW7caaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaacaGG Uaaaaa@5F0C@  Alors h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  serait approximativement égale à la valeur qu’aurait la log-densité a posteriori si la loi a priori était non informative et si nous considérions h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  comme étant un substitut de la fonction du logarithme du rapport de vraisemblance. La variance-covariance a posteriori substitut de η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  serait approximativement l’inverse de la négative de la matrice de courbure de h( y( n );η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGPaVpaabmqabaGaaCyEai aaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawMcaaiaa ykW7caaI7aGaaGjcVlaaysW7caWH3oaacaGLOaGaayzkaaaaaa@448C@  à η ^ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaacaGGUaaaaa@33B2@  Selon la théorie des fonctions d’estimation (par exemple Heyde, 1997), si nous utilisons le même type d’approximation par série de Taylor que dans l’équation (2.12), la variance-covariance fréquentiste de η ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaaceWH3oGbaKaaaaa@3300@  correspond à :

Var η ( η ^ T ) { E η [ g( y( n );η ) ] } 1 Var η [ g( y( n );η ) ] { E η [ g( y( n );η ) ] T } 1 .(2.15) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGccaaMc8+aaeWabeaaceWH3oGbaKaadaahaaWcbeqa aiaabsfaaaaakiaawIcacaGLPaaacaaMe8UaeS4qISJaaGPaVpaacm qabaGaamyramaaBaaaleaacaaMi8UaaC4TdaqabaGcdaWadeqaaiab gEGirlaahEgacaaMc8+aaeWabeaacaWH5bGaaGPaVpaabmqabaGaaG jcVlaad6gacaaMi8oacaGLOaGaayzkaaGaaG4oaiaaysW7caWH3oGa aGjcVdGaayjkaiaawMcaaaGaay5waiaaw2faaiaaykW7aiaawUhaca GL9baadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaqGwbGaaeyyaiaa bkhadaWgaaWcbaGaaC4TdaqabaGccaaMc8+aamWabeaacaWHNbGaaG jbVpaabmqabaGaaCyEaiaaysW7daqadeqaaiaayIW7caWGUbGaaGjc VdGaayjkaiaawMcaaiaaiUdacaaMi8UaaGjbVlaahE7aaiaawIcaca GLPaaaaiaawUfacaGLDbaacaaMe8+aaiWabeaacaWGfbWaaSbaaSqa aiaahE7aaeqaaOWaamWabeaacqGHhis0caWHNbGaaGjbVpaabmqaba GaaCyEaiaaysW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaa wMcaaiaaiUdacaaMe8UaaC4TdaGaayjkaiaawMcaaaGaay5waiaaw2 faamaaCaaaleqabaGaaeivaaaaaOGaay5Eaiaaw2haamaaCaaaleqa baGaeyOeI0IaaGymaaaakiaai6cacaaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaikdacaGGUaGaaGymaiaaiwdacaGGPaaaaa@9E3D@

Si h( y;η ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaGjbVpaabmqabaGaamyEai aaykW7caaI7aGaaGjbVlaahE7aaiaawIcacaGLPaaaaaa@3BCF@  était la fonction du logarithme du rapport de vraisemblance composite par paire, nous obtiendrions, selon le notation de Ribatet, Cooley et Davison :

Var η ( η ^ T ) 1 n [ H( η 0 )J ( η 0 ) 1 H( η 0 ) ] 1 ,(2.16) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGcdaqadeqaaiqahE7agaqcamaaCaaaleqabaGaaeiv aaaaaOGaayjkaiaawMcaaiaaysW7cqWIdjYocaaMc8+aaSaaaeaaca aIXaaabaGaamOBaaaacaaMe8+aamWabeaacaWHibGaaGPaVpaabmqa baGaaC4TdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaays W7caWHkbGaaGPaVpaabmqabaGaaC4TdmaaBaaaleaacaaIWaaabeaa aOGaayjkaiaawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahI eacaaMc8+aaeWabeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaaGccaGL OaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaaGilaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaa ikdacaGGUaGaaGymaiaaiAdacaGGPaaaaa@679F@

η 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaa aa@33D6@  est la valeur réelle de η, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaaMi8UaaC4TdiaacYcaaaa@3531@   nH( η 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbGaaCisaiaaykW7daqadeqaai aahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@38B9@  est inférieure à l’espérance de h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacqGHhis0caWGObaaaa@3420@  et nJ( η 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGUbGaaCOsaiaaykW7daqadeqaai aahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaaaa@38BB@  est égale à la matrice de variance-covariance de g, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbGaaiilaaaa@334D@  le gradient de h. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaiOlaaaa@334C@

Si g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  avait la propriété (analogue à l’équation [2.11]) suivante :

Var η [ g( y( n );η ) ]= E η [ g( y( n );η ) ],(2.17) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGcdaWadeqaaiaahEgacaaMc8+aaeWabeaacaWH5bGa aGPaVpaabmqabaGaaGjcVlaad6gacaaMi8oacaGLOaGaayzkaaGaaG 4oaiaaysW7caWH3oaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaaGjb VlaaykW7caaI9aGaaGjbVlaaykW7cqGHsislcaWGfbWaaSbaaSqaai aahE7aaeqaaOWaamWabeaacqGHhis0caWHNbGaaGPaVpaabmqabaGa aCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawM caaiaaiUdacaaMe8UaaC4TdaGaayjkaiaawMcaaaGaay5waiaaw2fa aiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYa GaaiOlaiaaigdacaaI3aGaaiykaaaa@71B5@

de sorte que J( η 0 )=H( η 0 ), MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHkbGaaGPaVpaabmqabaGaaC4Tdm aaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaaysW7caaMc8Ua aGypaiaaysW7caaMc8UaeyOeI0IaaCisaiaaykW7daqadeqaaiaahE 7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaacaGGSaaaaa@4675@  le côté droit de l’équation (2.15) ou de l’équation (2.16) serait alors approximativement le même que la variance-covariance a posteriori substitut de η. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oGaaiOlaaaa@33A2@

La propriété (2.17) est appelée l’absence de biais d’information d’une fonction d’estimation (Lindsay, 1982). Soit un g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbaaaa@329D@  qui ne satisfait pas l’équation (2.17), pour produire un g * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHNbWaaWbaaSqabeaacaGGQaaaaa aa@3378@  qui correspond approximativement à l’équation (2.17), nous pourrions alors établir 

h * ( y( n );η )=h( y( n ); η ^ +C( η η ^ ) )=h( y( n ); η * )(2.18) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObWaaWbaaSqabeaacaGGQaaaaO WaaeWabeaacaWH5bGaaGPaVpaabmqabaGaaGjcVlaad6gacaaMi8oa caGLOaGaayzkaaGaaG4oaiaaysW7caWH3oaacaGLOaGaayzkaaGaaG jbVlaaykW7caaI9aGaaGjbVlaaykW7caWGObGaaGPaVpaabmqabaGa aCyEaiaaykW7daqadeqaaiaayIW7caWGUbGaaGjcVdGaayjkaiaawM caaiaaiUdacaaMe8UabC4TdyaajaGaey4kaSIaaC4qaiaaykW7daqa deqaaiaahE7acqGHsislceWH3oGbaKaaaiaawIcacaGLPaaaaiaawI cacaGLPaaacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlaadIgacaaM c8+aaeWabeaacaWH5bGaaGPaVpaabmqabaGaaGjcVlaad6gacaaMi8 oacaGLOaGaayzkaaGaaG4oaiaaysW7caWH3oWaaWbaaSqabeaacaGG QaaaaaGccaGLOaGaayzkaaGaaGzbVlaaywW7caaMf8UaaGzbVlaayw W7caGGOaGaaGOmaiaac6cacaaIXaGaaGioaiaacMcaaaa@8382@

pour une matrice constante C, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHdbGaaiilaaaa@3329@  de sorte que le gradient de h * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObWaaWbaaSqabeaacaGGQaaaaa aa@3375@  soit C T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHdbWaaWbaaSqabeaacaqGubaaaa aa@337D@  fois le gradient de h, MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObGaaiilaaaa@334A@  tandis que l’estimation ponctuelle de η MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWH3oaaaa@32F0@  qui maximise h * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWGObWaaWbaaSqabeaacaGGQaaaaa aa@3375@  et sa variance-covariance approximative demeurent inchangées.

Nous voulons obtenir Var η ( g * )= E η g * , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaqGwbGaaeyyaiaabkhadaWgaaWcba GaaC4TdaqabaGcdaqadeqaaiaahEgadaahaaWcbeqaaiaacQcaaaaa kiaawIcacaGLPaaacaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVlabgk HiTiaadweadaWgaaWcbaGaaC4TdaqabaGccqGHhis0caWHNbWaaWba aSqabeaacaGGQaaaaOGaaiilaaaa@4769@  et il peut être démontré que cela équivaut à

H( η 0 )J ( η 0 ) 1 H( η 0 )= C T H( η 0 )C,(2.19) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHibGaaGPaVpaabmqabaGaaC4Tdm aaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaiaaysW7caWHkbGa aGPaVpaabmqabaGaaC4TdmaaBaaaleaacaaIWaaabeaaaOGaayjkai aawMcaamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaahIeacaaMc8+a aeWabeaacaWH3oWaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaa GaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7caWHdbWaaWbaaSqabeaa caqGubaaaOGaaCisaiaaykW7daqadeqaaiaahE7adaWgaaWcbaGaaG imaaqabaaakiaawIcacaGLPaaacaaMe8UaaC4qaiaaiYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdaca aI5aGaaiykaaaa@6569@

qui est un ajustement de la courbure comme celui présenté dans l’étude de Ribatet, Cooley et Davison, où il est suggéré de prendre la solution de l’équation (2.19) qui établit C= M 1 M A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHdbGaaGjbVlaaykW7caaI9aGaaG jbVlaaykW7caWHnbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaCyt amaaBaaaleaacaWGbbaabeaakiaacYcaaaa@3EA7@  où M A T M A =H( η 0 )J ( η 0 ) 1 H( η 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHnbWaa0baaSqaaiaadgeaaeaaca qGubaaaOGaaCytamaaBaaaleaacaWGbbaabeaakiaaysW7caaMc8Ua aGypaiaaysW7caaMc8UaaCisaiaaykW7daqadeqaaiaahE7adaWgaa WcbaGaaGimaaqabaaakiaawIcacaGLPaaacaaMe8UaaCOsaiaaykW7 daqadeqaaiaahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPa aadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWHibGaaGPaVpaabmqa baGaaC4TdmaaBaaaleaacaaIWaaabeaaaOGaayjkaiaawMcaaaaa@52D9@  et M T M=H( η 0 ). MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaGaaiaadaaakeaacaWHnbWaaWbaaSqabeaacaqGubaaaO GaaCytaiaaysW7caaMc8UaaGypaiaaysW7caaMc8UaaCisaiaaykW7 daqadeqaaiaahE7adaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPa aacaGGUaaaaa@4229@


Signaler un problème sur cette page

Quelque chose ne fonctionne pas? L'information n'est plus à jour? Vous ne trouvez pas ce que vous cherchez?

S'il vous plaît contactez-nous et nous informer comment nous pouvons vous aider.

Avis de confidentialité

Date de modification :