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Multiple-frame surveys for a multiple-data-source world 

Sharon L. Lohr1 

Abstract 

Multiple-frame surveys, in which independent probability samples are selected from each of Q sampling 

frames, have long been used to improve coverage, to reduce costs, or to increase sample sizes for 

subpopulations of interest. Much of the theory has been developed assuming that (1) the union of the frames 

covers the population of interest, (2) a full-response probability sample is selected from each frame, (3) the 

variables of interest are measured in each sample with no measurement error, and (4) sufficient information 

exists to account for frame overlap when computing estimates. After reviewing design, estimation, and 

calibration for traditional multiple-frame surveys, I consider modifications of the assumptions that allow a 

multiple-frame structure to serve as an organizing principle for other data combination methods such as mass 

imputation, sample matching, small area estimation, and capture-recapture estimation. Finally, I discuss how 

results from multiple-frame survey research can be used when designing and evaluating data collection 

systems that integrate multiple sources of data. 

 

Key Words: Combining data; Data integration; Dual-frame survey; Indirect sampling; Mass imputation; 

Misclassification; Survey design; Undercoverage. 

 

 

1. Introduction 
 

Throughout his 33-year career at the Census Bureau and subsequent 32-year career at Westat, Joe 

Waksberg repeatedly relied on multiple data sources to improve the quality of estimates while reducing 

costs. He used external data sources to evaluate coverage in the U.S. decennial census (Marks and 

Waksberg, 1966; Waksberg and Pritzker, 1969), to calibrate survey weights, and to improve efficiency or 

oversample rare populations when designing surveys (Hendricks, Igra and Waksberg, 1980; Cohen, 

DiGaetano and Waksberg, 1988; DiGaetano, Judkins and Waksberg, 1995; Waksberg, 1995; Waksberg, 

Judkins and Massey, 1997b). 

On several occasions, Waksberg integrated data from two or more surveys directly in order to improve 

coverage or to obtain larger sample sizes for subpopulations (Waksberg, 1986; Burke, Mohadjer, Green, 

Waksberg, Kirsch and Kolstad, 1994; Waksberg, Brick, Shapiro, Flores-Cervantes and Bell, 1997a). In 

these multiple-frame surveys, independent samples were selected from sampling frames that together were 

thought to cover all, or almost all, of the target population. The data from the samples were combined to 

obtain estimates for the population as a whole and for subpopulations of interest. Waksberg approached 

the design of these multiple-frame surveys from the perspective of controlling both sampling and 

nonsampling errors, and found that using multiple frames met the challenges of producing reliable 

estimates in the face of increased data collection costs (with higher nonresponse for less expensive 

collection methods) and incomplete frame coverage. 
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Statistical agencies and survey organizations today face the same types of challenges that Waksberg 

addressed ‒ declining response rates and increasing costs of survey data collection ‒ but at an intensified 

level. At the same time, the emergence of new data sources provides opportunities for obtaining 

information about parts of populations of interest ‒ sometimes with amazing rapidity. Many organizations 

are now using or researching methods for integrating data from multiple sources to improve the accuracy 

or timeliness of population estimates. 

I feel tremendously honored to be asked to give the Waksberg lecture, and in this paper I want to build 

on Waksberg’s insights about multiple-frame surveys by discussing their use as an organizing principle 

for combining information from multiple sources. Traditionally, multiple-frame surveys have integrated 

data from Q  probability samples 1, , QS S  that are selected independently from Q  frames. But the 

general structure can be expanded to include frames that consist of administrative records or 

nonprobability samples. The structure can also be expanded to situations in which some data sources do 

not measure the variables of interest y  but they measure covariates x  that can be used to predict .y  

A number of authors have reviewed methods for combining data from multiple sources; see, for 

example, Citro (2014), Lohr and Raghunathan (2017), National Academies of Sciences, Engineering, and 

Medicine (2017, 2018), Thompson (2019), Zhang and Chambers (2019), Beaumont (2020), Yang and 

Kim (2020), and Rao (2021). The sources include traditional probability samples, administrative data sets, 

sensor data, social network data, and general convenience samples. 

Although the types of data (and the speed with which some types of data can be collected) have 

changed in recent years, the basic structure of the problem for combining data sources is unchanged from 

the earliest dual-frame surveys. Section 2 discusses the structure and assumptions for traditional multiple-

frame surveys through the example of the National Survey of America’s Families, a dual-frame survey 

that Waksberg worked on during the 1990s. Section 3 reviews methods for calculating estimates of 

population characteristics from traditional multiple-frame surveys where all assumptions are met, 

including the special case in which one sample is a census of a subset of the population. Section 4 then 

discusses how the multiple-frame structure incorporates many of the methods currently used for 

combining data, sometimes with relaxed assumptions. Section 5 addresses issues for designing data 

collection systems that control sampling and nonsampling errors, with a discussion of possible future 

directions for research. 

 
2. Classical multiple-frame survey structure and assumptions 
 

First, let’s look at an example of what I shall call a “classical” multiple-frame survey ‒ a survey that is 

designed to take probability samples from each of a fixed number of frames ‒ and define the notation and 

assumptions that will be used to describe estimators and their properties. 
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2.1 National Survey of America’s Families 
 

The goal of the 1997 National Survey of America’s Families (NSAF) was to provide information on 

social and economic characteristics of the U.S. civilian noninstitutional population under age 65, with 

emphasis on obtaining reliable estimates for persons and families ‒ particularly families with 

children ‒ below 200 percent of the poverty threshold. Estimates were desired for the nation as a whole; in 

addition, separate estimates were desired for 13 states that were purposively selected to vary by 

geographic region, dominant political party, size, and fiscal capacity. 

To meet the precision requirements for estimates, it was desired to have an effective sample size of 

about 800 poor children in each state. This goal could have been met by taking a household sample from 

an area frame. Waksberg et al. (1997b) had determined that screening households for income and 

subsampling nonpoor households would be the most cost-effective way of achieving the desired sample 

sizes in an area-frame sample, but the cost would be high because only about one in eight families was 

expected to have children and be under 200 percent of the poverty threshold. 

Screening costs would be greatly reduced if the survey could be conducted by telephone using random 

digit dialing (RDD). But Current Population Survey data indicated that about 20 percent of families living 

in poverty did not have telephones, so the RDD frame was expected to have substantial undercoverage of 

the target population. Moreover, households under 200 percent of poverty without telephones might have 

different income levels or health characteristics than households under 200 percent of poverty with 

telephones. 

Thus, a sample from the area frame would provide high coverage but also come with unacceptably 

high costs. An RDD survey would have lower costs but would have substantial undercoverage of the 

population of interest. Waksberg et al. (1997a) used a dual-frame survey, with one sample from the area 

frame and a second sample chosen independently from the RDD frame, to take advantage of the lower 

costs of an RDD sample yet also cover nontelephone households. Figure 2.1(a) shows the structure of the 

two frames.  

To further reduce costs, Waksberg et al. (1997a) excluded census block groups with few nontelephone 

households from the area frame; according to the 1990 census, the excluded areas accounted for less than 

ten percent of the nontelephone households in each state. With this exclusion, the area and RDD frames 

each contained households not found in the other frame, as shown in Figure 2.1(b). 

Households with telephones that were in the non-excluded block groups were present in both frames. If 

a probability sample were taken from each frame, households in that overlap (the dark shaded area in 

Figure 2.1(b)) could be selected in both samples. The survey designers could either conduct the interview 

with all households in each sample and then deal with the multiplicity in the estimation (an overlap 

design), or screen out the households in one of the frames that were also in the other frame (a screening 

design). 

 



232 Lohr: Multiple-frame surveys for a multiple-data-source world 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 

Figure 2.1 Frame coverage for the NSAF. The dark shaded area is in both frames. 

 

 

 

 

 

 

 

 

 

 

 

 

Waksberg and his colleagues chose to use screening. Households in the area sample were asked if they 

had a telephone, and only those without telephones were administered the detailed interview. The detailed 

interview was lengthy and expensive to conduct; screening out the telephone households during a short 

interview saved resources that could be used to increase the number of nontelephone households in the 

sample. Households with telephones were sampled only through the RDD frame; households in the RDD 

sample with no children and above 200 percent of the poverty line were subsampled. Because a screening 

survey was used, the combined sample from the two surveys was a stratified sample, and resources were 

allocated to the two samples using stratified sampling formulas that accounted for the higher cost of 

sampling from the area frame. 

 
2.2 Notation and assumptions for multiple-frame surveys 
 

In classical multiple-frame surveys such as the NSAF, a number of assumptions are needed to be able 

to obtain unbiased estimates of population characteristics along with confidence intervals having 

approximately correct coverage probabilities. 

Suppose there are Q  frames. A population domain d  is defined by the intersections of the frames: 

domain {1, 3, 4}, for example, contains the population units that are in Frames 1, 3, and 4 but not in any 

of the other frames. Let D  denote the set of possible domains; depending on the overlap of units, D  can 

contain between 1 and 2 1Q −  domains. Figure 2.2 shows three examples of frame relationships. When 

Frame 1 is complete but Frame 2 is incomplete as in Figure 2.2(a),  = {1},{1, 2} ;D  any population unit 

in Frame 2 is also in Frame 1. For an overlapping dual-frame survey such as that in Figure 2.2(b), 

 = {1},{2},{1, 2} .D  
 

                   (a) Full Area Frame                                                    (b) Restricted Area Frame                                                                                                                            
 
Area Frame                                                                   Area Frame, High Nontelephone Rate 
 
 
                RDD Frame and Area Frame                                       RDD Frame and Area Frame                                                                           
 
 
 
 
 
 
 
                                                                                                      RDD Frame Alone 
 
                                                                                       Not Covered 
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Figure 2.2 Three frame structures. (a) Frame 1 has complete coverage and Frame 2 is incomplete. (b) 

Frames 1 and 2 are both incomplete but overlap. (c) Frame 1 is complete; Frames 2, 3, and 4 are 

all incomplete but Frames 3 and 4 overlap. 

 

 

 

 

 

 

 

 

 

 

 

Define ( ) = 1i d  if unit i  is in domain d  and 0 otherwise, and let ( ) =1q

i  if unit i  is in Frame q  and 

0 otherwise. Frame q  has population size ( )qN  and domain d  has population size ;dN  these sizes may 

be known or unknown. The target population has a total of N  units. 

The following assumptions are typically made in order to draw inferences from classical multiple-

frame surveys. 
 

(A1) The union of the Q  frames covers the target population.  

(A2) The sample qS  taken from Frame q  is a probability sample where unit i  has probability 
( )q

i  of being in .qS  Let ( )q

iw  represent the final weight for unit i  in ;qS  options for ( )q

iw  

include the design weight ( )1 ,q

i  the Hájek weight 
( ) ( ) ( )ˆ[ ]q q q

iN N   with 
( ) ( )ˆ = 1 ,

q

q q

jj S
N 

  or a nonresponse-adjusted weight.  

(A3) The samples 1, , QS S  are selected independently.  

(A4) The domain membership of each unit i  in ,qS   ( ), ,i d d D   is known.  

(A5) The estimator of the population total in domain d  from ,qS  ( ) ( )ˆ = ( ) ,
q

q q

d i i ii S
Y d w y

  is 

approximately unbiased for 
=1

= ( ) ,
N

d i ii
Y d y  for all Frames q  containing domain d  and 

for all variables .y  

(A6) There is no measurement error. If unit i  is in Frame q  and Frame ,q  iy  will have the same 

value if measured in qS  as it will if measured in .qS   

 

These are strong assumptions; some relaxation of individual assumptions is possible for specific 

estimators, as discussed in Section 3. But they are weaker than assumptions needed for some of the other 

possible data integration methods. Record linkage, for example, has an implicit assumption that unit i  in 

Frame q  can be matched with a specific unit in Frame .q  For multiple-frame surveys, one must know 

                         (a)                                                            (b)                                                          (c) 
                    Frame 1                                                                                                                  Frame 1  

 
                                                                          Frame 1                                                                
                         Frame 2                                                         Frame 2                                              Frame 2 
 
 
 
                                                                                                                                         Frame 3   
                                                                                                                                                                        Frame 4 



234 Lohr: Multiple-frame surveys for a multiple-data-source world 

 

 

Statistics Canada, Catalogue No. 12-001-X 

whether a unit sampled from Frame q  is also in other frames, but does not need to identify the 

matched unit. 

 
2.3 Were the assumptions met in the NSAF? 
 

Survey assumptions are rarely met exactly in practice, and the NSAF was no exception. Assumption 

(A1) was not met because of the exclusion of block groups with high telephone ownership. The sample 

from the area frame yielded fewer nontelephone households than expected, perhaps because of 

measurement error in the 1990 census or population changes since 1990. In addition, post-survey 

investigations using data from the 1997 Current Population Survey indicated that the block groups 

excluded from the frame may have had more nontelephone households than anticipated (Waksberg, Brick, 

Shapiro, Flores-Cervantes, Bell and Ferraro, 1998). 

Although independent probability samples were taken from each frame, each sample had nonresponse. 

The estimated response rates for children were 65 percent in the RDD sample and 84 percent in the area 

sample. The weighting procedure attempted to address potential bias from undercoverage and 

nonresponse. The weights of the nontelephone households in the area sample were ratio-adjusted to 

attempt to compensate for undercoverage from the block group exclusions. Nonresponse-adjusted weights 

were calculated separately for the area- and RDD-frame samples, and then the combined samples were 

poststratified to Census Bureau control totals (Brick, Shapiro, Flores-Cervantes, Ferraro and Strickler, 

1999). Groves and Wissoker (1999) found little evidence of residual bias in their nonresponse bias 

analysis; one of the few differences they reported was that households in the RDD sample that required 

more calls for contact, and households in a subsample taken of nonrespondents, were slightly less likely to 

be receiving food assistance. 

In the NSAF, the domain membership was determined by asking household respondents in the area 

sample if they had a working telephone. If that question was answered accurately, then Assumption (A4) 

was met. The investigators attempted to reduce measurement error for Assumption (A6) by having 

centralized telephone interviewers conduct all of the detailed interviews; households in the area frame 

were interviewed over a cellular telephone brought by the field representative. Because interviews in 

domain {1, 2}  were obtained only from the RDD sample, however, no data are available for evaluating 

possible measurement error or relative nonresponse bias for the two samples. 

Waksberg had used dual-frame surveys several times prior to the NSAF, mostly to increase sample 

sizes when sampling rare populations, but he recommended using them only when a simpler design would 

not meet the survey objectives. He wrote: “The price is additional complexity in the sampling operations 

and the possibility of error if the matching of the two frames is not done carefully.... My instincts are that 

a more complex scheme should not be used unless there is a reasonably good pay-off” (Waksberg, 1986). 

Was the extra complication and expense of the dual-frame design worth the effort in the NSAF? 

Because telephone households were screened out of the area sample, and because the yield of 

nontelephone households was less than anticipated, only 1,488 of the total of 44,461 interviewed 
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households came from the area sample. But because of the high poverty rate of the nontelephone 

households, the estimated percentage of children in households under 200 percent of the poverty threshold 

was about 3.6 percentage points higher with the full sample than with the RDD sample alone. Even though 

for many variables there was only a small difference between the full-sample estimate and the RDD-

sample estimate, that difference could not have been evaluated without the area sample. 

 
3. Estimation in classical multiple-frame surveys 
 

The main problem for inference in a classical multiple-frame survey ‒ one that is designed so as to 

satisfy Assumptions (A1) to (A6) ‒ is how to account for potential overlap among the samples. In the 

NSAF, telephone households were screened out of the area sample, but in many applications screening is 

infeasible or it is more cost-effective to obtain data from the full sample selected from each frame. When 

separate surveys or data sources are not designed with data combination in mind, the overlap depends on 

the coverage of the individual data sources. 

With an overlap design, units that are contained in more than one frame have multiple chances for 

being selected in the sample. An estimator constructed by summing the weighted observations from each 

of the Q  samples,  

 ( )

concat

=1

ˆ = ,
q

Q
q

i i

q i S

Y w y


   

will be a biased estimator of 
=1

=
N

ii
Y y  because the individual sample weights do not reflect the 

multiple chances of selection for units in overlap domains. Methods for estimating population totals thus 

typically multiply the survey weights ( )q

iw  by a multiplicity adjustment ( )q

im  that satisfies 
( ) ( )

=1
1

Q q q

i iq
m   for each unit ,i  resulting in the estimator  

 ( ) ( ) ( )

=1 =1

ˆ = ,
q q

Q Q
q q q

i i i i i

q i S q i S

Y w m y w y
 

=   (3.1) 

where ( ) ( ) ( )=q q q

i i iw w m  is the multiplicity-adjusted weight. 

 

3.1 Hartley’s composite estimator 
 

Hartley (1962) was the first author to present a rigorous theory of estimation in dual-frame surveys 

where units in the overlap domain {1, 2} might be sampled from both frames. This four-page paper made 

several important contributions. First, Hartley defined the problem in statistical terms. Second, he 

proposed an optimal estimator for combining the estimates from the two surveys. And third, he studied the 

design problem of allocating the resources to the different samples, with a joint consideration of the 

allocation and the estimator that minimize the variance of the estimated population total subject to a fixed 

cost. 

Hartley (1962) estimated the population total 
=1

=
N

ii
Y y  by  
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 (1) (2) (1) (2)

{1} {2} {1, 2} {1,2}
ˆ ˆ ˆ ˆ ˆ( ) = (1 ) .Y Y Y Y Y  + + + −  (3.2) 

He proposed choosing   to minimize ˆ( ) .V Y     This resulted in the value  

 
( ) ( ) ( )

( ) ( )

(2) (2) (2) (1) (1)

{1, 2} {2} {1, 2} {1} {1, 2}

(1) (2)

{1, 2} {1, 2}

ˆ ˆ ˆ ˆ ˆCov , Cov ,
= .

ˆ ˆH

V Y Y Y Y Y

V Y V Y


+ −

+
 (3.3) 

The estimator in (3.2) is of the form in (3.1) with multiplicity weight adjustments  

 ( ) ( ) ( ) ( ) ( )(1) (2)= {1} {1,2} , = {2} {1, 2} 1 .i i i i i im m     + + −   

If it is desired to use the optimal compositing factor ,H  estimators may be substituted for the unknown 

covariances in (3.3). Because H  depends on covariances involving ,y  however, the optimal multiplicity 

adjustment may differ for different variables, giving a different set of weights for each. In addition, H  

can be less than 0 or greater than 1, possibly resulting in negative weights for some observations. These 

features carry over to the Q -frame generalization of Hartley’s optimal estimator studied by Lohr and Rao 

(2006). 

The estimator in (3.2), with fixed value of ,  is approximately unbiased for Y  under Assumption 

(A5). If the estimated domain totals and the estimates of the covariances in (3.3) are consistent, then the 

estimator with ˆ
H  is consistent for .Y  Saegusa (2019) studied Hartley’s estimator from the perspective of 

empirical process theory, establishing a law of large numbers and a central limit theorem when 1S  and 2S  

are both simple random samples. 

Hartley’s application was in agriculture, and many of the early applications of dual-frame surveys were 

for agriculture or business surveys (Kott and Vogel, 1995), where list frames existed that contained the 

larger business or agricultural operations. A dual-frame survey with a disproportionately larger sample 

from the list frame reduced costs because (1) obtaining data from an operation in the list frame was often 

less expensive than obtaining data from an operation in the area frame and (2) oversampling the list frame 

was analogous to oversampling high-variance strata in stratified sampling and thus resulted in greater 

efficiency. 

Later, as cellular telephones became more prevalent, concern about bias from using landline telephone 

samples alone led to use of dual-frame telephone surveys, with one sample from a landline frame and a 

second sample from a cellular telephone frame. Here, both frames are incomplete but together cover the 

population of persons with telephones. For these surveys, an important consideration is how to deal with 

persons having both kinds of telephones. The next section reviews choices for the compositing. 

 
3.2 Multiplicity weighting adjustments 
 

Hartley’s optimal estimator, with ,H  uses a different set of weights for each response variable, which 

can lead to internal inconsistencies among estimators. Various authors have proposed estimators that use a 



Survey Methodology, December 2021 237 

 

 

Statistics Canada, Catalogue No. 12-001-X 

single set of weights for all analyses. Here, I briefly list some of the multiplicity adjustment factors ( )q

im  

that result in one set of weights for the general estimator of the population total in (3.1). The resulting 

estimators are approximately unbiased for the population total Y  under Assumptions (A1), (A4), and 

(A5). These and additional estimators are reviewed in detail by Lohr (2011), Lu, Peng and Sahr (2013), 

Ferraz and Vogel (2015), Arcos, Rueda, Trujillo and Molina (2015), and Baffour, Haynes, Western, 

Pennay, Misson and Martinez (2016). 

 

• Screening estimator, with ( )
1(1) (2) (1) ( ) ( )

=1
=1, =1 , , = 1 .

QQ q

i i i i iq
m m m 

−
− −  A unit sampled 

from Frame q  is discarded if it is in any of Frames 1, , 1.q −  This estimator is automatically 

used with a screening design such as the NSAF; with an overlap design, its use means that some 

data observations are thrown away.  

• Multiplicity estimator, with ( ) =1/q

im (number of frames containing unit )i  
( )

=1
= 1 .

Q q

iq
  In a 

dual-frame survey, this gives the estimator in (3.2) with = 1 2.  Mecatti (2007) noted that 

with the multiplicity estimator, Assumption (A4) can be replaced by the slightly less restrictive 

assumption that 
( )

=1

Q q

iq
  is known for each sampled unit .i  

The multiplicity estimator can also be viewed as a special case of the generalized weight share 

method (Deville and Lavallée, 2006) using the standardized link matrix, since the number of 

links to population unit i  is the number of frames containing that unit.  

• Single-frame estimator (Bankier, 1986; Kalton and Anderson, 1986), which considers the 

observations as if they had been sampled from a single frame. If inverse probability weights are 

used, with ( ) ( )=1 ,q q

i iw   then 
( ) ( ) ( ) ( )

=1
= .

Qq q f f

i i i if
m     This estimator requires that the 

inclusion probability for unit i  be known for all Q  frames, including frames from which the 

unit was not sampled. The multiplicity adjustments consider the inclusion probabilities for the 

designs but not the relative variances, which are affected by clustering and stratification in the 

individual samples. 

• Effective sample size (ESS) estimator (Chu, Brick and Kalton, 1999; O’Muircheartaigh and 

Pedlow, 2002), where the domain estimator from each frame is weighted by the relative 

effective sample size from that frame. Let ( )qn  be the sample size from Frame q  and let ( )deff q  

denote the design effect for a key variable or a smoothed design effect for multiple variables. 

The effective sample size for qS  is ( ) ( ) ( )= deffq q qn n  and the multiplicity adjustment for unit 

i  is  

 
( )

( )

( ) ( )

=1

= .
q

q

i Q f f

if

n
m

n
  

This estimator considers the relative variances of estimators from different samples and is often 

more efficient than the screening, multiplicity, and single-frame estimators. 
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The pseudo-maximum-likelihood (PML) estimator of Skinner and Rao (1996) is of this type 

when the frame sizes ( )qN  and domain sizes dN  are unknown; Skinner and Rao (1996) 

recommended using the design effect for estimating {1, 2}N  to establish the effective sample size 

for the dual-frame case. The PML estimator is asymptotically equivalent to an ESS estimator 

that poststratifies to the domain sizes dN  when those are known; when the frame sizes ( )qN  are 

known but not {1, 2},N  the PML estimator is asymptotically equivalent to calibrating the ESS 

estimator to estimated domain sizes calculated from the pseudo-likelihood function. 

 

Approximately unbiased estimates of the variances for all estimators considered in this section can be 

derived under Assumptions (A1) to (A6) and additional regularity conditions that ensure consistency of 

estimated totals and variance estimators from the Q  samples. Skinner and Rao (1996) studied 

linearization variance estimators; Chauvet (2016) derived linearization variance estimators for the French 

housing survey that accounted for the variance reduction due to high sampling fractions from some of the 

frames. Lohr and Rao (2000) developed theory for using the jackknife with multiple frames, and Lohr 

(2007) and Aidara (2019) considered bootstrap variance estimators. These methods rely on Assumption 

(A3) of independent samples; Chauvet and de Marsac (2014) considered the situation in which the 

samples share primary sampling units but independent samples are taken at the second stage of the design. 

Calculating linearization variance estimates requires special software that implements the partial 

derivative calculations for the multiple frames. Replication variance estimation methods such as jackknife 

and bootstrap, however, can be calculated in standard survey software by creating a single data set that 

contains all the concatenated observations and weights ( )q

iw  from the Q  samples and creating replicate 

weights using standard methods for stratified multistage samples (Metcalf and Scott, 2009). The 

concatenated data set has 
=1

Q

qq
H  strata, where qH  is the number of strata for ;qS  observations from 

different samples are in different strata. The replicate weight methods also can include effects of 

calibration (see Section 3.3) on the variance. 

Of course, many applications call for estimates of quantities other than population totals, and the 

multiple-frame theory applies to parameters that are smooth functions of domain totals. A different 

compositing factor may be desired when quantities other than population totals are of primary interest, 

however, and there may be special considerations for other types of analyses. Other types of statistical 

analyses that have been studied in the multiple-frame setting include linear (Lu, 2014b) and nonparametric 

(Lu, Fu and Zhang, 2021) regression, logistic regression with ordinal data (Rueda, Arcos, Molina and 

Ranalli, 2018), empirical distribution functions (Arcos, Martínez, Rueda and Martínez, 2017), gross flow 

estimation with missing data (Lu and Lohr, 2010), and chi-squared tests (Lu, 2014a). 

Lu (2014b) noted that linear regression parameters estimated using the multiplicity-adjusted weights 

are the finite population regression coefficients B  that minimize the sum of squares 2

=1
( ) .

N T

i ii
y − x B  

However, one of the reasons for taking a multiple-frame survey, rather than using an incomplete frame, is 

a concern that population characteristics may differ across domains. Lu (2014b) suggested examining the 
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residuals separately by domain and also fitting separate regression models by domain to assess the 

appropriateness of the regression model. 
 

3.3 Calibration 
 

The PML estimator is calibrated to population counts that are known for the frames and domains. In a 

dual-frame survey where (1)N  and (2)N  are known, 
2 ( ) ( ) ( ) ( )

, PML=1
=

q

q q f f

i i iq i S
w m N

   for =1, 2.f  If the 

overlap domain size {1, 2}N  is also known, the PML estimator is calibrated to all three domain sizes. 

Skinner (1991) used calibration with the single-frame estimator, raking the estimator to the population 

frame counts. 

Ranalli, Arcos, Rueda and Teodoro (2016) studied general calibration theory for dual-frame surveys. 

They assumed that a vector of auxiliary information x  is available with known population totals 

=1
= ,

N

iiX x  and calculated multiple-frame generalized regression weights as  

 

1

( ) ( ) ( )

=1

ˆ= 1 ( ) ,
f

Q
q q T f T

i i k k k k i i

f k S

c w w 

−



  
 + −  

    

 X X x x x  (3.4) 

where k  is an arbitrary constant and 
( )

=1

ˆ =
f

Q f

k kf k S
w

 X x  estimates X  using the multiplicity-

adjusted weights. Under regularity conditions, they showed that for the dual-frame estimator in (3.2) with 

fixed ,  the variance of the generalized regression estimator 
2 ( )

GR =1

ˆ =
q

q

i iq i S
Y c y

   is approximated by  

 
2

( )

GR

=1

ˆ( ) ( ) ,
q

q T

i i i

q i S

V Y V w y


 
 − 

  
 x B  (3.5) 

where ( )
1

=1 =1
= .

N NT

i i i i i ii i
y 

−

 B x x x  The variance of the estimator depends on the residuals from the 

regression model just as in the single-frame case. 

Särndal and Lundström (2005) distinguished among types of auxiliary information that can be used in 

calibration. InfoU is information available at the population level. A vector *
x  can be considered as InfoU 

if the population total * *

=1
=

N

iiX x  is known and *
x  is observed for every respondent in the sample. 

InfoS is information available at the level of the sample, but not at the population level. Vector o
x  is InfoS 

if it is known for every member of the sample, both respondents and nonrespondents, but 
=1

N o

i x  is 

unknown. 

In a multiple-frame survey, the variables available for InfoU and InfoS may differ across frames. For 

the NSAF, little auxiliary information was known for nonrespondents in the RDD sample but address-

related information (for example, characteristics of the block group) was known for all members of the 

area-frame sample. The reverse may be true for a dual-frame survey in which Frame 1 is an area frame 

and Frame 2 is a list frame. The list frame may have rich information that can be used for weighting class 

adjustments or calibration, while the auxiliary information for the area frame may be restricted to 

information measured in the survey for which population totals are known from an external source such as 

a census or population register. 
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Ranalli et al. (2016) allowed for differing InfoU information across the frames; some of the auxiliary 

variables may be known for units from all samples and for the full population, while other variables may 

be of the form * ( )= q

i i ix x  with total * ( )

=1
= ,

N q

i ii
X x  the total of variable x  in Frame .q  Calibration to 

frame counts ( )qN  is thus a special case of the general calibration theory. 

But the differing amounts of information for the frames may also have a bearing on the multiplicity 

adjustments. Suppose that Frame 2 has rich auxiliary information for calibration while Frame 1 has little 

information. Calibrating the weights (2)

iw  before compositing may increase the relative effective sample 

size from 2S  and thus increase the value of ( )(2) (1) (2)n n n+  that would be used for the ESS estimator. 

Haziza and Lesage (2016) argued that a two-step weighting procedure offers several advantages for 

single-frame surveys with nonresponse. The first step divides the design weight for unit i  by its estimated 

response propensity (often calculated from InfoS information) and the second step calibrates the 

nonresponse-adjusted weights to population control totals (available from InfoU information). When there 

is substantial nonresponse, weighting adjustment factors from step 1 are often much higher than those 

from step 2; if the response propensity model is correct, the weighting adjustments in step 2 converge to 1 

as .n →  The two-step procedure is thus more robust toward misspecification of the calibration model. 

The same considerations apply for multiple-frame surveys. A two-step procedure, where step 1 adjusts 

the samples separately for nonresponse and step 2 calibrates the combined samples, provides robustness to 

the calibration model. Suppose that 1S  has full response; 2S  has nonresponse but the response 

propensities can be predicted perfectly from variable .x  Then, performing a separate nonresponse 

adjustment for each sample in step 1 removes the bias for 2S  so that Assumption (A5) is satisfied. If the 

data are combined first and then calibrated using (3.4), however, the calibration may change the weights 

for units in 1S  in order to meet the calibration constraints ‒ introducing bias for the estimates from 1S  

while not removing it for estimates from 2 .S  More research is needed on the ordering of steps for weight 

adjustments. It may be better to perform two steps of nonresponse adjustments and calibration on each 

sample separately, then adjust the weights for multiplicity, and then calibrate to population totals 

(including re-calibrating on the individual frame variables). 

One consequence of using an overlap estimator for a multiple-frame survey is that the multiplicity 

adjustments may introduce more weight variation, with observations belonging to one frame having much 

larger weights than observations belonging to more than one frame. If, for example, a list frame (Frame 2 

in Figure 2.2(a, b)) is disproportionately oversampled, then the sampling weights for observations in 

domain {1},  which are sampled only from Frame 1, may be large relative to the weights for the other 

domains. Wolter, Ganesh, Copeland, Singleton and Khare (2019) suggested using a shrinkage estimator, 

estimating {1}Y  by (1) (2) (2)

{1} {1} {2} {1, 2}
ˆ ˆ ˆ(1 ) ( ) ,Y N Y Y N + − +  but the shrinkage may introduce bias ‒ after all, 

the reason for using a more complicated multiple-frame design instead of just sampling from Frame 2 is to 
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avoid potential bias from omitting domain {1}.  A better solution, if feasible, is to address the weight 

variation when designing the survey, as discussed in Section 5. 
 
 

3.4 Probability sample combined with census of a population subset 
 

Lohr (2014) and Kim and Tam (2021) noted that the situation in Figure 2.2(a) includes the special case 

in which a probability sample 1S  is taken from Frame 1 having full coverage, and the sample 2S  from 

Frame 2 is a census of domain {1, 2}. The overlap domain is thus defined to be the units in 2 ,S  which 

may be from administrative records or a convenience sample. Although 2 ,S  considered by itself, may 

have undercoverage bias, in the multiple-frame setting the bias is eliminated by the presence of a sample 

from Frame 1. The units in 2S  have (2) =1iw  and represent themselves alone; they do not represent any 

units in other parts of the population. When (2)N N  is small, say from a small convenience sample, 2S  

will have little effect on dual-frame estimators ‒ almost all of the population is in domain {1}.  But when 

(2)N N  is large, as may occur when Frame 2 consists of administrative records, the availability of those 

records may improve the precision of Ŷ  if Assumptions (A1) to (A6) are met. 

When 2S  is a census with no measurement error, (2)

{1, 2} {1, 2}
ˆ = .Y Y  The estimator in (3.2) is  

 (1) (1)

{1} {1, 2} {1, 2}
ˆ ˆ ˆ( ) = (1 ) ;Y Y Y Y  + + −  (3.6) 

taking = 0  uses the known population total from Frame 2 and relies on Frame 1 only for estimation of 

the part of the population not in Frame 2. 

Kim and Tam (2021) noted that since {1, 2}Y  is known, it can be used as an InfoU calibration total. They 

proposed two calibration estimators: a ratio estimator (1) (1)

ratio {1, 2} {1, 2}
ˆ ˆ ˆ=Y Y Y Y  and a generalized regression 

calibration estimator. For many designs, however, the ratio estimator will be less efficient than ˆ (0)Y  from 

(3.6) because  

 ( ) ( ) ( )
2

{1} {1}(1) (1) (1) (1)

ratio {1} {1, 2} {1} {1, 2}

{1, 2} {1, 2}

ˆ ˆ ˆ ˆ ˆ2 Cov , ;
Y Y

V Y V Y V Y Y Y
Y Y

 
  + −    

 

  

the ratio adjustment can introduce extra variability from (1)

{1, 2}Ŷ  that is excluded from ˆ (0).Y  

Calibrating ˆ ( )Y   to {1, 2} =1
= ,

N

ii
Y x  for (2)= ,i i ix y  the generalized regression weights in (3.4) 

become  

 ( )
1

( ) ( ) ( ) (2) 2 (2)

{1, 2} {1, 2}

=1

ˆ= 1 ( ) ,
f

Q
q q f

i i k k k i i

f k S

c w Y Y w y y  

−



  
 + −  

    

   (3.7) 

resulting in GR
ˆ ˆ= (0)Y Y  from (3.6). Similarly, calibrating on the vector ( )(2) (2)= 1, ,

T

i i i iy x  results in 
(1) (1)

GR {1} {1} {1} {1, 2}
ˆ ˆ ˆ= .Y Y N N Y+  



242 Lohr: Multiple-frame surveys for a multiple-data-source world 

 

 

Statistics Canada, Catalogue No. 12-001-X 

For some designs, the variance can be reduced even further. Montanari (1987, 1998) proposed using 

the regression coefficient 
1

ˆ ˆ ˆ= ( ) Cov ( , )V Y
−

  β X X  for calibration, resulting in the estimator  

 
opt
ˆ ˆ ˆ= ( ) .TY Y + −X X β  (3.8) 

Rao (1994) called (3.8) the optimal regression estimator and showed that 
opt GR
ˆ ˆ( ) ( ).V Y V Y  For the dual-

frame situation considered in this section, with (2)= ,i i ix y  

 
( )
( )

( )
( )

(1) (1) (1) (1)

{1, 2} {1} {1, 2}

(1) (1)

{1, 2} {1, 2}

ˆ ˆ ˆ ˆCov , Cov ,
= = 1

ˆ ˆ

Y Y Y Y

V Y V Y
+β   

and  

 
( )

( )
( )

(1) (1)

{1} {1, 2}(1) (1)

opt {1, 2} {1, 2} (1)

{1, 2}

(1) (1)

{1} {1, 2} {1, 2}

ˆ ˆCov ,
ˆ ˆ ˆ= 1

ˆ

ˆ ˆ= (1 ) ,H H

Y Y
Y Y Y Y

V Y

Y Y Y 

 
 + − +
 
 

+ + −

 

(3.9)

 

where ( ) ( )(1) (1) (1)

{1} {1, 2} {1, 2}
ˆ ˆ ˆ= Cov ,H Y Y V Y −  is Hartley’s optimal value for   from (3.3). 

Although we usually think of the compositing factor   as being between 0 and 1, H  can be outside of 

this range. For a conceptual example, suppose that Frame 2 is a list of children receiving food assistance at 

school and the sample from Frame 1 is a cluster sample of households. Then households in which one or 

more children are receiving food assistance have some household members in domain {1, 2}  and other 

members in domain {1}.  If y  exhibits high intra-household correlation, then we would expect (1)

{1}Ŷ  and 

(1)

{1, 2}Ŷ  to be positively correlated. In this case, Hartley’s optimal estimator results in negative weights for 

units in domain {1, 2}  from the probability sample.  

Even though 
optŶ  is more efficient for special situations such as the cluster sample described above, it 

depends in practice on an estimate of the covariance, is optimal only for this particular y  variable, and 

may have negative weights. Negative weights can also occur if one does optimal calibration with auxiliary 

variable ( )(2) (2)1, , ;i i iy   in fact, that calibration results in the estimator proposed by Fuller and Burmeister 

(1972). These optimal regression estimators are sensitive to the model assumptions, and in general I do 

not recommend their use. 

When the Frame-2 sample is a census and Assumptions (A1) to (A6) are met, the precision of 

population estimates depends entirely on the design of 1.S  When the samples are not designed to be part 

of a multiple-frame survey (and sometimes even when they are), it is likely that one or more of the 

assumptions is violated. Assumptions (A4) and (A6) are particularly suspect when it is desired to combine 

data from surveys that were not designed with combination in mind. Even if both surveys measure 

unemployment, they may use different questions so that the unemployment statistics from 2S  measure a 
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different concept than the statistics from 1.S  Domain misclassification may also occur. A unit in the 

census 2S  is known to also be in complete Frame 1, but it may be difficult to tell whether a unit in 1S  is 

also in the administrative records or convenience sample that serves as 2 .S  These problems are discussed 

in the next section. 

 
4. Multiple-frame surveys and data integration 
 

Rao (2021) reviewed a number of data integration methods for combining information from a 

probability sample 1,S  assumed to come from a frame with complete coverage, with information from a 

nonprobability sample 2 ,S  often a census of part of the population as in Section 3.4. Rao considered two 

cases for making inferences about :y  (1) y  is observed in both samples, and (2) auxiliary information x  

is observed in both samples but y  is observed only in 2 .S  In this section I examine various data 

integration methods from the perspective of the multiple-frame paradigm and the assumptions in 

Section 2.2. 

 

4.1 Small area estimation 
 

Small area estimation can be considered to be a special case of a dual-frame estimation problem in 

which Assumption (A6) is not met. Here, 1S  is a probability sample from Frame 1 and Frame 2 is often an 

administrative data source. Both frames are assumed to have complete coverage of the population, but the 

variable of interest y  is measured only in 1.S  Auxiliary information x  used to predict y  is measured in 

both samples. Beaumont and Rao (2021) discussed integrating probability and nonprobability samples 

through the use of the Fay-Herriot (1979) estimator with small area estimation techniques. 

A composite small area estimator (Rao and Molina, 2015) of the population mean a  in area a  is of 

the form  

 (1) (2)ˆ ˆ ˆ= (1 ) ,a a a a a    + −   

where (1)ˆ
a  is the direct estimator for the sample mean in area a  from 1S  (which may have large variance 

or may not exist), 
(2) ˆˆ = T

a a x β  is a predicted value from a regression model, and a  is a compositing factor. 

For the Fay-Herriot estimator, a  depends on the relative precision of the two estimators under an 

assumed regression model whose parameters are estimated from 1.S  For the estimator ˆ ,a  the variable y  

is measured differently in the two frames ‒ predicted values are used for Frame 2 ‒ and different 

compositing factors are used in different areas. 

 

4.2 Mass imputation and sample matching 
 

Suppose that 1S  is a full-response probability sample from Frame 1, but the variable of interest y  is 

not measured in 1.S  However, y  is measured in 2S  from Frame 2, and auxiliary variables x  are 

measured in both samples. Let iy  be the predicted value of iy  from an imputation model, relating iy  to 
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,ix  that is developed on 2S  and let 
1

(1) (1)= i ii S
Y w y

  and 
1

(1) (1)= ( )d i i ii S
Y w d y

  be the estimated 

population and domain- d  totals from 1S  using the imputed values. 

Similarly to small area estimation, mass imputation fits into the dual-frame context by relaxing 

Assumption (A6) of no measurement error. Kim and Rao (2012) and Chipperfield, Chessman and Lim 

(2012) considered the situation where both frames are complete and 1S  and 2S  are both probability 

samples. The frames can differ ‒ Frame 1, for example, might be an area frame and Frame 2 might be a 

population register ‒ but both are assumed to have full coverage. Chipperfield et al. (2012) used a 

composite estimator  

 (1) (2)

imp
ˆ ˆ= (1 ) ,Y Y Y + −  (4.1) 

where the optimal value of the compositing factor   minimizes the variance (considering both the 

sampling and imputation variability). Kim and Rao (2012) proposed adding a correction for bias with the 

estimator  

 
2

(1) (2) ( );i i i

i S

Y w y y


+ −   

this estimator is of the same form as (4.1) with =1  if the estimated parameters in the imputation model 

are required to satisfy 
2

(2) ( ) = 0.i i ii S
w y y


−  

If the imputation model produces unbiased and accurate predictions for ,iy  combining the samples 

augments the effective sample size for calculating estimates. When both samples are probability samples 

with full coverage, it is possible to perform model diagnostics on 2 .S  Chipperfield et al. (2012) suggested 

several diagnostics, including testing the imputation model on small areas, investigating whether it is 

possible to predict survey membership from the value of iy  (for 2 )S  or iy  (for 1),S  and studying the 

sensitivity of the mean squared error to different levels of bias in (1) .Y  The sensitivity of the diagnostics, 

however, depends on the quality and size of 2 .S  If 2S  is small relative to 1,S  1S  may contain 

subpopulations that are not well represented in 2S  and are poorly fit by the imputation model. 

The situation becomes more complicated when Frame 2 is incomplete or when 2S  has selection bias. 

When domain {1}  is nonempty as in Figure 2.2(a), then the composite estimator with imputed values 

becomes  

 (1) (1) (2)

imp {1} {1, 2} {1, 2}
ˆ ˆ= (1 ) .Y Y Y Y + + −  (4.2) 

The properties of the estimator in (4.2) depend on how well the imputation model predicts the values of 

iy  in 1.S  Several imputation methods have been proposed. With sample matching (Rivers, 2007), iy  for 

observation i  in iS  is set equal to the value of iy  of the observation’s nearest neighbor (with respect to 

the values of )x  in 2 .S  Rivers (2007), considering the situation in which 2S  is a convenience sample, took 

=1  in (4.2) and used the information in 2S  for the sole purpose of finding the imputed values iy  for 1.S  

Yang, Kim and Hwang (2021) studied theoretical properties of mass-imputed estimators that employ 

nearest neighbor methods. 
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Chen, Li and Wu (2020), building on the work of Lee (2006), Lee and Valliant (2009), and Valliant 

and Dever (2011) on using propensity score weighting to estimate population characteristics from a 

nonprobability sample, proposed a “doubly-robust” estimator for the situation where ix  is measured in 

both surveys but iy  is measured only in nonprobability sample 2 .S  Let (2) =1iR  if population unit i  is in 

2S  and 0 otherwise. Under strong assumptions that (1) (2)

iR  and iy  are independent given covariates ,ix  

(2) ( )(2) (2)= = 1 > 0i iP R  for all population units ,i  and (3) (2)

iR  and (2)

jR  are conditionally independent 

given ,x  they estimated (2)

i  as a function of ,ix  using information in 1,S  and proposed the estimator  

 
1 2

(1)

DR (2)

1ˆ = ( ),
ˆ

i i i i

i S i S i

Y w y y y
 

+ −    

where iy  is an imputation prediction for the unknown values of y  in 1S  (developed using the information 

in 2 ).S  The estimator DRŶ  is approximately unbiased for Y  if either the imputation model or the model 

predicting (2)

i  is correct. If the imputation model is correct, then the first term of DRŶ  is approximately 

unbiased for Y  and the second term has expected value 0. If the model predicting (2)

i  is correct, then 

2

(2)ˆ
i ii S

y 
  is approximately unbiased for Y  and 

1 2

(1) (2)ˆ 0.i i i ii S i S
E w y y 

 
 − 
    If neither 

model is correct, however, DRŶ  may have large bias. 

Kim and Tam (2021) considered an extension of the situation in Section 3.4 in which iy  is not 

measured in 1,S  or is measured differently than in 2 ,S  and proposed substituting an imputed value iy  for 

iy  in the estimators from 1S  in (3.6), obtaining the estimator in (4.2) with = 0;  they calibrated this 

estimator to the known domain size {1, 2}.N  

 

4.3 Imputation and the NSAF 
 

The estimators in Section 4.2 impute a predicted value iy  for the unknown value of iy  in 1.S  All have 

the strong assumption that the imputation model developed on 2S  applies to the units in domain {1}.  As 

Lu (2014b) noted when studying regression for dual-frame surveys, relationships between x  and y  may 

differ across domains. Thus, an imputation model developed on a sample from an incomplete frame, or on 

a sample with selection bias, may provide poor predictions for y  in other parts of the population. 

Moreover, without data on y  in the part of the population that is imputed, it may not be possible to assess 

the quality of the predictions. 

A dual-frame survey was taken for the NSAF because of concern that characteristics of interest might 

differ for telephone and nontelephone households. Let 1iy =  if child i  is in a household that is below 200 

percent of the poverty threshold, and 0 otherwise. Using the full sample from both frames (Urban Institute 

and Child Trends, 2007) an estimated 42.2 percent of children lived in households below 200 percent of 

the poverty threshold, with standard error 0.5 percent. The estimated percentage from the RDD sample 

was 38.6 percent and the estimated percentage from the area sample was 93.4 percent. Children in the 

nontelephone households, sampled from the area frame, were much more likely to be living in poverty. 

Now suppose that the NSAF had not measured poverty and income variables in the area sample, and 

iy  was imputed using regression relationships developed in the RDD sample. In many surveys, the only 
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information available for developing an imputation model is demographic variables. Fitting a logistic 

regression model to the RDD sample that predicts y  from race (with categories white, black, and other), 

and assigning each child in the area sample to the category with highest predicted probability, results in an 

estimate of 30.5 percent of children in the area sample living in poverty ‒ a lower value than in the RDD 

sample. Adding an indicator variable for living in a single-parent household to the model, the estimated 

percentage for the area sample goes up to 51.9 percent. Both of these estimates, and estimates calculated 

using cell-mean imputations, are far below the percentage of 93.4 percent from the real data. 

The problem, of course, is that the auxiliary information is not rich enough to provide a good 

prediction of poverty in the area sample. The key feature of the data, and the reason that Waksberg and his 

colleagues used a dual-frame survey, is that being without a telephone is highly associated with poverty. 

That association cannot be estimated from the RDD sample where all households have telephones. It 

might be possible to develop an imputation model using information from other surveys such as the 

Current Population Survey, where both telephone and non-telephone households are sampled, but I could 

not find an imputation model predicting y  from non-income variables in the RDD sample that provided 

good predictions. 

The nontelephone households were a small part of the population for the NSAF, but the differences 

between the multivariate relationships in the telephone and nontelephone households were so great that 

the imputation only slightly reduced bias. If poverty had not been measured for the nontelephone sample, 

however, and the published statistics had relied only on the imputations, there would have been no way to 

detect the bias. 

 

4.4 Domain misclassification 
 

One major challenge for combining data using a multiple-frame approach is identifying the domain 

membership (or multiplicity) of units in the data sources. This is challenging even for surveys that are 

designed to make use of multiple frames. 

The NSAF was designed as a screening survey where telephone households were excluded from the 

area sample. All households sampled from Frame 2, the RDD frame, were correctly classified since they 

were contacted by telephone. The more difficult part was obtaining the correct domain classification for 

households in the area-frame sample. Initial prescreening questions asked whether the household had any 

working telephones; those that answered no were transferred to the telephone interviewer who conducted 

the detailed interview. The telephone interviewer administered another brief screening interview and 

asked again about telephone service. An additional 7 percent of households were excluded after answering 

the more detailed questions about telephone ownership. Some had told the in-person interviewer that they 

did not have a telephone because they thought the interviewer wanted to borrow it. Others had 

misunderstood the question about telephone ownership ‒ one respondent, answering the prescreening 

questions in the living room, thought they applied only to telephones in the living room and did not 

mention the telephone in the bedroom (Cunningham, Shapiro and Brick, 1999). Although the second 

screening interview may have corrected for misclassification from respondents who mistakenly said they 
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did not have a telephone during the prescreening, there was no remedy for potential misclassification from 

respondents who responded in prescreening that they had a telephone when in fact they did not. 

Misclassification in this direction may have been part of the reason the investigators had a smaller sample 

size of nontelephone households than they had anticipated. 

In dual-frame telephone surveys, the domain for Figure 2.2(b) (cell only, landline only, or both) is 

usually determined by asking the respondent about other available telephones and, sometimes, the relative 

amount each type of telephone is used. Brick, Flores-Cervantes, Lee and Norman (2011) found that their 

landline samples and cell samples both had smaller estimated proportions of dual users than expected from 

statistics collected on telephone ownership in the National Health Interview Survey. They conjectured that 

this was because of persons who had access to both types of telephones but rarely used one of them. 

Domain membership may be unknown or difficult to estimate when combining existing data sources. 

In some cases, as when administrative lists are combined, it may be possible to link records, or the data 

files may contain information that indicates whether the unit is in other frames. In others, there may be 

little or no information available on domain membership. How can one know whether a participant in an 

opt-in panel survey is also in a frame of Medicare recipients if no questions about Medicare are asked in 

the survey? 

Lohr (2011) found that even a small amount of domain misclassification could create large biases in 

dual-frame estimators; moreover, calibration to domain counts that were based on misclassifications could 

worsen the bias. She proposed a method for adjusting for bias due to domain misclassification, assuming 

that misclassification probabilities P  (observation classified in domain |d  observation actually in domain 

)d  are known or can be accurately estimated for different population subgroups. Lin, Liu and Stokes 

(2019) studied a similar method using misclassification probabilities P  (observation actually in domain 

|d observation classified in domain ).d   

It may be possible to use multiple-frame methods when domain membership is unknown if the 

probability that unit i  is in domain d  can be estimated from auxiliary information ix  known for all 

sampled units. Kim and Tam (2021) proposed substituting an estimator for the unknown domain 

membership for the situation in Section 3.4 where 2S  is a census of a subset of the population. They set 

( ){1, 2} = 1i  if the predicted probability that unit 1i S  was in domain {1, 2},  ( )ˆ {1, 2} =1| ,i iP   x  

exceeded 1/2, and estimated the population total for domain {1}  as ( )
1

(1) 1 {1, 2} .i i ii S
w y


 −   

When domain membership is imputed, the mean squared error depends on the accuracy of the domain 

imputations as well as design features and nonresponse bias in 1.S  More research is needed to establish 

statistical properties of estimators when domain membership is estimated. It may also be desired to study 

alternative estimators that use the predicted probabilities directly to estimate the total in domain {1}  as 

( )
1

(1) ˆ {1, 2} = 0 | .i i i ii S
w P y


   x  

Dever (2018) used sample matching to evaluate the frame overlap for a probability sample 1,S  taken 

from an address-based sampling frame, and a nonprobability sample 2S  recruited from social media sites. 

She investigated the percentage of respondents in 1S  who had no close match in 2 .S  Although this 
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procedure does not provide an unbiased estimate of the size of domain {1},  a large percentage of 

unmatched cases for large samples can indicate that 2S  represents a different population than 1.S  

 

4.5 Indirect sampling and capture-recapture estimation 
 

Sections 4.2 to 4.4 looked at extensions of multiple-frame estimators that relaxed Assumptions (A2), 

(A4), and (A6). All of these, though, assumed that at least one of the frames, or their union, had full 

coverage. Let’s now look at an example where Assumption (A1) of full coverage is relaxed, and the 

multiple frames are used to estimate the population size. 

In indirect sampling, the target population consists of units that are linked to units in the sampling 

frame but are not necessarily in the frame (Lavallée, 2007) ‒ units in the target population are sampled 

indirectly through the links to the sampling units in the frame. Lavallée and Rivest (2012) extended the 

idea to multiple-frame sampling. As an example, suppose the target population consists of home care 

workers, who provide paid care for elderly, ill, or disabled persons in their homes. Frame 1 might be a list 

of persons receiving Medicare benefits, and Frame 2 might be a list of home health care aides from 

employment or licensing agencies. Persons in the Frame-1 sample are asked to identify workers who 

provide them with home care, who are then interviewed. A sample of workers from Frame 2 is also 

interviewed. The home care workers identified from the Frame-1 sample may have links to multiple 

persons in Frame 1 and may also be in Frame 2. Similarly, persons in the Frame-2 sample may also have 

links to units in Frame 1. An example of linkage structure is shown in Figure 4.1. 

 

Figure 4.1 Indirect sampling with two frames linked to the target population. Units in the dark shaded area 

have links to both frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                                      Frame 1 
 
 
 

 

                                                                                                                Target Population 
 
 
 
 
 
 
 
 
 
 
 
                                      Frame 2 



Survey Methodology, December 2021 249 

 

 

Statistics Canada, Catalogue No. 12-001-X 

With indirect sampling, the Q  frames can contain different types of units (the situation with different 

types of units was also considered by Hartley, 1974). We are not interested in overlap of the sampling 

frames (shown as nonoverlapping in Figure 4.1 because they contain different types of units) but in the 

overlap for the units in the target population. Sampled units in the target population have multiple chances 

of selection if they are linked to multiple units in one or both sampling frames. 

Let ( )

, = 1q

j kl  if unit j  from Frame q  is linked to unit k  in the target population, and let ( )q

kL  be the 

total number of links between unit k  in the target population and Frame q  (assumed to be knowable from 

asking unit ).k  Then an estimator ( )ˆ qY  can be found for each frame using the links as  

 
( )

( )

,( ) ( ) ( )

( )
ˆ = = ,

q

q

j kq q q

j k k kq
k kj S k

l
Y w y u y

L

     

where  

 
( )

( )

,( ) ( )

( )
= .

q

q

j kq q

k j q

j S k

l
u w

L

   

In the context of our example, person j  in 1S  would say they receive paid home care from provider ,k  

resulting in (1)

, = 1.j kl  Then the linked home care provider would be asked about how many other persons 

they work for who receive Medicare (assume they would know this or it could be determined from other 

sources), giving the value (1) .kL  The quantity ( )q

ku  sums the weights of the units in qS  with links to unit ,k  

adjusting for the multiplicity of the links to that frame. If ( ) ( )=1 ,q q

j jw   then  

 
( )

( )

,( ) ( ) ( )

( )
[ ] = = ,

q

q

j kq q q

k j kq

j S k

l
E u E w a

L

 
 
  
   

where ( ) =1q

ka  if target population member k  is linked to at least one unit in Frame q  and 0 otherwise. 

Multiple-frame methods may then be used to estimate characteristics of the population of home care 

providers, assuming that unit k  linked from qS  provides accurate information on (1) the number of links 

to members of Frame ( )( ),q

kq L  needed for multiplicity adjustments with Frame ,q  and (2) whether they 

are also linked to the other frame(s) ( )( f

ka  for ),f q  needed to adjust for the multiplicity of linkage from 

different frames.  

Lavallée and Rivest (2012) noted that if the union of the two frames has incomplete 

coverage ‒ Assumption (A1) is violated ‒ the samples from the two frames can be used to estimate the 

size of the target population. Let ( ) ( )ˆ =q q

kk
T u  for =1, 2.k  Then  ( )ˆ qE T  is the number of target 

population members that can be linked from Frame q . Each sample also provides an estimate of the 

number of target population units that can be linked from both frames: (1) (1) (2)

{1, 2}
ˆ = k kk

T u a  and 
(2) (2) (1)

{1, 2}
ˆ = .k kk

T u a  These can be composited to obtain an estimator 
{1, 2}T̂  of the number of persons in the 

target population who can be captured from both frames. 
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The Lincoln-Petersen capture-recapture estimator of population size can then be used. Under the strong 

assumption that being captured by Frame 1 is independent of being captured by Frame 2, the total number 

of home care providers can be estimated by (1) (2)

{1, 2}
ˆ ˆ ˆ .T T T  In some cases where the independence 

assumption is not met for the entire population, it may be approximately met on subpopulations whose 

estimated numbers can be summed. If there are more than two frames, loglinear models may be used to 

explore associations among the frames (Lohr, 2022, Chapter 14); Zhang (2019) presented a model for the 

situation in which frames may contain misclassified units. 

Alleva, Arbia, Falorsi, Nardelli and Zuliani (2020) proposed using indirect multiple-frame sampling to 

estimate the number of people infected by SARS-CoV-2 during the early stages of the COVID-19 

pandemic in 2020 ‒ information needed for estimating transmissibility and infection parameters in 

epidemiologic models. In this application, Frame 1 consists of persons with verified infections (perhaps 

obtained from hospitals, quarantine centers, or clinics), and Frame 2 consists of other persons; the persons 

in 2S  are administered a test for SARS-CoV-2. The linked sample consists of persons who had contact 

within the past 14 days with anyone in 1S  or with a member of 2S  who tested positive. 

 
5. Design of data collection systems 
 

Section 4 discussed how estimators for integrated data can be thought of within a multiple-frame 

survey structure. This structure can also be used when designing data collection systems that make use of 

multiple sources. Hartley (1962) derived the values of 
(1) ,n  

(2) ,n  and   that minimize the variance of 

ˆ ( )Y   in (3.2) when 1S  and 2S  are both simple random samples. His basic method can be extended to 

explore effects of sample design choices for other situations by considering mean squared errors under a 

range of potential bias assumptions. 

There has been a substantial amount of work on optimal design and effects of nonresponse for dual-

frame cellular/landline telephone surveys. Brick, Dipko, Presser, Tucker and Yuan (2006) and Brick et al. 

(2011) investigated nonsampling errors; Lu, Sahr, Iachan, Denker, Duffy and Weston (2013) performed a 

simulation study to calculate the anticipated mean squared error under various cost models and potential 

biases. Lohr and Brick (2014), studying allocation of resources in dual-frame telephone surveys with 

nonresponse, found that for some cost structures a screening survey, in which respondents with landlines 

are screened out of the cell phone sample, was more cost-efficient than an overlap survey. Levine and 

Harter (2015) presented graphical results to provide allocation guidance, considering the variance inflation 

from weight variation. Chen, Stubblefield and Stoner (2021) considered the design problem of 

oversampling minority populations in dual-frame telephone surveys, using optimal allocation methods 

from stratified sampling. Most of these articles focus on minimizing the variance of estimates for a fixed 

cost, and do not consider the effects of potential bias. 

A number of papers in the 1980s studied error structures and designs for dual-frame surveys, typically 

supplementing a sample from an RDD frame with a sample from an area frame that was assumed to have 
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full coverage. Biemer (1984) and Choudhry (1989) explored optimal designs theoretically and through 

simulation studies. Groves and Lepkowski (1985, 1986), and Traugott, Groves and Lepkowski (1987) 

investigated dual-frame designs with a view to minimizing mean squared error when estimates from the 

RDD frame may be biased. Lepkowski and Groves (1986) found that as the amount of bias increased in 

the RDD sample, its optimal allocation decreased, reaching an allocation of zero when the bias was 9 

percent of the anticipated estimated percentage. 

A small amount of bias can have similar effect for the situation considered in Section 3.4, where a 

census is taken from incomplete Frame 2 and a high-quality probability sample is taken from complete 

Frame 1. The plots in Figure 5.1 show the root mean squared error (RMSE) for an estimated proportion 

when 1S  is a simple random sample of size n  and 2S  is a census of domain {1, 2},  for combinations of 

overlap size {1, 2}N N  in {0.25, 0.5, 0.9} and bias in {0, 0.01, 0.03}. The population proportion is 0.2 in 

domain {1}  and 0.3 in domain {1, 2},  and the overall population proportion is estimated using ˆ( )Y N  

for ˆ ( )Y   in (3.2). The lines show the RMSE for each n  for =1  2(S  is not used at all), = 0  (the 

estimated proportion in domain {1, 2} comes from 2S  and 1S  contributes only for estimating the 

proportion in domain {1}),  and =1 2.  In the bottom row of plots, the bias from 2S  begins dominating 

the RMSE even for relatively small sample sizes from 1.S  A small amount of measurement bias can 

cancel the supposed advantage from data integration. This example assumes the error in 2S  is from 

measurement bias, but is similar in spirit to the example in Meng (2018), which shows that even when the 

selection bias from a convenience sample is small, a simple random sample of size 400 may have more 

useful information than a convenience sample of size 500 million. 

As Thompson (2019) noted, many of the methods that have been developed for combining data from 

multiple sources have been situation-specific, with solutions tailored to the particular circumstances of 

that problem. One would not expect these methods to perform as well, on average, for other situations 

because of regression-to-the-mean effects. Before adopting a data combination method, it may be 

desirable to perform additional simulation studies that consider outcomes when the model assumptions are 

not met. 

Lohr and Raghunathan (2017) discussed issues for designing data collection systems that leverage 

multiple data sources, focusing on the situation in which a probability survey is used in conjunction with 

administrative data sources that cover parts of the population. They considered using administrative data 

sources for (1) improving the frame for the probability sample, (2) providing contextual information for 

interpreting the survey data, (3) providing information for nonresponse follow-up and bias assessment, 

and (4) designing the entire data collection system to take advantage of inexpensive data collection 

afforded by some of the frames while obtaining complete coverage from the probability survey. Thinking 

of the design problem in the multiple-frame paradigm can be helpful for the last point. Lohr and 

Raghunathan (2017) suggested that when Frame 1 is complete but expensive to sample, while Frame 2 is 

incomplete but less expensive to sample ‒ this includes the situation considered in Section 3.4 of this 

paper ‒ it may be desirable to use a two-phase screening survey for the sample from Frame 1 and rely on 



252 Lohr: Multiple-frame surveys for a multiple-data-source world 

 

 

Statistics Canada, Catalogue No. 12-001-X 

the sample from Frame 2 to supply information for domain {1, 2}.  That is the strategy that Waksberg and 

colleagues followed for designing the NSAF. 

 
Figure 5.1 Root mean squared error of estimated population proportion under differing amounts of overlap 

and bias. 
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Assumptions (A1) to (A6) are not necessarily optimal when some of those assumptions are violated. The 
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large. But when Frame 1 is complete, and the costs are comparable or {1, 2}N N  is small, the extra 

complexity from using a dual-frame survey may outweigh its advantages. If, in addition, there is likely to 

be domain misclassification or if y  is measured differently across the surveys, a dual-frame survey will 

be more complicated than a single sample from Frame 1 and may produce biased estimates. 

On the other hand, using multiple data sources can also help assess nonsampling errors. Hartley (1974) 

wrote that when he presented his work on multiple-frame surveys at a conference, a discussant suggested 

that a “fairer” comparison would be to compare the variance from a dual-frame sample with that from a 

single sample of the same cost from the incomplete but cheap frame. Hartley responded (page 107): “The 

difficulty about this is, of course, that the bias through incompleteness may be of a magnitude which 

would make the single frame survey useless. If no a priori information on this bias is available, the two 

frame survey can in fact be regarded as an economical method of measuring this bias and eliminating it.” 

Thus, it may be desirable to design the data collection system with multiple goals of (1) obtaining 

estimates of key population quantities with small mean squared error, (2) assessing nonsampling errors 

from data sources, and (3) providing information to improve future survey designs. Some of the issues to 

consider include: 

• Quality and stability of data sources. Classical multiple-frame survey design theory assumes 

that the frames are fixed. But it may be desired to use alternative data sources in which the 

frame is changing over time (for example, web-scraped prices) to help provide more timely 

information in coordination with a probability survey. Theory is needed on how to do this. If 

relying on data supplied by an external source, will those data continue to be available, and in 

the same form?  

• Measurement of domain membership. If possible, information should be collected from each 

source to allow accurate determination of domain membership. If the information items 

collected in administrative sources cannot be altered, sometimes items can be added to 

probability samples that allow domain determination.  

• Redundancy. For the situation in Section 3.4, where a census of part of the population is 

supplemented by a probability sample, a screening design might be optimal for 1.S  But a 

screening design does not allow assessment of potential differences in measurement from the 

two samples. Some degree of overlap may be desired among the data sources in order to assess 

differences among the domain estimates from different sources. 

When an imputation model is developed for y  based on relationships between y  and x  from a 

data source with incomplete coverage, there is a danger that this model will not apply to the 

other parts of the population. It may be desired to take a small sample from the uncovered part 

of the population for purposes of evaluating the model. 

• Relative amounts of information for different domains. When data sources include 

administrative records or large convenience samples, there may be much more information 

about some parts of the population than others. The issue becomes how to obtain reliable 

information on the missing parts of the population. When that information comes from a 
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sample, there may be high weight variation. Levine and Harter (2015) studied the issue of 

weight variation in dual-frame telephone surveys. Some of the weight variation may be reduced 

by obtaining additional administrative data sources on underrepresented subpopulations, but 

there is a danger that, as organizations move away from expensive probability samples, some 

subpopulations will be omitted from all sources.  

• Robustness to design assumptions. Designs that are optimal in theory often turn out to be less 

so in practice. Exploring the anticipated design performance under violations of the 

assumptions can be helpful for modifying a theoretically optimal design. In some cases, 

combining information across sources may result in worse estimates than using a single source, 

or it may be decided that the gains from combining data are not worth the extra trouble. 

Waksberg (1998) advised: “Do not treat statistical procedures as mechanical operations; be 

prepared for the unexpected.” Having a design with some robustness to the assumptions gives 

flexibility for unexpected problems. 

• Auxiliary information. Many of the methods for integrating data rely on auxiliary information 

to perform imputations or predict domain membership. Mercer, Lau and Kennedy (2018) argued 

that for calibration, the richness of the auxiliary information is far more important than the 

particular method used to calibrate, and the same is true for other data combination methods. 

Having rich auxiliary information (beyond demographic variables) allows for better data 

integration models ‒ and for better assessment of their performance. 

 

Waksberg argued that a survey statistician needs to look at the entirety of the problem, not just the 

optimal design for measuring a single variable. He said that a sampling statistician should “think not only 

about the specific questions that are asked, but the broader aspects of these questions: whether the 

questions make sense and can be solved, or whether they should be modified or changed. This is how I’ve 

tried to have people with whom I work think about the issues: Here’s a question, how do you respond to 

this specific question? Is it the right question? What statistics will you get by a narrow interpretation of the 

question, and is there a better way to proceed?” (Morganstein and Marker, 2000, page 304). 

In this paper, I have suggested that multiple-frame surveys can serve as an organizing structure for 

designing and evaluating data-integration systems. This can help clarify the strengths and weaknesses of 

each source and, perhaps, result in a better way to proceed. 
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