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With-replacement bootstrap variance  

estimation for household surveys  

Principles, examples and implementation 

Pascal Bessonneau, Gwennaëlle Brilhaut, Guillaume Chauvet and Cédric Garcia1 

Abstract 

Variance estimation is a challenging problem in surveys because there are several nontrivial factors 

contributing to the total survey error, including sampling and unit non-response. Initially devised to capture 

the variance of non-trivial statistics based on independent and identically distributed data, the bootstrap 

method has since been adapted in various ways to address survey-specific elements/factors. In this paper we 

look into one of those variants, the with-replacement bootstrap. We consider household surveys, with or 

without sub-sampling of individuals. We make explicit the benchmark variance estimators that the with-

replacement bootstrap aims at reproducing. We explain how the bootstrap can be used to account for the 

impact sampling, treatment of non-response and calibration have on total survey error. For clarity, the 

proposed methods are illustrated on a running example. They are evaluated through a simulation study, and 

applied to a French Panel for Urban Policy. Two SAS macros to perform the bootstrap methods are also 

developed. 

 

Key Words: Bootstrap; Calibration; Variance estimation; Unit non-response. 

 

 

1. Introduction 
 

Variance estimation is a challenging problem in surveys. The final weights used at the estimation stage 

include several statistical treatments, including correction of unit non-response and calibration, and their 

impact on the variance is to be assessed. Bootstrap is a useful tool, leading to the creation of so-called 

bootstrap weights released with the survey data set. These weights can be used to compute repeatedly the 

bootstrap version of the parameter of interest, leading to a simulation-based variance estimator or 

confidence interval. The interest for practitioners is that no information other than the bootstrap weights is 

needed for variance estimation. In particular, a comprehensive description of the original sampling design 

and estimation process is not required, which would be the case under an analytic approach where the 

variance estimator needs to be worked out. And thus the same set of bootstrap weights is to be used to 

obtain a variance estimate regardless of whether the parameters of interest are totals, medians or 

regression coefficients. Even when a comprehensive description of the sampling design and estimation 

process is available, the analytic approach poses issues for important parameters for which linearization 

variance estimation is not straightforward; see for example Shao (1994) for L -statistics, and Shao and 

Rao (1993) for low income proportions.  

There is an extensive literature on bootstrap in survey sampling, see for example Rao and Wu (1988), 

Rao, Wu and Yue (1992), Shao and Tu (1995, Chapter 6), Davison and Hinkley (1997, Section 3.7), 

Davison and Sardy (2007), Chauvet (2007) and Mashreghi, Haziza and Léger (2016) for detailed reviews. 
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One of these techniques is the so-called rescaled bootstrap proposed by Rao and Wu (1988), which may 

be summarized as follows. First, inside each first-stage sample hS  of size hn  selected in stratum ,h  a 

with-replacement simple random sample of size hm  is selected, leading to the initial bootstrap weights. 

Then, these weights may be rescaled so as to reproduce an unbiased variance estimator for the estimation 

of a total (linear case). As explained by Rao and Wu (1988), the rescaled bootstrap may be applied to a 

variety of sampling designs including two-stage sampling and with/without-replacement sampling at the 

first stage. However, it is not straightforward to account for some practical features of a survey such as the 

treatment of unit non-response. This is considered in Yeo, Mantel and Liu (1999) and Girard (2009). A 

related topic is treated in Kim, Navarro and Fuller (2006), who consider replication variance estimation 

for two-phase sampling.  

Applying the Rao-Wu bootstrap in the particular case when the resample sizes are = 1h hm n −  leads to 

the so-called bootstrap of Primary Sampling Units (PSUs) or with-replacement bootstrap (McCarthy and 

Snowden, 1985). The with-replacement bootstrap is fairly simple to implement; in particular, it requires to 

resample the primary sampling units only, and not the final units. Accounting for treatment of non-

response and calibration is fairly natural, as explained in this paper. An important property of a bootstrap 

method is to match (at least, approximately) a known variance estimator in the linear case, which we call 

the benchmark variance estimator. For with-replacement bootstrap, it is possible to state precisely this 

benchmark variance estimator at any step of the method, which is helpful in understanding how the 

method works to assess the total survey error. The with-replacement bootstrap leads to conservative 

variance estimation, in the sense that the first-stage sampling variance is overestimated if the sampling 

designs used inside strata at first-stage are more efficient than multinomial sampling, which we assume to 

hold true in this paper. This is therefore a prudent approach in producing confidence intervals. The 

positive bias of the bootstrap variance estimator is expected to be negligible when the first-stage sampling 

rates inside strata are negligible, which is often the case in phone surveys. Also, if the survey is repeated 

over time, the contribution of the first-stage sampling variance is likely to fade while the variance due to 

attrition and unit non-response grows bigger.  

Our paper, which examines the with-replacement bootstrap, is intended to be user-oriented. In 

particular, we do not propose particular modifications of the with-replacement bootstrap. Rather, we 

explain how this bootstrap method may be applied to account for sampling, treatment of non-response and 

calibration, and in so doing, what is the variance estimator that we aim at reproducing when estimating a 

total. We give some running examples to illustrate how bootstrap weights are computed in simple cases. 

Two SAS macros implementing the proposed bootstrap methods are presented, evaluated through a 

simulation study, and illustrated on a real survey dataset from the Panel for Urban Policy.  

For simplicity of presentation, our terminology is that of household surveys, which is our original 

motivation for this paper. We consider two cases: first, when a sample of households only is selected; 

secondly, when a subsample of individuals is selected inside the selected households. Despite this specific 

terminology, our approach is general and may be applied to any other situation when a survey is 

performed by one-stage sampling (first case) or by two-stage sampling (second case).  
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We are in particular interested in household phone surveys, which have been extensively used at the 

French National Institute for Demographic Studies (INED) over the last decades. Originally, a sample of 

phone numbers was selected from a register of fixed-line numbers, and more recently the phone numbers 

used in the survey are randomly generated to account for households not covered in the registers (unlisted 

or cell numbers). In a second step, individuals are selected within the households, using classic selection 

methods (e.g., Kish individual). Phone surveys have proved to be efficient, specifically for sensitive 

subjects like sexuality, violence or addictions. Some examples of surveys performed by INED include the 

national survey on violence against women in France in 2000 (ENVEFF), the national survey on violence 

and gender exchange in 2015 and 2018 (VIRAGE and VIRAGE overseas, respectively), or the national 

survey on the context of sexuality in France in 2006. The same protocol is likely to be used in a near 

future for surveys on similar subjects, like the one on young adults’ sexuality or the one on birth control, 

to begin between 2021 and 2023.  

The paper is organized as follows. In Section 2, our main notations are defined, and we consider the 

estimation of a total by accounting for sampling, unit non-response and calibration. We treat in Section 2.1 

the situation when a sample of households only is selected (one-stage case), and in Section 2.2 the case 

when individuals are sub-sampled within households (two-stage case). The basic bootstrap method is 

described in Section 3: the one-stage case is considered in Sections 3.1 and 3.2, and the two-stage case is 

considered in Sections 3.3 and 3.4. We explain in Section 3.5 how the basic bootstrap procedure may be 

applied to obtain an estimator of variance or a confidence interval. The proposed bootstrap methods are 

evaluated in Section 4 through a simulation study. We present in Section 5 an illustration on a sample of 

households and individuals from the French Panel for Urban Policy. We conclude in Section 6. The 

benchmark variance estimators for the sample of individuals are presented in Appendix A. The SAS 

program used to perform bootstrap variance estimation are presented in Appendices B and C. These SAS 

programs are available upon request to the corresponding author. 

 
2. Notation and estimation 
 

In this section, we define our main notations, and we describe the sampling and estimation process. We 

first consider in Section 2.1 the case when a sample of households only is selected, and we describe the 

estimation process which includes treatment of unit non-response and calibration. We indicate in each 

case what is the benchmark variance estimator considered, i.e. the variance estimator that we aim at 

reproducing for the estimation of a total with the bootstrap method proposed in Section 3. The case when 

individuals are sub-sampled inside households is covered in Section 2.2. The benchmark variance 

estimators for this second case are given in Appendix A. 

 
2.1 Case of a sample of households only 
 

We consider estimation for a population hhU  of households. We let ky  denote the value taken by some 

variable of interest for the household .k  We are interested in the estimation of the total  
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 = .
hh

hh k

k U

Y y


  (2.1) 

 
2.1.1 Sampling design 
 

We suppose that a sample hhS  is selected in hhU  by means of a stratified one-stage sampling design. 

The population hhU  is partitioned into H  strata 1 , , ,H

hh hhU U  the samples 1 , , H

hh hhS S  are selected inside 

independently, and the sample hhS  is the union of these samples. We let k  denote the inclusion 

probability of a given household .k  The design weight is  

 
1

= .k

k

d


 (2.2) 

In case of full response, the estimator of hhY  is  

 ˆ = .
hh

hh k k

k S

Y d y


  (2.3) 

We consider as a benchmark variance estimator  
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1ˆ( ) = ,
1 h h
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hh k k k k

h k S k Sh h

n
v Y d y d y

n n
 

 

  
 − 

 −   

    (2.4) 

with hn  the size of the sample .h

hhS  This variance estimator is unbiased if the samples are selected inside 

strata by multinomial sampling (Tillé, 2011, Section 5.4), a.k.a. sampling with replacement. It is 

conservative if the sampling designs used inside strata are more efficient than multinomial sampling 

(Särndal, Swensson and Wretman, 1992, Section 4.6), which we assume to hold true in the rest of the 

paper. The positive bias of this variance estimator is expected to be negligible when the sampling rates 

inside strata are themselves negligible, which is often the case in phone surveys. This is illustrated by the 

results of our simulation study, see Section 4. 

 
2.1.2 Treatment of non-response 
 

In practice, the sample hhS  is prone to unit non-response, which leads to the observation of a sub-

sample of respondents ,r hhS  only. We let kr  denote the response indicator of a household ,k  and kp  

denote the response probability of the household .k  We suppose that the households respond 

independently of one another. Also, we suppose that unit non-response is handled through the method of 

Response Homogeneity Groups (RHGs), which is popular in practice (e.g. Brick, 2013; Juillard and 

Chauvet, 2018). Under this framework, it is assumed that the sample hhS  may be partitioned into C  

RHGs denoted as 1, ,, ,hh C hhS S  such that the response probability kp  is constant inside a RHG.  

For =1, , ,c C  we let cp  denote the common response probability inside the RHG , .c hhS  It is 

estimated by  
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ˆ = ,
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


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with k  some weight attached to the household .k  The choice = 1k  leads to estimating cp  by the 

unweighted response rate inside the RHG. The choice =k kd  leads to estimating cp  by the response rate 

inside the RHG, weighted by the sampling weights (e.g. Kott, 2012). 

Accounting for the estimated response probabilities leads to the weights corrected for non-response  

 
( )

= ,
ˆ

k
rk

c k

d
d

p
 (2.6) 

with ( )c k  the RHG of the household .k  The estimator of hhY  adjusted for non-response is  

 
,

,
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

  (2.7) 

Building on the multinomial variance estimator in (2.4) and on linearization for estimators reweighted 

for unit-non-response (Kim and Kim, 2007, Section 2), our benchmark variance estimator is  
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with  
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This is a conservative estimator for the asymptotic variance of 
,

ˆ .r hhY  A key assumption for this to hold is 

that the response indicators kr  are mutually independent. 

 

2.1.3 Calibration 
 

Lastly, the weights adjusted for non-response are calibrated on auxiliary totals known on the 

population. For simplicity, we describe only the Generalized REGression estimator (GREG, Särndal et al., 

1992, Chapter 6). Let kx  denote the vector of calibration variables at the household level, and hhX  the 

total on the population .hhU  For the sample , ,r hhS  this leads to the linear calibrated weights  

 ( )= 1 ,k rk k hhw d x + Τ   

with 
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and where 
,

ˆ
r hhX  is the estimator of ,hhX  obtained by plugging kx  into (2.7). The calibrated estimator is  

 
,

cal,
ˆ = .

r hh

hh k k

k S

Y w y


  (2.10) 

The sampling and estimation steps are summarized in Figure 2.1.  

 
Figure 2.1  Sampling and estimation steps for a household sample. 

 

 

 

 

 

 

 

 

 

 
Using linearization for estimators reweighted for unit-non-response and calibrated (Kim and Kim, 

2007, Section 5), our benchmark variance estimator is  
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with 

  2 ( ) ( )

( )

= ,
ˆ

k
k k k rc k k k k rc k

c k

r
u e e e

p
   + −   

and 

 
,

,

= ,
c hh

c hh

k k kk S

rc

k kk S

d r e
e

r








  

where we let  
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ˆ=k k r hh ke y B x− Τ    with   
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r hh rk k k rk k k
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denote the estimated regression residuals of the variable of interest on the calibration variables. This is a 

conservative estimator for the asymptotic variance of cal,
ˆ .hhY  

 
2.1.4 Computation of household weights on an example 
 

To fix ideas, we describe a small example. We consider a population hhU  of =100hhN  households. 

We suppose without loss of generality that a single stratum is used, and that a sample of = 10hhn  

households is selected.  

The sample is  = , , , .S A B J  The inclusion probabilities of the selected units are (say)  

 
1

= = = =
4

A B C D       and   
1

= = = = = = ,
16

E F G H I J       (2.13) 

resulting in the design weights  

 = = = = 4A B C Dd d d d    and   = = = = = = 16.E F G H I Jd d d d d d  (2.14) 

Among the 10 selected households, 7 only are surveyed due to non-response. It is accounted for by 

using the method of RHGs, with two groups: the units ,A  ,B  F  and J  in the first one, and the units ,C  

,D  ,E  ,G  ,H  and I  in the second one. The units ,B  C  and G  are non-respondents. Inside each RHG, 

we compute estimated response probabilities, weighted by the design weights ( )= .k kd  This leads to  
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1

2
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ˆ = = = ,
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13
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d d d d
p

d d d d d d





+ +
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(2.15)

 

The weights accounting for non-response are obtained for the respondents by dividing the sampling 

weights by the estimated response probabilities. This leads to the weights  

 
40 72 288 160

= = = = = = = .
9 13 13 9

rA rD rE rH rI rF rJd d d d d d d  (2.16) 

Finally, the weights are calibrated to match exactly the population size =100hhN  and an auxiliary total 

1, = 60.hhX  Note that, using the sample of respondents, we obtain 
,

ˆ =112r hhN  and 
1 ,

ˆ =r hhX 66.53. The 

calibrated weights are  

 
= 4.01, = 4.87, = = 19.98,

= 15.63, = 19.49, = 16.03.

A D E H

F I J

w w w w

w w w
 

(2.17)
 

The sampling and estimation steps are summarized in Figure 2.2. 
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Figure 2.2  Estimation steps for the weighting of households. 

 

 

 

 

 

 

 

 

 

 

 

 
2.2 Case of a sample of households and individuals 
 

We are interested in the population indU  of individuals associated to the population hhU  of households 

considered in Section 2.1. If we let ly  denote the value taken by some variable of interest for the 

individual ,l  the parameter of interest is  

 
ind

ind = .l

l U

Y y


  (2.18) 

 

2.2.1 Sampling design 
 

Within any sampled household ,hhk S  a subsample ind,kS  of individuals is selected, and the sample 

indS  is the union of these samples. We let |l k  denote the conditional inclusion probability of the 

individual l  inside the household .k  The conditional design weight of l  is  

 
|

|

1
=l k

l k

d


  for any  ,l k  (2.19) 

and the non-conditional design weight is  

 |=l l k kd d d   for any  .l k  (2.20) 

In case of full response, the estimator of indY  is  

 
ind , ind

ind |
ˆ = = .

hh k

k l k l l l

k S l S k S

Y d d y d y
  

    (2.21) 

The benchmark variance estimator for indŶ  is obtained from (2.4), by replacing ky  with  

 
ind ,

|
ˆ = .

k

k l k l

l S

y d y


  (2.22) 
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2.2.2 Treatment of non-response 
 

The weights of individuals accounting for the non-response of households are  

 ( ) | ( )=rl rk l l k ld d d   with  ( )k l   the household containing  ,l  (2.23) 

with rkd  the weight of household k  corrected for unit non-response (see equation (2.6)), and |l kd  the 

conditional sampling weight of individual l  inside the household k  (see equation (2.19)). We let  

 
,

, ind ind,=
r hh

r k

k S

S S


 (2.24) 

denote the set of all sampled individuals inside the responding households.  

The individuals in , indrS  are themselves prone to non-response, though it is usually expected to be to a 

smaller extent. This leads to the observation of a sub-sample of respondents , indrrS  only. We let lr  denote 

the response indicator and lp  denote the response probability of the individual l . We suppose that the 

individuals respond independently of one another. Also, we suppose that this non-response is handled 

through the method of RHGs: the sample , indrS  may be partitioned into D  RHGs denoted as 

1,ind ,ind, ,r rDS S  such that the response probability lp  is constant inside a RHG.  

For =1, , ,d D  we let dp  denote the common response probability inside the RHG ,ind .rdS  It is 

estimated by  

 
,ind

,ind

ˆ = ,
rd

rd

l ll S

d

ll S

r
p












 (2.25) 

with l  some weight attached to the individual .l  The choice = 1l  leads to estimating dp  by the 

unweighted response rate inside the RHG. The choice =l ld  leads to estimating dp  by the response rate 

inside the RHG, weighted by the individual sampling weights. The choice =l rld  leads to estimating dp  

by the response rate inside the RHG, weighted by the individual sampling weights corrected of household 

unit non-response. We compare these different choices in the simulation study performed in Section 4.  

Accounting for the estimated response probabilities leads to the individual weights corrected for 

household/individual non-response  

 
( )

=
ˆ

rl
rrl

d l

d
d

p
  with  ( )d l   the household containing  .l  (2.26) 

The estimator of indY  adjusted for household/individual non-response is  

 
,ind

,ind
ˆ = .

rr

rr rrl l

l S

Y d y


  (2.27) 

 
2.2.3 Calibration 
 

We let lz  denote the vector of calibration variables at the individual level, and indZ  denote the total on 

the population ind .U  For the sample ,ind ,rrS  this leads to the linear calibrated weights  
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 ( )ind= 1 ,l rrl lw d z + Τ   
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−



 
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 Τ  (2.28) 

and where 
,ind

ˆ
rrZ  is the estimator of ind ,Z  obtained by plugging lz  into (2.27). The calibrated estimator is  

 
,ind

cal,ind
ˆ = .

rr

l l

l S

Y w y


  (2.29) 

The sampling and estimation steps are summarized in Figure 2.3.  

 

Figure 2.3  Sampling and estimation steps for a household sample with sub-sampling of individuals. 

 

 

 

 

 

 

 

 

 

 
2.2.4 Computation of individual weights on an example 
 

We continue the example initiated in Section 2.1.4. Recall that the sample of responding households is 

 , = , , , , , , .r hhS A D E F H I J  The set of all individuals inside the responding households is as follows 

(say):  

 
1 2 3 4 5 6 7 8 9 10 11 12 13( , , ) ( ) ( , ) ( , , ) ( , ) ( ) ( ).

D IA E F H J

i i i i i i i i i i i i i  (2.30) 

We suppose that the sampling design consists in selecting one individual exactly inside each household. 

The set , indrS  of all sampled individuals inside the responding households is  

  ,ind 1 4 6 8 11 12 13= , , , , , , .rS i i i i i i i  (2.31) 

From equations (2.23) and (2.16), the individual weights corrected for household non-response are 

therefore  

 
1 4 6 8 11 12 13

40 72 576 160 576 288 160
= , = , = , = , = , = , = .

3 13 13 3 13 13 9
r r r r r r rd d d d d d d  (2.32) 

       Sampling of 

       individuals + 

       Individual 

       non-response                          Household                    Sampling of 

                                                    non-response                   households 

 

            Step 3b                                 Step 2                              Step 1 

 

Calibration of                           Calibration of 

individual weights                    household weights 

 

     Step 4b                                  Step 3 
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Among these 7 selected individuals, 4 only are surveyed due to non-response, accounted for by using 

the method of Response Homogeneity Groups (RHGs). We suppose that there are two RHGs: the units 1 ,i  

6 ,i  8i  and 11i  in the first one, and the units 4 ,i  12i  and 13i  in the second one. The units 4 ,i  11i  and 13i  are 

non-respondents. Inside each RHG, we compute unweighted estimated response probabilities ( )=1 .l  

This leads to  

 

1,ind

1,ind

2,ind

2,ind

1

2

3
ˆ = = ,

1 4

1
ˆ = = .

1 3

r

r

r

r

ll S

l S

ll S

l S

r
p

r
p

















 

(2.33)

 

The weights accounting for household/individual non-response are obtained for the respondents by 

dividing the weights in (2.32) by the estimated response probabilities. This leads to the weights  

 
1 6 8 12

160 2,304 640 864
= , = , = , = .

9 39 9 13
rr rr rr rrd d d d  (2.34) 

Finally, the weights are calibrated to match the population size ind = 200N  and an auxiliary total 

1,ind = 450.Z  Note that, using the sample of respondents, we obtain 
,ind

ˆ =rN 214.4 and 
1 ,ind

ˆ =rZ 451.3. The 

calibrated weights are  

 1 6 8 13= 19.61, = 53.93, = 78.43, = 48.04.w w w w  (2.35) 

The sampling and estimation steps are summarized in Figure 2.4. 

 

Figure 2.4  Estimation steps for the weighting of individuals. 

 

 

 

 

 

 

 

 

 

 

 
3. Bootstrap variance estimation 
 

We begin in Section 3.1 with the description of the basic step of the bootstrap method when a sample 

of households only is selected. An illustration is given in Section 3.2 on the example initiated in 
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Section 2.1.4. The bootstrap method when individuals are sampled inside the households is described in 

Section 3.3, and an illustration is given in Section 3.4. In Section 3.5, we explain how the basic step of the 

proposed bootstrap method is used to perform variance estimation and to produce confidence intervals. 

 
3.1 Basic step of the bootstrap for households 
 

Using the with-replacement bootstrap, we first draw inside the original sample h

hhS  selected in the 

stratum h

hhU  a with-replacement resample 
*

h

hhS  of 1hn −  households, with equal probabilities. Note that 

the resampling is performed on the sampling unit (a household) rather than on the final unit of observation 

(an individual), which is key to correctly capture the sampling variance. In particular, this bootstrap 

method enables to capture the variance due to the second-stage sampling (selection of individuals) without 

resampling the final units in the bootstrap process. For any ,h

hhk S  we define the reweighting adjustment 

factor  

 = ,
1

h
k k

h

n
G m

n


−
 (3.1) 

with km  the number of times the household k  is selected in the resample 
*,h

hhS  a.k.a. the multiplicity. 

Note that some unit h

hhk S  may not appear in the resample, in which case this unit has multiplicity zero; 

see Section 3.2 for an example. The reweighting adjustment factors kG  are used to obtain the bootstrap 

weights accounting for the sampling design, for unit non-response and for the calibration, as described in 

Algorithm 1. The steps refer to Figure 2.1. The resampling presented in Algorithm 1 is then repeated B  

times independently for variance estimation and/or to produce a confidence interval, see Algorithm 3 in 

Section 3.5.  

 

Algorithm 1. Computation of bootstrap household weights accounting for non-response and calibration 
 

• Step 1: we account for the sampling of households by computing, for any ,hhk S  the bootstrap 

sampling weight  

 * = .k k kd G d  (3.2) 

The bootstrap version of the full-response estimator given in (2.3) is  

 * *
ˆ = .

hh

hh k k

k S

Y d y


  (3.3) 

 

• Step 2: we account for household unit non-response by computing the bootstrap estimated 

probabilities inside the RHGs  

 
,

,

*
ˆ = ,

c hh

c hh

k k kk S

c

k kk S

G r
p

G












 (3.4) 
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and we compute the bootstrap weights corrected for non-response  

 *
*

( )*

= ,
ˆ

k
rk

c k

d
d

p
 (3.5) 

with ( )c k  the RHG containing the household .k  The bootstrap version of the estimator 

corrected for unit non-response given in (2.7) is  

 
,

, * *
ˆ = .

r hh

r hh rk k

k S

Y d y


  (3.6) 

 

• Step 3: we account for the calibration by calibrating the weights *rkd  on the totals .hhX  This 

leads to the bootstrap calibrated weights  

 ( )* * *= 1 ,k rk k hhw d x + Τ  (3.7) 

with 

 ( )
,

1

* * , *
ˆ=

r hh

hh rk k k hh r hh

k S

d x x X X

−



 
− 

 
 
 Τ   

and 

 
,

, * *
ˆ = .

r hh

r hh rk k

k S

X d x


   

The bootstrap version of the calibrated estimator given in (2.10) is  

 
,

cal, * *
ˆ = .

r hh

hh k k

k S

Y w y


  (3.8) 

 
The treatment of unit non-response in the bootstrap process deserves some explanations. Firstly, our 

approach is conditional on the response indicators .kr  Contrarily to the sample membership indicators 

which are bootstrapped at Step 1 of Algorithm 1, the response indicators remain fixed in the bootstrap 

process. This is due to the fact that we aim at reproducing a variance estimator which considers the sample 

hhS  as selected with replacement, and that in such case bootstrapping the ’skr  is not needed. Secondly, 

accounting for unit non-response at Step 2 of Algorithm 1 is performed conditionally on the RHGs: we do 

not bootstrap the process leading to the building of the RHGs (e.g., Girard, 2009; Haziza and Beaumont, 

2017). Finally, bootstrapping the response probabilities as described in equation (3.4) accounts for the 

estimation of the response probabilities .cp  In other words, we use within each resample the same RHGs 

identified on the basis of the sample, but the non-response adjustments inside the RHGs are based on a 

resample’s content. This is illustrated in the example developed in Section 3.2. If we do not bootstrap the 

response probabilities and directly plug in equation (3.5) the original estimated probabilities ˆ ,cp  then the 
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response probabilities are treated as if they were known, which usually results in an overestimation of the 

variance (Beaumont, 2005; Kim and Kim, 2007). 

Now, we discuss bootstrap variance estimation for calibrated estimators, as considered in Step 3 of 

Algorithm 1 where the calibration step is performed on the true population total .hhX  Following the 

bootstrap principle which states that the sample hhS  is to the bootstrap sample *hhS  what the population 

hhU  is to the sample ,hhS  it could seem more intuitive to rather calibrate on the estimated totals ˆ
hhX  

obtained by plugging kx  into equation (2.3). Both approaches seem valid for bootstrap variance 

estimation for the calibrated estimator 
cal,
ˆ ,hhY  but the calibration variables kx  may be prone to non-

response on the sample ,hhS  making the estimator ˆ
hhX  not possible to compute, while the total hhX  is 

known from an external source. 

 
3.2 An example of computation of bootstrap household weights 
 

We continue with the example initiated in Section 2.1.4. The bootstrap is performed by first selecting a 

resample of 1 = 9hhn −  households, with replacement and with equal probabilities, among the original 

sampled households. In this example, we suppose that the household A  is selected three times, that the 

household G  is selected twice, and that the households ,D  ,E  H  and I  are selected once. Making use 

of equation (3.2), this leads to the bootstrap sampling weights  

 
* * * * * *

40 40 160 320
= = = = = = .

3 9 9 9
A D E H I Gd d d d d d  (3.9) 

The bootstrap sampling weights are corrected for non-response in the same way than in the original 

correction of non-response: using the same RHGs, and weighted estimated probabilities. In this case, the 

first RHG contains only the unit A  which is a respondent, so that 1*
ˆ =1.p  The second RHG contains ,D  

,E  G  (non-respondent), H  and .I  This leads to  

 * * * *
2*

* * * * *

13
ˆ = = ,

21

D E H I

D E G H I

d d d d
p

d d d d d

+ + +

+ + + +
 (3.10) 

and to the bootstrap weights corrected for non-response  

 
* * * * *

40 280 1,120
= = = = = .

3 39 39
rA rD rE rH rId d d d d  (3.11) 

Finally, the weights are calibrated to match the population size =100hhN  and the auxiliary total 

1, = 60.hhX  This leads to the bootstrap calibrated weights  

 * * * * *= 11.30 = 8.00 = = 24.35 = 32.00.A D E H Iw w w w w  (3.12) 

The computation of the bootstrap weights is summarized in Figure 3.1. 
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Figure 3.1  Computation of bootstrap household weights. 

 

 

 

 

 

 

 

 

 

 

 

 
3.3 Computation of bootstrap weights for individuals 
 

The computation of the bootstrap weights accounting for the sampling design, for household/individual 

non-response and for calibration is described in Algorithm 2. The steps refer to Figure 2.3. In addition to 

the bootstrap steps in Algorithm 1, note that Algorithm 2 involves bootstrapping the computation of 

response individual probabilities only. Note that the sub-sampling of individuals inside households does 

not need to be bootstrapped, as discussed in Section 3.1. 

 
Algorithm 2. Computation of bootstrap individual weights accounting for non-response of households, 

for non-response of individuals and for calibration 
 

• Perform Steps 1 and 2 of Algorithm 1. The bootstrap weights of households corrected for non-

response are * ,rkd  as given in equation (3.5).  

• Step 3b: we first account for the sampling of individuals by computing the bootstrap individual 

weights corrected for household unit non-response  

 * ( )* | ( )=rl rk l l k ld d d   with ( )k l  the household containing .l  (3.13) 

We then account for individual unit non-response. We compute the bootstrap estimated 

probabilities inside the RHGs  

 
,ind

,ind

( )

*

( )

ˆ = .
rd

rd

k l l ll S

d

k l ll S

G r
p

G












 (3.14) 

We compute the bootstrap weights of individuals corrected for household/individual non-

response, namely  
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 *
*

( )*

= ,
ˆ

rl
rrl

d l

d
d

p
 (3.15) 

with ( )d l  the RHG containing the individual .l  The bootstrap version of the estimator 

corrected for unit non-response given in (2.27) is  

 
,ind

,ind* *
ˆ = .

rr

rr rrl l

l S

Y d y


  (3.16) 

 

• Step 4b: we account for the calibration by calibrating the weights *rrld  on the totals ind .Z  This 

leads to the bootstrap calibrated weights  

 ( )* * ind*= 1 ,l rrl lw d z + Τ  (3.17) 

with 

 ( )
,ind

1

ind* * ind ,ind*
ˆ=

rr

rrl l l rr

k S

d z z Z Z

−



 
− 

 
 
 Τ   

and 

 
,ind

,ind* *
ˆ = .

rr

rr rrl l

l S

Z d z


   

The bootstrap version of the calibrated estimator given in (2.29) is  

 
,ind

cal,ind* *
ˆ = .

rr

l l

l S

Y w y


  (3.18) 

 
3.4 An example of computation of bootstrap individual weights 
 

We continue with the example in Section 3.2. The bootstrap sample of households is constituted of A  

(three times), G  (two times), and ,D  ,E  H  and I  (one time). Due to household non-response, we 

observe ,A  ,D  ,E  H  and I  only. From (2.30), this results in the bootstrap sample of individuals  

  ,ind* 1 4 6 11 12= , , , , .rS i i i i i  (3.19) 

The bootstrap weights of households corrected for unit non-response are given in equation (3.11). From 

equation (3.13), the bootstrap weights of individuals adjusted for household non-response are  

 
1* 4* 6* 11* 12*

280 2,240 2,240 1,120
= 40 = = = = .

39 39 39 39
r r r r rd d d d d  (3.20) 

These bootstrap weights are corrected for individual non-response in the same way than in the original 

correction of individual non-response: using the same RHGs and unweighted estimated probabilities. 

However, we need to account in these probabilities for the multiplicity km  and the reweighting adjustment 

factor ,kG  see equation (3.1). In our case, the first RHG contains the individuals 1 ,i  6i  and 11,i  and 11i  is a 
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non-respondent. The individual 1i  belongs to the household ,A  which has been selected three times 

( )= 3Am  in the bootstrap sample. The individual 6i  belongs to the household ,E  and the individual 11i  

belongs to the household ,H  which have both been selected one time in the bootstrap sample 

( )= =1 .E Hm m  The computation is similar for the second RHG, and leads to  

 

1*

2*

4
ˆ = = ,

5

1
ˆ = = ,

2

A E

A E H

I

D I

G G
p

G G G

G
p

G G

+

+ +

+

 

(3.21)

 

and to the bootstrap individuals weights corrected for household/individual non-response  

 
1* 6* 12*

5,600 2,240
= 50 = = .

39 39
rr r rd d d  (3.22) 

Finally, the weights are calibrated to match the population size ind = 200N  and the auxiliary total 

1,ind = 450.Z  This leads to the bootstrap calibrated weights  

 1* 6* 12*= 66.69 = 116.62 = 16.69.w w w  (3.23) 

The computation of bootstrap individual weights is summarized in Figure 3.2. 

 

Figure 3.2  Computation of bootstrap individual weights. 

 

 

 

 

 

 

 

 

 

 

 
3.5 Bootstrap variance estimation and confidence intervals 
 

In this section, we are interested in parameters which may be written as smooth functions of totals. We 

explain how the basic step of the proposed bootstrap method is used to perform variance estimation and to 

produce confidence intervals. For brevity, we focus on parameters defined over the population of 

households .hhU  The treatment for parameters of interest in the population of individuals indU  is similar.  
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Suppose that ky  is a q -vector of interest variables, and that we are interested in some parameter 

= ( )hh hhf Y  with : qf →R R  a known, smooth function. In case of full response, the substitution 

estimator of hh  is  

 ˆ ˆ= ( ),hh hhf Y  (3.24) 

see for example Deville (1999). In case of unit non-response at the household level, the estimator of hh  

corrected for unit non-response is  

 
, ,

ˆ ˆ= ( ),r hh r hhf Y  (3.25) 

and the calibrated estimator of hh  is  

 
cal, cal,

ˆ ˆ= ( ).hh hhf Y  (3.26) 

In each case, a bootstrap variance estimator is obtained by applying a large number of times (say )B  

the basic step of the bootstrap method in Algorithm 1, and then by computing the dispersion of the 

bootstrap estimators. This is summarized in Algorithm 3. 

 
Algorithm 3. Bootstrap variance estimation for an estimation over the population of households 
 

1. Repeat B  times the bootstrap procedure described in Algorithm 1. Let us denote *
ˆ ,b

hhY  
, *

ˆb

r hhY  and 

cal, *
ˆb

hhY  for the bootstrap estimators of totals computed on the 
thb  sample. Also, let us denote *

ˆ ,b

hh  

, *
ˆb

r hh  and 
cal, *

ˆb

hh  for the associated bootstrap estimators of .hh  

2. The Bootstrap variance estimator for ˆ
hh  is  

 

2

boot * *

=1 =1

1 1ˆ ˆ ˆˆ ( ) = ,
1

B B
b b

hh hh hh

b b

V
B B

  




 
− 

−  
   (3.27) 

and similarly for 
,

ˆ
r hh  and 

cal,
ˆ .hh  

 
The bootstrap variance estimator may be used to compute a normality-based confidence interval with 

targeted level 1 2 .−  For example, the confidence interval when using the full-response estimator ˆ
hh  is  

  
0.5

nor 1 boot
ˆ ˆˆIC ( ) = ( ) ,hh hh hhu V  −

 
  

 (3.28) 

with 1u −  the quantile of order 1 −  of the standard normal distribution. This confidence interval is 

expected to be conservative, since the proposed bootstrap method is conservative too.  

We also consider the percentile and the reverse percentile (a.k.a. basic) bootstrap confidence intervals. 

They can be directly computed from the bootstrap weights and are therefore attractive from a data user’s 
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perspective, unlike more computationally intensive methods like the t -bootstrap (e.g. Davison and 

Hinkley, 1997; Shao and Tu, 1995). For ˆ ,hh  the percentile confidence interval is obtained by using the 

distribution of *
ˆ

hh  as an approximation of the distribution of ˆ .hh  It makes use of the ordered bootstrap 

estimates (1) ( )

* *
ˆ ˆ, , B

hh hh   to form the confidence interval  

 ( ) ( )

per * *
ˆ ˆIC ( ) = , ,L U

hh hh hh   
 

 (3.29) 

with targeted level 1 2 ,−  where =L B  and = (1 ) .U B−  The reverse percentile confidence interval is 

obtained by viewing the distribution of *
ˆ ˆ( )hh hh −  as an approximation of the distribution of ˆ( ).hh hh −  

It leads to the confidence interval  

 ( ) ( )

rev * *
ˆ ˆ ˆ ˆIC ( ) = 2 , 2 .U L

hh hh hh hh hh     − −
 

 (3.30) 

The properties of the bootstrap variance estimator and of the three confidence intervals are evaluated in 

the simulation study performed in Section 4 for the estimation of a total.  

Choosing the number B  of resamples is an important practical problem. Girard (2009) suggests 

considering several possible resample sizes (e.g., by increasing B  with an increment of 100), and plotting 

the bootstrap variance estimators in function of .B  The value for which this variance estimator starts to 

stabilize is then retained. This is a simple method, but which may require some compromise solution if 

different variables of interest lead to different stabilizing values. Beaumont and Patak (2012) suggest 

choosing B  such that with a high probability, the length of the bootstrap confidence interval given in 

(3.28) is close to the length of the confidence interval obtained with an analytical variance estimator. 

Under the assumption that conditionally on the original sample, the normalized bootstrap estimator of the 

total is normally distributed, they establish that the value B  may be determined from the distribution of a 

chi-square variable (Beaumont and Patak, 2012, equation 10). Interestingly, the value obtained does not 

depend on the variable of interest. Based on these results, they suggest using a value B  no smaller than 

750, and a larger value if the normality assumption of the bootstrap estimator may fail. We used =B

1,000 in the simulation study presented in the following section. For surveys that are to serve multiple 

analytical needs ‒ ranging from simple to complex population parameters and various domain sizes ‒ 

selecting no fewer than 1,000 replicates is the norm given the computing resources available nowadays. 

 
4. Simulation study 
 

In order to evaluate the proposed bootstrap method, we conducted a simulation study on an artificial 

population. We first generate a population hhU  containing =hhN 100,000 households, with four auxiliary 

variables 1 4, ,x x  generated from a gamma distribution with shape and scale parameters 2 and 5. Inside 

the population, we generate three variables of interest 1 3, ,y y  according to the following models  

 

1 1 2

2 1 3

3 3 4

= 10 ,

= 10 ,

= 10 ,

k k k k

k k k k

k k k k

y x x

y x x

y x x







 

 

 

+ + +

+ + +

+ + +

 (4.1) 
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where k  is generated according to a standard normal distribution. We set = 10,  which results in a 

coefficient of determination of approximately 0.50 for each model. The auxiliary variables 1 21, ,k kx x  are 

used as calibration variables at the household level in this simulation study. The three variables of interest 

therefore correspond to cases when the calibration model is well specified 1( ),y  partly well specified 

2( ),y  or poorly specified 3( ).y  The population hhU  is randomly split into five response homogeneity 

groups (RHG) of equal sizes. The response probability cp  inside the RHG c  is equal to 0.5 for the first 

group, 0.6 for the second group, ..., and 0.9 for the fifth group, resulting in an average response rate of 

70% for the households.  

Inside each household ,k  we generate kN  individuals, where 1kN −  is generated according to a 

Poisson distribution with parameter 1, which results in an average number of 2 individuals per household. 

Inside the corresponding population ind ,U  we generate four auxiliary variables 1 4, ,z z  with shape and 

scale parameters 2 and 0.5. Also, we generate three variables of interest 4 5 6, ,y y y  according to the 

following models  

 

4 1 2

5 1 3

6 3 4

= 5 0.5 0.5 ,

= 5 0.5 0.5 ,

= 5 0.5 0.5 ,

l l l l

l l l l

l l l l

y z z

y z z

y z z







 

 

 

+ + +

+ + +

+ + +

 (4.2) 

where l  is generated according to a standard normal distribution. We set = 0.4, which results in a 

coefficient of determination of approximately 0.6 for each model. The auxiliary variables 1 21, ,l lz z  are 

used as calibration variables at the individual level in this simulation study. The three variables of interest 

therefore correspond to a case when the calibration model is well specified 4( ),y  partly well specified 

5( ),y  or poorly specified 6( ).y  

The population indU  is split into five RHGs as follows. The individuals which are alone in their 

household form a separate RHG, with a response probability of 1. The rationale behind this choice is that 

in such case, the individual is somewhat equivalent to his/her household, and that the non-response is 

modeled at the household level. Among the rest of the individuals living in a household k  with = 2kN  

individuals or more, the variables 1z  and 2z  are used to form four RHGs of approximately equal size. The 

response probability dp  ranges from 0.80 to 0.95 in these four remaining RHGs. This results in an overall 

response rate of approximately 90% for the individuals.  

Inside the population ,hhU  we select a sample hhS  of =hhn 1,000 households by simple random 

sampling without replacement. Note that the sampling rate is small (1%), so that simple random sampling 

with/without replacement are not much different, and the bias of the bootstrap variance estimators is 

expected to be small under this set-up. The non-response is generated according to the RHG household 

model, which results in a sample ,r hhS  of responding households. The estimated response probabilities ˆ
cp  

are obtained from equation (2.5), with equal weight =1.k  Inside each , ,r hhk S  one Kish individual is 

randomly selected with equal probabilities, which results in the sample of individuals ,ind .rS  Inside ,ind ,rS  

the non-response is generated according to the RHG individual model, resulting in a sample , indrrS  of 

responding individuals. The estimated response probabilities ˆ
dp  are obtained from equation (2.25), in 
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three possible ways: equal weights = 1,l  sampling weights = ,l ld  or individuals weights corrected for 

the household non-response = .l rld  

The sampling and non-response steps are repeated =R 1,000 times. On each sample ,hhS  we compute 

the full-response estimator given in (2.3), and on each sample , ,r hhS  we compute the estimator adjusted 

for non-response 
,

ˆ
r hhY  given in (2.7) and the estimator 

cal,
ˆ

hhY  given in (2.10) with the set of calibration 

variables 
1 2= (1, , ) .k k kx x x Τ  On each sample ,ind ,rrS  we compute the estimator adjusted for non-response 

,ind
ˆ
rrY  given in (2.27) and the estimator 

cal,indŶ  given in (2.29) with the set of calibration variables 

1 2= (1, , ) .l l lz z z Τ  For these five estimators, we compute the normalized root mean square error  

 
ˆMSE( )ˆNRMSE( ) = 100 ,

Y
Y

Y
  (4.3) 

with ˆMSE( )Y  a simulation-based approximation of the mean square error of ˆ,Y  obtained from an 

independent run of 10,000 simulations.  

For these five estimators, we also compute the bootstrap variance estimators obtained by applying 

Algorithm 3 with =B 1,000. So as to measure the bias of a variance estimator ˆ( ),v Y  we use the Monte 

Carlo Percent Relative Bias  

  
1

=1

ˆ ˆ( ) MSE( )
ˆRB ( ) = 100 ,

ˆMSE( )

R

c cc
R v Y Y

v Y
Y

− −



 (4.4) 

where ˆ( )c cv Y  stands for the variance estimator in the thc  sample. As a measure of stability of ˆ( ),v Y  we 

use the Relative Stability  

  
 

1/2
2

1

=1

ˆ ˆ( ) MSE( )
ˆRS ( ) = 100 .

ˆMSE( )

R

c cc
R v Y Y

v Y
Y

− −
  




 (4.5) 

Also, we compute the coverage rates of the confidence interval associated to the percentile Bootstrap, to 

the basic bootstrap and to the normality-based confidence interval, with nominal one-tailed error rate of 

2.5% in each tail.  

The results are presented in Table 4.1 for the estimation on the population of households. The 

normalized root mean square error of the calibrated estimator 
cal,
ˆ

hhY  is smaller when the calibration 

variables are explanatory for the variable of interest, as expected. We observe a slight positive bias of the 

bootstrap variance estimator for the full-response estimator ˆ ,hhY  but almost no bias for the reweighted 

estimators 
,

ˆ
r hhY  and 

cal,
ˆ .hhY  The bootstrap variance estimator is slightly less stable with the reweighted 

estimators, which is likely due to the additional variability associated to the correction of unit 

non-response. Concerning the confidence intervals, we note that the coverage rates are well respected in 

all cases and for the three studied methods.  

We now turn to the result on the population of individuals, which are presented in Table 4.2. We 

observe that the relative bias of the bootstrap variance estimator is very small in all cases. The choice of 

the weights k  used in the estimation of the response probabilities seem to have no effect on the 



334 Bessonneau et al.: With-replacement bootstrap variance estimation for household surveys Principles 

 

 

Statistics Canada, Catalogue No. 12-001-X 

normalized root mean square error of the estimators, but the use of the weights =l rld  adjusted for 

household non-response yields slightly more stable variance estimators for 
,ind

ˆ .rrY  The coverage rates are 

approximately respected in all cases. 

 

Table 4.1 

Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of the Bootstrap 

variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap and of the basic 

bootstrap for 3 variables on the population of households  
 

     Percentile bootstrap Basic bootstrap Normality-based 

  NRMSE RB RS L U L+U L U L+U L U L+U 

ˆ
hhY  1y  1.47 2.48 7.2 2.2 3.1 5.3 2.1 3.3 5.4 2.2 3.2 5.4 

2y  1.48 0.73 6.6 2.6 3.3 5.9 2.7 3.4 6.1 2.6 3.2 5.8 

3y  1.48 1.11 6.6 2.6 2.7 5.3 2.7 3.0 5.7 2.4 2.7 5.1 

,
ˆ
r hhY

 1y  1.82 0.42 8.7 2.4 2.4 4.8 2.3 2.7 5.0 2.3 2.6 4.9 

2y  1.83 -0.76 8.2 2.7 2.8 5.5 2.5 3.0 5.5 2.2 2.7 4.9 

3y  1.82 0.72 8.4 2.8 2.1 4.9 2.8 2.2 5.0 2.8 1.9 4.7 

cal,
ˆ

hhY
 1y  1.29 1.27 8.3 2.4 2.7 5.1 2.8 2.8 5.6 2.8 2.7 5.5 

2y  1.58 -0.55 8.2 2.5 3.5 6.0 2.8 3.9 6.7 2.8 3.6 6.4 

3y  1.82 0.49 8.4 2.9 1.8 4.7 3.0 2.2 5.2 2.9 2.0 4.9 

 
Table 4.2 

Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of the Bootstrap 

variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap and of the basic 

bootstrap for 3 variables on the population of individuals  
 

  Percentile bootstrap Basic bootstrap Normality-based 

 NRMSE RB RS L U L+U L U L+U L U L+U 

 Equal weights = 1l  

, ind
ˆ
rrY  4y  2.01 0.31 9.6 2.0 3.2 5.2 1.9 3.3 5.2 1.9 3.0 4.9 

5y  2.02 -0.17 9.6 2.4 3.4 5.8 2.2 3.7 5.9 2.3 3.5 5.8 

6y  2.02 -0.24 9.6 2.2 3.3 5.5 2.0 3.7 5.7 2.0 3.2 5.2 

cal, indŶ  4y  0.29 1.72 10.8 2.1 2.4 4.5 2.1 2.3 4.4 2.1 2.2 4.3 

5y  0.39 1.04 11.3 2.3 2.5 4.8 2.3 2.5 4.8 2.2 2.4 4.6 

6y  0.47 1.90 11.2 2.8 2.1 4.9 2.2 2.5 4.7 2.3 2.0 4.3 

 Sampling weights =l ld  

, ind
ˆ
rrY  4y  2.00 -0.08 9.5 1.8 3.8 5.6 1.7 3.8 5.5 1.7 3.4 5.1 

5y  2.00 0.14 9.4 1.9 3.3 5.2 2.2 3.5 5.7 1.8 3.5 5.3 

6y  1.99 0.61 9.3 1.7 3.2 4.9 1.7 3.4 5.1 1.7 3.2 4.9 

cal, indŶ  4y  0.29 -0.57 10.3 2.9 2.4 5.3 3.3 2.2 5.5 3.0 2.3 5.3 

5y  0.39 0.40 11.6 2.4 3.2 5.6 2.7 3.3 6.0 2.3 3.2 5.5 

6y  0.47 -0.05 11.2 2.3 2.2 4.5 1.8 2.3 4.1 1.8 2.3 4.1 

 Weights adjusted for household non-response =l rld  

, ind
ˆ
rrY  4y  1.99 -0.71 8.9 2.5 2.3 4.8 2.6 2.7 5.3 2.5 2.4 4.9 

5y  1.99 -0.82 8.9 3.1 2.2 5.3 2.9 2.5 5.4 2.5 2.2 4.7 

6y  1.99 -0.26 9.1 3.1 2.3 5.4 3.0 3.0 6.0 2.9 2.5 5.4 

cal, indŶ  4y  0.29 1.70 10.6 2.7 3.4 6.1 2.6 3.3 5.9 2.5 3.3 5.8 

5y  0.39 1.38 11.3 2.1 2.7 4.8 2.2 3.0 5.2 1.7 3.0 4.7 

6y  0.47 0.61 10.9 2.5 2.8 5.3 2.3 3.0 5.3 2.3 2.8 5.1 
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5. Application to the French panel for urban policy 
 

In this section, we present an illustration of the proposed methodology on a French panel for urban 

policy. The sampling design and the estimation steps for the sample of households are briefly described in 

Section 5.1, and three possible bootstrap confidence intervals are computed. The SAS macro developed to 

implement the proposed methodology for one-stage sampling is given in Appendix B, along with a small 

example. The additional sampling and estimation steps for the sample of individuals are described in 

Section 5.2, and three possible bootstrap confidence intervals are computed. The SAS macro developed to 

implement the proposed methodology for two-stage sampling is given in Appendix C, along with a small 

example. 

 

5.1 Sample of households 
 

The Panel for Urban Policy (PUP) is a survey in four waves, conducted between 2011 and 2014 by the 

French General Secretariat of the Inter-ministerial Committee for Cities (SGCIV). The survey aims at 

collecting information about security, employment, precariousness, schooling and health, for people living 

in the Sensitive Urban Zones (ZUS). We are only interested in the 2011 wave of the survey. A sample of 

households is selected, and all the individuals living in the selected households are theoretically surveyed.  

The sample of households is obtained by two-stage sampling, see for example Chauvet (2015); 

Chauvet and Vallée (2018). Firstly, the population of districts is partitioned into 4 strata, and a global 

sample of = 40In  districts is selected by means of probability proportional to size sampling inside strata. 

A sample of households is then selected at the second-stage inside each selected district by means of 

simple random sampling, in such a way that the final inclusion probabilities of households are 

approximately equal inside strata (self-weighted sampling design). For the purpose of illustration, the two-

stage selection of the households is not considered here, and the sample of households is viewed as 

directly selected by means of stratified simple random sampling.  

The sample contains 2,971 households, but due to unit non-response only 1,256 households are 

observed. Non-response is accounted for by using Response Homogeneity Groups, defined with respect to 

five auxiliary variables: housing construction period, type of dwelling (apartment/house), number of 

rooms, low-income housing (yes/no), region. By using a logistic regression and the score method (e.g. 

Haziza and Beaumont, 2007), we obtain 8 response homogeneity groups. The five auxiliary variables used 

in the definition of the RHGs are also used for calibration.  

We are interested in four categorical variables related to security, town planning and residential 

mobility. The variable 1y  gives the perceived reputation of the district (good, fair, poor, no opinion). The 

variable 2y  indicates if a member of the household has witnessed trafficking (never, rarely, sometimes, no 

opinion). The variable 3y  indicates if some significant roadworks have been done in the neighborhood in 

the twelve last months (yes, no, no opinion). The variable 4y  indicates if the household intends to leave 

the district during the next twelve months (certainly/probably, certainly not, probably not, no opinion). For 

each category g  of each variable ,y  we are interested in the proportion  
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with hhN  the total number of households. The estimator of g  adjusted for non-response is  
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see equation (2.7). The calibrated estimator of g  is  
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
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 (5.3) 

see equation (2.10).  

For each proportion, we give the normality-based confidence interval making use of the bootstrap 

variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals, see Section 3.5. 

We use the with-replacement Bootstrap presented in Algorithm 1 with =B 1,000 resamples. The results 

with a nominal one-tailed error rate of 2.5% are presented in Table 5.1. The three confidence intervals are 

very similar in all cases. 

 

Table 5.1 

Estimation of the marginal proportions with three confidence intervals for four variables on interest 
 

 Perceived reputation of district status 

 Estimator adj. for non-response Calibration estimator 

 Good Fair Poor No opinion Good Fair Poor No opinion 

Estim. 0.217 0.225 0.531 0.027 0.217 0.224 0.532 0.027 

Norm. CI [0.194,0.241] [0.201,0.249] [0.503,0.559] [0.018,0.036] [0.193,0.240] [0.200,0.248] [0.504,0.560] [0.018,0.036] 

Perc. CI [0.195,0.241] [0.201,0.251] [0.504,0.558] [0.019,0.036] [0.193,0.240] [0.201,0.251] [0.505,0.560] [0.019,0.036] 

Basic CI [0.193,0.240] [0.200,0.249] [0.503,0.557] [0.018,0.035] [0.193,0.240] [0.198,0.248] [0.504,0.559] [0.018,0.035] 

 Witnessed trafficking 

 Estimator adj. for non-response Calibration estimator 

 Never Rarely Sometimes No opinion Never Rarely Sometimes No opinion 

Estim. 0.599 0.065 0.155 0.181 0.606 0.065 0.156 0.173 

Norm. CI [0.571,0.627] [0.050,0.079] [0.135,0.175] [0.161,0.201] [0.581,0.632] [0.050,0.079] [0.135,0.176] [0.159,0.188] 

Perc. CI [0.572,0.628] [0.050,0.080] [0.134,0.175] [0.161,0.201] [0.582,0.633] [0.051,0.080] [0.134,0.175] [0.160,0.188] 

Basic CI [0.570,0.626] [0.049,0.078] [0.136,0.176] [0.161,0.201] [0.579,0.630] [0.049,0.078] [0.136,0.177] [0.159,0.187] 

 Roadworks in neighborhood 

 Estimator adj. for non-response Calibration estimator 

 Yes No No opinion  Yes No No opinion  

Estim. 0.471 0.495 0.034  0.470 0.496 0.034  

Norm. CI [0.444,0.498] [0.468,0.523] [0.024,0.044]  [0.443,0.496] [0.469,0.523] [0.024,0.045]  

Perc. CI [0.442,0.496] [0.469,0.524] [0.025,0.045]  [0.440,0.495] [0.470,0.524] [0.025,0.045]  

Basic CI [0.445,0.500] [0.466,0.522] [0.023,0.043]  [0.444,0.499] [0.468,0.522] [0.024,0.044]  

 Intention to leave the district 

 Estimator adj. for non-response  Calibration estimator 

 Cert./Prob. Prob. not Cert. not No opinion Cert./Prob. Prob. not Cert. not No opinion 

Estim. 0.286 0.130 0.548 0.036 0.287 0.131 0.546 0.036 

Norm. CI [0.260,0.312] [0.111,0.149] [0.520,0.576] [0.025,0.047] [0.261,0.313] [0.112,0.150] [0.518,0.573] [0.025,0.047] 

Perc. CI [0.260,0.313] [0.111,0.149] [0.521,0.576] [0.026,0.047] [0.261,0.313] [0.113,0.151] [0.520,0.574] [0.026,0.048] 

Basic CI  [0.259,0.312]  [0.111,0.149] [0.520,0.575] [0.025,0.046] [0.261,0.313]  [0.111,0.149] [0.517,0.572] [0.025,0.047] 
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5.2 Sample of individuals 
 

The sample of responding households contains 3,098 individuals who are theoretically surveyed, but 

due to unit non-response we observe a subset of 2,804 individual respondents only. Non-response is 

accounted for by using Response Homogeneity Groups, defined with respect to eight auxiliary variables: 

three at the individual level (sex, age, nationality), and five at the dwelling level (housing construction 

period, type of dwelling, number of rooms, low-income housing or not, region). By using a logistic 

regression and the score method, we obtain 8 response homogeneity groups. The three individual auxiliary 

variables used in the definition of the RHGs are also used for calibration.  

We are interested in three variables of interest. The variable 5y  is quantitative, and gives the number 

of children. The variable 6y  indicates whether the individual has one or several jobs (one, several, none, 

no answer). The variable 7y  indicates whether the individual benefits from a complementary full medical 

cover (yes, no, no answer). For the variable 5 ,y  we compute the estimator of the total adjusted for non-

reponse and the calibrated estimator given in equations (2.27) and (2.29), respectively. For the two other 

variables of interest and for each category ,g  we are interested in the proportion  

 ind

, ind

ind

1( = )
= ,

kl U

g

y g

N



 (5.4) 

with indN  the total number of individuals. The estimator of ,indg  adjusted for non-response is  
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see equation (2.27). The calibrated estimator of ,indg  is  

 
,ind

,ind

gcal,ind

1( = )
ˆ = ,

rr

rr

l ll S

ll S

w y g

w









 (5.6) 

see equation (2.29).  

For each parameter, we give the normality-based confidence interval making use of the bootstrap 

variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals. We use the with-

replacement Bootstrap presented in Algorithm 2 with =B 1,000 resamples. The results with a nominal 

one-tailed error rate of 2.5% are presented in Table 5.2. The three confidence intervals are very similar in 

all cases. 
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Table 5.2 

Estimation of the marginal proportions with three confidence intervals for four variables on interest 
 

 Number of children 

 Estimator adj. for non-response Calibration estimator 

Estim. (  106) 4.40    4.39    

Norm. CI [4.15,4.64]    [4.21,4.58]    

Perc. CI [4.16,4.65]    [4.21,4.58]    

Basic CI [4.14,4.63]    [4.20,4.57]    

 Does the individual have several jobs? 

 Estimator adj. for non-response Calibration estimator 

 One Several None No answer One Several None No answer 

Estim. 0.304 0.016 0.372 0.308 0.305 0.016 0.372 0.307 

Norm. CI [0.286,0.323] [0.011,0.021] [0.352,0.392] [0.290,0.326] [0.285,0.325] [0.011,0.021] [0.350,0.394] [0.283,0.332] 

Perc. CI [0.287,0.323] [0.011,0.021] [0.351,0.393] [0.289,0.326] [0.284,0.325] [0.011,0.020] [0.351,0.393] [0.284,0.333] 

Basic CI [0.286,0.322] [0.011,0.020] [0.351,0.393] [0.289, 0.326] [0.285,0.325] [0.011,0.020] [0.352,0.393] [0.282,0.330] 

 Complementary full medical cover 

 Estimator adj. for non-response Calibration estimator 

 Yes No No answer  Yes No No answer  

Estim. 0.122 0.626 0.252  0.122 0.627 0.251  

Norm. CI [0.106,0.137] [0.603,0.650] [0.234,0.270]  [0.105,0.138] [0.604,0.650] [0.227,0.275]  

Perc. CI [0.105,0.137] [0.603,0.651] [0.235,0.269]  [0.105,0.138] [0.604,0.650] [0.230,0.276]  

Basic CI [0.106,0.138] [0.602,0.649] [0.235,0.269]  [0.105,0.138] [0.605,0.651] [0.227,0.273]  

 
6. Conclusion and future work 
 

In this paper, we have explained how the with-replacement bootstrap may be applied to household 

surveys, in order to account for the whole variability of the sampling process including sampling and non-

response, and to a posteriori adjustments like calibration. The methods have been illustrated on a toy 

example for clarity of exposition, evaluated via a simulation study and applied to a French panel for urban 

policy. To make the implementation of the method easier for users, we have developed two SAS macros 

which are available upon request to the corresponding author. 

The results in the simulation study show that both the bootstrap variance estimators and three bootstrap 

confidence intervals work well in case of a small sampling fraction. If the sampling fraction is larger, the 

bootstrap variance estimator is known to be conservative, and the normality-based confidence interval is 

therefore expected to be conservative as well. However, the coverage properties of the two other 

confidence intervals in such context remain unclear. This is an interesting matter for further research.  

In this paper, we focused on applying the bootstrap for variance estimation, after the statistical 

adjustments (treatment of unit non-response and calibration) have been performed by the survey 

methodologist. Bootstrap may also be used a priori, as a diagnosis tool to evaluate the relevance of 

possible statistical adjustments. For example, it may be tempting to use a large number of Response 

Homogeneity Groups (RHGs) to correct unit non-response, so as to reduce the non-response bias. 

However, this may result in an increased variability of the reweighted estimators. Bootstrap may be used 

to evaluate several possible sets of RHGs, for example by producing histograms of the bootstrap non-

response adjustments and/or of the bootstrap estimators corrected for unit non-response, to give some 



Survey Methodology, December 2021 339 

 

 

Statistics Canada, Catalogue No. 12-001-X 

insight on the stability of estimation with a possible set of RHGs. This is helpful in finding a bias/variance 

trade-off. This approach in mentioned in Girard (2009), and is an important matter for further work.  

We have considered the situation when the survey is performed at one time only. If we wish to perform 

longitudinal estimations, units are typically followed over time. If we are also interested in cross-sectional 

estimations at several times, additional samples are selected at posterior waves and mixed with the 

original sample. Bootstrap variance estimation in the context of longitudinal surveys is a very important 

matter for further investigation. 
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Appendix 
 

A. Benchmark variance estimators for the sample of individuals 
 

We first consider the estimator indŶ  in equation (2.21), that we use in case of full response. The 

benchmark variance estimator is  
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We now consider the estimator 
,ind

ˆ
rrY  given in equation (2.27), which is adjusted for the non-response 

of both households and individuals. The benchmark variance estimator is  
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where 

 1 1 3
ˆ= ,k k kv u u+   

where the first linearized variable 1
ˆ

ku  is similar to that given in equation (2.8), while the second linearized 

variable 3ku  accounts for the estimation of the individual response probabilities. We have for the first 

linearized variable  
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and for the second linearized variable  

 
ind ,

3 ( )= 1 ,
ˆ

k

k l
k l rrd l

l Sk l

r r
u y

d p




 
− 

 
  (A.4) 

with 

 
,ind

,ind

= .
rd

rd

rl l ll S

rrd

l ll S

d r y
y

r








 (A.5) 

We now consider the calibrated estimator 
cal,indŶ  given in equation (2.29). The benchmark variance 

estimator is the same than given in equation (A.2) for 
,ind

ˆ ,rrY  by replacing the variable ly  with the 

estimated regression residuals of the variable of interest on the calibration variables, namely  
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B. SAS Program for one-stage sampling 
 

In this section, we present the SAS macro developed to implement the proposed methodology for a 

sampling of households only (one-stage sampling). The parametrization of the SAS program for 

computing bootstrap weights is presented in Section B.1. For clarity, a small example is presented in 

Section B.2. 

 
B.1 Program for computing bootstrap weights 
 

The parameters related to the database are:   

• BASE: library containing the SAS table with the list of sampled units. The default value is 

BASE=WORK.  

• ECHMEN: SAS table containing the list of sampled units in the population. The non-respondents 

need also to be included in this table.  
 

The parameters related to the bootstrap are:   

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.  
 

The parameters related to the variables needed in the SAS table are:   
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• IDMEN: list of variables identifying the statistical unit. They need to be character variables.  

• STMEN: list of variables of stratification used for the sample selection.  

• DMEN: sampling weight.  

• RMEN: response indicator (1 for a respondent, 0 for a non-respondent).  

• DRMEN: sampling weight, corrected for non-response. The values are only needed for the 

respondents.  

• DCMEN: calibrated weight. The values are only needed for the respondents.  

• GHRMEN: list of variables identifying the response homogeneity groups.  

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs.  

- With WGHRMEN=0, the response rates are not weighted. This is the default value.  

- With WGHRMEN=1, the response rates are weighted by the design weights.  

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed 

for the respondents.  

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed 

for the respondents.  
 

The parameters related to the output are:   

• SORT_MEN: SAS table containing the bootstrap sampling weights 

WB_D1,...,WB_D&ITBOOT for the whole sample.  

• SORT_RMEN: SAS table containing the bootstrap weights WB_N1,...,WB_N&ITBOOT 

corrected for non-response, and the bootstrap weights WB_C1,...,WB_C&ITBOOT corrected 

for non-response and calibration, for the sub-sample of respondents.  

 
B.2 A small example 
 

We consider the example treated in Section 2.1.4. The sample is as follows: 

 
data ech;  

input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 x1;  

cards;  

A 1 4 1 aa 4.44 4.01 1 1 

B 1 4 0 aa . . . . 

C 1 4 0 bb . . . . 

D 1 4 1 bb 5.54 4.87 1 0 

E 1 16 1 bb 22.15 19.98 1 1 

F 1 16 1 aa 17.78 15.63 1 0 

G 1 16 0 bb . . . . 

H 1 16 1 bb 22.15 19.98 1 1 

I 1 16 1 bb 22.15 19.49 1 0 

J 1 16 1 aa 17.78 16.03 1 1 

;run;  
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We can obtain =B 1,000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when unit 

non-response has been originally corrected by the method of RHGs, the response rates inside RHGs were 

weighted by the sampling weights. 

 

%BOOTUP_1DEG(BASE=work,ECHMEN=ech, 

ITBOOT=1000, 

IDMEN=idm,STMEN=stmen,DMEN=dmen, 

RMEN=rmen,DRMEN=drmen,DCMEN=dcmen,GHRMEN=ghrmen,WGHRMEN=1, 

XMENQUANT=x0 x1,XMENQUALI=, 

SORT_MEN=ech_boot,SORT_RMEN=echr_boot); 

 
C. SAS Program for two-stage sampling 
 

In this section, we present the SAS macro developed to implement the proposed methodology for a 

sampling of households and a sub-sampling of individuals (two-stage sampling). The parametrization of 

the SAS program for computing bootstrap weights is presented in Section C.1. For clarity, a small 

example is presented in Section C.2. 

 
C.1 Program for computing bootstrap weights 
 

The SAS macro %BOOTUP_2DEG enables to compute bootstrap weights for a household survey with sub-

sampling of individuals, and to account for correction of unit non-response via Response Homogeneity 

groups, and for the calibration of weights, both for households and individuals.  
 

The parameters with equality sign are mandatory. All identifying variables must be of character type.  
 

The parameters related to the database are:   

• BASE: library containing the SAS tables ECHMEN and ECHIND. The default value is 

BASE=WORK.  

• BASESOR: library containing the output. The default value is BASESOR=WORK.  

• ECHMEN=: SAS table containing the list of sampled households in the population. The 

household non-respondents need also to be included in this table.  

• ECHIND=: SAS table containing the list of sampled individuals inside all the responding 

households. The individual non-respondents need also to be included in this table.  
 

The parameters related to the bootstrap are:   

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.  
 

The parameters related to the variables needed in the household SAS table ECHMEN are:   

• IDMEN=: list of variables identifying the household. This variable is required in both ECHMEN 

and ECHIND.  

• STMEN: list of variables of stratification used for the sample selection.  
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• DMEN: sampling weight of the household.  

• RMEN: response indicator of the household (1 for a respondent, 0 for a non-respondent).  

• DRMEN: sampling weight of the household, corrected for non-response. The values are only 

needed for the respondents.  

• DCMEN: calibrated weight. The values are only needed for the respondents.  

• GHRMEN: list of variables identifying the response homogeneity groups for households.  

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs:   

- With WGHRMEN=0, the response rates are not weighted. This is the default value.  

- With WGHRMEN=1, the response rates are weighted by the design weights DMEN.  
 

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed 

for the respondents.  

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed 

for the respondents.  
 

The parameters related to the variables needed in the individual SAS table ECHIND are:   

• ID_IND=: list of variables identifying the individual (character variable).  

• R_IND: response indicator of the individual (1 for a respondent, 0 for a non-respondent).  

• DR_IND: weight of the individual, corrected for both household and individual unit non-

response. The values are only needed for the respondents.  

• DC_IND: calibrated weight. The values are only needed for the respondents.  

• PIKSACI=: conditional inclusion probability of the individual inside its household.  

• GHR_IND: list of variables identifying the response homogeneity groups.  

• WGHR_IND: weighting used in the computation of the response probabilities inside RHGs:   

- With WGHR_IND=0, the response rates are not weighted. This is the default value.  

- With WGHR_IND=1, the response rates are weighted by the design weights of individuals.  

- With WGHR_IND=2, the response rates are weighted by the weights of individuals, adjusted for 

household unit non-response.  
 

• XINDQUANT: list of quantitative variables used in the calibration. The values are only needed 

for the respondents.  

• XINDQUALI: list of qualitative variables used in the calibration. The values are only needed 

for the respondents.  
 

The parameters related to the output are:   

• SORT_MEN: SAS table containing all the sampled households, and the bootstrap sampling 

weights WB_D1,...,WB_D&ITBOOT for the whole sample.  

• SORT_RMEN: SAS table containing all the responding households, and the bootstrap weights   

- WB_N1,...,WB_N&ITBOOT corrected for non-response,  

- WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.  

• SORT_RIND: SAS table containing all the responding individuals inside the responding 

households, and the bootstrap weights   
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- WB_N1,...,WB_N&ITBOOT corrected for household non-response,  

- WB_NN1,...,WB_NN&ITBOOT corrected for both household non-response and individual 

non-response,  

- WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.  

 
C.2 A small example 
 

We consider the example treated in Section 2.2.4. The sample of households and the sample of individuals 

are as follows: 

 
data echmen;  

input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 x1; 

cards; 

A 1 4 1 aa 4.44 4.01 1 1 

B 1 4 0 aa . . . . 

C 1 4 0 bb . . . . 

D 1 4 1 bb 5.54 4.87 1 0 

E 1 16 1 bb 22.15 19.98 1 1 

F 1 16 1 aa 17.78 15.63 1 0 

G 1 16 0 bb . . . . 

H 1 16 1 bb 22.15 19.98 1 1 

I 1 16 1 bb 22.15 19.49 1 0 

J 1 16 1 aa 17.78 16.03 1 1 

;run;  

 
data echind; 

input idm$ idi$ piksaci dr1_ind rind ghrind$ phat_ind dr2_ind xi1 xi2 dc_ind; 

cards; 

A i01 0.34 13.06 1 g1 0.75 17.41 1 3 19.61 

D i04 1.00 5.54 0 g2 0.33 . . . . 

E i06 0.34 65.15 1 g1 0.75 86.86 1 2 53.93 

F i08 0.33 53.88 1 g1 0.75 71.84 1 3 78.43 

H i11 0.50 44.30 0 g1 0.75 . . . . 

I i13 1.00 22.15 1 g2 0.33 67.12 1 1 48.04 

J i14 1.00 17.78 0 g2 0.33 . . . . 

;run;  

 
We can obtain =B 1,000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when unit 

non-response of households has been originally corrected by the method of RHGs, the response rates 

inside RHGs were weighted by the sampling weights. Since WGHR_IND=0, it is supposed that when unit 

non-response of individuals has been originally corrected by the method of RHGs, the response rates 

inside RHGs were unweighted. 
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%bootup_2deg(BASE=work,BASESOR=work,ECHMEN=echmen,ECHIND=echind, 

ITBOOT=1000, 

IDMEN=idm,STMEN=stmen,DMEN=dmen,RMEN=rmen,DRMEN=drmen,GHRMEN=ghrm

en,WGHRMEN=0, 

DCMEN=dcmen,XMENQUANT=x0 x1,XMENQUALI=, 

ID_IND=idi,R_IND=rind,DR_IND=dr2_ind,PIKSACI=piksaci,GHR_IND=ghri

nd,WGHR_IND=0, 

DC_IND=dc_ind,XINDQUANT=xi1 xi2,XINDQUALI=, 

SORT_MEN=sort_men,SORT_RMEN=sort_rmen, 

SORT_RIND=sort_rind); 
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