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Assessing the coverage of confidence intervals under 

nonresponse. A case study on income mean and quantiles in 

some municipalities from the 2015 Mexican Intercensal 

Survey 

Omar De La Riva Torres, Gonzalo Pérez-de-la-Cruz and Guillermina Eslava-Gómez1 

Abstract 

This note presents a comparative study of three methods for constructing confidence intervals for the mean 

and quantiles based on survey data with nonresponse. These methods, empirical likelihood, linearization, and 

that of Woodruff’s (1952), were applied to data on income obtained from the 2015 Mexican Intercensal 

Survey, and to simulated data. A response propensity model was used for adjusting the sampling weights, and 

the empirical performance of the methods was assessed in terms of the coverage of the confidence intervals 

through simulation studies. The empirical likelihood and linearization methods had a good performance for 

the mean, except when the variable of interest had some extreme values. For quantiles, the linearization 

method had a poor performance, while the empirical likelihood and Woodruff methods had a better one, 

though without reaching the nominal coverage when the variable of interest had values with high frequency 

near the quantile of interest. 

 

Key Words: Confidence interval estimation; Empirical likelihood; Linearization; Missing at random; Nonresponse; 
Two-phase sampling. 

 

 

1. Introduction 
 

The 2015 Mexican Intercensal survey (MIC2015) conducted by the National Institute of Statistics and 

Geography (INEGI, 2015) collected information nationwide, using a probability sampling design in 1,643 

municipalities and through a census in 814 municipalities. In this study we use the census data 

corresponding to 441 municipalities from the state of Oaxaca. 

We focus on income as the variable of interest which exhibits a nonresponse rate of about 22.5%. 

Considering the respondents, the distribution of income has a high skewness mainly due to the presence of 

extreme values, and shows some values with high frequency. 

The objective of this study is to assess the empirical coverage rate of confidence intervals (CI) 

computed by three methods for the population mean and population quantiles, 0.1, 0.5 and 0.9, in survey 

data with nonresponse. Two-phase sampling is used with a random sample selected in the first phase, 

while in the second the sample is split into respondents and nonrespondents considering the nonresponse 

pattern of income in the census data. A response propensity model is used to adjust the weights for 

nonresponse. 
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For the population mean, we consider the Hájek estimator and two methods for computing CIs: 

empirical likelihood (Berger, 2020) and linearization (Särndal, Swenson and Wretman, 1992, Sections 5.2 

and 5.7). Concerning the population quantiles, we consider the point estimator obtained by interpolation of 

the distribution function as in Woodruff (1952) and Graf and Tillé (2014), and three methods for 

computing CIs: empirical likelihood (Berger, 2020), Woodruff (Woodruff, 1952) and linearization 

(Deville, 1999). These methods are described in Section 2, the numerical results are presented in Section 3 

for the MIC2015 data and in Section 4 for some simulated populations. Some final comments are given in 

Section 5. 

 
2. Three methods for estimating confidence intervals 

 
2.1 Estimation using two-phase sampling 
 

We consider a finite population  = 1, 2, ,U N  and a probability sample s U  of fixed size ,n  

with first and second-order inclusion probabilities k  and ,kl  , ,k l U  .k l  Let ky  be the thk  value of 

the variable of interest ,y  and let 0  be a population parameter and 0̂  an estimator of 0 .  

We assume that the value ky  is available for a subset r s  only. Let k  denote the response 

probability for unit .k  Let kI  be a response indicator variable such that = 1kI  for k r  and = 0kI  for 

\ .k s r  We also assume that there is a vector of auxiliary variables x  observed for all .k s  We make 

the missing at random (MAR) assumption:  

 ( =1| , ) = ( =1| ) = .k k k k k kP I y P I k U  x x   

The response probabilities k  are used for adjusting the design weights. We assume that the sampling 

design and the response mechanism are independent as in Berger (2020). Borrowing from two-phase 

sampling theory (Särndal et al., 1992, Section 9.3) the weights adjusted for nonresponse are defined as 

* 1 =1/ ( )k k k  −  and the second-order inclusion probabilities as * = , , ,kl kl k l k l U      .k l  

The interest lies in estimating the population mean = kk U
Y y N

  and the population quantile given 

by  

 
( )( ) ( 1) ( 1)

( 1)

( ) ( 1)

= ,
d d d

q d

d d

y y qN N
Y y

N N

− −

−

−

− −  
+

−
 (2.1) 

where ( )iy  is the value for the thi  unit arranged in increasing order,  ( )= min : < , =1, ,ld l qN N l N  

and ( )( ) ( )= , =1, , .l j lj U
N I y y l N


  Formula (2.1) is obtained by considering a piecewise linear 

interpolation of the step distribution function ( ) = ( ) ,kk U
F y I y y N


  where ( ) =1kI y y  when 

.ky y  

These population parameters are respectively estimated by  
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*
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and 

 
( ) ( )( ) ( 1) ( 1)

( 1)

( ) ( 1)

ˆ ˆ
ˆ = ,

ˆ ˆ

d d d

q d

d d

y y qN N
Y y

N N

− −

−

−

− −
+

−
 (2.3) 

where  ( )
ˆ ˆ= min : < , = 1, , ,l rd l qN N l n  *ˆ = 1 ,kk r

N 
  *

( ) ( )
ˆ = ( )l k l kk r

N I y y 


  and 

= .r kk s
n I

  

These estimators and the CIs described in the following subsection are based on the assumption that 

the response probabilities k  are known, unlike Berger (2020) and Kim and Kim (2007). However, we use 

ˆ
k  instead of k  in the simulation studies, where  

 
( )
( )

ˆexpˆ = ,
ˆ1 exp

k

k

k

k s





 
+

x

x

T

T
  

with ̂  obtained by fitting a logistic regression using .s  This leads to the estimators known as the 

empirical double expansion estimators (Haziza and Beaumont, 2017). 

 
2.2 Methods for estimating confidence intervals 
 

2.2.1 Linearization 
 

The linearization method relies on the assumption that the distribution of 0̂  is approximately normal. 

A CI for 0  is  

 1/2 1/2

0 1 / 2 0 0 1 / 2 0
ˆ ˆ ˆ ˆ[ ( )] , [ ( )] ,z V z V    − −

 − +   (2.4) 

where 1 −  is the confidence level, also known as nominal coverage; see Särndal et al. (1992, expression 

5.2.3). In practice 0
ˆ( )V   is estimated. For the estimators given by (2.2) and (2.3), a variance estimator is 

given by  

 
* * *

0 * * *

ˆ ˆ( )ˆˆ ( ) = ,kl k l k l

k r l r kl k l

z z
V

  


   

−
  (2.5) 

where ( )ˆ ˆˆ =k kz y Y N−  for ˆ
Y  (Särndal et al., 1992, Result 5.7.1) and ( ) ( )ˆ ˆ ˆˆ = ( ) ( )k k q qz I y Y q f Y N−  −  

for ˆ
qY  (Deville, 1999). The density function f  was obtained in two ways: a) using a Gaussian kernel as in 

Osier (2009) and b) using the nearest neighbour technique as in Graf and Tillé (2014). We present the 

results pertaining to a), since the technique in b) led to similar results. 
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We note that using (2.5) with ˆ
k  instead of k  might lead to overestimation of the variance of the 

empirical double expansion estimator and to wider CIs; see the expression (17) in Kim and Kim (2007) 

associated with the estimators of .Y  

 
2.2.2 Empirical likelihood method 
 

The empirical likelihood approach assumes that 0  is the unique solution of the estimating equation 

( ) = ( ) = 0kk U
G g 

  for a given function .kg  In particular, we use: 
 

i) ( ) =k kg y −  for 
0 = .Y  

ii) ( ) = ( , )k kg y q   −  for 0= ,qY  where ( ) ( ) ( 1) ( ) ( 1)( , ) = ( < ) ( = )( ) ( )k k l k l l l ly I y y I y y y y y   − −+ − −  

and  ( )= min : > .jl j y   

 

The empirical log-likelihood function in Berger and De La Riva Torres (2016) for a one-stage 

sampling design without stratification or auxiliary information is  

 max
:

( ) = log( ) : > 0, ( ) = 0, = ,max
k

k k k k k k
m k s k s k s k s

m m m g m n  
   

  
 
  
    (2.6) 

where  :km k s  satisfies the design and the parameter constraints =k kk s
m n

  and 

( ) = 0.k kk s
m g 

  

In the presence of nonresponse, we use (2.6) replacing ( ) = 0k kk s
m g 

  with 

( ) = 0.k k k kk s
m I g  

  A CI for 0  is given by  

    2 2

1 1
ˆ ˆmin : ( ) ( ) , max : ( ) ( ) ,R R            (2.7) 

where  max 0 max
ˆˆ ( ) = 2 ( ) ( )R   −  and 2

1 ( )   is the ( )1 − -quantile of the 2

1  distribution. The 

estimator 
0 { } max
ˆ := argmax ( )   corresponds to (2.2) and (2.3), respectively. 

We computed (2.7) using a root search method, calculating ˆ ( )R   for several values of ,  where 

max ( )  for a given value   was obtained by a modified Newton-Raphson algorithm as in Wu (2004). 

 
2.2.3 Woodruff method for quantiles 
 

The method of Woodruff (1952) is based on the estimated distribution function ˆ ( ).F y  For a quantile 

,qY  the variance of ˆ ( )qF Y  can be approximated using the Taylor linearization method with linearized 

variable ( )= ( ) ,k k qz I y Y q N −  while the variance is estimated using (2.5) with ˆ =kz  

( )ˆ ˆ( ) .k qI y Y q N −  Assuming normality of ˆ ( )qF Y  and using (2.4), it is possible to find a CI  1 2,c c  for 

( ),qF Y  which leads to 1 1

1 2
ˆ ˆ( ), ( )F c F c− −    for .qY  
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3. Empirical study based on data from the populations 

MIC2015_Oax and MIC2015_Oaxtrunc 
 

The population census considered in this work consisted of 208,101 inhabitants with complete 

responses in a vector x  of six auxiliary variables: age, educational level, employment status, gender, 

indigenous language, and marital status. The variable of interest y  corresponds to the monthly income. 

A logistic regression with some two-way interactions was fitted to the 208,101 observations, with 

response variable = 1kI  if an income value was given by individual ,k  and = 0kI  if it was not, and the 

vector x  of six explanatory variables. This model was then applied to the population of 161,296 

individuals, which corresponds to those with =1.kI  This led to a set of response propensity values 

1 161,296= ( , , ).    

The set of 161,296 respondents, with response propensities 
1 161,296, , ,   is referred to as 

MIC2015_Oax population. The distribution of income in this population is highly asymmetric partly due 

to the presence of some very large values. When removing the 80 observations with income larger than or 

equal to 50,000, we obtain a truncated population referred to as MIC2015_Oaxtrunc, which is also used in 

our experiments. 

The step distribution function of income has only 913 and 887 jumps in each population respectively, 

with some large jumps at income values that are near the quantiles of interest. In particular, =y 2,571 

accounts for 7.3% of the distribution and is very close to the quantile 0.5 ;Y  = 643y  (1.1%) and = 857y  

(4.2%) are close to 0.1;Y  whereas =y 6,429 (2.8%) and =y 7,000 (1.1%) are close to 0.9 .Y  

 
3.1 Numerical results 
 

For each population, the coverage rate of the CI for each method was estimated as follows: 

 

1. A simple random sample s  of size {1,000; 5,000}n  was selected. 

2. For each unit k s  with response propensity ,k  we generated kI  from a Bernoulli ( ).k  

3. Two cases were considered: a) full response and b) average nonresponse rate of 22.5%. For the 

latter, a logistic regression with two-way interactions, with I  as the response and the six 

explanatory variables, was selected by forward selection using the BIC criterion. The estimated 

response probabilities ˆ
k  were obtained with the selected model. 

4. 90% CIs were computed using linearization (Lin), empirical likelihood (EL) and the Woodruff 

(W) method for quantiles.  

5. Steps 1 to 4 were repeated =M 5,000 times and the coverage rate for each method and for each 

parameter was calculated as the proportion of CIs that covered the corresponding parameter 

value.  
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Table 3.1 shows the results for =n 5,000. Table 3.2 shows the absolute value of the percent relative 

bias, ( )
0 0

ˆRB = 100   −  with 0 0
ˆ ˆ= ,i M   and of the percent relative root mean square error, 

 
1/2

2

0 0 0
ˆRRMSE =100 ( ) .i M  −  Figure 3.1 presents the distribution of the =M 5,000 estimates 

for the nonresponse scenario for each parameter; the corresponding distributions for the full response 

scenario are qualitatively similar. The results for =n 1,000 are omitted since they were similar to those 

obtained with =n 5,000. From Tables 3.1 and 3.2 and Figure 3.1, we make the following remarks: 
 

a) For ,Y  Lin and EL methods perform similarly: they have a poor performance (coverage as low 

as 72.9%) for MIC2015_Oax, and a good one for MIC2015_Oaxtrunc, reaching the nominal level 

with similar tail error rates and CI average length. Figure 3.1 a) shows that the distribution of ˆ
Y  

is symmetric for MIC2015_Oaxtrunc and highly asymmetric for MIC2015_Oax; this asymmetry 

seems to be related to the 80 extreme income values not present in MIC2015_Oaxtrunc. 

b) For quantiles, Lin method has a poor performance with the shortest CI average length in both 

scenarios, in spite of the expected overestimation of the variance in the nonresponse scenario. 

This method relies on the normality of ˆ ,qY  but Figures 3.1 b), c) and d) show that the 

distribution of ˆ
qY  is far from being symmetric and unimodal, with modes around income values 

with high frequency. Especially for 0.1 ,Y  where the coverage rate is as low as 31.4%, the 

distribution of 0.1Ŷ  is multimodal with a high proportion of values that are farther from 0.1Y  than 

half the CI average length. EL and W methods generally perform well, except for 0.5Y  in the full 

response scenario and for 0.9Y  in MIC2015_Oax. The low coverages seem to be related to the 

observed high frequency of the two income values 2,571 (7.3%) and 6,429 (2.8%). The first one 

is very close to 0.5 =Y 2,570 and some of the CIs for 0.5Y  are too narrow when 0.5
ˆ <Y 2,571. The 

second one is farther from 0.9Y  in MIC2015_Oax than in MIC2015_Oaxtrunc, reducing the 

proportion of CIs that cover 0.9Y  when 0.9Ŷ  6,429, see Figure 3.1 d), where 0.9 =Y 6,921 in 

MIC2015_Oax and 0.9 =Y 6,856 in MIC2015_Oaxtrunc.  

c) Table 3.2 shows that the RB is small, less than 3.3%, for all parameters. When only a simple 

adjustment with the percentage of nonresponse is applied (not shown in this note), the RB is 

larger and all the methods have a very poor performance. These results suggest that the use of a 

propensity model helps to obtain a RB comparable with that of the full response case. For 0.1 ,Y  

the empirical double expansion estimator is even less biased than the one associated with the 

full response scenario; however their RRMSE are comparable and the largest among those for 

the parameters of interest, since the distribution of the estimators is multimodal in both 

scenarios, see Figure 3.1 b).  
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Figure 3.1 Distribution of the =M 5,000 estimates of Y  in a), and of 
0.1

,Y
0.5

Y  and 
0.9

Y  in b) to d) for the 

case with an average nonresponse of 22.5% and =n 5,000. The upper panel corresponds to 

MIC2015_Oax and the lower to MIC2015_Oaxtrunc. The dotted lines indicate the population 

values ,Y
0.1

,Y
0.5

Y  and 
0.9

.Y  
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Table 3.1 

Coverages of 90% CIs for the parameters ,Y  
0.1

,Y  
0.5

Y  and 
0.9

,Y  for =y income. Average nonresponse of 

22.5% (NR) and Full response (Full) 
 

Parameter 

0
  

Method Coverage 

% 

Lower tail 

err. rates % 

Upper tail 

err. rates % 

CI average 

length 

NR Full NR Full NR Full NR Full 

MIC2015_Oax 

Y  EL 79.1* 72.9*   4.5   3.8* 16.4* 23.3* 370.8 335.4 

Lin 80.6* 73.8*   0.3*   0.1* 19.1* 26.1* 345.3 309.9 

0.1Y  EL 91.1* 90.5   6.0*   4.1*   2.9*   5.4 192.8 179.5 

W 90.6 89.8   6.2*   4.2*   3.2*   6.0* 191.2 177.1 

Lin 37.9* 35.1* 28.9* 19.2* 33.3* 45.7* 114.4   89.4 

0.5Y  EL 88.2* 82.3*   1.6*   0.7* 10.2* 17.1* 274.6 225.8 

W 88.0* 81.0*   1.7*   0.7* 10.3* 18.3* 274.4 224.1 

Lin 79.0* 88.0* 21.0* 12.0*   0.0*   0.0* 152.2 127.3 

0.9Y  EL 84.0* 83.0*   2.6*   2.7* 13.3* 14.3* 527.2 470.2 

W 86.1* 84.3*   2.5*   2.7* 11.4* 13.0* 533.8 474.2 

Lin 72.3* 73.5*   0.4*   0.1* 27.3* 26.4* 392.8 346.6 

MIC2015_Oaxtrunc
 

Y  EL 90.5 90.6   6.4*   4.4   3.0*   5.0 173.7 147.5 

Lin 90.8* 90.1   5.7*   4.2*   3.5*   5.6* 171.2 145.0 

0.1Y  EL 89.8 89.9   6.8*   4.0*   3.4*   6.1* 191.7 178.7 

W 89.1* 89.1*   7.0*   4.1*   4.0*   6.8* 190.0 176.2 

Lin 35.5* 31.4* 29.4* 21.0* 35.1* 47.6* 104.9   81.4 

0.5Y  EL 87.2* 80.4*   1.6*   0.9* 11.2* 18.7* 267.8 218.5 

W 87.1* 79.3*   1.6*   0.9* 11.3* 19.8* 267.7 216.7 

Lin 80.0* 87.4* 20.0* 12.6*   0.0*   0.0* 144.9 121.0 

0.9Y  EL 90.3 90.1   4.4   4.4*   5.3   5.5 521.3 470.8 

W 92.3* 91.9*   4.3*   4.3*   3.5*   3.8* 528.2 475.3 

Lin 75.6* 77.0*   0.1*   0.1* 24.3* 23.0* 411.7 365.5 

* Coverages and tail error rates significantly different from 90% and 5% respectively (Feller, 1968, page 182). p -value < 5% 

MIC2015_Oax: N = 161,296,  = 0.08,  = 89.9; MIC2015_Oaxtrunc: N = 161,216,  = 0.21,  = 3.48, where 

= corr( , )y   and 
3/2

2
31 1

1=1 =1
= ( ) ( ) .

N N

i iNN i i
y y y y

−

 − −    

 
Table 3.2 

Percent relative bias (RB) and percent relative root mean squared error (RRMSE) of estimators of ,Y  
0.1

,Y  

0.5
Y  and 

0.9
,Y  based on 5,000 samples. Average nonresponse of 22.5% (NR) and Full response (Full) 

 

Population Y  0.1
Y  

0.5
Y  

0.9
Y  

│RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ 

NR Full NR Full NR Full NR Full NR Full NR Full NR Full NR Full 

MIC2015_Oax
 

0.30 0.01 3.8 3.2 0.58 3.13 10.4 9.9 1.96 0.93 4.8 3.4 1.79 1.68 3.3 3.0 
MIC2015_Oaxtrunc

 
0.27 0.02 1.5 1.3 0.71 3.23 10.5 10.0 1.87 0.96 4.8 3.5 1.05 0.95 3.0 2.8 

 
4. Simulated populations 
 

In order to control the asymmetry of the distribution of ,y  the correlation corr ( , )y   and the 

percentage of nonresponse, we simulated two symmetric and two asymmetric populations of size =N

50,000 with a variable of interest y  and six auxiliary variables 1 6, , ,x x  as follows. 
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1. 50,000 simple random samples for each of the variables 1 6, ,x x  were generated 

independently from a (0,1)N  distribution.  

2. The response probabilities k  were obtained using a logistic regression with 

1 6= = = 0.3  −  and 0  chosen so that the average nonresponse was equal to 24.8%.  

3. Two settings were considered for the distribution of :y  

i) Symmetric. ky  was generated from a 2( , ),N    with =1 + 2.16 
6

=1
corr ( , ) kjj

y x x  and 

2 = 4.67 2*(1 6corr ( , )),y x−  where corr ( , ) = corr ( , ), {1, , 6}.jy x y x j  

ii) Asymmetric. = exp( ),k ky z  where kz  was generated from a 2( , ),N    with 
6

=1
= corr ( , ) kjj

z x x   and 2 2=1 6corr ( , ),z x −  where corr ( , ) = corr ( , ), {1, ,6}.jz x z x j  

Both corr ( , )y x  and corr ( , )z x  were chosen so that corr ( , )y   was approximately equal to -0.2 

or -0.8.  

 
4.1 Numerical results 
 

The coverage rate of the CIs was computed as in Section 3.1, with = 500n  and using a logistic 

regression without interactions to obtain ˆ , .k k s   

Table 4.1 reports the results for the populations with corr ( , ) = 0.8.y  −  Table 4.2 shows the │RB│ 

and │RRMSE│ of the estimators. Numerical results for populations with corr ( , ) = 0.2y  −  are omitted 

since they were similar to those obtained for populations with corr ( , ) = 0.8.y  −  We make the following 

observations: 

a) EL and Lin methods have a similar reasonable performance for ,Y  though the upper tail error 

rates are larger than 5% in the asymmetric population.  

b) For quantiles, Lin method has the lowest and the highest coverage of 85.7 and 97.9% 

respectively. Unlike the distribution of ˆ
qY  shown in Figure 3.1, the distribution of ˆ

qY  for the 

simulated populations is symmetric and unimodal in all cases. EL and W methods perform well, 

reaching the nominal level in all cases with comparable tail error rates and CI average length.  

c) Weighting adjustment in the nonresponse scenario helps to get a RB similar to that of the full 

response.  

d) The coverage rate of the CI for each method is larger in the nonresponse scenario than in the 

full response, and in some cases it is also larger than the nominal level. This might be related to 

the impact of having treated the ˆ
k  as fixed in the nonresponse case.  
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Table 4.1 

Simulated populations. Coverages of 90% CIs for ,Y  
0.1

,Y  
0.5

Y  and 
0.9

,Y  for y  with corr( , ) = 0.8.y  −  

Average nonresponse of 24.8% (NR) and Full response (Full) 
 

Parameter 

0
  

Method Coverage 

% 

Lower tail 

err. rates % 

Upper tail 

err. rates % 

CI average 

length 

NR Full NR Full NR Full NR Full 

Asymmetric 

Y  EL 90.9* 88.6* 2.2* 5.1   6.9* 
  6.3 0.50 0.32 

Lin 90.1 88.6* 0.5* 3.2*   9.4*   8.2* 0.48 0.31 

0.1Y  EL 90.6 89.5 4.0* 4.6   5.4   5.9 0.07 0.07 

W 90.3 89.5 3.6* 4.1*   6.2*   6.4* 0.07 0.07 

Lin 97.9* 97.4* 1.2* 1.5*   1.0*   1.2* 0.10 0.10 

0.5Y  EL 93.6* 90.5 3.0* 4.4*   3.4* 
  5.1 0.22 0.19 

W 93.5* 90.4 2.9* 4.4   3.6* 
  5.1 0.22 0.19 

Lin 92.5* 88.9* 2.9* 5.0   4.6   6.2* 0.21 0.18 

0.9Y  EL 92.7* 90.3 2.6* 4.1*   4.7   5.7* 1.35 0.91 

W 93.0* 90.4 2.7* 4.6   4.3* 
  5.0 1.36 0.92 

Lin 87.4* 85.7* 2.6* 4.1* 10.1* 10.2* 1.23 0.87 

Symmetric 

Y  EL 93.6* 90.2 3.3* 5.0   3.1*   4.8 0.40 0.32 

Lin 93.5* 89.9 3.1* 5.2   3.4*   4.9 0.39 0.32 

0.1Y  EL 91.2* 90.9* 3.6* 3.9*   5.2   5.2 0.59 0.55 

W 91.0* 90.6 3.2* 3.6*   5.8*   5.8* 0.59 0.56 

Lin 88.6* 88.2* 5.8* 5.9*   5.7*   6.0* 0.57 0.53 

0.5Y  EL 92.8* 90.1 3.3* 4.6   3.9*   5.3 0.46 0.39 

W 92.9* 90.1 3.1* 4.6   4.0*   5.3 0.46 0.39 

Lin 92.4* 90.2 3.4* 4.7   4.2*   5.2 0.46 0.39 

0.9Y  EL 92.9* 90.4 2.2* 3.6*   4.9   6.0* 0.76 0.54 

W 93.3* 90.3 2.2* 4.2*   4.5   5.4 0.77 0.54 

Lin 90.3 89.1* 2.1* 3.2*   7.6*   7.7* 0.74 0.53 

* Coverages and tail error rates significantly different from 90% and 5% respectively (Feller, 1968, page 182). p -value < 5% 

Symmetric: = 0.02; Asymmetric: = 6.2; where 
3/2

2
31 1

1=1 =1
= ( ) ( ) .

N N

i iNN i i
y y y y

−

 − −    

 
Table 4.2 

Percent relative bias (RB) and percent relative root mean squared error (RRMSE) of estimators of ,Y  
0.1

,Y  

0.5
Y  and 

0.9
,Y  based on 5,000 samples. Average nonresponse of 24.8% (NR) and Full response (Full) 

 

Population  Y  0.1
Y  

0.5
Y  

0.9
Y  

│RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ │RB│ │RRMSE│ 

NR Full NR Full NR Full NR Full NR Full NR Full NR Full NR Full 

Asymmetric  0.11 0.13   9.0 5.9 0.56 0.53   7.8 7.5 0.00 0.07 6.0 5.7 0.53 0.43 9.7 7.6 

Symmetric  0.12 0.09 10.3 9.5 0.98 0.91 10.2 9.7 0.33 0.35 12.7 11.8 0.43 0.34 5.5 4.3 

 
5. Conclusions 
 

Considering the distribution of y  (income), it was observed that a poor performance of a method in the 

full response scenario generally corresponded to a poor one in the nonresponse scenario, although in 

several cases the coverage rate was larger in the latter. This suggests that having treated the ˆ
k  as fixed 
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had little effect on the performance of the methods as compared to the impact of the characteristics of the 

distribution of .y  Extreme values were related to a low coverage of the CIs for the mean for both 

empirical likelihood and linearization methods. The presence of values with high frequency near a 

quantile of interest also had an impact on the coverage of its CIs; this might be related to the behavior of 

the step distribution function, where the jumps in ( )F y  and ˆ ( )F y  are usually required to be small in 

order to obtain a good performance of the Woodruff method (Lohr, 2010, page 390). In general, the 

linearization method had a poor performance for quantiles, while the performance of empirical likelihood 

and of Woodruff were similar and better; this behavior has also been observed in Berger and 

De La Riva Torres (2016). While Woodruff method is simple and easy to implement, an advantage of the 

empirical likelihood method is that it can be used for parameters other than quantiles. 
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