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Bayesian pooling for analyzing categorical data from small 

areas 

Aejeong Jo, Balgobin Nandram and Dal Ho Kim1 

Abstract 

Bayesian pooling strategies are used to solve precision problems related to statistical analyses of data from 

small areas. In such cases, the subpopulation samples are usually small, even though the population might not 

be. As an alternative, similar data can be pooled in order to reduce the number of parameters in the model. 

Many surveys consist of categorical data on each area, collected into a contingency table. We consider 

hierarchical Bayesian pooling models with a Dirichlet process prior for analyzing categorical data based on 

small areas. However, the prior used to pool such data frequently results in an overshrinkage problem. To 

mitigate for this problem, the parameters are separated into global and local effects. This study focuses on 

data pooling using a Dirichlet process prior. We compare the pooling models using bone mineral density 

(BMD) data taken from the Third National Health and Nutrition Examination Survey for the period 1988 to 

1994 in the United States. Our analyses of the BMD data are performed using a Gibbs sampler and slice 

sampling to carry out the posterior computations. 

 

Key Words: Categorical data; Dirichlet process; Nonparametric hierarchical Bayesian pooling; Slice sampling; Small 
area. 

 

 

1. Introduction 
 

Many surveys collect categorical data for individual areas, which are then stored in a contingency 

table. For example, in a typical obesity rate comparison survey, the researcher might classify the measured 

sample data by the degree of obesity. Then, the regional obesity rate is estimated using the number of 

samples assigned to each category. In such cases, we need to consider how the precision is affected by the 

sample size and the number of parameters in the model, particularly for estimations based on small areas 

(Rao and Molina, 2015). In general, the precision of a model decreases as the number of parameters 

increases, assuming the same sample data. To prevent this decrease in precision, the constructed model 

needs to be as simple as possible. That is, the number of parameters must be reduced in the model. 

However, the model loses the ability to reflect the detailed effects in each area. Another way to resolve the 

precision problem is to increase the sample size allowed per parameter. That is, we can employ pooling 

strategies when analyzing categorical data based on small areas. 

Interest in pooling methods is growing among researchers. Malec and Sedransk (1992) developed a 

Bayesian procedure for estimating the mean of an experiment in a set of seemingly similar experiments. 

They constructed the prior distribution for a location parameter to reflect their assumptions. They 

identified subsets of parameters, with subscripts indicating the similarity between the subsets, in which 

there is uncertainty about the composition of the subsets. They specified the prior distribution for a 

parameter by conditioning on the same subscript in similar experiments. Their flexible prior distribution 
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allows the intensity and nature of the pooling to be influenced by the sample data. Later, Evans and 

Sedransk (1999) proposed a more flexible Bayesian model using covariates. In addition, Evans and 

Sedransk (2003) provided a fully Bayesian justification for the results of Malec and Sedransk (1992). 

These three works have since been extended based on the same key concept of specifying a model in 

which subscripts are used to indicate similar experiments (Consonni and Veronese, 1995 and DuMouchel 

and Harris, 1983). Also, Dunson (2009) suggested a generalization of the Dirichlet process (DP) proposed 

by Ferguson (1973) that allows for dependent local pooling and the borrowing of information. The goal is 

to borrow information in order to more efficiently estimate the individual functions. The proposed process 

for local pooling offers a simple, but flexible approach to specifying the local selection process. They 

suggest using slice sampling, proposed by Walker (2007), to carry out the posterior computations. This is 

a simple and efficient method that allows for posterior computations for an infinite-dimensional process 

that is similar to those of a finite-dimensional process. Here, we construct a pooling model using these 

basic concepts for data based on small areas. Recently, Nandram, Zhou and Kim (2019) proposed a pooled 

Bayes test of independence for sparse contingency tables. They constructed the model based on a 

Dirichlet-multinomial hierarchical Bayesian model, see also Nandram (1998) who constructed a prior 

using the Dirichlet distribution for pooling the data in the models. Of course, a DP is assumed for the 

parameters of interest, which is the cell probability parameters in our contingency table. 

In this study, we use bone mineral density (BMD) data, taken from the Third National Health and 

Nutrition Examination Survey (NHANES III) for the six-year period from October 1988 to September 

1994. BMD is the quantity of mineral in bone tissue, measured as the optical density per 2cm  of bone 

surface using medical imaging. BMD is used in clinical arenas as an indirect indicator of osteopenia, 

osteoporosis, fractures, and so on. BMD is statistically correlated with the probability of fractures, which 

are an important public health problem, especially in elderly women. Therefore, BMD data are important 

indicators used to identify osteoporotic patients who might benefit from early management to improve 

their bone strength. 

NHANES III contains clinical data on 33,994 people who participated in the survey and is sampled for 

individual areas. Each person is categorized into three BMD levels: (1) normal, (2) osteopenia and (3) 

osteoporosis. Our study used Bayesian inference on categorical tables. See Agresti and Hitchcock (2005) 

and Leonard (1977) for inference on second multinomial tables. The original data were gathered from 

mobile examination centers across the United States. NHANES III, which is an important program of the 

National Center for Health Statistics (NCHS), examines the state of health and nutritional in the United 

States. The program started in the 1960s, and has conducted surveys on various health- and nutrition-

related topics. As a result, NHANES provides surveys based on large samples in the United States. 

However, the NCHS is also interested in estimates for smaller geographical areas and study domains. 

When the sample size of a subpopulation is small, we need to consider an alternative estimator based on a 

pooling strategy in order to analyze the data. 

As a result, we focus on predicting the finite population proportion of each area. The finite population 

proportion is estimated by inputting the sample data into the model to predict the unobserved nonsample 

part of the finite population, then obtaining the weighted sum of the observed sample data and the 

predicted nonsample obtain to the sample proportion. First, we estimate the cell probability parameters 
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from the sample data. During this process, the observed count by category in NHANES III is employed as 

the sample part of the finite population. Second, these parameters are used to predict values for the 

nonsample part. Finally, we get the finite population proportions by combining the sample data and 

prediction value of nonsample part. 

The remainder of the paper proceeds as follows. In Section 2, we introduce the hierarchical Bayesian 

pooling strategies used to analyze categorical data from small areas. In Section 3, we present and discuss 

the results of our data analysis of the BMD survey data set. Section 4 concludes the paper. Appendix A 

and B include the computation process for hierarchical Bayesian pooling model. 

 
2. Hierarchical Bayesian models 
 

2.1 Parametric models 
 

For a hierarchical Bayesian baseline model, we consider an I K  contingency table, where ikn  

indicates the thk  response in the thi  area, for = 1, , , = 1, , .i I k K  Let 
ik  denote the 

corresponding proportion for each cell. Then, we assume that  

 ( )
iid

.Multin ,l~ omina ,i i i inn π π  (2.1) 

where ( )1= , ,i i iKn nn  for = 1, , ,i I  is a vector of responses, . =1
=

K

i ikk
n n  is the sum of the 

responses in area ,i  and ( )1= , , ,π i i iK  0 1,ik 
=1

1,
K

ikk
 =  is the proportion vector for each 

area. The model does not allow any pooling and is denoted as a baseline to compare our models. The 

parameters 
i  are independent and do not share a common effect. That is, the areas are unrelated. 

There are five categories of parametric pooling models, classified according to the priors of the 

proportion vectors in a multinomial distribution. First, the four prior distributions for parametric Bayesian 

inferences are given as follows:  

1) No pooling, ( )
iid

;Dir l~ ich etπ 1i  

2) Complete pooling, Dirichlet~π ( )1  with 1 = = = ;π π πI  

3) Adaptive pooling, ( )
iid

;Diri e~ chl tπ μi   

4) Restricted pooling, ( ) ( ) ( )
ind

Dirichlet Dir ;ich1 le~ tπ μ 1i   + −  

 

where ( )1= , , ,μ K   0 1,k 
=1

= 1
K

kk
  and > 0  are the hyperparameters of the Dirichlet 

distribution. We further assume that ( ) ( ) ( )
2

, = 1 ! 1 ,μ K  − +  a shrinkage prior. We note that Yin 

and Nandram (2020a, b) place a Dirichlet process on the sampling process to accomodate gaps, outliers 

and ties in survey data, see also Nandram and Yin (2016a, b) for additional discussion of the Dirichlet 

process. The ( ) ,unifor~ m 1 2, 1 1 2   means that more weight is attached to adaptive pooling. 

Model 1 is a no-pooling model that estimates the parameter without any data sharing from other areas. 

Model 2, on the other hand, is a complete pooling model that estimates the parameter while treating the 

different areas as one. When conducting parameter estimations on a small area with a small number of 

data using Model 1, the estimation may face the small area problem, as the parameter is estimated by 

relying on insufficient data. Although the complete pooling model alleviates this issue, it faces problems 
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of its own: Overshrinkage and individual areas cannot be discerned. Hence, this paper introduces various 

pooling approaches to find a model that delivers better estimates. In Model 3, the adaptive pooling model 

introduced by Nandram, Zhou and Kim (2019), all areas share the same hyperparameters; hence, they 

share their area data information as well. This is an indirect complete pooling method that preserves some 

area variation but, in general, assumes all areas to have identical traits; see also Nandram (1998). This 

creates variations in estimating the hyperparameters. Thus, we propose the restricted pooling model, 

which alters Model 3 by removing data-sharing information between distinct areas. In this new model, 

distinct areas use their local data to estimate parameters, and areas with similar traits share information 

through pooling based on the same hyperparameter, thereby improving the estimation. This model, 

however, assigns the same hyperparameter to areas with similar traits, which may lead to the 

overshrinkage problem when smoothing in the category occurs. To mitigate this issue, we propose Model 

5, the global-local pooling model, see Dunson (2009). The global-local pooling model pools information 

in data among areas with similar traits but also preserves each variation in the category through the local 

effect model, thereby reducing the smoothing in the categorical effect. Indeed, Model 5 is flexible and 

robust. 

The fifth prior distribution used for parametric Bayesian inferences is called global–local pooling. In 

this case, we use different notation for the proportion vector of each area. Let ,p i
 for = 1, , ,i I  denote 

the corresponding cell proportion vector in the thi  area. We assume that  

 ( )
ind

.Multinomia ,~ , , = 1,l ,i i i in i In p p  (2.2) 

where ( ) ( ) ( ) ( )( )11

1 1 1

=1 =1 =1
= 1 , , 1 , 1 1 .p i Ki ik ik ik

K K K

i k k k
e e e e e        −

− − −
++ + + +


+ + +    Here, 

ip  is 

composed of two components, namely,   and ,ik  and   reflects the basic probability that brought all 

the areas together. The global-local effect is reflected in the component ( )( )1 1= , , .ηi i i K  −
  

Specifically,  

 ( ) ( ) ( ) ( )
1 1

iid
22

0 1
=1 =1

~ N 0, N 0, ,
i i

K K

i kz z
k k

I I 
− −

= =+ η  (2.3) 

where ( )2N 0,   is the normal distribution of the global parameter 2 , ( )2N 0, k  is the normal 

distribution of the local parameters 2
k  for each category, where each area is denoted by a different index. 

Then, ,iz = 1, , ,i I  follows a Bernoulli distribution with a hyperparameter ,  which adjusts the 

proportion between the global and local effects. Thus, if we need to focus on the global effect, the prior 

for   is set using the uniform distribution on ( )1 2, 1 .  Specifically, we assume that  

 ( )
iid

Bernoul ,~ , = 1li , ,iz i I    

 
1

~ , 1 ,
2

Uniform
 
 
 

  

 ( )
( )2

a Cauchy prior,
1

= ,
1

 
 +

  

 ( )
( ) ( )

1

2 2 2
1 1 2 222

=1

1 1
, , , = ,

1 1

K

K
k k

   
 

−

−
+ +
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where ,ik−    = 1, , 1,k K − 2 0,   and 2 0,k  = 1, , 1.k K −  We have used the 

Cauchy prior for   and shrinkage priors for variance components. The shrinkage priors are similar to the 

half Cauchy prior and they are mathematically more convenient when we make transformations to ( )0, 1 .  

The models proposed in this paper are based on the adaptive pooling model (Nandram, Zhou and Kim, 

2019), which applies the principle of assigning the same subscripts of parameter in prior distribution to 

similar experiments (Malec and Sedransk, 1992) to categorical data. In particular, the no pooling model 

and complete pooling model represent two extreme cases of adaptive pooling, with parameters μ  and .  

On the other hand, the restricted pooling model has a pooling principle such as adaptive pooling model, 

but the model also reflects uncertainty through the weighting parameter .  However, the same parameter 

in the prior distribution used to pool such data frequently results in an overshrinkage problem. To 

compensate for this problem, we propose the global-local pooling model. The effects of the parameters are 

separated into global and local effects in this model. As a result, we propose two new models, restricted 

pooling model and global-local pooling model, and we compare these models with existing ones. 

 

2.2 Nonparametric models 
 

We consider the DP prior for 
iπ  of (2.1) in Section 2.1. The prior structure is as follows:  

 
( )

iid

0

~

~ DP , ,

i G G

G G




  

where 0G  is the base distribution and the positive real number, ,  is the concentration parameter in the 

DP prior. The model is specified by the structure of the base distribution. We note here that Yin and 

Nandram (2020a, b) used a DP on the sampling process to accommodate gaps, outliers and ties in survey 

data. First, we define the model using two prior distributions, as follows:  

6) Nonparametric adaptive pooling  ( )
0 ;Dirichlet μG   

7) Nonparametric restricted pooling  ( ) ( ) ( )0 11 .Dirichlet Dirichletμ 1 KG     + −  

 

We assume ( ) ( ) 2, = 1 ! (1 ) ,μ K  − + ( ) ( )
2

1 1 ,   +  and ( ) .unifor~ m 1 2, 1  In 

Models 6 and 7, we use a stict-breaking process for the DP prior (Sethuraman, 1994). 

The last model is a nonparametric version of (2.2) in Section 2.1, used for global-local pooling. Here, 

iη  are used to construct the nonparametric Bayesian setting, as follows:  

 ( ) ( )

1
iid

00 1
=1

~η
i i

K

i kz z
k

I G I G
−

= =+    

 ( )( ) ( )( )22
0 0 1~ DP , MVN , , ~ DP , 0, ,0 I k kG G N      

where ( )( )1 1= , , ,i i i K  −
η ( ) ,Berno l~ ui liiz  ( ) 1,   ( ) ,unifor~ m 1 2, 1 ( )2 2 2

1 1, , , =K    −  

( ) ( ) 1 22 22

=1
1 1 1 ,

K

kk
 

−
+ +  for = 1, , .i I  This is model (A.1), nonparametric global-local 

pooling. 

The distribution of i  involves a mixture of global and local pooling areas. While global pooling is 

conducted according to the same principle as the aforementioned nonparametric models, the Dirichlet 
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process prior, where the normal distribution is the base distribution for each cell, is independently defined, 

thereby alleviating the overshrinkage problem that could arise owing to global pooling. Here, ,iz  which 

represents the weight of the model, follows the Bernouilli distribution with   greater than 1 2  as its 

parameter, and   follows the uniform distribution. Hence, the local pooling area is weighted so that it is 

defined as the form that can better alleviate the degree of shrinkage. In addition, to ensure simplicity of the 

model, the heavy tail and noninformative characteristic of   distribution follow the improper prior which 

is identical to, but simpler than, the previous parametric model and the posterior distribution is presented 

properly.  

 
3. Data analysis 
 

In this section, we present the empirical results from comparing the performance of the five parametric 

pooling models described in Section 2 and the three nonparametric pooling versions described in 

Section 3. We use BMD data for the period 1988 to 1994, taken from the NHANES III, which collected 

data from mobile examination centers across the United States. 

Our analysis is conducted using contingency tables with a cell count for three categories of BMD in 31 

counties in the U.S. Here, BMD is categorized into one of three levels. The normal category is defined as 

those with a BMD value less than one standard deviation (SD) below the non-Hispanic white (NHW) 

adult mean 2(0.82 mg cm BMD).  The osteopenia category is defined as a BMD value between 1 and 

2.5 SD below the young NHW adult mean 2 2(0.64 mg cm BMD 0.82 mg cm ).   Then, the 

osteoporosis category corresponds to a BMD of more than 2.5 SD below the young NHW adult mean 

2(BMD 0.64 mg cm ).  

We predict the finite population proportion for the BMD distribution in each area using the Bayesian 

pooling model. The survey covers roughly 0.02% of the population, and prediction as needed for the 

remainder 99.98%, an enormous job. Table 3.1 shows the sample data, which have a cell count for each 

categorized level in each area. We estimate the finite population proportion by predicting the nonsample 

part of the finite population from a multinomial distribution with parameter ( ), = 1, , = 31i i Iπ  at each 

MCMC iteration. Specifically, let ikN  for = 1, 2, 3k  be the total BMD level in area ,i  where the value 

is unknown. We have the value ( )ikn  for the sample part of the finite population. Then, we compute the 

finite population proportion ( )ikP  for ( )= 1, , = 31i I I  as follows:  

 ( ) 
1

= , = 1, 2, 3,ik ik ik ik

i

P n N n k
N

+ −  (3.1) 

where 
3

=1
= ,i ikk

N N ik ikN n−  is the nonsample part for each BMD level ( )= 1, 2, 3k k  in area ,i  

taken from the multinomial distribution with parameter ˆ ,π i  estimated using the MCMC in each model. 

Then, the posterior mean and standard deviation of ikP  are obtained using the estimated empirical 

distribution of .ikP  
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Table 3.1 

BMD categorical data for 31 counties from NHANES III 
 

Areas BMD  

Normal Osteopenia Osteoporosis 

1 33 24 9 
2 46 39 5 
3 40 25 8 
4 48 25 6 
5 40 15 10 
6 74 30 12 
7 47 19 7 
8 38 15 6 
9 49 16 11 

10 99 40 14 
11 39 18 2 
12 63 27 4 
13 48 18 5 
14 42 16 4 
15 40 15 4 
16 110 44 7 
17 37 14 3 
18 55 18 5 
19 47 12 6 
20 296 95 17 
21 59 18 4 
22 78 21 7 
23 196 55 15 
24 149 44 9 
25 69 19 5 
26 49 10 6 
27 73 19 3 
28 76 14 3 
29 77 13 4 
30 96 13 6 
31 88 12 4 

 
We use 1,000 iterations to “burn in” the MCMC samples, and take every th10  value to obtain the 

1,000 iterations. In addition, we use autocorrelation plots of the model to adjust the number of repetitions 

and thinning intervals. For example, in a nonparametric model with a relatively large number of 

parameters, we take every th20  estimated value from 1,001 to 20,000. We set the initial value of 

proportion iπ  for = 1, , 31i  based on the column proportion of the sample values in each area. 

The groups are categorized according to the quartile values of the first column proportion. The tuning 

parameter , = 1, , ,j j J  is initially set to = 0.5, and then is revised based on the performance of 

each model. 

In Table 3.2, we report the posterior means (PM) and posterior standard deviations (PSD) of the finite 

population proportions for the eight models and some areas. The cases of Model 1 and Model 2 are the 

most extreme pooling structures. The PM of Model 1 has the results 0.511, 0.496, 0.901, 0.826, and 0.820 

for the corresponding areas 1, 2, 28, 29, and 31, respectively, in the normal BMD, implying that the areas’ 

fluctuations are greater than those in Model 2’s PM (0.652, 0.654, 0.714, 0.716, 0.719). For Model 3, the 

fluctuations (0.644, 0.612, 0.793, 0.816, 0.798) show a trend similar to that in Model 1’s PM for each area 

but are smoother than those in Model 1. This could be interpreted as the indirect pooling effect through the 
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hyper-parameter rather than the direct pooling effect in Model 2. For the restricted pooling, in areas that 

show similar characteristics, the estimated values are calculated through indirect pooling and hyper-

parameters as in Model 3, and the estimated values are smoother than those in Model 1 (PM of areas 28, 

29, 31: 0.827, 0.779, 0.864, respectively). However, in areas where similar characteristics are not shown, 

the estimated values are close to those in Model 1 because the parameter is estimated by solely relying on 

the information in its associated areas (PM of areas 1, 2: 0.523, 0.510, respectively). Model 5, which is 

proposed to alleviate the overshrinkage problem that could arise owing to information pooling, shares 

information in nearby areas and alleviates the excessive shrinkage by reflecting the local effect of each 

cell, thereby rendering the estimated values that are between those in Model 1 and Model 2 (PM of Model 

5: 0.581, 0.511, 0.711, 0.836, 0.808). It should be noted that the nonparametric Bayesian model assigns 

the areas with indexes as the same group according to the characteristics of information through hyper-

parameter ( ), = 1, , = 31 ,id i I  and the same group shares the parameter directly. For BMD data, the 

number of the group ranges from one to three, showing the highest frequency, and the PM is estimated as 

in Model 2. The characteristics of the estimated values of PM for each model are shown identically in 

osteopenia BMD and osteoporosis BMD as well. 

The posterior means, standard deviations (SD) and posterior coefficients of variation (CV) of the finite 

population proportions for the eight models can also be seen in Figure 3.1-3.3. 

In Figure 3.1, the variation of PM for eight models is the largest in the normal BMD, which takes up 

the largest proportion. Especially, we can see that PMs of the nonparametric model are similar to that of 

the complete pooling model. During data analysis, we found one to three group index. Through this, we 

were able to discover that the BMD distribution is quite similar across the areas in NHANES III. Hence, 

all areas share their information with others to estimate the same hyperparameter. Thus, the nonparametric 

and complete pooling models give similar estimates. Therefore, pooling can solve problems associated 

with small area estimates when areas share similar traits. Furthermore, Figure 3.2 shows that the 

performance of the nonparametric models are good through the fact that the SD of the nonparametric 

models with many parameters are similar or smaller than that of the parametric models. 

In addition, we can see the CV of the models by BMD status in Figure 3.3. In the case of CV, 

osteoporosis BMD shows the greatest difference between models. Also it can be seen that the CV of the 

nonparametric versions is relatively low compared to the parametric version, which is not different for 

each BMD status. Furthermore, it is very meaningful that the nonparametric version had a smaller CV 

than the models of the parametric version, even though it had infinite parameter space. 

To estimate the parameters, we use a Gibbs sampler. Whereas the parameters with restricted parameter 

spaces are sampled using the grid method, the other parameters are sampled using the Metropolis-Hastings 

algorithm. We tune to get acceptance rate 30-70%. In the actual analysis, the acceptance rate of the 

algorithm is 34-49%. We compare the two measures in terms of the performance of each model. First, we 

calculate the deviance information criterion (DIC), a typical Bayesian model choice criterion, to compare 

the hierarchical Bayesian models. The DIC was proposed by Spiegelhalter et al. (2002), where a lower 

DIC value indicates better performance. Second, we evaluate the performance of the eight models by 
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calculating the logarithmic conditional predictive ordinate (LCPO), which is a comparison method that 

uses cross validation. The average LCPO, proposed by Gneiting and Raftery (2007), is calculated as 

follows:  

 ( )
=1

1
ˆLCPO = log CPO ,

I

i
iI

−   (3.2) 

where ( )( )
=1

ˆCPO = = ,Ω
H

h
i hh

w P Y y ( )( ) ( )( )
=1

= = = ,Ω Ω
H

h h
h h

w f Y y f Y y  for = 1, , ,i I  

and ( )( )hP Y y= Ω  is the likelihood of a single observation of a given parameter ( ) ,Ω h  and 

= 1, ,h H  denotes the iterations from the MCMC result under the hierarchical Bayesian pooling 

model. 

 
 

Table 3.2 
Posterior summaries for finite population proportions of BMD data under the eight models by areas 
 

Areas Model Normal BMD Osteopenia BMD Osteoporosis BMD 

PM PSD 95% CI PM PSD 95% CI PM PSD 95% CI 

1 1 0.511 0.024 (0.467, 0.561) 0.380 0.024 (0.333, 0.427) 0.109 0.015 (0.082, 0.139) 
2 0.652 0.023 (0.603, 0.692) 0.264 0.021 (0.227, 0.306) 0.084 0.013 (0.061, 0.109) 
3 0.644 0.024 (0.594, 0.691) 0.288 0.023 (0.242, 0.338) 0.068 0.011 (0.048, 0.091) 
4 0.523 0.024 (0.476, 0.570) 0.385 0.024 (0.336, 0.432) 0.092 0.013 (0.070, 0.118) 
5 0.581 0.022 (0.536, 0.627) 0.327 0.022 (0.285, 0.370) 0.092 0.013 (0.067, 0.118) 
6 0.651 0.022 (0.606, 0.696) 0.258 0.020 (0.218, 0.297) 0.090 0.014 (0.067, 0.117) 
7 0.656 0.023 (0.612, 0.700) 0.260 0.021 (0.218, 0.300) 0.084 0.013 (0.061, 0.109) 
8 0.658 0.022 (0.615, 0.703) 0.267 0.021 (0.230, 0.311) 0.075 0.012 (0.052, 0.100) 

2 1 0.496 0.021 (0.458, 0.534) 0.442 0.021 (0.402, 0.484) 0.061 0.010 (0.042, 0.080) 
2 0.654 0.021 (0.617, 0.693) 0.277 0.019 (0.242, 0.316) 0.068 0.010 (0.047, 0.087) 
3 0.612 0.020 (0.570, 0.652) 0.313 0.019 (0.273, 0.353) 0.075 0.012 (0.053, 0.098) 
4 0.510 0.022 (0.470, 0.551) 0.438 0.022 (0.396, 0.478) 0.052 0.009 (0.036, 0.071) 
5 0.511 0.023 (0.466, 0.554) 0.425 0.023 (0.381, 0.472) 0.064 0.011 (0.045, 0.085) 
6 0.653 0.020 (0.618, 0.693) 0.271 0.017 (0.237, 0.304) 0.075 0.012 (0.053, 0.096) 
7 0.659 0.020 (0.618, 0.702) 0.273 0.018 (0.239, 0.311) 0.068 0.011 (0.047, 0.089) 
8 0.651 0.021 (0.609, 0.689) 0.292 0.019 (0.254, 0.329) 0.058 0.011 (0.040, 0.079) 

28 1 0.901 0.011 (0.881, 0.920) 0.081 0.010 (0.062, 0.099) 0.018 0.005 (0.010, 0.028) 
2 0.714 0.020 (0.677, 0.751) 0.223 0.017 (0.189, 0.256) 0.064 0.011 (0.043, 0.088) 
3 0.793 0.017 (0.757, 0.826) 0.154 0.015 (0.126, 0.184) 0.053 0.010 (0.034, 0.073) 
4 0.827 0.016 (0.796, 0.856) 0.123 0.013 (0.099, 0.148) 0.050 0.010 (0.032, 0.069) 
5 0.711 0.021 (0.672, 0.751) 0.244 0.020 (0.209, 0.283) 0.046 0.010 (0.028, 0.064) 
6 0.715 0.018 (0.680, 0.748) 0.216 0.016 (0.184, 0.249) 0.070 0.011 (0.049, 0.092) 
7 0.721 0.019 (0.683, 0.757) 0.217 0.018 (0.185, 0.251) 0.062 0.011 (0.043, 0.084) 
8 0.729 0.022 (0.686, 0.770) 0.220 0.020 (0.181, 0.261) 0.052 0.011 (0.034, 0.073) 

29 1 0.826 0.015 (0.796, 0.855) 0.153 0.015 (0.124, 0.184) 0.020 0.005 (0.011, 0.030) 
2 0.716 0.019 (0.679, 0.755) 0.219 0.017 (0.187, 0.253) 0.065 0.010 (0.047, 0.085) 
3 0.816 0.016 (0.785, 0.847) 0.139 0.014 (0.113, 0.168) 0.045 0.008 (0.030, 0.060) 
4 0.779 0.017 (0.746, 0.815) 0.134 0.014 (0.105, 0.160) 0.087 0.012 (0.065, 0.111) 
5 0.836 0.016 (0.807, 0.866) 0.117 0.013 (0.095, 0.145) 0.047 0.009 (0.031, 0.067) 
6 0.715 0.020 (0.677, 0.755) 0.213 0.018 (0.179, 0.248) 0.072 0.012 (0.051, 0.096) 
7 0.721 0.019 (0.685, 0.756) 0.214 0.017 (0.183, 0.251) 0.066 0.011 (0.045, 0.085) 
8 0.729 0.021 (0.690, 0.768) 0.217 0.020 (0.179, 0.257) 0.053 0.011 (0.034, 0.075) 

31 1 0.820 0.015 (0.792, 0.849) 0.136 0.014 (0.110, 0.161) 0.044 0.008 (0.030, 0.061) 
2 0.719 0.019 (0.680, 0.758) 0.216 0.017 (0.181, 0.253) 0.065 0.010 (0.046, 0.087) 
3 0.796 0.016 (0.765, 0.827) 0.159 0.015 (0.133, 0.188) 0.046 0.008 (0.031, 0.063) 
4 0.864 0.013 (0.838, 0.889) 0.095 0.011 (0.075, 0.119) 0.041 0.008 (0.027, 0.056) 
5 0.808 0.018 (0.773, 0.841) 0.153 0.017 (0.122, 0.188) 0.038 0.008 (0.024, 0.054) 
6 0.721 0.018 (0.685, 0.756) 0.207 0.017 (0.177, 0.239) 0.072 0.011 (0.052, 0.092) 
7 0.724 0.018 (0.688, 0.758) 0.211 0.017 (0.180, 0.243) 0.065 0.010 (0.045, 0.085) 
8 0.739 0.020 (0.698, 0.774) 0.208 0.019 (0.171, 0.247) 0.053 0.011 (0.033, 0.073) 
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Figure 3.1  The posterior means plot of the finite population proportion. 
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Figure 3.2  The posterior standard deviations plot of the finite population proportion. 
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Figure 3.3  The coefficients of variation plot of the finite population proportion. 
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Table 3.3 shows the results of the two measures for each Bayesian pooling model. The model is 

considered to perform better as its estimated measures are smaller. The LCPO and DIC in parametric 

models are compared using the global-local pooling model, and LCPO and DIC have 12.707 and 

4,984.56, respectively, implying the best performance. The restricted pooling model in Model 4 has an 

LCPO value of 12.886, showing the second-best performance after the global-local pooling model, but the 

DIC in the adaptive pooling model has a value of 4,998.90, which is lower than that in the restricted 

pooling model. 

 
Table 3.3 
Comparisons of LCPO  and DIC (95% CI) under Models 1-8 
 

Model LCPO  DIC 

Parametric models No pooling 13.167 4,999.19 

Complete pooling 13.151 5,011.45 

Adaptive pooling 13.411 4,998.90 

Restricted pooling 12.886 5,000.21 

Global-local pooling 12.707 4,984.56 

Nonparametric models Adaptive pooling 13.105 5,001.17 

Restricted pooling 12.837 4,983.88 

Global-local pooling 12.694 4,768.47 

 
Another point to keep in mind is that the nonparametric version using the same pooling method shows 

similar values to those of the parametric method. In particular, although the nonparametric global-local 

pooling model has the greatest number of parameters to be estimated, its LCPO and DIC have values of 

12.694 and 4,768.47, respectively, thereby indicating that it has the best performance among all the 

models. Additionally, in the restricted pooling model, the nonparametric model’s LCPO and DIC have 

values of 12.837 and 4,983.88, respectively, showing better performance than the parametric model. These 

results are identical in the LCPO scale of the adaptive pooling (i.e., base) model (LCPO (parametric vs 

nonparametric) = (13.411 vs 13.105)). This means the performance of the nonparametric version is very 

good for our data, even though the parameter space has infinite dimensions. 

Table 3.4 illustrates the calculated statistical values to estimate the shrinkage of the model. To estimate 

shrinkage, we calculated the average and standard deviation of the absolute difference from the no 

shrinkage model for each BMD category. Let PM ,ik = 1, , ,i I = 1, 2, 3k  denote the posterior mean 

of the finite population proportion for each cell in area .i  The average (ASE) and standard deviation 

(SDSE) of the shrinkage estimator are 

 0

=1 0

1 PM PM
ASE = , = 31,

PM

I
ik ik

k
i ik

I
I

−
  (3.3) 

 

2

0

=1 0

1 PM PM
SDSE = ASE ,

1 PM

I
ik ik

k k
i ikI

− 
− 

−  
  (3.4) 
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where 
0PM ik

 is the posterior mean for the finite population proportion of Model 1, a no poooling model. 

Based on this calculation, we show that the ASE and SDSE in the normal cell are the smallest in the 

global-local pooling model. Drawing from the data analysis, with the BMD data applied in this study, the 

number of groups of slice sampling is 1 to 3, and we can confirm that the data characteristics are identical 

for most regions. In the global-local model, however, it can be shown that the problem of overshrinkage 

induced by pooling is solved by looking at the smallest shrinkage degree. In addition, osteopenia cells and 

ostoporosis cells could confirm the tendency of low shrinkage relative to other models, and the SDSE in 

the global-local pooling model can be shown to be small. Meanwhile, in the case of nonparametric 

models, the group index had the highest number of 1 because of slice sampling; therefore, it could be 

suspected that data dependence was excessive in the no pooling model. 

Also, Geweke’s test, autocorrelation plot and effective sample size (ESS) were applied for the 

diagnosis of the model, and they showed strongly mixing chains. 

 
Table 3.4 
A comparision of shrinkage in the eight models, see equations (3.3) and (3.4) 
 

Model Normal Osteopenia Osteoporosis 

Mean Std Mean Std Mean Std 

No pooling(no shrinkage model)       

Complete pooling  0.087  0.072  0.217  0.320  0.522  0.622 

Adaptive pooling  0.066  0.064  0.147  0.166  0.474  0.501 

Restricted pooling  0.088  0.071  0.210  0.302  0.587  0.728 

Global-local pooling  0.054  0.043  0.157  0.137  0.456  0.682 

NP Adaptive pooling  0.088  0.074  0.209  0.306  0.524  0.609 

NP Restricted pooling  0.065  0.049  0.249  0.354  0.335  0.362 

NP Global-local pooling  0.085  0.072  0.206  0.311  0.427  0.430 

NP: Nonparametric  

 
4. Conclusion 
 

In this study, we construct hierarchical parametric Bayesian pooling models and their nonparametric 

versions using the Ferguson (1973) Dirichlet process prior to pool the data. The pooling methodologies 

developed here are useful for analyzing survey data. We used the grid method to draw the parameters with 

nonstandard posterior densities and support that lies in a finite interval. However, we used the Metropolis-

Hastings algorithm to draw the parameters with support in an infinite interval. 

The Dirichlet process is assumed for the parameter of interest ,π i  for = 1, , ,i I  in our models. We 

apply the slice sampling algorithm for the specification of Dirichlet process prior, which is an extension of 

the widely used stick-breaking prior proposed by Ishwaran and James (2001). Five parametric models are 

modeled in a finite-dimensional parameter space, and three nonparametric versions have an infinite-

dimensional parameter space. The eight hierarchical Bayesian models are also distinguished according to 

the type of effects in the model parameters. For the basic model (2.1), we can construct more effective and 
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efficient models that allow for a borrowing effect from neighboring areas in small-area estimations. 

However, exchangeable priors in a hierarchical Bayesian model may cause an overshrinkage problem. To 

compensate for this problem, the effect of a parameter is divided into two elements, as shown in the basic 

model (2.2), called the hierarchical Bayesian global-local pooling model. The model allows for grouping 

of similar experiments (area) and the borrowing of information in each area. 

To compare the eight models using real data, we use the BMD data provided by the NHANES III. 

BMD is statistically correlated with the probability of fractures, which are an important public health 

problem, especially in elderly women. Therefore, BMD is an important indicator in diagnoses of 

osteoporosis, where patients might benefit from early management to improve their bone strength. For 

each sample, we assign an indicator based on three categories (normal, osteopenia, osteoporosis) before 

analyzing the data. The resulting hierarchical models with a pooling prior for BMD data outperformed the 

other models. To compare the models’ performances, we calculated the DIC and the LCPO. Here, we 

found the best performance in the global–local pooling model. Although the nonparametric versions of the 

models have an infinite-dimensional parameter space, they showed similar values for the two comparison 

measures to those of the parametric pooling model with a finite-dimensional parameter space. Therefore, 

we should be careful in interpreting the results. 
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Appendix 
 

A. Computations for parameteric models 
 

Let ( )1= , , I
n n n  be the response matrix and ( )1= , , I

π π π  be the proportion parameter 

matrix for (2.1). In an adaptive pooling model, let ( )= , , ,Ω π μi i  = 1, , .i I  Here, no pooling and 

complete pooling are special cases of adaptive pooling, with parameters μ  and .  The full conditional 

posterior density of the parameters for the given data is obtained in the usual way by combining the 

likelihood and the priors, as follows:  

 

( ) ( ) ( )  ( )

( )

( )

( )

1
=1

1

2
=1 =1

, , ,

1 1 !
,

1

Ω Ω n n π π μ

μ
ik k

I

I i i
i

I K
n

ik
i k

f

K

D

 

   


 

+ −



− 
  

+ 



 
  

where ( ) ( ) ( )
=1=1

= .μ
K K

k kkk
D         

To run a Gibbs sampler, we draw values as follows: 

(a) Full conditional for , = 1, , :π i i I  Draw ( )( ) .Diric, t, ~ hleπ n μ n μi i i +  
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(b) Full conditional for :μ  Draw  

                 ( )
( )

( )

1=1

=1 =1
=1

, , .k

K
I K

kk

ikK
i k

kk

 
 

  
 

−
  

  
  


 


μ n π  (A.1) 

Let ( ) , = 1, ,k k Kμ  denote the vector of parameters other than the thk  component .k  Then, we 

obtain the conditional posterior density of ,k  given ( ) ,μ k  in each stage. Here, we need to estimate the 

1K −  components of parameter μ  sequentially. Then, we can calculate the thK  component value of μ  

using 
1

=1
= 1 .

K

K kk
 

−
−   Using the conditional posterior density (3.1), we can draw , =k k  

1, , 1K −  using the grid method, with support 
1

=1,
1 .

K

kk k k


−

 
−  

 

(c) Full conditional for :  Draw  

                 ( )
( )

( ) ( )

1=1

2
=1 =1

=1

1
, , .

1

k

K
I K

kk

ikK
i k

kk

 
 

  
 

−
  

  
+  


 


n π μ   

We can use the grid method for   in this case as well. Because the grid method can be used for closed 

support, we transform   to ( )= 1 1 , 0 < < 1.  +  The absolute Jacobian is 21 .  Then, the 

conditional posterior density of   can be expressed as follows:  

 ( )
( )

( )

1
1

1=1

1
=1 =1

=1

, , .
k

K
I K

kk

ikK
i k

kk













  



−
−

−

−

  
  

  


 


n π μ   

The full conditional posterior density in the case of restricted pooling is obtained from the likelihood 

and the priors, constructed from ( ), ,μ   and from an additional prior for , = 1, , :i I  

 ( ) ( ) ( )  ( ) ( )
1

=1

, , = , ,
I

I i i
i

f     Ω Ω n n π π μ   

where ( )= , , , ,Ω π μi i   = 1, , .i I  

For the Gibbs sampler, we consider the latent variables , = 1, ,iz i I  from a Bernoulli distribution 

with parameter .  Here, the joint posterior density is given as follows:  

 

( ) ( ) ( ) ( )  ( ) ( )

( )
( )

( )

( ) ( )( )1

2

1
=1

1

1

=1 =1 =1

2 , 1

, , ,

1
1

1 !
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1
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i i

k ik ik

I

I i i i i
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z zI K K
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ik ik
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f z z

D

K
I

 



      

   




−

+ −





    
 −        

−


+



     

Then, our Gibbs sampler is described as follows:  

(a) Full conditional for :  Draw  

                 ( ) ( ) =1=1

1
, , , 1 , 1.

2

II
ii ii

I zz     
− −  n μ z   
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In other words, given , , ,μ z  and the data,   follows a truncated beta distribution with parameters 

=1

I

ii
z  and 

=1
,

I

ii
I z−   and the lower bound of   is 1 2.  

 

(b) Full conditional for , = 1, , :iz i I  Draw ( ) ,B n, , , e~ r oullin π μi i iz p  where 

                 ( )( ) ( ) ( )
( )( )

=1

1 1

=1 =1 =1
= 1 .k k

K

ikk

K K

i ik ikk k
p D D I K

   


      − −

+ −


 μ μ   

(c) Full conditional for , = 1, , :π i i I  Draw  

                 ( )
1

1 1 1

=1 =1

, , , .
i i

k ik ik

z zK K
n n

i i ik ik
k k

z
    

−

+ − + −   
       
 π n μ   

In the case of = 1,iz  we can generate the value of 
iπ  from a Dirichlet distribution with parameters μ  

and .  In other cases, we can interpret that as the uncertainty of the modeling. That is, for 
iπ  given 

1 = 0,z n  draws its value from a uniform Dirichlet distribution with a 1K   parameter vector, where 

each component has the value one. 
 

(d) Full conditional for :μ  Draw  
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( )

( )
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(e) Full conditional for :  Draw  
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Of course, the generating process for parameters μ  and   is similar to that of the parameter in adaptive 

pooling. In addition, the data used for μ  and   are = 1, = 1, , .iz i I  

Otherwise, the parameter vector corresponding to area i  in global-local pooling consists of 

2 2
1, , , , , , ,η z     and 2

1.K −  Then, the full conditional posterior density for the given data in the 

model is as follows:  
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where ( )2 2 2
1 1= , , , , , , , ,Ω ηi i i Kz     − = 1, , ,i I ( )1= , , I

η η η  and ( )1= , , .z Iz z   

Then, the Gibbs sampler is as follows:  

(a) Full conditional for :  Draw ( )1
2=1 =1

others truncated Be 1 .ta~ , , ,
I I

i ii i
z I z −   

(b) Full conditional for , = 1, , :iz i I  Draw ( )others Be ,l~ rnou lii iz p  with =ip
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2 22 2 2 2
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(f) Full conditional for ( )2 = 1, , 1 :k k K −  Draw  
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In this model, we suggest using the Metropolis-Hastings algorithm, which is the most commonly used 

Markov Chain Monte Carlo (MCMC) algorithm used to estimate the value of the location parameter, 

( ), .η  Of course, ( )( )22 2
1 1, , , K   −  is drawn from the above full conditionals, and the Gibbs sampler 

is performed using the grid method. 

 
B. Computations for nonparameteric models 
 

In order to pool the parameters in nonparametric Bayesian models, we apply the slice sampling mehtod 

introduced by the Kalli, Griffin and Walker (2011). They proposed an efficient version of the slice 

sampler for Dirichlet process mixture models constructed by Walker (2007). Suppose that the 

observations , = 1, ,iy i I  are generated in the Dirichlet process mixture model with parameter .  

That is,  
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( )

iid

0

~G G

G ~ DP , G

iy


  

Here, we write ( )0G ~ DP , G  to denote that G  follows a Dirichlet process with parameter > 0.  

Then G  has a stick-breaking representation (Sethuraman, 1994) given by  

 ( ) ( )
=1

, =i j i j
j

P y G w f y 


   

where 
1 2 3, , ,    are independent and identically distributed (iid) form 

0P  and  

 ( )1 1= , = 1j j l
l j

w w  


−   

with the j  being iid from ( )Beta 1, ,  see also Antoniak (1974). 

The Slice sampler algorithm proposed by Walker (2007) introduces a latent variable ( )0, 1 ,u   

= 1, 2,id  to perform sampling on the joint distribution. First, the latent variable 
iu  has a joint density 

as follow  

 ( ) ( ) ( )
=1

, , = .
i ji i u w i j

j

P y u G I f y 


   

Later, they introduced a latent variable 
id  representing the group assignment of the observation .i  At this 

time, the joint density of ( ), ,i i iy u d  is as follow  

 ( ) ( ) ( )
=1

, , , = .
i d ji

i i i u w i j
j

P y u d G I f y 
=



   

Then we need to sample the parameter , ,  and   including latent variables u  and d  at each iteration 

of a Gibbs sampler. Kalli et al. (2011) introduces how to perform slice sampling for Dirichlet process 

mixture models by processing u  and   as blocks in the basic algorithm described by Walker (2007). The 

algorithm is as follow. 

1. ( ) ( ) ( )0 =
,

i
j j i jd j

G f y      

2. ( ) ( ) ,Beta ,j j ja b    where ( )=1
= 1

i

I

j d ji
a I =+   and ( )=1

= ,
i

I

j d ji
b I +   

3. ( ) ( )0 ,
i di

i uu I     where ( ) 1= 1 ,j
j   −−  and   is a constant, 

4. ( ) ( ) ( ):= ,
k ii k k i kk uP d k I w f y    

5. ( ) ( ) ( )
1

=1
1 .

J
J

jj


     

−
 −  

 

For this paper, we need to sample the following variables at each iteration of a Gibbs sampler:  

 ( ) ( ) , , = 1, 2, , ; , , = 1, , .j j i ij d u i Iπ   

In general,   is equal to 0.5. However, we use   as a tuning parameter for the hierarchical Bayesian 

model. Then, the full posterior density for the nonparametric adaptive pooling of he given data is given as 

follows:  
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n d u ν π π μ μ ν

μ
  

where ( )1= , , ,d Id d ( )1= , , ,u Iu u ( )1= , , ,ν j   and the hyperparameters are mutually 

independent. Then, our Gibbs sampler can be performed in two steps. 

The first step is the pooling of the data: 

(a) Draw for 
iu  from ( )Uniform 0, .

id  

(b) Draw for 
id  from ( ) ( ) =1

= others = !.ik

i j

K n

i u j j jk ikk
P d j I w n     Next, we can generate the 

value of each parameter from the following conditional density: 

(c) Draw ,π j = 1, , ,j J  from ( )=
.D 1irichlet μ n

i
id j

 + −  

(d) Draw ,j = 1, , ,j J  from ( ) ( )( )
=1 =1

.B 1t ,e a
i i

I I

d j d ji i
I I= =+ +   

(e) Draw μ  from  

                 ( )
( )

1

=1 =1

1
| others .μ

μ
k

J K

jk
j kD

  


−
     

(f) Draw   from  

                 ( )
( )
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1
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1 1 !
| others .

1μ
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K

D
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+ 

    

For our Gibbs sampler, we need to transform   to ( )= 1 1 , + 0 1   because we need to use 

the grid method for ,  which is taken from the noninformative prior with variable support equal to ( )0, .  

                 ( )
( )

( )
1

1

1
=1 =1

1
| others 1 !.

k

J K
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j k
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D
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(g) Draw   from  

                 ( ) ( )
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1
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j
j

 
  



−

=

 
 − 

+ 
   

The parameter   is also taken from the noninformative prior with variable support equal to ( )0, ,  as 

in the case of .  Therefore, we need to transform   to ,  with Jacobian 21 .  Then, the conditional 

density for   is given as follows:  

 ( ) ( )
1

1

=1

1
| others 1 .

JJ

j
j






  


−
− −  

 −   
  

   

The nonparametric version for the restricted pooling has ( )1= , , ,π j j jK  ( )1= , , ,μ K   

0 1,k 
=1

= 1,
K

kk
 ( )1= , , ,d Id d  and =id j  for = 1, 2, , .j J  Then, we compose the full 

posterior density for the given data using equation, as follows:  



Survey Methodology, June 2021 211 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 ( ) ( ) ( ) ( ) ( ) ( )
=1

, , , , , , .
J

j
j

P           
 
 
 
n d u ν π π μ μ ν   

In our Gibbs sampler, we consider the latent variables ,jz  for = 1, , ,j J  as the parametric version 

for restricted pooling, where the subscripts for the parameter are equal to the parameter .π  At this time, 

the pooling step for the data is the same as above, and generating the parameter is as follows: 

(a) Draw   from truncated ( )( )1
2=1 =1

Beta , , , 1 .
J J

j jj j
z J z −    

(b) Draw jz  from ( ) ,Bernoulli jp  

where ( )( ) ( ) ( )
( ) 

1

1 1

=1 =1 =1
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p D D I K
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Lastly, the full posterior density is calculated using the joint posterior density and the priors for their 

parameters in the nonparametric Bayesian global-local pooling model. Here, the data pooling algorithm is 

the same as above inference. Then, we estimate each parameter as follows: 

(a) Draw   from truncated ( )1
2=1 =1

, , , 1 .Beta
j J

j jj j
z I z−   
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