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Integration of data from probability surveys and big found 

data for finite population inference using mass imputation 

Shu Yang, Jae Kwang Kim and Youngdeok Hwang1 

Abstract 

Multiple data sources are becoming increasingly available for statistical analyses in the era of big data. As an 

important example in finite-population inference, we consider an imputation approach to combining data from 

a probability survey and big found data. We focus on the case when the study variable is observed in the big 

data only, but the other auxiliary variables are commonly observed in both data. Unlike the usual imputation 

for missing data analysis, we create imputed values for all units in the probability sample. Such mass 

imputation is attractive in the context of survey data integration (Kim and Rao, 2012). We extend mass 

imputation as a tool for data integration of survey data and big non-survey data. The mass imputation methods 

and their statistical properties are presented. The matching estimator of Rivers (2007) is also covered as a 

special case. Variance estimation with mass-imputed data is discussed. The simulation results demonstrate the 

proposed estimators outperform existing competitors in terms of robustness and efficiency. 
 

Key Words: Calibration weighting; Data fusion; Generalized additive model; Matching; Nearest neighbor imputation; 

Post stratification. 

 

 

1. Introduction 
 

In finite population inference, probability sampling is the gold standard for obtaining a representative 

sample from the target population. Because the selection probability is known, the subsequent inference 

from a probability sample is often design-based and respect the way in which the data were collected; see 

Särndal, Swensson and Wretman (2003), Cochran (2007), Fuller (2009) for textbook discussions. 

However, large-scale survey programs continually face heightened demands coupled with reduced 

resources. Demands include requests for estimates for domains with small sample sizes and desires for 

more timely estimates. Simultaneously, program budget cuts force reductions in sample sizes, and 

decreasing response rates make nonresponse bias an important concern. Baker, Brick, Bates, Battaglia, 

Couper, Dever, Gile and Tourangeau (2013) address the current challenges in using probability samples 

for finite population inferences. 

To meet the new challenges, statistical offices face the increasing pressure to utilize convenient but 

often uncontrolled big data sources (also called big found data), such as satellite information (McRoberts, 

Tomppo and Næsset, 2010), mobile sensor data (Palmer, Espenshade, Bartumeus, Chung, Ozgencil and 

Li, 2013), and web survey panels (Tourangeau, Conrad and Couper, 2013). Couper (2013), Citro (2014), 

Tam and Clarke (2015), and Pfeffermann, Eltinge and Brown (2015) articulate the promise of harnessing 

big data for official and survey statistics but also raise many issues regarding big data sources. While such 

data sources provide timely data for a large number of variables and population elements, they are non-

probability samples and often fail to represent the target population of interest because of inherent 

selection biases. Tam and Kim (2018) also cover some ethical challenges of big data for official 
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statisticians and discuss some preliminary methods of correcting for selection bias in big data. See 

Keiding and Louis (2016), Elliott and Valliant (2017), Buelens, Burger and van den Brakel (2018), and 

Beaumont (2020) for recent reviews of the challenges in using non-probability samples for inferences. 

To utilize modern data sources in statistically defensible ways, it is important to develop statistical 

tools for data integration for combining a probability sample with big non-probability data. Data 

integration for finite population inference is similar to the problem of combining randomized clinical trial 

studies and non-randomized epidemiological studies for causal inference of treatment effects (Keiding and 

Louis, 2016). We are particularly interested in developing data integration under the setup where the study 

variable is observed in the big data only, but some other variables are commonly observed in both data. In 

this case, survey statisticians and biostatisticians have provided different methods for combining 

information from multiple data sources. Lohr and Raghunathan (2017), Yang and Kim (2020), and Rao 

(2020) provide a review of statistical methods of data integration for finite population inference. Existing 

methods for data integration can be categorized into three types as follows. 

The first type is the so-called propensity score adjustment (Rosenbaum and Rubin, 1983). In this 

approach, the probability of a unit being selected into the big sample, which is referred to as the 

propensity score, is modeled and estimated for all units in the big data sample. The subsequent 

adjustments, such as propensity score weighting or stratification, can then be used to adjust for selection 

biases; see, e.g., Lee and Valliant (2009), Valliant and Dever (2011), Elliott and Valliant (2017). Stuart, 

Bradshaw and Leaf (2015), Stuart, Cole, Bradshaw and Leaf (2011), Buchanan, Hudgens, Cole, Mollan, 

Sax, Daar, Adimora, Eron and Mugavero (2018) use propensity score weighting to generalize results from 

randomized trials to a target population. O’Muircheartaigh and Hedges (2014) propose propensity score 

stratification for analyzing a nonrandomized social experiment. One of the notable disadvantages of the 

propensity score methods is that they rely on an explicit propensity score model and are biased if the 

model is mis-specified (Kang and Schafer, 2007). 

The second type uses calibration (Deville and Särndal, 1992; Kott, 2006; Dong, Yang, Wang, Zeng 

and Cai, 2020). This technique can be used to calibrate auxiliary information in the big data sample with 

that in the probability sample, so that after calibration the big data sample is similar to the target 

population (DiSogra, Cobb, Chan and Dennis, 2011). Because calibration does not require parametric 

modeling, it is attractive to survey practitioners. However, this approach requires the information (such as 

the moments) of the auxiliary variables for the population is known or at least can be estimated from a 

probability sample. 

The third type is mass imputation, where the imputed values are created for the whole elements in the 

probability sample. In the usual imputation for missing data analysis, the respondents in the sample 

provide a training dataset for developing an imputation model. In the mass imputation, an independent big 

data sample is used as a training dataset, and imputation is applied to all units in the probability sample. 

While the mass imputation idea for incorporating information from big data is very natural, the literature 

on mass imputation itself is sparse. Breidt, McVey and Fuller (1996) discuss mass imputation for two-
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phase sampling. Rivers (2007) proposes a mass imputation approach using nearest neighbor imputation 

but the theory is not fully developed. Kim and Rao (2012) develop a rigorous theory for mass imputation 

using two independent probability samples. Chipperfield, Chessman and Lim (2012) discuss composite 

estimation when one of the surveys is mass imputed. Bethlehem (2016) discuss practical issues in sample 

matching. Recently, Kim and Wang (2019) develop a theory for mass imputation for big data using a 

parametric model approach. However, the parametric model assumptions do not necessarily hold in 

practice. In order for mass imputation to be more useful and practical, the assumptions should be as weak 

as possible. 

We summarize our contributions in this paper below:   

1. We first develop a formal framework for mass imputation incorporating information from big 

data into a probability sample and present rigorous asymptotic results for the mass imputation 

estimators. Our framework covers the nearest neighbor imputation estimator of Rivers (2007). 

Unlike Kim and Wang (2019), we do not make strong parametric model assumptions for mass 

imputation. Thus, the proposed method is appealing to survey practitioners.  

2. We also investigate two strategies for improving the nearest neighbor imputation estimator, one 

using k  nearest neighbor imputation (Mack and Rosenblatt, 1979) and the other using generalized 

additive models (Wood, 2006). In k  nearest neighbor imputation, instead of using one nearest 

neighbor, we identify multiple nearest neighbors in the big data sample and use the average 

response as the imputed value. This method is popular in the international forest inventory 

community for combining ground-based observations with imagines from remote sensors 

(McRoberts et al., 2010). In this paper, we establish asymptotic results for the k  nearest neighbor 

estimator. In the second strategy, we investigate modern techniques of prediction for mass 

imputation with flexible models. We use generalized additive models (Wood, 2006) to learn the 

relationship of the outcome and covariates from the big data and create predictions for the 

probability samples. We note that this strategy can apply to a wider class of semi- and non-

parametric estimators such as single index models, Lasso estimators (Belloni, Chernozhukov, 

Chetverikov and Kato, 2015), and machine learning methods such as random forests (Breiman, 

2001). 

3. Using a novel calibration weighting idea, we propose an efficient mass imputation estimator and 

develop its asymptotic results. The efficiency gain is justified under a purely design-based 

framework and no model assumptions are used. We consider the case when additionally the 

membership to the big data can be determined throughout the probability sample. The key insight 

is that the subsample of units in Sample A with the big data membership constitutes a second-

phase sample from the big data sample, which acts as a new population. We calibrate the 

information in the second-phase sample to be the same as the new acting population. The 

calibration process in turn improves the accuracy of the mass imputation estimator without 

specifying any model assumptions.  
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The structure of the paper is as follows. In Section 2, we introduce the basic setup. In Section 3, we 

present the methodology for the nearest neighbor imputation and establish its asymptotic properties. In 

Section 4, we investigate two strategies for improving the nearest neighbor imputation estimator, one 

using k  nearest neighbor imputation and the other using generalized additive models. In Section 5, we 

propose a regression calibration technique to improve the efficiency of the mass imputation estimators 

when additionally the big data membership is observed throughout the probability sample. In Section 6, 

we demonstrate that the proposed estimators are robust and efficient by simulation studies based on 

artificial data and real-life data from U.S. Census Bureau’s Monthly Retail Trade Survey. In Section 7, we 

present a case study applying the proposed method to integrate national health survey data and national 

health insurance records. Section 8 concludes with a discussion. 

 
2. Basic setup 
 

2.1 Notation: Two data sources 
 

Let ( ) = , :N i iY i UXF  with  = 1, ,U N  denote a finite population, where ( )1= , , p
i i iX XX  

is a p -dimensional vector of covariates, and iY  is the study variable. We assume that NF  is a random 

sample from a superpopulation model ,  and N  is known. Our objective is to estimate the general finite 

population parameter ( )1

=1
=

N

g ii
N g Y −   for some known ( ) .g   For example, if ( ) = ,g Y Y

1

=1
=

N

g ii
N Y −   is the population mean of .Y  If ( ) ( )= <g Y Y c1  for some constant ,c =g  

( )1

=1
<

N

ii
N Y c−  1  is the population proportion of Y  less than .c  

Suppose that there are two data sources, one from a probability sample, referred to as Sample A, and 

the other from a big data source, referred to as Sample B. Table 2.1 illustrates the observed data structure. 

Sample A contains observations ( ) 1= = , :XA i i id i A − O  with sample size = ,n A  where 

( )=i P i A   is known throughout Sample A, and Sample B contains observations =BO  

( ) , :i iY i BX  with sample size = .BN B  Often the probability sample contains many other items 

but we only use those items overlapping with our big data.  Although the big data source has a large 

sample size, the sampling mechanism is often unknown, and we cannot compute the first-order inclusion 

probability for Horvitz-Thompson estimation. The naive estimators without adjusting for the sampling 

process are subject to selection biases. On the other hand, although the probability sample with sampling 

weights represents the finite population, it does not observe the study variable. 

 

Table 2.1 

Two data sources. “  ” and “?” indicate observed and unobserved data, respectively 
 

  Sample weight -1d = π  Covariate X  Study Variable Y  

Probability Sample  1     ? 

AO      

 n      ? 

Big Data Sample  1 ?     

BO      

 BN  ?     

Sample A is a probability sample, and Sample B is a big data but may have selection biases.  
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2.2 Assumptions 
 

Let ( )f Y X  be the conditional density function of Y  given X  in the superpopulation model .  Let 

( )f X  and ( )= 1Bf X  be the density function of X  in the finite population and Sample B, 

respectively, where B  is the indicator of selection to Sample B. We first make the following 

assumptions. 
 

Assumption 1 (Ignorability). Conditional on ,X  the density of Y  in Sample B follows the 

superpopulation model; i.e., ( ) ( ); = 1 = .X XBf Y f Y  
 

Assumptions 1 and 2 constitute the strong ignorability condition (Rosenbaum and Rubin, 1983). This 

setup has previously been used by several authors; see, e.g., Rivers (2007), Vavreck and Rivers (2008). 

Assumption 1 states the ignorability of the selection mechanism to Sample B conditional upon the 

covariates. Assumption 1 also implies that ( ) ( )= 1 , = = 1 .X XB BP Y P   This assumption holds if 

the set of covariates contains all predictors for the outcome that affect the possibility of being selected in 

Sample B. Under this assumption, the missing outcomes in Sample A are missing at random (Rubin, 

1976). 

 

Assumption 2 (Common support). The vector of covariates X pR  has a compact and convex support, 

with its density bounded and bounded away from zero. There exist constants lC  and uC  such that 

( ) ( )= 1l B uC f f C X X  almost surely. 

 

Assumption 2 implies that the support of X  in Sample B is the same as that in the finite population. 

This assumption can also be formulated as a positivity assumption that ( )= 1 > 0BP  X  for all .X  

Assumption 2 does not hold if certain units would never be included in the big data sample. The 

plausibility of this assumption can be judged by subject matter knowledge. For diagnosis purpose, we can 

examine the distribution of the estimated propensity scores or the distribution of the propensity score 

weights in Sample A. Values of propensity score close to zero or extreme large values of the propensity 

score weights indicate the possible positivity violation. We assume all covariates are continuous. 

Categorical variables can be handled by first defining imputation classes using the partition of the 

categories and then estimating the average of the outcome using the nearest neighbor imputation within 

imputation classes. In our context, Sample B is a big data sample and therefore the size of donors for each 

imputation class can be reasonable large. 

 
3. Methodology 

 
3.1 Nearest neighbor imputation 
 

For simplicity, we will focus on the Horvitz-Thompson type estimator, although our discussion applies 

to other type of estimators. If iY  were observed throughout Sample A, the Horvitz–Thompson estimator 
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( )1 1
, HT

ˆ =g i ii A
N g Y − −

  can be used. We consider the imputation estimator of ,g  given by 

( )1 1 *
,

ˆ = ,g I i ii A
N g Y − −

  where *
iY  is an imputed value for .iY  Creating imputed values for the whole 

data is called mass imputation (Chipperfield et al., 2012; Kim and Rao, 2012). 

To find suitable imputed values, we consider nearest neighbor imputation; that is, find the closest 

matching unit from Sample B based on the X  values and use the corresponding Y  value from this unit as 

the imputed value. This approach has been called Sample Matching by Rivers (2007). To investigate the 

theoretical properties, we first consider matching with replacement with single imputation; the discussion 

on k  nearest neighbor imputation is presented in Section 4. 

The nearest neighbor approach to mass imputation can be described in the following steps:   

Step 1. For each unit ,i A  find the nearest neighbor from Sample B with the minimum distance 

between jX  and .X i  Let ( )1i  be the index of its nearest neighbor, which satisfies 

( )( ) ( )1 , , ,i j iid dX X X X  for ,j B  where ( ),i jd X X  is a distance function between iX  and 

.X j  If there are ties, randomly select one as the nearest neighbor. Without loss of generality, we 

use the Euclidean distance, ( ), = ,X X X Xi j i jd −  where ( )
1 2T= ,X X X  to determine 

neighbors.  

Step 2. The nearest neighbor imputation estimator of g  is  

 ( )( )1
, nni 1

1
ˆ = .g i i

i A

g Y
N

  −


  (3.1) 

 

Remark 1. Our theoretical development applies to a general class of distances ( )
1 2T 1= ,X X X−


  

where   is a positive definite matrix (Abadie and Imbens, 2006). This class includes the standard 

Mahalanobis distance by taking   to be the empirical covariance matrix of .X  Write T= .L L  Notice 

that ( ) 
1 2

= = .X X X XL L L


 Hence, using 


  and X  is equivalent to using   and .XL  So, 

we can carry over the the theoretical result to the case with .X


 

 

Comparing to model-based imputation, nearest neighbor imputation has several advantages. First, it 

does not require strong parametric model assumptions and therefore is robust to model misspecification. 

Second, nearest neighbor imputation is donor-based, where the imputed value is a value that was actually 

measured and will always be within the bounds of observed values. Third, in contrast to regression 

imputation approaches, nearest neighbor imputation can retain the complex variance covariance structure 

of the data. Moreover, for the same imputed dataset, one can estimate different parameters by choosing 

reasonable ( ) .g   Recall that p  is the dimension of .X  The asymptotic bias of , nni
ˆ

g  is of order 

( )1
p

p
BO N −  (Abadie and Imbens, 2006), which is negligible when the number of continuous covariates is 

fixed at a reasonable number and the size of the matching donor pool is huge as in our big data setup. In 

the presence of a large dimension of ,X  variable selection is necessary for the nearest neighbor 

imputation estimator to have good statistical properties. In this case, we suggest selecting important 

variables that are associated with the outcome in order to ensure Assumption 1 holds and also to increase 

estimation precision (Brookhart, Schneeweiss, Rothman, Glynn, Avorn and Stürmer, 2006). 
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3.2 Asymptotic results 
 

To study the asymptotic properties of , nni
ˆ ,g  we impose the following regularity conditions. 

 

Assumption 3. (i) ( )f X  and ( ) ( ) =g E g Y X X  are continuously differentiable for any continuous 

and bounded ( ) ,g Y  and (ii) ( ) E g Y


X  is bounded for = 1, 2.  

 

Assumption 4. (i) There exist positive constants 1C  and 2C  such that 1
1 2 ,iC Nn C−   for = 1, , ;i N  

(ii) the sampling fraction for Sample A is negligible, ( )1 = 1 ;nN o−  and (iii) the sequence of the Horvitz-

Thompson estimators , HT
ˆ

g  satisfies 1
, HT

ˆvar ( ) = ( )p g O n −  and 1/2
, HT ,HT

ˆ ˆ{var ( )} ( ) | (0,1)p g g g N  − − →F N  

in distribution, as ,n →   where ( ) ( )var = varp N  F  is the variance under the sampling design for 

Sample A. 

 

For clarification, the probability distribution underpinning the notation ( ) ,E  ( )var , ( )
po   and ( )

pO   

is the joint distribution of the superpopulation model and the sampling processes for Samples A and B. 

Assumption 3 is a technical condition imposed on the functional continuity and finite moments, which 

holds for common models; see, e.g., Mack (1981). Assumption 4 holds for standard sampling designs in 

survey practice (Fuller, 2009; Chapter 1). It requires the sampling weights to behave well in the sense that 

there do not exist extremely large weights that dominate other weights. This occurs when subjects when 

certain characteristics are largely underrepresented in the sample. Sufficient conditions for Assumption 4 

(iii) can be found in Chapter 3 of Fuller (2009). 

We derive the asymptotic theory for , nni
ˆ

g  in the following theorem and defer its proof to the 

Supplementary Material. 

 

Theorem 1. Under Assumptions 1–3 and ( )1 = 1 ,BNN O−
, nni

ˆ
g  has the same distribution as , HT

ˆ
g  as 

.BN →   Furthermore, under Assumption 4, , nni
ˆ

g  is consistent for ,g  and  

 ( ) ( )1 2
, nni nni

ˆ 0, ,g gn V − → N  (3.2) 

where  

 ( ) 1
nni 2

= var .lim p i i
n i A

n
V E g Y

N
 −

→ 

 
  

   

Theorem 1 implies that the standard point estimator can be applied to the imputed data ( )( ) 1, :i iY i AX  

as if the ( )1 ’siY  were observed values. Let ij  be the joint inclusion probability for units i  and .j  We 

show in the Supplementary Material that the direct variable estimator based on the imputed data  

 
( )( ) ( )( )1 1

nni 2
ˆ =

i jij i j

i A j A i j i j

g Y g Yn
V

N

  

    

−
   

is consistent for nni .V  
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4. Other techniques for mass imputation 
 

4.1 k -nearest neighbor imputation 
 

Instead of using a single imputed value, we now consider fractional imputation with k  imputed values 

for each missing outcome. Fractional imputation is designed to reduce the variance of the final estimator 

due to imputation (Kalton and Kish, 1984; Kim and Fuller, 2004). 

Assume no matching ties, let ( )
k iJ  be the set of k  nearest neighbors for unit i  

 ( )
( ) ( ) 

( ) ( ) 
, ,= : 1 = 1 , , .X X X Xj i l ik d d

j B

i l B k i i k


 
  

 
J   

The k  nearest neighbor approach to mass imputation can be described in the following steps:   

Step 1. For each unit ,i A  find the k  nearest neighbors from Sample B, ( ) .k iJ  Impute the Y  value for 

unit i  by ( ) ( )( )1

=1
ˆ = .X

k

g i i jj
k g Y −   

Step 2. The k  nearest neighbor imputation estimator of g  is  

 ( )1
, knn

1
ˆ ˆ= .g i g i

i AN
  −


 X  (4.1) 

 

In the non-parametric estimation literature, researchers have investigated the asymptotic properties of 

the k  nearest neighbor imputation estimators extensively. See, e.g., Mack and Rosenblatt (1979) and 

Mack (1981) for early references. Cheng (1994) establishes root- n  consistency of the k  nearest neighbor 

imputation estimator of the outcome mean when the outcome is subject to missingness. We derive the 

asymptotic theory for , knn
ˆ

g  in the context of mass imputation combining a probability sample and a big 

data sample in the following theorem and defer its proof to the Supplementary Material. 
 

Theorem 2. Under Assumptions 1–4, ( )
4

0,
p

n k N → 0,k n →  and 2 ,k n →   

 ( ) ( )1 2
, knn knn

ˆ 0, ,g gn V − → N  (4.2) 

where  

 ( )  ( )

( )
( )1 2

knn 2

1
= var ,lim

B

p i g i g
n i A B

n
V E E

N


  


−

→ 

−   
+       


X

X X
X

  

and ( ) ( )= = 1B BP X X  and ( ) ( ) 2 = var .X Xg g Y  

 

If ( )
B X  goes to 1, knnV  reduces to ( ) ( ) 2 1var .lim Xn p i g ii A

n N E  −
→ 

    It suggests that if 

the big sample is a large fraction of the target population, knnV  can be smaller than nni ,V  suggesting that 

, knn
ˆ

g  gains efficiency over , nni
ˆ .g  In finite samples, Beretta and Santaniello (2016) conduct a simulation 

study to compare nearest neighbor imputation and k  nearest neighbor imputation in the setting with 

independent and identically distributed data. They found that k  nearest neighbor imputation with a small 

k  outperforms nearest neighbor imputation in terms of mean squared error. On the one hand, a larger k  

can use more information in the big data sample and leads to more efficiency gain; on the other hand, k  
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cannot be too large, in order to control the bias of our estimator. In practice, we suggest using data-driven 

methods, such as cross-validation, to choose a reasonable ,k  and conducting sensitivity analysis varying 

the choice of .k  

 

4.2 Generalized additive models 
 

Nearest neighbor imputation methods are non-parametric. On the other hand, parametric models 

especially linear models are sensitive to model misspecification. We now consider semiparametric 

methods for mass imputation. Among semiparametric methods, generalized additive models (Hastie and 

Tibshirani, 1990) are flexible regarding model specification of the dependence of Y  on X  by specifying 

the model only through smooth functions rather than assuming a parametric relationship. As other non-

parametric methods, the performance of generalized additive models will deteriorate as the dimension of 

X  becomes large. For X  with a moderate dimension, we apply generalized additive models to leverage 

the predictive power of the big data sample to produce a predictive model for Y  given ,X  so as to 

facilitate mass imputation for the probability sample. 

We assume that ( )ig Y  given iX  follows some exponential family distribution, and  

 ( )  ( ) ( ) ( )1 1 2
1 2= ,p

g i i i p ih f X f X f X− + +X  (4.3) 

where ( )h   is an inverse link function, and each ( )
kf   is a smooth function of ,kX  for = 1, , .k p  

Model (4.3) allows for rather flexible specification of the dependence of Y  on .X  The estimated function 

( )k
kf X  can reveal possible nonlinearities of the relationship of Y  and .kX  

There are several challenges in fitting model (4.3). First, ( )
kf x  is an infinite-dimensional parameter, 

estimation of which often relies on some approximation. Second, we need to decide how smooth the 

( )
kf x  should be to balance the trade-off between model complexity and overfitting to the data at hand. 

To solve the first issue, a common way to approximate ( )
kf x  using splines. Let ( )

mB x  be the basis 

spline functions for = 1, ,m M  (Ruppert, Wand and Carroll, 2009). We approximate ( )
kf x  by 

( ) ( )
=1

=
M k

k m mm
f x B x  with spline coefficients .k

m  This leads to an approximation of model (4.3): 

 ( )   ( )1

=1 =1

ˆ = .
p M

k k
i i m m i

k m

h E g Y B X− X  (4.4) 

In (4.4), a large M  allows for increased model complexity and also an increased chance of overfitting; 

while a small M  may result in an inadequate model. This trade-off is balanced by choosing a relatively 

large M  and then penalizing the model complexity in the estimation stage (Eilers and Marx, 1996). Let 

the vector of spline coefficients be ( )T
1= , ,k k

k m    and ( )T T T
1= , , .p    The estimate ̂  is 

obtained by maximizing the penalized likelihood:  

 ( ) T

=1

2
p

k k k k
k

l S   − +   (4.5) 

where ( )l   is the log likelihood function of , kS  is a matrix with the ( )
th

,m l  component 

( ) ( )d ,m lB x B x x 
T
k k kS   regularizes kf  to be smooth for which the degree of smoothness is controlled 
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by .k  Given the smoothing parameter ( )T
1= , , ,p    the penalized likelihood function in (4.5) is 

optimized by a penalized version of the iteratively reweighted least squares algorithm (Nelder and Baker, 

1972; McCullagh, 1984) to obtain ˆ.  Regarding the choice of ,  we note that   controls the trade-off 

between model complexity and overfitting, which can be estimated separately from other model 

coefficients using generalized cross-validation or estimated simultaneously using restricted maximum 

likelihood estimation (Wood, 2006). In practice, the model performance is not sensitive to the choice of 

the number of basis functions as long as the number of basis functions is large relative to the sample size 

in the specification, but rather estimation of the smoothing parameter is critical to control the model 

complexity. 

Once fitting the model, we can create an imputed value for each element i  in Sample A as  

 ( ) ( ) ( ) ( ) 1 2
, GAM 1 2

ˆ ˆ ˆˆ = ,p
g i i i p ih f X f X f X + +X   

where ( ) ( )
=1

ˆ ˆ=
M k

k m mm
f x B x  for = 1, , .k p  The mass imputation estimator based on the generalized 

additive model is  

 ( )1
, GAM , GAM

1
ˆ ˆ= .g i g i

i AN
  −


 X   

Because in our context, the sample size of Sample B is much larger than that of Sample A, the estimation 

error in the imputation model can be negligible compared to the sampling variability of , GAM
ˆ .g  

To close this subsection, it is worth commenting on the assumption of additive effects of X  in model 

(4.3). This assumption may be fairly strong one. To relax the additivity assumption, we can extend model 

(4.3) to include interactions through using the tensor product basis. For example, we can include a 

bivariate interaction surface ( ) ( ) ( )1 2 1 2
12 =1 =1

, = .
M L

ml m lm l
f X X B X B X   When using the tensor 

product basis, care should be taken with respect to the penalty function in order to result in appropriate 

effective degrees of freedom for the smoother. This topic has been investigated extensively in the 

literature; see, e.g., Wood (2006). 

 
5. Regression calibration 
 

In practice, especially for government agencies, one nearest neighbor may be preferred because of its 

simplicity in implementation and data storage. We now consider another strategy to improve the 

efficiency for , nni
ˆ

g  when additionally the membership to Sample B can be determined throughout 

Sample A with the indicator .B  In some situation, we can obtain B  by matching the membership to 

Sample B (i.e., data linkage). We focus on the ideal setting without linkage errors. The key insight is that 

the subsample of units in Sample A with = 1B  constitutes a second-phase sample from Sample B, 

where Sample B acts as a new population. Standard regression calibration requires all calibration variables 

to be observed in Sample A and Sample B, and thus rules out the possibility of using Y  as the calibration 

variable due to lack of the outcome data from Sample B. One of the advantages of mass imputations is 

that we can leverage the imputed outcomes to facilitate calibration of .Y  
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Let ( ), ,B Yh X  be a multi-dimensional function of ,B B X  and ,BY  e.g., ( ), , =B Yh X  

( )
T

, 1 , , .B B B BY   − X  For simplicity of notation, we use ih  to denote ( ), ,Bi i iYh X  and *
ih  to 

denote ( )( )1, , .h XBi i iY  We can calculate the population quantity 1

=1
=

N

ii
N − H h  from Sample B. This 

insight enables the typical calibration weighting in survey sampling with known marginal totals. In 

Sample A, we treat the imputed values as observed values, and the design weighted estimator of H  is 
1 1 *ˆ = .A i ii A

N − −

H h  In general, ˆ
AH  is not equal to .H  We can use the known information H  to 

improve the efficiency of , nni
ˆ .g  

This suggests the following calibration strategy. We modify the original design weights  :id i A  in 

, nni
ˆ

g  to a new set of weights  :i i A   by minimizing a distance function  

 ( )

2

, = 1 ,
i

i i i
i A i A i

G d d
d




 

 
− 

 
   (5.1) 

subject to the calibration constraints 1 * = .i ii A
N −

 h H  By Lagrange multiplier, the solution to the 

constraint minimization problem is  

 
T 1

* * *T *= ,i i k k k k k i i
k A k A

d N d d d
−

 

   
+  −   
   

 H h h h h   

for .i A  The resulting weights  :i i A   can be called generalized regression weights. 

The proposed estimator utilizing the new set of weights is  

 ( )( ), RC 1

1
ˆ = ,g i i

i A

g Y
N

 

  (5.2) 

which is asymptotically equivalent to a generalized regression estimator (Park and Fuller, 2012). 

Following Yang and Ding (2020), one can show that , RC
ˆ

g  is the optimal estimator among the class of 

( ) ( ) T* dim
, nni

ˆ : .hH h  g k kk A
N d


+  −  R  

We derive the asymptotic theory for , RC
ˆ

g  in the following theorem and defer its proof to the 

Supplementary Material. 
 

Theorem 3. Under Assumptions 1-4,  

 ( ) ( )1 2
, RC RC

ˆ 0, ,g gn V − → N  (5.3) 

in distribution, as ,n →   where  

 ( ) 1 T
RC 2

= var ,lim p i i i N
n i A

n
V E g Y

N
 −

→ 

   
−     

 h β   

and ( ) ( )T
1

=1 =1
= .β h h h

N N

N i i i ii i
g Y

−

   
 

The calibrated estimator , RC
ˆ

g  improves the efficiency of , nni
ˆ

g  in the sense that RCV  is at most as 

large as nniV  given in Theorem 1. If ih  explains a proportion of the variability of ( ) ,ig Y RCV  is strictly 

less than nniV  and the efficiency gain does not require any parametric model assumption. 
 

Remark 2 (Choice of distance functions). Different distance functions in (5.1) can be considered. If we 

choose ( ) ( ), = log ,i i i i iG d d d −  it leads to empirical likelihood estimation (Newey and Smith, 
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2004). If we choose the Kullback-Leibler distance function ( ) ( ), = log ,i i i i iG d d    it leads to 

exponential tilting estimation (Kitamura and Stutzer, 1997; Imbens, Johnson and Spady, 1998; 

Schennach, 2007; Dong et al., 2020). Under mild conditions, these procedures provide a set of weights 

that is asymptotically equivalent to the set of regression weights (Deville and Särndal, 1992; Breidt and 

Opsomer, 2017). 
 

For variance estimation, by Theorem (3), we construct a consistent variance estimator for , RC
ˆ

g  as 

RC
ˆ ,V n  where 

 RC 2

ˆˆ
ˆ = ,

ij i j ji

i A j A ij i j

en e
V

N

  

   

−
   

with ( )( ) *T
1

ˆˆ = ,h βi iie g Y −  and  

 

( )

( ) ( )( )

( )

( )

=1

1
1

1
* *T

=1
=1

=1

1
ˆ = .

N

Bi ii

N i Bi ii A

i i N
i

Bi i ii

N

Bi i ii

g Y

g Y

g Y

Y g Y



 





−
−



 
 
 −

   
 

  
 
 
 










β h h
X

  

 

6. Empirical experiments 
 

In this section, we evaluate the finite sample performance of the proposed estimator using simulation 

studies, one based on artificial data using simple random sampling and the other based on a synthetic 

population file from a single month sample of the U.S. Census Bureau’s Monthly Retail Trade Survey 

using stratified sampling. 

 

6.1 Kim-Wang example 
 

We use the simulation example in Kim and Wang (2019) to compare various estimators. We generate 

the data according to the following mechanism. We first generate a finite population =NF  

( ) ( ) 1 2 1 2= , , = , : = 1, ,i i i i i iX X Y Y i NX Y  with size =N 1,000,000, where 1iY  is a continuous 

outcome and 2 iY  is a binary outcome. From the finite population, we select a big data Sample B where the 

inclusion indicator ( )~ BerBi ip  with ip  the inclusion probability for unit i  with the sample size 

around 700,000. We obtain a representative Sample A of size =n 1,000 using simple random sampling. 

The parameters of interest are the population mean 
1

=1

N

ii
N −  Y  and the conditional population mean of 

1Y  given 2 = 1.Y  

For generating the finite population, we consider linear models  

 1 1 2= 1 ,i i i i iY X X  + + + +  (6.1) 

 ( ) ( )2 1 2 1 2= 1 , ; = logit 1 ,i i i i i i iP Y X X X X + + +   

and nonlinear models  

 ( )
2 2

1 1 2= 0.5 1.5 ,i i i i iY X X  − + + +  (6.2) 
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 ( ) ( ) 2 2
2 1 2 1 2= 1 , ; = logit 0.5 1.5 ,i i i i i i iP Y X X X X − + +   

where ( )
1 ~ 1, 1 ,iX N ( )

2 ~ Exp 1 ,iX ( )~ 0, 1 ,i N ( )~ 0, 1 ,i N  and 1 ,iX 2 ,iX i  and i  are 

mutually independent. The variables i  induce the dependence of 1iY  and 2 iY  even adjusting for 1iX  and 

2 .iX  For the big-data inclusion probability, we also consider a logistic linear model  

 ( ) 2logit = ,i ip X  (6.3) 

and a nonlinear logistic model  

 ( ) ( ) ( )
2 2

1 2logit = 3 1.5 2 .i i ip X X− + − + −  (6.4) 

We consider the following combinations: I. (6.1) and (6.3); II. (6.1) and (6.4); II. (6.2) and (6.3); and IV. 

(6.2) and (6.4) for data generating mechanisms. Therefore, the simulation setup is a 2 2  factorial design 

with two levels in each factor. 

Chen, Li and Wu (2020) propose the inverse propensity score weighting estimator using the estimated 

probability of selection into Sample B and the doubly robust estimator which further incorporates an 

outcome regression model. To evaluate the robustness and efficiency, we compare the following 

estimators:   

1. HT
ˆ ,  the Horvitz–Thompson estimator assuming the ’siY  were observed in Sample A for the 

purpose of benchmark comparison;  

2. ipw
ˆ ,  the inverse propensity score weighting estimator,  

 
( )

ipw

1 1
ˆ = ,

ˆ
i

i B i

Y
N p




   

where ( ) ( )2= = 1 ;i Bi ip P X    is a logistic regression model with the linear predictor 2iX  with 

an unknown parameter ,  and ̂  is an estimator of   obtained by maximizing the modified 

likelihood function of   (Chen et al., 2019) based on Samples A and B;  

3. dr
ˆ ,  the doubly robust estimator of Chen et al. (2019),  

 
( )

( )T T
dr

1 1 1
ˆ ˆˆ = ,

ˆ
i i i

i B i Ai

Y
N p n


 

− + X β X β   

where β̂  is the estimated regression coefficients using (6.1) as the working outcome regression 

model based on Sample B;  

4. nni
ˆ ,  the nearest neighbor imputation estimator;  

5. knn
ˆ ,  the k  nearest neighbor imputation estimator with = 5;k  

6. GAM
ˆ ,  the generalized additive model imputation estimator;  

7. RC
ˆ ,  the regression calibration estimator based on nnî  with calibration variables ( ), , =B YH X

( )
T

, 1 , , .B B B BY   − X  
 

All simulation results are based on 1,000 Monte Carlo runs. Table 6.1 summarizes the simulation 

results with biases, standard errors, and coverage rates of 95% confidence intervals using asymptotic 
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normality of the point estimators. The following observations can be made from Table 6.1. ipŵ  has large 

biases when the propensity score is misspecified. dr̂  gains robustness over ipŵ  if one of the outcome 

regression model or the propensity score is correctly specified. However, if both models are misspecified, 

dr̂  has a larger bias. nnî  has small biases across four scenarios, which shows its robustness. 

Importantly, the performance of nnî  is close to that of HT̂  in terms of standard errors and coverage 

rates, which is consistent with our theory in Theorem 1. Moreover, as predicted by our theoretical results, 

knn̂  improves nnî  in terms of efficiency. Also, GAM̂  shows robustness because of the flexibility of the 

model specification. The regression calibration estimator RĈ  has small biases across all scenarios and 

therefore shows robustness against model specifications for sampling score and outcome. Moreover, it has 

smaller standard errors than both nnî  and knn
ˆ .  The coverage rates are all close to the nominal level.   

 
Table 6.1 

Simulation results: bias, standard error, and coverage rate of 95% confidence intervals under four scenarios 

based on 1,000 Monte Carlo samples. OM: outcome model; PS: propensity score model (all numbers in the 

table are the numerical results multiplied by 100) 
 

 Scenario I Scenario II Scenario III Scenario IV 

OM linear linear nonlinear nonlinear 

PS linear nonlinear linear nonlinear 

 Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. 

Population Mean of 1Y  

HT̂  0.2 6.5 96.0 -0.2 6.4 94.5 0.61 15.2 95.7 -0.5 15.6 93.5 

ipŵ  -0.1 1.6 95.3 22.2 35.8 97.5 -0.1 4.2 95.3 432.7 284.5 75.6 

dr̂  0.0 4.6 94.5 0.0 4.3 96.5 0.5 14.2 95.2 229.8 168.8 35.8 

nnî  0.2 6.5 95.1 -0.3 6.4 94.7 0.7 15.2 94.6 -0.6 15.6 93.7 

knn̂  0.2 4.9 96.1 -0.3 4.9 95.6 0.5 14.5 94.6 -0.6 14.9 93.8 

GAM̂  0.1 4.5 95.7 -0.2 4.5 96.0 0.5 14.3 94.9 -0.6 14.8 93.4 

RĈ  0.0 3.2 95.5 -0.2 4.1 95.3 -0.1 4.8 95.0 0.1 6.7 95.5 

Population Mean of 2Y  

HT̂  -0.0 1.5 96.2 -0.0 1.6 95.1 -0.1 1.6 95.2 0.1 1.6 94.4 

ipŵ  0.0 0.2 95.0 -12.1 3.1 0.0 -0.0 0.3 95.4 3.0 1.8 94.7 

dr̂  -0.0 0.9 95.0 -1.1 1.8 68.6 0.0 0.4 94.9 -2.9 2.2 59.8 

nnî  0.0 1.4 95.3 -0.0 1.6 95.3 -0.1 1.6 94.6 0.1 1.6 95.3 

knn̂  0.0 1.0 95.8 -0.0 1.1 95.8 -0.0 1.0 95.2 0.0 0.9 96.1 

GAM̂  -0.0 0.9 95.3 -0.0 0.9 94.8 -0.0 0.8 96.2 0.0 0.8 94.5 

RĈ  0.0 1.2 95.5 -0.1 1.4 94.2 -0.0 1.4 94.1 0.1 1.5 95.6 

Conditional Mean of 1Y  given 2 = 1Y  

HT̂  0.0 7.3 95.1 -0.3 7.2 95.2 0.2 9.3 95.3 -0.1 9.8 94.1 

ipŵ  -0.1 1.6 95.2 -9.1 10.3 69.8 -0.1 4.3 95.0 534.2 329.8 65.3 

dr̂  0.1 4.7 95.6 2.5 4.6 93.2 9.8 18.0 93.1 452.0 465.4 65.6 

nnî  -0.0 7.3 95.0 -0.3 7.3 95.3 0.1 9.2 95.4 -2.2 9.5 95.2 

knn̂  -0.1 4.7 96.8 -0.3 4.6 96.5 0.1 6.0 94.8 0.0 6.4 93.6 

GAM̂  0.0 4.8 94.2 -0.3 4.5 96.0 -0.1 6.5 95.5 -0.6 6.8 94.8 

RĈ  -0.0 3.9 94.8 -0.2 5.0 96.0 -0.2 5.4 95.1 -0.1 5.4 96.7 
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6.2 Monthly retail trade survey 
 

To demonstrate the practical relevance, we consider the U.S. Census Bureau’s 2014 Monthly Retail 

Trade Survey (Mulry, Oliver and Kaputa, 2014). The Monthly Retail Trade Survey is an economic 

indicator survey whose monthly estimates are inputs to the Gross Domestic Product estimates. This survey 

selects a sample of about 12,000 retail businesses each month with paid employees to collect data on sales 

and inventories. It employs an one-stage stratified sample with stratification based on major industry, 

further substratified by the estimated annual sales referred to as the size variable. 

For simulation purpose, we use the simulated data from the 2014 Monthly Retail Trade Survey to 

suggest the data generating model and the true parameter values (https://ww2.amstat.org/meetings/ices/ 

2016/contests.cfm). We generate a finite population of =N 812,765 retail businesses with 16 strata with 

a stratum identifier ,h  sales ,Y  inventories ,X  and a size variable Z  on the log scale. Table 6.2 reports 

some summary statistics. We generate the inventory data from ( )2
, ,~ ,hi X h X hX N    for = 1, , hi N  

and = 1, , 16,h  and the sales data from a linear model  

 0= ,hi hi hiY X + +  (6.5) 

and a nonlinear model  

 2
0= 0.5 ,hi hi hiY X + +  (6.6) 

where ( )~ 0, 0.25 .hi N  In (6.5) and (6.6), we specify different values for 0  so that the parameter of 

interest, 
161

=1 =1
= ,

hN

hih i
N Y −    matches with the true population mean 12.73. 

 
Table 6.2 

The stratum size, sample allocation, mean and standard error of the inventory data on the log scale extracted 

from the 2014 Monthly Retail Trade simulated dataset 
 

Stratum h  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

hN  366 20 2,015 4,646 7,402 700 12,837 17,080 29,808 2,400 41,343 57,518 83,465 95,244 115,028 342,893 

hn  37 5 34 57 74 7 103 115 116 12 184 196 218 200 220 336 

,X h  16.8 16.7 16.6 16.4 16.1 15.6 16.0 15.7 15.6 15.5 15.4 15.1 14.8 14.5 13.9 11.5 

,X h  1.1 0.8 0.4 0.3 0.4 0.6 0.4 0.4 0.4 0.3 0.4 0.4 0.3 0.7 0.5 1.1 

,Z h
  5.9 2.3 5.8 6.3 6.6 4.2 6.9 7.0 7.4 4.8 7.5 7.6 7.7 7.6 7.7 8.1 

 
We also generate a big data sample BS  where the inclusion indicator ( )~ Berhi hip  with the 

inclusion probability hip  for unit i  in stratum .h  The big data sample in practice is often available from 

E-commercial companies who monitor inventories and sales for retail businesses. For the big data 

inclusion probability, let ( )2
, ,~ , ,hi Z h Z hZ N    for = 1, , hi N  and = 1, , 16.h  We consider a 

logistic linear model  

 ( ) 0logit = ,hi hip Z +  (6.7) 

and a nonlinear logistic model  
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 ( ) 2
0logit = ,hi hi hip X Z + +  (6.8) 

where we specify different values for 0  so that the mean inclusion probability is about 30%. Lastly, we 

generate a representative sample AS  by stratified sampling with simple random sampling within strata 

without replacement; see Table 6.2 for the sample allocation. 

We consider the seven estimators in Section 6.1 adopted for stratified sampling. In each mass imputed 

dataset, we apply the following point estimator and variance estimator: 1

=1
ˆ =

h

H

h nh
N N y −   with 

hny  is 

the sample mean of y  in the thh  stratum, ( )2 2 2

=1
ˆ ˆ( ) = 1

h

H

h h h n hh
V N N n N s n − −  with 2 =

hns  

( )
1 2

=1
1 ( ) .

h

h

n

h hi ni
n y y

−
− −  

Table 6.3 summarizes the simulation results. A similar discussion to Section 6.1 applies. ipŵ  is 

sensitive to misspecification of the selection model; while dr̂  has double robustness feature, which still 

relies on at least one model to be correctly specified. Mass imputation based on nearest neighbor 

imputation, k  nearest neighbor imputation and generalized additive model shows good performances by 

leveraging the representativeness of the survey sample and the predictive power of the big data sample. In 

addition, if the big data membership is known throughout the survey data, the regression calibration 

estimator gains efficiency while maintaining the robustness against model misspecification.   

 
Table 6.3 

Simulation results: bias, standard error, and coverage rate of 95% confidence intervals under four scenarios 

based on 1,000 Monte Carlo runs for the 2014 Monthly Retail Trade Survey. OM: outcome model; PS: 

propensity score model (all numbers in the table are the numerical results multiplied by 100) 
 

 Scenario I Scenario II Scenario III Scenario IV 

OM linear linear nonlinear nonlinear 

PS linear nonlinear linear nonlinear 

 Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. Bias S.E. C.R. 

HT̂  0.0 3.0 95.0 0.0 3.0 95.0 1.1 31.5 95.0 1.1 31.5 95.0 

ipŵ  -0.6 5.8 96.6 -55.5 1.7 0.0 -7.3 76.2 96.6 -735.8 22.3 0.0 

dr̂  -0.3 2.7 94.4 -0.2 2.7 94.0 -3.3 34.6 93.8 -52.3 33.2 65.0 

nnî  0.1 3.1 94.5 -0.1 3.1 94.6 1.1 31.5 95.3 -0.3 31.7 94.6 

knn̂  0.1 2.7 94.4 -0.2 2.7 94.3 1.0 31.4 94.9 -2.3 31.4 94.1 

GAM̂  0.1 2.7 94.9 0.1 2.7 94.9 1.1 31.6 94.9 -2.5 31.4 94.2 

RĈ  0.1 2.9 94.1 -0.1 2.6 95.1 0.6 30.7 94.6 -0.5 26.9 95.0 

 
7. Real-data application 
 

7.1 Data description 
 

To demonstrate the practical use, we apply the proposed method to the survey data from the Korea 

National Health and Nutrition Examination Survey (KNHANES) and the big data from National Health 

Insurance Sharing Service (NHISS). The KNHANES is an annual national survey that studies the health 

and nutritional status of Koreans since 1998. The surveys have been conducted by the Korea Centers for 
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Disease Control and Prevention. This nationally representative cross-sectional survey includes 

approximately 10,000 individuals each year as a survey sample and collects information on 

socioeconomic status, health-related behaviours, quality of life, healthcare utilization, anthropometric 

measures, biochemical and clinical profiles for non-communicable diseases and dietary intakes with three 

component surveys: health interview, health examination, and nutrition survey. More details of the 

KNHANES can be found in Kweon, Kim, jin Jang, Kim, Kim, Choi, Chun, Khang and Oh (2014). The 

data set used in this study has 4,929 samples. 

On the other hand, the big data from NHISS provides health-related information collected from 

National Health Screening Program (NHSP) in South Korea. The NHSP was launched with the goal of 

improving the overall health of the South Korean citizens and preventing the costly chronic diseases. All 

beneficiaries are eligible for screening once every year or two depending on their demographic or 

occupational status. The specific screening items are stipulated by the implementation standards, which 

include, but not limited to, various blood tests and cancer screening. The total number of eligible 

beneficiaries is about 16 million, where approximately 75% of them participated the screening. The data 

that we have used in this study is the subset corresponding to the blood test results that are associated with 

metabolic syndrome from the 2014 program. The variables in this data set are demographics as sex and 

age, and clinical measurements such as total glycerides (mg/dL), total cholesterol (mg/dL), high-density 

lipoprotein cholesterol (HDL, mg/dL), and medical diagnosis on whether having anemia. The data set is 

made publicly available after anonymization and randomly selecting 1 million observations (National 

Health Insurance Data Sharing Service, 2014). Note that more thorough data can be purchased with a paid 

subscription and expert panel review. 

 
7.2 Analysis and results 
 

To apply the proposed method of mass imputation, we assume that total cholesterol is not available in 

KNHANES data, and use the big data from NHSP to perform mass imputation for total cholesterol 

variable. The actual survey values from KNHANES are used to compute a benchmark so that we can 

validate the efficacy of our proposed method. We consider the six different estimators:   

• HT: the Horvitz-Thompson estimator based on the Sample A data. This is used for a benchmark 

comparison;  

• NN: the nearest neighbor imputation estimator;  

• kNN: the k  nearest neighbor imputation estimator with = 5;k  

• GAM: the generalized additive model imputation estimator;  

• LM: the linear regression model imputation estimator using sex, age group, HDL cholesterol and 

total glycerides as the covariates; 

• IPW: the inverse propensity score weighting estimator; 

• NAIVE: the naive estimator using the Sample B without any treatment. 

Total cholesterol is affected by the amount of HDL, because HDL is one of the components that 

constitute the total cholesterol, and is known to be also affected by sex and age. Unless Sample B is from 
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a particular sub-population such as cardiovascular stenosis patients group, we may assume that the 

relationship between the total cholesterol and other variables remain the same. Hence ignorability holds. 

Also the covariates are all medical/biological measurements, meaning they should stay within the similar 

range both for Samples A and B. The variance estimator for each estimator is calculated, and 95% Wald 

confidence interval for g  is obtained using asymptotic normality. Figure 7.1 depicts the intervals, where 

the population mean estimate from each method is presented as a vertical bar. The interval obtained from 

HT can be viewed as a reference. It can be seen that all estimators produce intervals that are slightly 

overestimated compared to the one from HT. It is because of the inherent bias in total cholesterol level in 

NHSP data; the sample mean values of the total cholesterol from NHSP data is 7 point or 3.7 per cent 

higher than HT estimator calculated with KNHANES data, as seen from the naive result. One can see that 

all the proposed methods substantially reduce such bias to make the estimator close to the HT estimator, 

which shows the benefit of the proposed methods. IPW estimator produced a relatively poor estimate 

compared to other methods, which is probably because of either misspecification in logistic regression 

model, or considerable discrepancy in sample sizes between KNHANES (4,929) and NHSP data 

(1 million). We also tried the DR estimator but not included here, because the effect from the IPW is very 

marginal due to the limited auxiliary variables available. 

 
Figure 7.1 Estimated 95% confidence interval for the total cholesterol level. 
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that GAM performs better than the other methods in terms of RMSE and correlation. Overall, mass 

imputation method provides reasonable results for subgroup level as can be seen in Figure 7.2. 
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These quality measures need a predicted value for Sample A, hence IPW estimators are excluded in the 

comparison. Estimating the population and subgroup means using Sample B can give a very biased 

result – in the case of NHSP data, the difference between the mean of NHSP data and the HT estimator 

from KNHANES is about 7.09, or 3.7 per cent. 

 

Table 7.1 

Comparison of the imputation methods 
 

 Method RMSE Bias Corr. 

Individual NN 43.94 2.87 0.26 

KNN 32.62 2.86 0.42 

GAM 29.15 2.13 0.54 

LM 30.35 2.59 0.48 

Group Means NN 6.33 2.68 0.85 

KNN 5.44 2.70 0.90 

GAM 4.33 2.03 0.93 

LM 4.57 2.52 0.93 

 
Figure 7.2 Comparison of the HT estimates and estimates using mass imputation for subgroup average. 
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8. Discussion 
 

Mass imputation is an important technique for survey data integration. When the training dataset for 

imputation is obtained from a probability sample, the theory of Kim and Rao (2012) can be directly 

applied. If the training dataset is a non-probability sample and its size is huge, we have shown in this 

paper that various non-parametric methods can be used for mass imputation, and the estimation error in 

the imputation model can be safely ignored, under the assumption that the sampling mechanism for 

training data is missing at random in the sense of Rubin (1976). If the sampling mechanism is believed to 

be missing not at random, imputation techniques can be developed under the strong structural assumptions 

for the sampling mechanism (e.g., Riddles, Kim and Im, 2016; Morikawa and Kim, 2018) or the outcome 

model (e.g., Yang, Zeng and Wang, 2020). Also, when the training dataset has a hierarchical structure, 

multi-level models can be used to develop mass imputation. This is closely related to unit-level small area 

estimation in survey sampling (Rao and Molina, 2015). 

The mass imputation estimator is not necessarily efficient. In Section 5, we have described a method of 

using calibration weighting as a tool for efficient data integration with big data. The calibration weighting 

requires correct matching between two data sources, as investigated by Kim and Tam (2020). Also, if the 

fraction of big data in the finite population is not substantial, the efficiency gain will be limited. Instead, 

one could improve the efficiency by combining the mass imputation estimator with the inverse propensity 

weighting estimator in the big data (Yang, Kim and Song, 2020). However, the correct specification of the 

propensity score model will be challenging. These are topics for future research. 
 

Acknowledgements 
 

We thank two anonymous referees and the associated editor for very constructive comments. Dr. Yang 

is partially supported by NSF grant DMS 1811245 and NIA grant 1R01AG066883. Dr. Kim is partially 

supported by NSF grant MMS 1733572 and the Iowa Agriculture and Home Economics Experiment 

Station, Ames, Iowa. 

 

Appendix 
 

A.1 Proof for Theorem 1 
 

For a given =iX x  in Sample A, we show that ( )1iX  converges to x  in probability as .BN →   

Consider for any > 0,  we show that  

 ( )( )  ( ) 1 , > = , > ,jiP d P d j B   X x X x  (A.1) 

converges to zero, and therefore ( )1iX  converges to x  in probability as ,BN →   where the probability is 

induced by the sampling process of Sample B of size .BN  We show this fact by contradiction. Assume 

that for some > 0, ( )( ) 1 , >iP d X x  does not coverage to zero as .BN →   Define the region 

( ) = : , .X X xd R  Then, we must have ( )= 1 = 0Bf X  for ;X R  otherwise, there exists 

X R  with a positive probability in Sample B as ,BN →   and therefore ( )( ) 1 , > = 0iP d X x  as 

.BN →   But the claim that ( )= 1 = 0Bf X  for X R  implies that R  is a non-overlap region of 

the distribution of X  between Sample A (and also the population) and Sample B, violating Assumption 2. 
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Given =iX x  in Sample A, for any continuous and bounded ( ) ,g y  

 

( )  ( )( ) ( )  

( )( ) ( ) 

( )( )  ( ) 

( ) 

(1) 1 1

1 1

1

= , = , = , = ,

= { } = ,

= = , = ,

= = , ,

i i i ii i

ii i

g i g i ii

i i

E g Y i A E E g Y i A i A

E E g Y i A

E i A E i A

E g Y i A

 

  



 → 



X x X X x X x

X X x

X X x X X x

X x

  

in probability as ,BN →   where →  follows from the fact that ( )g x  is bounded and continuous. Then, 

by Portmanteau Lemma (Klenke, 2006), ( ) ( )1 = ,i iiY Y i A→ X x  in distribution as .BN →   By 

Assumption 1, ( )( ) ( ) ( ) ( )*
1 ,i g i g iig Y i A e → +X X X  in distribution as ,BN →   where ( )*

g ie X  

has the same distribution as ( ) ( )  ( ), .X Xi i g ig Y i A  −  

We now show that for ,i j A  ( )*
g ie X  and ( )*

g je X  are conditionally independent, given data AO . 

It is sufficient to show that ( ) ( ) 1 = 1 0P i j →  as ;BN →   in other words, the same unit can not be 

matched for unit i  and unit j  with probability 1. This can be shown using (A.1) with =  

.min i j A i j  −X X  

Therefore, conditional on data ,AO  we have  

 ( )( ) ( )1 1
, nni , HT1

1 1
ˆ ˆ= =g i i i gi

i A i A

g Y g Y
N N

   − −

 

→    

in distribution as .BN →   This completes the proof for Theorem 1. 

Let  

 
( ) ( )

nni 2
= .

ij i j ji

i A j A i j i j

g Yn g Y
V

N

  

    

−
  (A.2) 

Then, 
nniV  is consistent for nni .V  

Similar to the above argument, for , ,i j A  conditional on data ,AO ( )( ) ( )( ) ( ) ( )1 1 i ji jg Y g Y g Y g Y→  

as .BN →   Therefore, conditional on data ,AO  

 
( )( ) ( )( )1 1

nni nni2
ˆ = ,

i jij i j

i A j A i j i j

g Y g Yn
V V

N

  

    

−
→  (A.3) 

in distribution as .BN →   Combining (A.2) and (A.3), nniV̂  is consistent for nni .V  

 
A.2 Proof for Theorem 2 
 

To investigate the asymptotic properties of , knn
ˆ ,g  we re-express  

 ( )
( ) ( )

( )
ˆ = ,

R j jj B

g

R jj B

K g Y

K






−

−




x

x

x X
x

x X
  

where  
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 ( ) ( ) ( )
1

= , = 0.5 1 ,h p

u
K u K K u I u

h h

 
 

   

 

and the bandwidth =h Rx  is the random distance between x  and its furthest among the k  nearest 

neighbors. Therefore, , knn
ˆ

g  can be viewed as a kernel estimator incorporating a data-driven bandwidth. 

In the literature, asymptotic properties of the k  nearest neighbor imputation estimator have been 

studied extensively. The result shown in the following lemma on k  nearest neighbor imputation is 

extracted from Mack (1981). 

 
Lemma 1. Under Assumptions 1-3,  

 ( ) ( ) ( ) ( ) ( )
2

1
, p
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1
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p
N

B j R j j B g
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k
N K g Y f O

N k
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− + +  

   
 x

x X x x x  (A.4) 

We now express  
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result in Lemma 1, we obtain  

 ( ) ( ) ( ) ( )
2

p

1
=

p

N B g

k
h f O

N k
 

   
+ +  

   
x x x x   

 ( ) ( ) ( )
2

p

1
= .

p

N B

k
f f O

N k


   
+ +  

   
x x x   

Now, by a Taylor expansion, we obtain  
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Therefore, we obtain  

 
( ) ( )

( ) ( ) ( ) 
2

,

, p2
=1 =1

1 1 1
= .

i

p
N N

A i

N B j R i j j g i
i ji i B i

k
T K g Y O

N f N k


 

 

   
− − + +  

   
  X

X X X
X X

  

Under the assumption in Theorem 2, it is easy to derive that ( ) ( )2 1 21 = ,
p

k N k o n−+  and therefore,  
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We then express NT  in a form of U-statistics (van der Vaart, 2000; Chapter 12):  
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Now, by Lemma 1, we obtain  

 

( )
( ) ( )

( ) ( ) ( ) 

( ) ( )
( ) ( ) ( ) 

, ,

,

,

2

p

1
=

1
=

1
= ,

X

X

Z X X X Z
X X

X X X Z
X X

i

i

A i B j

ij i R i j j g i i

i i B i

A i

B j R i j j g i i

i i B i

p

E E K g Y
f

E K g Y
f

k
O

N k

 
 

 


 

 

 
− − 

 

 − − 

   
+  

   

  

and  

 

( )
( ) ( )

( ) ( ) ( ) 

( ) ( )
( ) ( ) ( ) 

( )
( ) ( ) 

, ,

,

,

2

,

p

1
=

1
= ,

1
= .

X

X X

Z X X X Z
X X

X X X Z Z
X X

X
X

j

jj

A j B i

ji i R j i i g j i

j j B j

A j

B i R j i i g j i i

j j B j

p

B i

i g i

B i

E E K g Y
f

E E K g Y R
f

k
g Y O

N k

 
 

 


 

 






 
− − 

 

   
− −  

   

   
− + +  

   

  



52 Yang et al.: Integration of data from probability surveys and big found data 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Therefore, by the theory of U-statistics, we obtain  
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Combining the above results leads to  
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Then, the asymptotic results in Theorem 2 follow by Assumptions 1-4 and (A.5). 

 
A.3 Proof for Theorem 3 
 

The consistency and asymptotic normality of 1 2
, nni

ˆ
gn   follow by the standard arguments under 

Assumptions 1-4. The remaining is to show that the asymptotic variance of 1 2
, nni

ˆ
gn   is nni .V  

Using the distance function ( ) ( )
2

, = 1i i i i iG d d d  −  in (5.1), the minimum distance estimation 

leads to generalized regression estimation (Park and Fuller, 2012). Therefore, we express  
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(A.6)

 

Similar to the argument in the proof for Theorem 1, we express  
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(A.7)

 

It is straightforward to show the variance of the second term in (A.7) is negligible given ( )1 = 1 .nN o−  

Following the arguments in the proof for Theorems 1 and 2, ( )( )1ig Y  and *
ih  have the asymptotic 

distribution as ( )ig Y  and ih  given the data AO  from Sample A, respectively. Therefore, the asymptotic 

variance of 1 2 ˆ
gn   is  
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