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Sample empirical likelihood approach under complex survey 

design with scrambled responses 

Sixia Chen, Yichuan Zhao and Yuke Wang1 

Abstract 

One effective way to conduct statistical disclosure control is to use scrambled responses. Scrambled responses 

can be generated by using a controlled random device. In this paper, we propose using the sample empirical 

likelihood approach to conduct statistical inference under complex survey design with scrambled responses. 

Specifically, we propose using a Wilk-type confidence interval for statistical inference. Our proposed method 

can be used as a general tool for inference with confidential public use survey data files. Asymptotic 

properties are derived, and the limited simulation study verifies the validity of theory. We further apply the 

proposed method to some real applications. 

 

Key Words: Empirical likelihood; Scrambled responses; Statistical disclosure control; Survey data. 

 

 

1. Introduction 
 

The survey sampling technique has been shown to be one of the most effective ways to collect 

representative information for the underlying study population of interest; see Kish (1965) and Cochran 

(1977), among others. This approach has been used frequently in practice to obtain important information 

related to health, social economics, and public opinions. However, data collection by using a complex 

sampling design without careful control of statistical disclosure may lead to low response rate and large 

measurement error (Hundepool, Domingo-Ferrer, Franconi, Giessing, Nordholt, Spicer and Wolf, 2012). 

Statistical disclosure control (SDC) has been defined as one of few necessary steps to release public use 

files by agencies such as the US Census Bureau. For instance, Krenzke, Li, Freedman, Judkins, Hubble, 

Roisman and Larsen (2011) produced transportation data products from the Amercian Community Survey 

that comply with disclosure rules. Gouweleeuw, Kooiman, Willenborg and Wolf (1998) discussed 

statistical data protection at Statistics Netherlands. 

The idea underlying SDC is to generate some perturbation based on the original raw data file so that 

the risk of identifying individuals is tiny and the utility of the perturbed data file is high. Currently, there 

are many SDC approaches including data coarsening, variable suppression, data swapping (Fienberg and 

McIntyre, 2005), Parametric model-based multivariate sequential replacement (Raghunathan, Lepkowski, 

van Hoewyk and Solenberger, 2001), and scrambled responses or randomized response methods (Horvitz, 

Shah and Simmons, 1967; Fox and Tracy, 1986). For more information about those approaches, see 

Hundepool et al. (2012). 

Inference after SDC is an important and challenging problem. Statistical analysis without taking into 

account SDC leads to a biased variance estimation (Raghunathan, Reiter and Rubin, 2003). Raghunathan 
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et al. (2003) proposed using the multiple imputation (MI) procedure to generate perturbed data files and 

using the Rubin’s variance estimator formula for inference. However, most agencies only seek to produce 

one public use file, instead of many files and the validity of MI depends on the well-known congeniality 

condition of Meng (1994). This condition may not hold under informative sampling design (Kim and 

Yang, 2017). Compared with other approaches, the scrambled responses approach is very easy to 

implement and has good compromise of risk and utility. In addition, valid statistical inference can be 

developed for most complex sampling designs. Warner (1965) first proposed using a randomization 

device, such as a deck of cards, to estimate the proportion of sensitive characters, such as induced 

abortions, drug used, and so on. Tracy and Mangat (1996) contains a comprehensive review of 

randomized response methods. One effective randomized response method (Scrambled responses 

technique) is a multiplicative model considered by Eichhorn and Hayre (1983). Bar-Lev, Bobovitch and 

Boukai (2004) proposed an improved version of their model. Saha (2011) discussed an optional scrambled 

randomized response technique for practical surveys. More recently, Singh and Kim (2011) proposed 

using a pseudo empirical likelihood estimator with a simple random sampling without replacement 

(SRSWOR) design under this model. However, they only considered a point estimation under the 

SRSWOR design, and their proposed method may not work for other sampling designs, such as 

probability proportional to size design. 

Empirical likelihood approach was proposed by Hartley and Rao (1968) and studied by Owen (1988, 

2001) and Qin and Lawless (1994) under traditional statistical settings. Under complex survey settings, 

Wu and Rao (2006) considered pseudo empirical likelihood approach. Chen and Kim (2014) proposed 

population and sample empirical likelihood methods which are more efficient than pseudo empirical 

likelihood method with high entropy designs. Berger and Torres (2016), Berger (2018a, 2018b) extended 

the sample empirical likelihood approach in Chen and Kim (2014) to a more general setting. In this paper, 

we only consider single stage sampling designs, which include Poisson sampling and stratified probability 

proportional to size sampling designs. Our proposed approach can be generalized to multi-stage design by 

using the method discussed in Berger (2018b). In surveys with multi-stage design, one challenge is that 

we need to specify the conditions of inclusion probabilities and consider the correlation of observations 

within the same cluster in different stages. We also consider interval estimation by using the sample 

empirical likelihood method considered in Chen and Kim (2014). After estimating the scale factor 

consistently, the adjusted pseudo empirical likelihood ratio converges to a standard Chi-square 

distribution, which can be used to construct the confidence interval. External aggregated auxiliary 

information, such as population size by age, gender, and race, can be naturally incorporated into our 

proposed method to improve the efficiency of the proposed estimators. Our proposed method is practical 

and can be used in most public-use survey data files, such as those from the National Health and Nutrition 

Examination Survey (NHANES), National Health Interview Survey (NHIS), and Behavioral Risk Factor 

Surveillance System (BRFSS). 

The paper is organized as follows. Basic notations, research questions, and the Hájek estimator are 

introduced in Section 2. Section 3 discusses the proposed sample empirical likelihood method. One 
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simulation study is presented in Section 4. We apply the proposed methods to 2015-2016 National Health 

Nutrition and Examination Survey (NHANES) data in Section 5. In Section 6, we conclude this paper. All 

technique details are contained in the Appendix. 

 
2. Preliminaries 
 

Suppose the finite population ( )= , , = 1, ,N i iX Y i NF  is generated from some unknown super-

population model, where iY  is a study variable and iX  is a covariate. For ease of presentation, given 

,NF  a random sample A  is assumed to be selected from a single stage unstratified sampling design. Let 

iI  be the sampling indicator for unit i  such that = 1iI  if unit i  is selected and 0 otherwise. Denote the 

first-order and second-order inclusion probabilities as ( )=i iE I  and ( )=ij i jE I I  for 

, = 1, , .i j N  Then, the sampling weight can be written as 1=i id  −  and sample size is 
=1

= .
N

ii
n I  

Suppose the parameter of interest is 1

=1
= .

N

N ii
N Y −   Due to confidentiality, we plan to use scrambled 

responses iZ  of iY  such that =i i iZ Y S  with probability 1 p−  and =i iZ Y  with probability ,p  where 

( ) =iE S a  and ( ) 2=iV S b  with ,p ,a  and 2b  known. Bar-lev et al. (2004) and Singh and Kim (2011) 

considered similar models. Instead of observing iY  directly, we only observe the scrambled responses iZ  

in the data file. Hájek estimator discussed in Hájek (1971) and Fuller (2009) has been used frequently in 

survey data analysis. Under certain regularity conditions, one can show that the following Hájek (HJ) type 

estimator is consistent:  

 *
HJ

1
ˆ = ,

ˆ i i
i A

d Y
N



  (2.1) 

where ( ) 
1* = 1i iY Z p a p
−

− +  and ˆ = ii A
N d

  since ( )ˆ =E N N  and  

 ( ) ( )  ( ) ( )  ( ) 
1* *

=1 =1 =1

= = 1 1 = .
N N N

i i i i i i i
i A i i i

E d Y E Y E Y S p Y p p a p Y
−



 − + − +       

The asymptotic properties of HJ̂  are described in the following Theorem 1, and the sketched proof is 

contained in Appendix B.  

 

Theorem 1. Under the regularity conditions in Appendix A, HJ̂  has the following asymptotic expansion  

 ( ) ( )* 1 2
HJ

1
ˆ = ,N i i N p

i A

d Y o n
N

   −



+ − +  (2.2) 

and  

 ( ) ( )1 2
HJ HJ

ˆ 0, 1 ,d
NV N − − →  (2.3) 

as ,n N →   with  

 HJ 1 2= ,V V V+  (2.4) 
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where  

 ( ) ( )1 2
1 1

1
= ,

N N
ij i j

i N j N
i j i j

V Y Y
N

  
 

 = =

−
− −   

and  

 
( ) ( ) 

( ) 

2 2

2
2 2 2

=1

1 1 1
= .

1

N

i
i

p p a b
V Y

Np a p

− − +

− +
   

 

Note that 1V  is the design variability of Hájek estimator for population mean N  by using the true values 

and 2V  is the additional variability generated by using scrambled responses. According to Theorem 1, the 

consistent estimator of HJV  can be written as  

 
( ) ( ) 
( ) ( )

22**
HJHJ *2

HJ 2 22 2

ˆˆ 1 11 1
ˆ = .

ˆ ˆ1

ij i j ji

i i
i A j A i Aij i j

p b p aYY
V d Y

b a p pN N

   

    

− + −− −−
+

+ − +
    

When ( )= 1 ,n N o  the second term above can be safely ignored. Therefore, we can use a traditional 

design consistent estimator with transformed variable *.iY  In the next section, we will propose using the 

pseudo empirical likelihood method to construct both point estimator and confidence interval when we 

have aggregated auxiliary information. 

 
3. Proposed method 
 

Population-level aggregated information is often available through census or large surveys, such as the 

American Community Survey (ACS). For instance, we may know the national-level population counts by 

gender, race, educational level, or income level. Incorporating such information into estimation will often 

reduce the coverage error and improve the efficiency of the estimators. In this section, we propose using 

the sample empirical likelihood (SEL) approach proposed by Chen and Kim (2014) to conduct point and 

interval estimation simultaneously. Suppose a population mean 1

=1
=

N

N ii
X N X−   is known through 

some external resources. Then, the SEL estimator can be obtained by maximizing the following sample 

empirical log-likelihood function  

 ( )= log ,s i
i A

l w

  (3.1) 

subject to constraints  

 ( )1= 1, = 0, 0,i i i i N i
i A i A

w w X X w −

 

−    (3.2) 

and  

 ( )1 * = 0.i i i
i A

w Y −



−  (3.3) 
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By maximizing objective function (3.1) subject to constraints in (3.2), the SEL weight can be written as  

 
( )1

1 1
ˆ = ,

ˆ1
i

i i N

w
n X X −+ −

  

with ̂  as the Lagrange multiplier, and it can be obtained by solving the second constraint in (3.2). Then, 

according to (3.3), the SEL estimator of N  can be written as  

 

1 *

SEL 1

ˆ
ˆ = .

ˆ

i i ii A

i ii A

w Y

w






−



−






  

The following Theorem 2 contains asymptotic properties of the proposed SEL estimator SEL
ˆ .  The 

sketched proof is contained in Appendix C.  

 

Theorem 2. Under the regularity conditions in Appendix A, SEL̂  has the following asymptotic expansion  

 ( ) ( ) ( )* 1 2
SEL

1 1
ˆ = ,N i i N i i N p

i A i A

d Y B d X X o n
N N

   −

 

+ − − − +   (3.4) 

where  

 ( ) ( ) ( ) ( )
1

1 1

=1 =1

1 1
=

N N

i i N i N i i N i N
i i

B Y X X X X X X
N N

  

−

− −   
− − − −   

   
 

T
  

and  

 ( ) ( )1 2
SEL SEL

ˆ 0, 1 ,d
NV N − − →   

as ,n N →   with  

 *
SEL 1 2= ,V V V+   

where 2V  is defined in Theorem 1 and  

 *
1 2

=1 =1

1
= ,

N N
ij i j

i j
i j i j

V
N

  
 

 

−
   

with ( )= .i i N i NY B X X − − −  

 

Note that *
1V  is the design variability of optimal regression estimator which is less than 1V  defined in 

Theorem 1. The optimal regression estimator has been discussed by Fuller and Isaki (1981), Montanari 

(1987), and Rao (1994). According to Theorem 2, the consistent estimator of SELV  can be written as  

 
( ) ( ) 
( ) ( )

22

*2
SEL 2 22 2

1 1ˆˆ1 1
ˆ = ,

ˆ ˆ1

ij i j ji

i i
i A j A i Aij i j

p b p a
V d Y

b a p pN N

   

    

− + −−
+

+ − +
    

where ( )*
SEL

ˆ ˆˆ =i i i NY B X X − − −  with  

 ( ) ( )  ( ) ( ) 
1

2 * 2
SEL

ˆˆ = .i i i N i i N i N
i A i A

B d Y X X d X X X X
−

 

− − − − 
Τ
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When ( )= 1 ,n N o  the second term of SELV̂  can be ignored. Under the simple random sampling (SRS) 

design, it can be shown that SEL̂  is asymptotically equivalent to the following well-known regression 

estimator  

 *
REG

1 1
ˆ ˆ= ,

ˆ ˆi i R i i N
i A i A

d Y B d X X
N N


 

 
− − 

 
   (3.5) 

where  

 ( ) ( )  ( ) ( ) 
1

*
HJ

ˆˆ = .R i i i N i i N i N
i A i A

B d Y X X d X X X X
−

 

− − − − 
T

  

However, for general design, SEL̂  is different from REG
ˆ .  Under Poisson sampling design, it can be 

shown that SEL̂  is more efficient than REG
ˆ .  Theorem 1 and Theorem 2 can be used to construct a Wald-

type confidence interval for .N  The following Theorem 3 can be used to construct a Wilk-type 

confidence interval. The sketched proof of Theorem 3 is contained in Appendix D.  

 

Theorem 3. Define ( ) ( ) ( ) SEL
ˆ= 2 ,n N s s NR l l  −  where ( )

sl   is defined in (3.1) with iw  satisfying 

(3.2) and (3.3). Then under the regularity conditions listed in Appendix A, as , ,n N →   

( )1 2
1 2 1 ,d

n Nc c R  − →  where 2 1 *2
1 =1

=
N

i ii
c N  − −  with ( )* *=i i N i NY B X X − − −  and 2 SEL= .c V  

 

The estimator of 1c  and 2c  can be written as  

 ( ) 
2

2 2 *
1 SEL

ˆˆ ˆˆ = ,i i i N
i A

c N Y B X X − −



− − −   

and 2 SEL
ˆˆ = .c V  Theorem 3 can be used to construct a Wilk-type confidence interval for .N  

 
4. Simulation study 
 

In the simulation study, we consider finite population ( ), , = 1, 2, ,i iX Y i N  for =N 10,000. iX  

is uniformly distributed over [0, 1] and ( )=i i iY m X +  with ( )~ 0, 0.01 .i N  Four functions ( )m x  

are listed below: 

(A). ( ) ( )
1 = 2 2 0.5 ,m x x+ −  

(B). ( ) ( )
2

2 = 2 2 0.5 ,m x x+ −  

(C). ( ) ( ) ( )( )2

3 = 2 2 0.5 exp 200 0.5 ,m x x x+ − + − −  

(D). ( ) ( ) ( ) ( )
4 = 2 2 0.5 < 0.6 0.6 0.6 ,m x x x x+ −  +    where ( )B  is the binary indicator 

function for condition B  such that ( ) = 1B  if condition B  is satisfied and 0 otherwise.  
 

We generated =B 5,000 Monte Carlo samples from Poisson sampling with inclusion probabilities 

=1
= ,

N

i i jj
nk k   where the size variable ( )= max 0.5 2, 1j j jk Y u+ +  with ( )2~ 1 .ju   We 

considered sample sizes =n 40, 50, 100 and 200. For each Monte Carlo sample, the scrambled responses 

iZ  were generated with =p 0.6, and ( )~ 1.5, 0.2 1.5 .iS N  Suppose we only observe iX  and iZ  in the 
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sample. The performance of the HJ estimator and the proposed SEL estimator were compared with the 

estimate population mean of ,Y  which is ( )
0 = .E Y  The results are shown in Table 4.1. 

We computed Monte Carlo bias 1
0=1

ˆMCB = ,
B

bb
B  − −  Monte Carlo standard error 

( ) 
1 22

1

=1

ˆMCSE =
B

bb
B  − −  with 1

=1

ˆ=
B

bb
B −   and Monte Carlo mean squared error 

( ) 
1 22

1
0=1

ˆMCMSE = .
B

bb
B  − −  For variance estimation, we calculated coverage rate, average 

length of interval estimates, and percentage of relative bias of variance estimators RB =  

( ) ( ) 
12

1 1

=1 =1

ˆˆ100 1 .
B B

b bb b
B V B  

−
− −  − −

  
   Results obtained from the simulation are given in 

Table 4.1. 

 
Table 4.1 

Simulation results of Monte Carlo bias (MCB), Monte Carlo standard error (MCSE), and Monte Carlo mean 

squared error (MCMSE), coverage rate, average length of 95% confidence intervals, and relative bias (RB) 

for the Hájek (HJ) estimator and sample empirical likelihood (SEL) estimator 
 

Setting MCB MCSE MCMSE Coverage Rate Avg Length RB 

Model n  HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL 

1m  40 0.0035 0.0005 0.123 0.076 0.015 0.006 0.936 0.940 0.470 0.283 -0.027 -0.075 

50 0.0026 0.0006 0.110 0.069 0.012 0.005 0.939 0.941 0.420 0.255 -0.024 -0.078 

100 0.0009 0.0003 0.077 0.048 0.006 0.002 0.946 0.950 0.300 0.183 0.007 -0.000 

200 0.0006 -0.0002 0.054 0.033 0.003 0.001 0.944 0.954 0.211 0.130 -0.010 0.000 

2m  40 0.0006 0.0007 0.083 0.085 0.007 0.007 0.937 0.937 0.319 0.314 -0.020 -0.098 

50 -0.0004 -0.0008 0.074 0.075 0.005 0.006 0.939 0.944 0.286 0.283 -0.014 -0.066 

100 -0.0002 -0.0001 0.053 0.053 0.003 0.003 0.941 0.947 0.203 0.203 -0.036 -0.057 

200 -0.0007 -0.0006 0.037 0.037 0.001 0.001 0.945 0.949 0.144 0.144 0.002 -0.013 

3m  40 0.0022 0.0011 0.138 0.091 0.019 0.008 0.926 0.939 0.512 0.344 -0.081 -0.068 

50 0.0056 0.0028 0.119 0.081 0.014 0.007 0.941 0.942 0.460 0.312 -0.018 -0.045 

100 0.0011 0.0003 0.084 0.058 0.007 0.003 0.945 0.943 0.327 0.222 -0.011 -0.053 

200 -0.0002 -0.0006 0.059 0.041 0.003 0.002 0.950 0.952 0.230 0.157 -0.010 -0.028 

4m  40 0.0040 0.0012 0.119 0.080 0.014 0.006 0.938 0.937 0.460 0.296 -0.007 -0.089 

50 0.0008 0.0002 0.107 0.071 0.012 0.005 0.943 0.943 0.413 0.267 -0.020 -0.069 

100 0.0007 0.0006 0.075 0.049 0.006 0.002 0.942 0.945 0.293 0.190 -0.013 -0.036 

200 -0.0003 -0.0002 0.053 0.034 0.003 0.001 0.946 0.957 0.206 0.135 -0.018 0.029 

 
For model 1 ,m 3 ,m  and 4 ,m  SEL has a smaller Monte Carlo bias, Monte Carlo standard error, and 

Monte Carlo mean squared error, especially for small sample sizes ( =n 40 or 50). For model 2 ,m  the 

two methods have comparable performance. For all four models, we found that, for most of the cases (14 

of 16) the SEL estimators had a coverage rate higher than or equal to that of the HJ estimator, while the 

average length of confidence interval was shorter compared with the average length obtained with the HJ 

estimator. Both methods provided small relative biases of variance estimators. Overall, the proposed SEL 

outperformed HJ for most cases. 

To test the sensitivity of the proposed approach, under current simulation study setups, we added noise, 

,iW  to the simulation. Then, ( )( )= 1i i i iY m X W  + − +  with = 0, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 

( )~ Uniform 0, 1 ,iX ( )~ 0, 1 ,iW N  and ( )~ 0, 0.01 .i N  Suppose we only observe iX  and iZ  (the 

scrambled response of )iY  in the sample, the HJ estimator and SEL estimator were again compared. The 

results are shown in Tables 4.2 and 4.3. We found that as   decreases, the coverage rates of the SEL 
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estimator are smaller than those of the HJ estimator, and the average length of CI for SEL estimator is not 

shorter than that of the HJ estimator. Therefore, the SEL estimator has better performance than the HJ 

estimator, provided that most of the information is contained in the current covariate. 

 
Table 4.2 

Simulation results of the Hájek (HJ) estimator and sample empirical likelihood (SEL) estimator after adding 

noise 
 

Setting = 0α  = 0.1α  = 0.3α  

  Coverage Rate Avg Length Coverage Rate Avg Length Coverage Rate Avg Length 

Model n  HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL 

1m  40 0.924 0.903 1.419 1.368 0.926 0.911 1.289 1.251 0.938 0.928 1.045 1.022 

50 0.926 0.915 1.292 1.256 0.928 0.920 1.146 1.125 0.937 0.930 0.958 0.938 

100 0.940 0.935 0.927 0.927 0.941 0.935 0.839 0.838 0.948 0.943 0.679 0.668 

200 0.949 0.941 0.651 0.657 0.942 0.943 0.589 0.593 0.948 0.948 0.478 0.469 

2m  40 0.942 0.943 1.872 1.909 0.929 0.930 1.328 1.358 0.933 0.933 1.455 1.458 

50 0.935 0.937 1.704 1.732 0.933 0.937 1.181 1.206 0.931 0.935 1.327 1.325 

100 0.941 0.947 1.191 1.202 0.942 0.949 0.843 0.854 0.945 0.948 0.931 0.927 

200 0.949 0.952 0.841 0.845 0.949 0.955 0.593 0.597 0.948 0.948 0.645 0.640 

3m  40 0.917 0.899 1.438 1.382 0.925 0.906 1.313 1.273 0.933 0.922 1.044 1.020 

50 0.922 0.908 1.297 1.264 0.928 0.916 1.154 1.131 0.939 0.935 0.927 0.911 

100 0.937 0.928 0.960 0.958 0.941 0.935 0.838 0.838 0.940 0.938 0.660 0.654 

200 0.940 0.940 0.674 0.679 0.945 0.944 0.615 0.619 0.945 0.941 0.474 0.467 

4m  40 0.903 0.885 1.226 1.167 0.912 0.894 0.994 0.947 0.927 0.909 0.518 0.511 

50 0.921 0.912 1.093 1.057 0.917 0.912 0.902 0.870 0.928 0.918 0.460 0.457 

100 0.931 0.925 0.805 0.802 0.936 0.935 0.646 0.644 0.935 0.931 0.337 0.338 

200 0.941 0.939 0.581 0.585 0.936 0.939 0.460 0.462 0.945 0.946 0.236 0.237 

 
Table 4.3 

Simulation results of the Hájek (HJ) estimator and sample empirical likelihood (SEL) estimator after adding 

noise 
 

Setting = 0.5α  = 0.7α  = 0.9α  

  Coverage Rate Avg Length Coverage Rate Avg Length Coverage Rate Avg Length 

Model n  HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL HJ SEL 

1m  40 0.934 0.933 1.002 0.934 0.933 0.935 1.091 0.959 0.937 0.940 1.292 1.096 

50 0.935 0.936 0.902 0.841 0.939 0.935 0.979 0.862 0.936 0.938 1.156 0.986 

100 0.947 0.948 0.635 0.596 0.944 0.949 0.697 0.616 0.946 0.948 0.820 0.705 

200 0.951 0.949 0.451 0.421 0.947 0.945 0.493 0.437 0.951 0.951 0.579 0.500 

2m  40 0.933 0.936 2.371 2.139 0.938 0.934 3.418 2.469 0.933 0.942 5.095 2.980 

50 0.940 0.941 2.148 1.938 0.940 0.937 3.057 2.210 0.945 0.944 4.583 2.687 

100 0.939 0.941 1.493 1.345 0.948 0.946 2.196 1.588 0.948 0.951 3.223 1.916 

200 0.942 0.942 1.054 0.938 0.944 0.947 1.545 1.113 0.949 0.947 2.264 1.356 

3m  40 0.939 0.935 1.004 0.940 0.935 0.937 1.101 0.970 0.939 0.947 1.288 1.093 

50 0.937 0.935 0.890 0.832 0.938 0.942 0.978 0.864 0.936 0.940 1.152 0.982 

100 0.946 0.945 0.635 0.595 0.951 0.952 0.698 0.616 0.948 0.952 0.821 0.706 

200 0.949 0.950 0.450 0.420 0.943 0.948 0.493 0.437 0.952 0.952 0.579 0.500 

4m  40 0.937 0.942 0.365 0.358 0.936 0.941 0.362 0.354 0.932 0.938 0.362 0.354 

50 0.935 0.939 0.326 0.322 0.939 0.943 0.325 0.320 0.938 0.947 0.324 0.320 

100 0.941 0.948 0.232 0.230 0.948 0.953 0.230 0.229 0.941 0.946 0.231 0.229 

200 0.947 0.948 0.165 0.164 0.942 0.944 0.163 0.163 0.949 0.951 0.163 0.163 
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5. Real application 
 

In this section, we applied the proposed approach to 2015-2016 National Health and Nutrition 

Examination Survey (NHANES) to evaluate its practical performance. NHANES provides timely health- 

and nutrition-related information for the noninstitutionalized civilian resident population of the United 

States. It uses a complex, multistage probability design based on in-person survey to collect information. 

(see https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/overview.aspx?BeginYear=2015 for more 

information). The sample size for the 2015-2016 NHANES is about 9,000. We treated the original 

NHANES sample as a finite population and selected one sample by using a simple random sampling 

design with sample sizes ( )n  as 30, 40, 50, 100, and 200, respectively. Suppose our parameters of interest 

include population means of systolic blood pressure, diastolic blood pressure, HDL cholesterol, and total 

cholesterol. We created scramble responses for these parameters by using =p 0.6, =a 1.5, and 

2 = 0.2 1.5.b  In addition, body mass index (BMI) was selected as a covariate in the estimation process, 

since BMI is correlated with those study variables. 

We compared the performances of two approaches, HJ and SEL, in terms of point estimates and 

interval estimates (Table 5.1). Point estimates obtained by using both methods were similar, and they were 

close to finite population parameters (120.47, 66.17, 54.43, and 180.25 for systolic blood pressure, 

diastolic blood pressure, HDL cholesterol, and total cholesterol), especially for larger sample sizes 

(Table 5.1). For systolic blood pressure, diastolic blood pressure, and total cholesterol, intervals produced 

by SEL shifted slightly to the right compared with the results produced by HJ for small sample sizes. 

However, when sample sizes increased, the results from the two approaches were similar. For HDL 

cholesterol, the results are comparable. The results from this application verified the validity of the 

proposed SEL approach. 

 
Table 5.1 

Point estimates and 95% CI for estimating means of different outcomes using scrambled response outcome 

and BMI from the NHANES data 
 

 Systolic Blood Pressure Diastolic Blood Pressure HDL Cholesterol Total Cholesterol 

 in mm Hg in mm Hg in mg/dL in mg/dL 
n  HJ SEL HJ SEL HJ SEL HJ SEL 

30 124.5 124.5 67.7 69.4 57.9 57.6 187.0 188.3 

(112.3, 136.8) (113.5, 139.6) (61.5, 73.8) (63.9, 75.2) (50.3, 65.5) (50.8, 65.9) (160.0, 214.0) (166.6, 225.5) 

40 125.6 125.5 70.2 70.2 52.0 51.2 178.7 178.1 

(115.4, 135.8) (116.5, 136.1) (64.6, 75.8) (64.9, 76.1) (48.0, 56.0) (47.3, 55.8) (160.6, 196.8) (162.1, 199.0) 

50 118.3 116.9 67.1 67.1 57.1 56.8 173.7 173.3 

(110.2, 126.4) (109.0, 126.1) (60.9, 73.3) (61.4, 73.8) (50.8, 63.4) (51.3, 63.2) (160.2, 187.1) (161.2, 187.8) 

100 120.8 120.5 70.0 69.7 52.3 52.4 173.1 172.8 

(115.1, 126.5) (115.1, 126.3) (65.9, 74.0) (65.9, 73.6) (48.9, 55.7) (49.2, 55.9) (163.5, 182.7) (164.0, 183.2) 

200 124.1 123.9 67.6 67.5 54.0 53.8 181.4 181.5 

(119.4, 128.9) (119.4, 128.8) (64.9, 70.3) (64.8, 70.3) (51.1, 56.8) (51.3, 56.5) (172.7, 190.1) (173.3, 190.9) 
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6. Conclusions 
 

In this paper, we proposed a sample empirical likelihood (SEL)-based approach using scrambled 

responses to protect the confidentiality of complex survey data. The proposed SEL approach is easy to 

implement in practice and can be used as a general tool for statistical disclosure control. The idea of our 

proposed approach is to replace the true values by some scrambled values through random device, then the 

existing sample empirical likelihood approach can be applied with scrambled values to obtain the point 

estimation. However, the variance estimation and confidence interval estimation are different from that by 

treating the scrambled values as true values since we need to incorporate the randomness due to random 

device in the statistical inference. Such theoretical properties have been investigated and verified through 

simulation study and real data application. The SEL outperforms traditional approaches, such as HJ, by 

improving coverage rates and reducing the coverage lengths of confidence intervals. Chen and Kim (2014) 

has compared Wald-type CI and Wilk-type CI in the simulation studies by using sample empirical 

likelihood method. In general, the Wilk-type confidence intervals show better coverage properties than the 

Wald-type confidence intervals in terms of coverage rates. We would expect similar results by using our 

proposed approaches here. In future research, we will extend the proposed approach to estimate more 

general parameters, such as population quantiles and distribution functions. The corresponding statistical 

computational tools, such as R package, will also be developed. 
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Appendix 
 

A. Regularity conditions 
 

We present the regularity conditions needed for proving Theorem 1 to Theorem 3 as following: 
 

(C1). 1
1 2< <ic Nn c −  for = 1, 2, ,i N  with 1 20 < < .c c  

(C2). ( ) ( )1 2 1 1 1
1=1 =1

0,
N N d

i i i ii i
n N I Y N Y N V− − −− →   as n →   and ,N →   where 1 =V

( )2

=1 =1
.

N N

ij i j i i j ji j
nN d Y d Y  − −   

(C3). ( ) ( )1 2 1 1 1
2=1 =1

0,
N N d

i i i iNi i
n N I X X N V− − − →   as n →   and ,N →   where 2 =V

( )2

=1 =1
.

N N

ij i j i i j ji j
nN d X d X  − −  Τ  

(C4). 
4

1

=1

N

ii
N Y−   and 

4
1

=1

N

ii
N X−   are bounded.  

(C5). ( )1 2=max i A i pY o n  and ( )1 2= .max i A i pX o n  
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B. Sketched proof of Theorem 1  
 

HJ̂  can be written as the solution of estimating equation ( )
HJ

ˆ = 0,U   where  

 ( ) ( )*
HJ

1
ˆ = .i i

i A

U d Y
N

 


−   

Under the assumptions that ( )
HJÛ   converges to ( ) ( )1

HJ =1
=

N

ii
U N Y − −  uniformly, ( )2 < ,E Y   

and because of ( )HJ = 0,NU   it can be shown that HJ
ˆ .p

N →  By using a Taylor expansion,  

 ( ) ( )
( )

( ) ( )HJ 1 2
HJ HJ HJ HJ

ˆ
ˆ ˆˆ ˆ0 = = .

N

N N p

U
U U o n


   


−


+ − +


  

After some algebra, it can be shown that  

 ( ) ( )* 1 2
HJ

1
ˆ = .N i i N p

i A

d Y o n
N

   −



+ − +   

Because  

 ( ) ( )
( ) ( ) 

( ) 

22

* * 2

2

1 1
= , = ,

1
i i i i

p b p a
E Y Y V Y Y

p a p

− + −

− +
 (B.1) 

 

 

( ) ( ) ( )

( )

* * *

2
=1 =1

*

=1

1 1
=

1
.

N N
ij i j

i i N i N j N
i A i j i j

N

i N
i

V d Y E Y Y
N N

V Y
N

  
  

 





−    
− − −   

    

 
+ − 

 

 



 

(B.2)

 

According to (B.1), (B.2), and after some algebra, we can show that  

 ( )*
HJ

1
= ,i i N

i A

V d Y V
N




 
− 

 
   

where HJV  is defined in equation (2.4). Under the regularity conditions in Fuller and Isaki (1981), the 

asymptotic normality can be derived. 

 
C. Sketched proof of Theorem 2  
 

Define  

 ( )
( )

( )

1

1 1

1
ˆ =

1

i i N

i A i i N

X X
U

N X X






−

−


−

+ −
   

and  
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 ( )
( )

( )

1 *

2 1

1
ˆ , = .

1

i i

i A i i N

Y
U

N X X

 
 



−

−


−

+ −
   

Then, SEL̂  and ̂  are the solutions of ( ) ( )
1 2

ˆ ˆ= , = 0.U U    By using techniques similar to those of 

Chen and Kim (2014), it can be shown that ( )1 2ˆ = pO n −  and SEL
ˆ .p

N →  Then, by using Taylor 

expansion, we have  

 ( ) ( )
( )

( )1 1 2
1 1

ˆ 0
ˆ ˆˆ ˆ0 = = 0 ,p

U
U U o n 


−


+ +


 (C.1) 

and  

 ( ) ( )
( )

( )
( )

( )2 2 1 2
2 SEL 2 SEL

ˆ ˆ0, 0,
ˆ ˆ ˆ ˆˆ ˆ0 = , = 0, .

N N

N N p

U U
U U o n

 
     

 
−

 
+ − + +

 
 (C.2) 

According to (C.1), (C.2), and after some algebra, it can be shown that  

 ( ) ( ) ( ) ( )
1

1 1 2

=1

1 1
ˆ =

N

i i N i N i i N p
i i A

X X X X d X X o n
N N

 

−

− −



 
− − − + 

 
 

Τ
 (C.3) 

and  

 ( ) ( ) ( )* 1 2
SEL

1 1
ˆ = ,N i i N i i N p

i A i A

d Y B d X X o n
N N

   −

 

− − − − +    

where B  is defined in Theorem 2. Because  

 

( ) ( )

( )

* 1 *
SEL

1
2 2

=1 =1

1 1 1
ˆ = =

1
= ,

i i i i i i
i A i A i A

N N
ij i j

i j
i j i j

V V d o n V d E V d A
N N N

V o n
N

   

  
 

 

−

  

−

      
+ +       

      

−
+ +

  


  

where 2V  is defined in Theorem 1, i  is defined in Theorem 2 and ( )* *= .i i N i NY B X X − − −  After 

some algebra, we can show that  

 ( )1
SEL SEL

ˆ = ,V V o n−+   

with SELV  defined in Theorem 2. Furthermore, under the regularity conditions in Fuller and Isaki (1981), 

we obtain the asymptotic normality. 

 
D. Sketched proof of Theorem 3  
 

Because ( )1/2ˆ = pO n −  and by using a Taylor expansion of ( )log 1 x+  at ( )1ˆ= i i Nx X X − −  and 

(C.3), we have  
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( )
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( ) 

( ) ( ) ( )

( ) ( )
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1
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   
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





 

Τ Τ

Τ
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i A

o

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(D.1)

 

with 2 = .a aa Τ  We now consider to maximize ( )= log ,s ii A
l w

  subject to the following constraints  

 ( )1= 1, = 0,i i i i N
i A i A

w w X X −

 

−   (D.2) 

and  

 1 * = 0,i i i
i A

w −


  (D.3) 

where ( )* *= .i i N i NY B X X − − −  The above constraints are equivalent with the original constraints 

(3.2) and (3.3). Define ( )*= ,i i N iu X X −
ΤΤ Τ . Therefore, by using a similar argument, we have  
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provided ( )1

=1
= 0.

N

i i N ii
X X − −  According to (D.1), (D.4), and after some algebra, we have  
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Therefore, Theorem 3 is proven. 
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