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A method to find an efficient and robust sampling strategy 

under model uncertainty 

Edgar Bueno and Dan Hedlin1 

Abstract 

We consider the problem of deciding on sampling strategy, in particular sampling design. We propose a risk 

measure, whose minimizing value guides the choice. The method makes use of a superpopulation model and 

takes into account uncertainty about its parameters through a prior distribution. The method is illustrated with 

a real dataset, yielding satisfactory results. As a baseline, we use the strategy that couples probability 

proportional-to-size sampling with the difference estimator, as it is known to be optimal when the 

superpopulation model is fully known. We show that, even under moderate misspecifications of the model, 

this strategy is not robust and can be outperformed by some alternatives. 

 

Key Words: Sampling design; GREG estimator; Risk Measure. 

 

 

1. Introduction 
 

We consider the problem of choosing strategy, in particular the design, for the estimation of the total of 

a study variable in a finite population when a set of J  auxiliary variables is available in a list sampling 

frame. We focus on the estimation of the total.  

The decision about sampling strategy involves parameters which are unknown at the stage when the 

decision needs to be taken. After data collection the parameters can be estimated, although sometimes 

only under some assumptions. In practice, we often use data from previous waves of a repeated survey, 

frame variables or data from another survey that is similar to the one at planning stage. There is a risk that 

the available data do not give reliable information about relevant parameters. The method presented here 

involves a risk measure, which takes into account the possibility of being misled by inaccurate or incorrect 

beliefs about the values of the needed parameters. The risk measure is derived for the difference and the 

generalized regression estimators. Other than that, the measure is general. This measure and the discussion 

of its practical use are the main result of this paper. 

One aim when selecting and devising the sampling strategy is efficiency in terms of small mean-

squared error. The definition of “efficiency” is not unique, however, as it depends on the inference 

approach. Under the design-based approach, Godambe (1955), Lanke (1973) and Cassel, Särndal and 

Wretman (1977) show that there is no uniformly best linear estimator, in the sense of being best for all 

populations. There is no best design either. Therefore, a traditional approach for defining the strategy has 

been to assume that the finite population is a realization of some superpopulation model. The strategy is 

then defined in such a way that it minimizes the model expected value of the design mean-squared error, a 

parameter called anticipated mean-squared error. The adjective “anticipated” was first introduced by Isaki 
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and Fuller (1982) to emphasize the fact that this is a conceptual mean-squared error which is calculated in 

advance to sampling, based only on information available prior to sampling. 

Assuming that a superpopulation model holds and its parameters are known, several authors have 

shown that the optimal strategy should make use of a probability proportional-to-size sampling design 

(e.g., Hájek, 1959; Cassel, Särndal and Wretman, 1976; Nedyalkova and Tillé, 2008). In practice, 

however, there is not even a consensus about the existence of a generating model, let alone what model to 

rely on. And even if there is a model, its parameters are unknown. There is evidence, rather empirical, that 

probability proportional-to-size sampling is not robust towards model misspecifications (e.g., Holmberg 

and Swensson, 2001). A second result of this paper is to provide some theoretical evidence of this fact. 

Many articles discuss robustness in the survey sampling field. Beaumont, Haziza and Ruiz-Gazen 

(2013), for instance, propose a robust estimator that downweights influential observations; Royall and 

Herson (1973) consider robustness under polynomial models; Bramati (2012) and Zhai and Wiens (2015) 

propose robust stratification methods. We provide theoretical evidence of lack of robustness of 

proportional-to-size sampling and propose a method for assisting in the decision about the sampling 

design. 

The contents of the paper are arranged as follows. The optimal strategy under the superpopulation 

model is defined in Section 2. The lack of robustness of this strategy when the model is misspecified is 

studied in Section 3. The method for assisting on the choice of the sampling design is presented in 

Section 4. In Section 5, the risk measure introduced in the previous section is extended to be used together 

with the GREG estimator. Section 6 presents numerical illustrations of the results in the paper. First, we 

illustrate the lack of robustness of probability proportional-to-size sampling and the flexibility of the 

GREG estimator with a small simulation study. Second, we illustrate the implementation of the risk 

measure with real survey data. Finally, Section 7 presents some conclusions. 

 
2. Optimal strategy under the superpopulation model 
 

Let U  be a finite population of size N  with elements labeled  1, 2, , , , .k N  Let 

( )1 2= , , ,k k k Jkx x x x  be a known vector of values of J  auxiliary variables and ky  the unknown value 

of a study variable associated to unit .k U  We are interested in the estimation of the total of ,y  

= .y kU
t y  

Let   be the power set of .U  A sample is any subset s   and a sampling design is a probability 

distribution on ,  denoted by ( )=P S s  or simply ( ) .p s  Let ( )=k s k
p s

  be the inclusion 

probability of k  and ( )
 ,

=kl s k l
p s

  the joint inclusion probability of k  and .l  A probability 

sampling design is a sampling design such that > 0k  for all .k U  

An estimator is a real valued function of the sample, ( )ˆ ˆ= .y yt t S  By strategy we refer to the couple 

sampling design and estimator, ( )( )ˆ, .yp t  
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We consider only probability sampling designs with fixed sample size. As a convenient stepping stone 

we begin by considering unbiased linear estimators of the form  

 ˆ = =
k k k

y k k
U s s U sk k k

z y e
t z z

  

 
− + + 

 
      (2.1) 

with kz  arbitrary known constants and = .k k ke y z−  This estimator is called the difference estimator. 

The estimator defined in this way is said to be calibrated on z  as it satisfies ˆ = .z kU
t z  Note that if 

= 0kz  for all k U  the estimator reduces to ˆ = ,y k ks
t y   that is, the Horvitz-Thompson estimator 

(Horvitz and Thompson, 1952). In later sections we focus on the generalized regression estimator 

(GREG). 

The design Mean Squared Error (MSE) of the difference estimator is  

 ( ) ( )p p
ˆMSE = MSE = .

k k l

y kl k l
s U Uk k l

e e e
t   

  

 
− 

 
   (2.2) 

As mentioned in the introduction, due to the non-existence of an optimal strategy under the design-

based approach, often a superpopulation model, 0 ,  is proposed and we search for an optimal strategy 

with respect to the anticipated mean-squared error,  

 ( ) ( ) ( )( )
0 0 0

2

p p
ˆ ˆ ˆMSE = E MSE = E E .y y p y yt t t t   −  (2.3) 

We may assume that the y -values are realizations of the following model, denoted 0 ,  

 ( )1=k k kY f x  +   

with 

 ( ) ( ) ( ) ( )
0 0 0

22
0 2E = 0, V = and E = 0k k k k lg x k l           (2.4) 

where ( )1 2= ,    is a vector of parameters, : Jf →R R  and : .Jg +→R R  The random sample 

s  and the errors k  are assumed to be independent. Following Rosén (2000), the terms ( )1kf x   and 

( )2 > 0kg x   will be called trend and spread, respectively. The term trend should not in general be 

understood in a temporal sense, rather it refers to the development of y -values with .x  

Note that under 0 , ke  in the difference estimator (2.1) is a random variable that represents the 

distance between the value of the study variable and ,kz  i.e., ( )1= .k k k ke f x z + −  Therefore 

( )
0 1E =k k ke f x z  −  and ( )( ) ( )

0

2 22 2
1 0 2E = .k k k ke f x z g x   − +  With some algebra, it can be 

seen from (2.2) and (2.3) that the anticipated MSE of the difference estimator becomes  

 ( )
( )

( )
0

21 2
p p 0 2

1
ˆMSE = MSE 1

k k

y k
s Uk k

f x z
t g x


 

 

−   
+ −   

   
   (2.5) 

Nedyalkova and Tillé (2008) derive the anticipated MSE in a more general case. 
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Tillé and Wilhelm (2017) give the anticipated MSE of the Horvitz-Thompson estimator. The second 

term in (2.5) is the Godambe-Joshi lower bound (e.g., Särndal, Swensson and Wretman, 1992, page 453). 

The anticipated MSE in (2.5) is the sum of two positive terms. It is easy to see that if  

1. the estimator is calibrated on ( )1=k kz f x   the first term vanishes and the anticipated MSE 

equals the Godambe-Joshi lower bound  

             ( ) ( )
0

22
p 0 2

1
ˆMSE = 1 .y k

U k

t g x  


 
− 

 
  (2.6) 

Furthermore, after imposing the fixed sample size restriction = ,kU
n  if  

2. the design is such that ( )2 ,k kg x   denoted ( )2ps ,   the second term is minimized and 

we obtain  

             ( ) ( ) ( )
0

2
2opt 2

p 0 2 2

1
ˆMSE = .y k k

U U

t g x g x
n

   
  

−  
  
    

Conditions 1 and 2 suggest the specific roles of the design and the estimator in the sampling strategy. The 

estimator should “explain” the trend in the calibration sense of condition 1. The design should “explain” 

the spread. A strategy that satisfies conditions 1 and 2 simultaneously will be called optimal. In the same 

sense, any estimator and any design satisfying, respectively, condition 1 and 2, will be called optimal. As 

this strategy plays an important role in this paper, we will denote it by ( ) ( )2 1ps diff .  −  

 
3. Robustness under a misspecified model 
 

If the finite population is a realization of the superpopulation model (2.4), and if ,f g  and   were 

known, then an optimal strategy could be defined. In this section we study the robustness of this strategy 

when the model is misspecified. 

We begin by defining how “misspecification” shall be understood in this paper. The working model 0  

reflects the beliefs the statistician has about the relation between the auxiliary variables x  and the study 

variable y  at the design stage. We shall assume that a true, unknown model   exists. Any deviation of 

0  with respect to   is a misspecification of the model. In order to keep the analysis tractable, we limit 

ourselves to the situation when the working model is of the form (2.4) and the true model, ,  is  

 ( )1=k k kY f x  +   

with 

 ( ) ( ) ( ) ( )
22

2E = 0, V = and E = 0k k k k lg x k l           (3.1) 

where ( )1 2= ,    is a vector of parameters, f  and g  as in (2.4) and .   The random sample s  

and the errors k  are assumed to be independent.  
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Result 1. If 0  is assumed when   is the true superpopulation model, the model expected value of the 

design MSE in (2.2), under the difference estimator satisfying condition 1 above, becomes  

 ( )
( ) ( )

( )
21 1 2

p p 2

1
ˆMSE = MSE 1 .

k k

y k
s Uk k

f x f x
t g x

 
 

 

−   
+ −   

   
   (3.2) 

The result is proven by noting that ( )1kf x   takes the role of kz  in (2.5) and by taking into account 

that ( ) ( )1 1= ,k k k ke f x f x  − +  therefore ( ) ( )1 1E =k k ke f x f x  −  and 2E =ke  

( ) ( )( ) ( )
2 22

1 1 2 .k k kf x f x g x   − +  As the model is misspecified, we have deliberately avoided 

the use of the adjective “anticipated” in Result 1. 

Using Result 1, it can be seen that for a design that satisfies condition 2 we obtain  

 

( )
( ) ( ) ( )

( )

( )

( )
( )

2

2 1 1

, ps ps

2

2 22
2

2

ˆMSE = MSE

1 .

k k kU
y

s k

kU
k

U k

g x f x f x
t

n g x

n g x
g x

g x

  

  




 



  − 
    

  

 
+ −  

 







 

(3.3)

 

It is now possible to see that, even under a mild misspecification as the one considered here, the strategy 

( ) ( )2 1ps diff  −  is not optimal anymore, as its MSE (3.3) can be greater than the MSE obtained under 

other designs (3.2). In particular, the strategy using the correct model, i.e., ( )1=k kz f x   into the 

estimator and a design such that ( )2 ,k kg x   would be more efficient than ( ) ( )2 1ps diff .  −  

 
4. Guiding the choice of sampling design with the help of a risk 

measure 
 

We have seen in Section 3 that even a simple misspecification of the working model might result in the 

strategy ( ) ( )2 1ps diff  −  not being optimal. It is therefore risky to accept a given model as correct 

without any type of assessment. While most of the information needed for an “objective” evaluation of the 

model is not available at the design stage, it is possible to reach some degree of confidence about the 

parameters in the working model that allows for comparing a set of designs and make the decision about 

which one to implement. In this section we propose a method to assist in the choice of the sampling 

design. 

The model expected MSE (3.2) in Result 1 can be viewed as a function of   and 2 ,  as everything 

else is available at the design stage. To begin with, let us assume that 2  is also known. Then we can 

write  

 ( ) ( )
( ) ( )

( )
21 1 2

p p p 2

1
= MSE , , = MSE 1 .

k k

k
s Uk k

f x f x
L x g x

 
     

 

−   
+ −   
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For any design, ( ) ,p   this function can be evaluated at any   and it indicates the loss incurred by 

assuming that   is the true parameter when it is, in fact, .  We can assume a prior distribution on ,  

( ) ,h   and calculate the risk under ,h  

 ( ) ( )( ) ( ) ( )
p pp = E MSE , , = MSE , , ,hR x h x d        


  (4.1) 

where   is the sample space of .  The design that yields the smallest risk should be chosen. Note that 

numerical integration methods (e.g., Monte Carlo simulation methods) may be needed to evaluate the 

risk (4.1). 

In practice, 2  is unknown. We propose two ways for dealing with it. The first one is to see now the 

loss as a function of   and   and calculate the risk as above, assuming a prior on the pair   and .  

The second one is to provide some “guess” about its value. This approach can use the fact that (Proof in 

the Appendix)  

 
,2

2 2
,

1
1

f f

f y

S

g R


 
 − 

 
 (4.2) 

where ( )( )
2

, 1= ,f f kU
S f x f N − ( )1= ,kU

f f x N ( )
22

2= kU
g g x N  and ,f yR  

is the correlation between ( )1f x   and .y  (In Example 3 below, we give a more convenient expression 

in a special case.) Although ,f yR  is unknown, for repeated surveys we do have some previous knowledge 

about it. In other cases it is often possible to have some reasonable “guess” about it. 

It remains to comment on the choice of the prior distribution ( ) .h   The choice of the distribution and 

its parameters is subjective and defined by the statistician. Nevertheless, it should reflect the available 

knowledge about the model parameter .  In particular, ( )h   should be centered around = .   Its 

variance should reflect how confident we are about the working model. Note that a full confidence on the 

working model would be a density with all its mass at = ,   in which case the risk (4.1) would be 

minimized by the ps  design given by condition 2 in Section 2. 

It might be argued that by introducing ( )h   an additional source of subjectivity has been added to the 

choice of the sampling design. The prior may add a certain Bayesian flavor to the process, but note that 

( )h   is only needed for choosing the design. Hence, the inference is still design-based. Furthermore, 

relying on an assumed model is also subjective in choice of assumption and it does involve a risk. The risk 

measure in (4.1) allows for quantification of that risk. 

 
5. The risk measure under the Generalized Regression Estimator 
 

The difference estimator (2.1) requires that 1  is fully specified in order to calculate ( )1 ,kf x   which 

is undesirable from a practical standpoint. The generalized regression (GREG) estimator is an alternative 

that allows for the estimation of all or some of the components of 1  at the cost of introducing a small 

bias. In this section we adapt the material in Sections 2 to 4 to strategies using the GREG estimator. 
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We define the generalized regression estimator in a more general way than in Särndal et al. (1992) as 

follows. Let ka ( )= 1, ,k N  be a weight defined by the statistician and ( )* **
1 1 1= ,    where *

1  is 

fixed and **
1  is to be estimated. Let also  

 
( )( )

**
1

2

1**
1

ˆ = argmin
k k

s
s k k

y f x

a






−
   

and ( )* **
1 1 1

ˆ ˆ= , .s s    The GREG estimator is  

 ( )
( )

1

greg 1

ˆ
ˆˆ = .

k s k

k s
U s sk k

f x y
t f x




 

 
− +  

 
    (5.1) 

An approximation to the design MSE of the GREG estimator is of the form (2.2) with =ke  

( )
1

ˆ
k k Uy f x −  where ( )* **

1 1 1
ˆ ˆ= ,U U    and  

 
( )( )

**
1

2

1**
1

ˆ = argmin .
k k

U
U k

y f x

a




−
   

Example 1. Let us consider the case where ( ) 1, 1 1, 2 1, 2

1 1,1 1 1, 2 2 1,= .J J J

k k k J Jkf x x x x
  

   + ++ + +  Let 

( )*
1 1, 1 1, 2= , , ,J J  + ( )**

1 1,1 1,= , , J     and ( )1, 1 1, 2

1= , , .J J

k k Jkx x x
  +  In this case we obtain  

 

1 1

** **
1 1

ˆ ˆ= and = .
k k k k k k k k

s U
s s U Uk k k k k k

x x x y x x x y

a a a a

     

 
 

− −
      

   
   
   
      

Letting the exponents ( ) ( )*
1 1, 1 1, 2= , , = 1, , 1 ,J J  +  we obtain the classical expression of the 

GREG estimator found in Särndal et al. (1992).  

Example 2. The case with only one auxiliary variable, i.e., ( ) 12

1 10 11=k kf x x  +  with = 1,ka  

*
1 12=   and ( )**

1 10 11= ,     is known as the regression estimator. In this case we obtain the well 

known result that the design MSE can be approximated by expression (2.2) with ( )
1

ˆ=k k k Ue y f x −  

where ( ) 12

1 10 11
ˆ ˆ ˆ=k U kf x x  +  and  

 
( )

12 12

12

12 12

11 10 112
2

1 1
ˆ ˆ ˆ= and = .

k k k kU U U
k k

U U
k kU U

N x y x y
y x

N NN x x

 



 
  

−
−

−

  
 

 
 

 

The misspecified model 
 

Let us consider again the situation where the statistician uses the working model (2.4) but the true 

model is of the form (3.1) with ( )* **
1 1 1= , ,    where *

1  is the counterpart of the fixed component *
1 .  

The following result states a condition under which Result 1 is valid for the GREG estimator. 

 

Result 2. If 0  is assumed when   is the true superpopulation model, ** **
1 1

ˆ ˆ
s U →  as n →   and **

1
ˆ

U  

converges to some **
1  as ,N →   then  
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 ( )
( ) ( )

( )
21 1 2

p greg p 2

1
ˆMSE MSE 1

k k

k
s Uk k

f x f x
t g x

 
 

 

−   
→ + −   

   
   (5.2) 

where ( )* **
1 1 1= , .    

 

Proof. Note that if ** **
1 1

ˆ ,s U →  then ( ) ( )* ** * **
1 1 1 1 1 1

ˆ ˆ ˆ ˆ= , , = .s s U U     →  Thus, ( ) ( )
1 1

ˆ ˆ .k s k Uf x f x →  

In turn, if ** **
1 1

ˆ ,U →  then ( ) ( )* ** * **
1 1 1 1 1 1

ˆ ˆ= , , = .U U     →  Thus ( ) ( )1 1
ˆ .k U kf x f x →  Therefore,  

 

( ) ( )
( )

( )
( )

1

p greg p 1

1

p 1

ˆ
ˆˆMSE = MSE

MSE ,

k s k

k s
U s sk k

k k

k
U s sk k

f x y
t f x

f x y
f x

 






 




 

  
− +    

  

  
→ − +  

  

  

  

  

which, by Result 1, is (5.2).  

 

Example 3 (Continuation of Example 1). Let the working model be as in Example 1 and the true model 

be ( ) 1, 1 1, 2 1, 2

1 1,1 1 1,2 2 1,= .J J J

k k k J Jkf x x x x
  

   + ++ + +  Let also ( )*
1 1, 1 1, 2= , , ,J J  +

**
1 =  

( )1,1 1,, , J    and ( )1, 1 1, 2

1= , , .J J

k k Jkx x x
  +  In this case, ** **

1 1
ˆ ,U A →  where  

 

1

= ,
k k k k

U Uk k

x x x x
A

a a

   
−

  
 
 
 
    

and (5.2) becomes  

 ( )
( ) ( )

( )

2**
21 22

p greg p 2
ˆMSE MSE .

k k k

k
s U Uk k

x x A g x
t g x

 



 
 

 

 − 
→ + −    

   
    (5.3) 

Example 4 (Continuation of Example 2). Let the working model be as in Example 2 and the true model 

be ( ) 12

1 10 11=k kf x x  +  with *
1 12=   and ( )**

1 10 11= , .     It can be shown that (5.2) becomes  

 ( )
( )

( )

2

222 2
p greg 11 p 2

ˆMSE MSE
k k

k
s U Uk k

v g x
t g x


  

 

  
→ + −    

   
    (5.4) 

with  

 ( ) ( )12 12 12 12
,

,

= ,k k k

S
v x x x x

S

    

 

− − −  (5.5) 

and  

 

( ) ( )

( )

12 12 12 12 12 12

12 12 12 12

,

2

,

1 1

1

1 1
= = .

1

k k k
U U

k k
U U

x x S x x x x
N N

x x S x x
N N

     
 

   
 

= = − −
−

−
−

 

 

  

Note that (5.4) does not depend on 10 .  



Survey Methodology, June 2021 83 

 

 

Statistics Canada, Catalogue No. 12-001-X 

 

For the particular case developed in Examples 2 and 4, where ( ) 12

10 11=k kf x x  +  and 

( ) 12

10 11= ,k kf x x  +  an alternative approximation of 2  is (Proof in the Appendix)  

 
2

2
1,2 2

11 0 0 2 2 2
1,1 , 1,

1 1 1
with =

x y

S
F F

x S R R






 
 

 − 
 

 (5.6) 

where  

 ( ) ( ) ( )2 2 12 12
22 2

1, 1,1

1 1 1
= = =k k k k

U U U

x x S x x x x S x x
N N N

   
 − − −     

with , 1,x yR R   and 1,R   and ,x yR  are, respectively, the correlation coefficients between x  and 12x   

and between x  and .y  The latter is unknown but often some decent guess about it is available. 

The approximation of 2  in (5.6) is more convenient than the one in (4.2) as now we have that (5.4) is 

approximated by  

 ( )
( )

( )

2

22
p greg 11 p 0

ˆMSE MSE
k k

k
s U Uk k

v g x
t F g x


 

 

   
 + −     

   
    (5.7) 

with kv  given by (5.5). This expression depends neither on the intercept 01  nor the parameter ,  and the 

slope 11  becomes a proportionality constant that can be ignored. 

 

The risk measure 
 

As in Section 4, the asymptotic model expected MSE of the GREG estimator given by Result 2 can be 

seen as the loss incurred by assuming that   is the true parameter when it is, in fact, .  Assuming a prior 

distribution on ,  the risk (4.1) can be calculated. 

 
6. Numerical examples 
 

In Sections 2 and 3 we have established that the strategy ( ) ( )2 1ps diff  −  is optimal under a 

superpopulation model, but it is not robust to misspecifications of this model. In Subsection 6.1 we present 

a small Monte Carlo simulation study carried out to illustrate these results by comparing the optimal 

strategy and three alternatives. 

In Sections 4 and 5 we introduced a measure that allows for quantifying the risk of implementing a 

sampling design, so allowing to guide the choice of design. In Subsection  6.2 we illustrate the use of the 

risk measure with real survey data. 

 

6.1 Simulation study under a misspecified model 
 

We compare the efficiency and robustness of four strategies through a simulation study. The strategies 

to be compared are ps  together with the difference estimator (which is optimal when the model is 

correct), ps  together with the GREG estimator (optimal design), stratified simple random sampling 
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(STSI) together with the difference estimator (optimal estimator) and STSI together with the GREG 

estimator. 

Our implementation of ps  makes use of Pareto ps  (Rosén, 1997). There is a host of other schemes 

for drawing ps  samples. Nevertheless, Pareto ps  is a convenient method with good properties, see for 

example Rosén (2000).  

Our implementation of STSI makes use of model-based stratification (Wright, 1983). We consider 

=H 5 strata with boundaries defined using Dalenius and Hodges (1959) cum f -rule on ( )2kg x   

which is well described in (Särndal et al., 1992, page 463) and the sample is allocated using Neyman 

allocation, h h ghn N S . Using the cum f -rule may be suboptimal (see Särndal et al., 1992, page 464) 

but the efficiency of stratification by a continuous size variable is fairly insensitive to the exact choice of 

boundaries. 

We consider only misspecification of the spread. The trend term is of the form ( )1 =kf x   

12

10 11 kx +  with 10 = 1,000, 11 = 1 and 12 = 0.75, 1 and 1.25. The true spread is ( )2 =kg x   

2

kx   with 2 = 0.5, 0.75 and 1. The working spread is ( ) 2

2 =k kg x x  with 2 = 0.5, 0.75 and 1. 

We will use the difference estimator (2.1) calibrated on ( )1 .kf x   Regarding the GREG estimator, 

we will fix 12 ,  whereas the coefficients 10  and 11  will be estimated. 

The simulation is set out as follows. The population size is =N 5,000. The x -values are independent 

realizations from a gamma distribution with shape = 4 100  and scale = 1,200 plus one unit, 

whereas ky  is a realization from a gamma distribution with shape and scale  

 
( )12 2

2 12

2 22
10 11 0

22
0 10 11

= and = ,
k k

k k

k k

x x

x x

 

 

  
 

  

+

+
  

where 2  was set in such a way that the correlation between x  and y  is = 0.95. The design MSE of a 

sample of size =n 500 is then computed for each strategy. Holding the x -values fixed, the process is 

iterated =B 5,000 times. 

Table 6.1 shows the results of the simulation study. The first three columns indicate the model 

parameters. The fourth column shows the (simulated) model expected MSE of the strategy ps – dif, 

whereas the last three columns show the (simulated) efficiency of the strategies ps – GREG, STSI – dif 

and STSI – GREG compared to ps – dif (as a percentage), with efficiency defined as eff =  

( ) ( ), ps ,
ˆ ˆMSE MSEy p yt t    where the model expected MSEs are approximated by their simulated 

counterparts,  

 ( ) ( ) ( ) ( ), p p p
=1

1
ˆ ˆ ˆMSE = E MSE MSE ,

B
r

y y y
r

t t t
B

      

in such a way that a value of 100 indicates that the strategy is as efficient as ps – dif and values smaller 

(larger) than 100 indicate that the strategy is less (more) efficient than ps – dif. 
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The upper part of Table 6.1 shows the case when the working model coincides with the true model. As 

expected, the strategy that couples ps  with the difference estimator ( ps – dif) was always more 

efficient than the remaining strategies. Nevertheless, the loss in efficiency due to estimating some 

parameters through the GREG estimator is negligible. On the other hand, there is a remarkable loss in 

efficiency due to the use of STSI instead of ps . Finally, it is noted from (2.6) that as the anticipated 

MSE for all strategies does not depend on the trend f  but only on the spread ,g  the efficiency remains 

constant under the same value of 2 ,  independently of the value of 12 .  

 
Table 6.1 

Efficiency of three strategies as a percentage of the model expected MSE of ps – dif 
 

Correct model 

12
  

2
  

2
  ps – dif ps – GREG STSI – dif STSI – GREG 

0.75 0.50 0.50 2.78 . 105 99.9 57.3 57.3 

0.75 0.75 0.75 4.82 . 104 99.6 77.9 77.9 

0.75 1.00 1.00 1.90 . 104 99.0 83.2 83.2 

1.00 0.50 0.50 7.64 . 106 99.9 57.3 57.3 

1.00 0.75 0.75 7.20 . 105 99.7 77.9 77.9 

1.00 1.00 1.00 2.14 . 105 99.1 83.1 83.1 

1.25 0.50 0.50 1.46 . 108 99.9 57.3 57.3 

1.25 0.75 0.75 7.85 . 106 99.7 77.9 78.0 

1.25 1.00 1.00 1.81 . 106 99.2 83.1 83.1 

Misspecified model 

12
  

2
  

2
  ps – dif ps – GREG STSI – dif STSI – GREG 

0.75 0.50 0.75 3.98 . 105 99.9 98.9 98.9 

0.75 0.75 1.00 6.45 . 104 99.5 114.5 114.4 

0.75 1.00 0.50 4.73 . 104 100.1 133.9 134.0 

1.00 0.50 1.00 2.14 . 107 99.9 185.6 185.6 

1.00 0.75 0.50 1.03 . 106 100.1 93.1 93.2 

1.00 1.00 0.75 2.77 . 105 99.8 88.9 89.0 

1.25 0.50 0.75 2.09 . 108 99.9 98.9 98.9 

1.25 0.75 1.00 1.05 . 107 99.6 114.5 114.5 

1.25 1.00 0.50 4.50 . 106 100.3 134.0 134.2 

 
The lower part of Table 6.1 shows some comparisons under a misspecified model, in particular, a 

misspecified spread. It can be noted that even under this mild misspecification of the model, ps – dif is 

not necessarily the best strategy anymore as the strategies using STSI were more efficient in several cases. 

However, it is not evident when will STSI be more efficient than ps  or vice versa. The risk measure 

introduced in Section 4 can be used to guide the choice between designs. The results shown in this section 

agree with those shown by for example Holmberg and Swensson (2001). 

 

6.2 Using the risk measure for choosing the design in a real survey 
 

In this subsection we illustrate the implementation of the risk measure using data from a real survey. 

We want to estimate =y kU
t y  where U  is the set of residential properties in Bogotá, Colombia (of 

size =N 681,276) and ky  is the value of the thk  property in 2017 in COP. ,kx  the built-up area of the 
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thk  property in square meters, is known for every .k U  The auxiliary variable x  has mean 184, 

standard deviation 110 and skewness 2.57. The desired sample size is =n 1,000. 

We assume that a model of the type 0  with ( ) 12

1 10 11=k kf x x  +  and ( ) 2

2 =k kg x x  

adequately describes the association between x  and .y  We plan to use the GREG estimator for estimating 

10  and 11 ,  i.e., ( )**
1 10 11= , .    As this model has the form shown in Example 4, the model expected 

MSE can be approximated by expression (5.7). 

We will use the risk (4.1) in order to assist the decision between ps  or STSI using = 6H  strata. We 

take ( )12 2,h    as a bivariate normal distribution with no correlation between 12  and 2 .  The integral 

is approximated using package cubature  (Narasimhan, Johnson, Hahn, Bouvier and Kiêu, 2019) 

developed for the statistical software environment R  (R Core Team, 2020). 

We consider two cases with different degrees of confidence regarding the working model. 

 
Case 1. In this case no information about 12 , 2  or ,x yR  is available. Naive values of 12 = 1, 2 = 1 

and , =x yR 0.75 are considered. In order to reflect the uncertainty, ( )h   should have a large variance, 

therefore we set  

 
2

12

2
2

1.0 0.3295 0
~ N , .

1.0 0 0.3295





      
     
      

  

The variance was chosen in such a way that 99% of the mass lies in the circle of radius 1. Evaluation of 

(4.1) yields ( ) 15 2
11ps 6.89 10R  =   and ( ) 15 2

111.59 10 ,STSIR =   suggesting that a stratified design 

should be used. 

The design MSE of both strategies is computed and we get, ( ) 25
ps greg

ˆMSE = 2.29 10t   and 

( ) 25
STSI greg

ˆMSE = 1.36 10 .t   The strategy suggested by (4.1) was indeed the best choice. 

 
Case 2. Using a sample from 2010, prior values of 12 = 1.9, 2 = 2 and , =x yR 0.7 are proposed. As 

the uncertainty here is smaller than that in Case 1, we set a smaller variance,  

 
2

12

2
2

1.9 0.2471 0
~ N , `.

2.0 0 0.2471





      
     
      

  

The variance was chosen in such a way that 99% of the mass lies in the circle of radius 0.75. Evaluation of 

(4.1) yields ( ) 22 2
11ps 7.08 10R  =   and ( ) 18 2

114.06 10 ,STSIR =   suggesting that a stratified design 

should be used. 

The design MSE of both strategies is computed and we get ( ) 28
ps greg

ˆMSE = 1.85 10t   and 

( ) 25
STSI greg

ˆMSE = 1.91 10 .t   Note that the use of (4.1) prevented us from using ps,  whose MSE is 

almost one thousand times bigger than the one under stratified sampling! 
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7. Conclusions 
 

The strategy that couples ps  with the difference estimator is optimal when the parameters of the 

superpopulation model are known. Taking into account that these assumptions are seldom satisfied, it was 

shown in Section 3 and illustrated in Subsection 6.1 that this optimality breaks down even under small 

misspecifications of the model. 

In Section 4 we propose a method for choosing the sampling design, which is extended to its use with 

the GREG estimator in Section 5. The method allows for taking the uncertainty about the model 

parameters into account by introducing a prior distribution on them. Although it could be argued that a 

source of subjectivity is added by introducing a prior distribution on the parameters, our view is that it is 

more subjective to choose the design without any type of assessment of the assumptions. Furthermore, 

inference is still design-based, as the prior is used only for choosing the design. 

The method was illustrated with a real dataset, yielding satisfactory results. It should be noted that 

although the illustrations used stratified simple random sampling, the method in this article is valid for any 

sampling design. 

 
Appendix 
 

Proof of (4.2) 
 

Proof. The following expectations are required in the proof,  

 ( )  ( )1 1E = E =k k k kY f x f x    +  (A.1) 

 ( )( ) ( ) ( )
2 2 22 2

1 1 2E = E =k k k k kY f x f x g x       + +   (A.2) 

E ,Y
2E Y  and E fY  are obtained using (A.1) and (A.2),  

 ( )1

1 1 1
E = E = E =k k k

U U U

Y Y Y f x f
N N N

   
 

 
 
    (A.3) 

 ( ) ( )( )2 22 2 2 2 2 2
1 2

1 1
E = E =k k k

U U

Y Y f x g x f g
N N

     
 

+  + 
 
   (A.4) 

 ( ) ( ) ( )
2 2

1 1 1
E = E = E = = .k k k k k

U U U

fY f x Y f x Y f x f
N N N

    
 
 
 
    (A.5) 

Now, using (A.3), (A.4) and (A.5) we get  

 2 2
,E = = f ffY fY f f S  − −   (A.6) 

  2 2 2 2 2 2 2 2
,E = = .f fY Y f g f S g  − + − +  (A.7) 
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Using (A.6) and (A.7), we obtain an approximation to the correlation coefficient, , ,f yR  

 
( )

( ) ( ) ( ) ( ) 

2 2

,2
, 2 2 2 2 2 2 2 2 2 2

,

E
= = .

E

f f

f y

f f

fY fY Sf y f y
R

f f y y f f Y Y S g



 

 −−  


− − − − +
 (A.8) 

Solving (A.8) for 2  we get (4.2), as desired. The proof of (5.6) is analogous.  
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