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Semi-automated classification for multi-label open-ended 

questions 

Hyukjun Gweon, Matthias Schonlau and Marika Wenemark1 

Abstract 

In surveys, text answers from open-ended questions are important because they allow respondents to provide 

more information without constraints. When classifying open-ended questions automatically using supervised 

learning, often the accuracy is not high enough. Alternatively, a semi-automated classification strategy can be 

considered: answers in the easy-to-classify group are classified automatically, answers in the hard-to-classify 

group are classified manually. This paper presents a semi-automated classification method for multi-label open-

ended questions where text answers may be associated with multiple classes simultaneously. The proposed 

method effectively combines multiple probabilistic classifier chains while avoiding prohibitive computational 

costs. The performance evaluation on three different data sets demonstrates the effectiveness of the proposed 

method. 
 

Key Words: Semi-automated classification; Open-ended questions; Multi-label data. 

 

 

1  Introduction 
 

Open-ended questions in surveys are often manually classified into different class or categories. When 

data are large, manual classification is time consuming and expensive in the sense that it requires 

professional human coders with sufficient knowledge. At the same time, analyzing the text answers from 

open-ended questions is important because they do not constrain respondents’ answers and thus may give 

more accurate information than closed-ended questions (Schonlau and Couper, 2016). 

The advance of statistical learning techniques can be used for automatic classification for text data 

from open-ended questions. A statistical learning model such as Support Vector Machines (SVM) 

(Vapnik, 2000) and Random Forests (Breiman, 2001) may be trained based on training data and used to 

predict new data. Analyzing text data from open-ended questions with statistical learning methods has 

received increasing attention in social sciences (Matthews, Kyriakopoulos and Holcekova, 2018; Ye, 

Medway and Kelley, 2018). 

While the use of statistical learning methods reduces the total cost for the coding task, fully automated 

classification for open-ended questions remains challenging. It is often difficult to achieve an overall 

classification accuracy as high as the accuracy that can be achieved by human coders and with a 

classification accuracy which is acceptable to use for research purposes. Semi-automated classification 

uses statistical approaches to partially automated classification in that easy-to-classify answers are 

categorized automatically and hard-to-classify answers are categorized manually. (Gweon, Schonlau, 

Kaczmirek, Blohm and Steiner, 2017; Schonlau and Couper, 2016). 

Answers to open-ended questions are often associated with multiple categories simultaneously. In the 

community of machine learning, this type of data is referred to as multi-label data. This is different from 
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the traditional multi-class data where a text answer can only belong to a single class or label. Recently, 

Schonlau, Gweon and Wenemark (2019) evaluated the use of existing machine learning algorithms for 

fully automated coding of multi-label open-ended questions. 

This paper focuses on semi-automated classification for multi-labelled text data from open-ended 

questions. As far as we are aware, there is no published work on semi-automated classification for multi-

label data. Most of the previous work on semi-automated classification deal with multi-class data. Also 

most research in machine learning that analyzes multi-label data assumes fully automated classification. In 

this paper we consider existing algorithms for multi-label data that may be suitable for semi-automatic 

classification. We also propose a new method to improve the classification performance of existing 

methods in the specific context of multi-label semi-automatic classification. This is illustrated with three 

examples of multi-labelled text data from open-ended questions. We show that the proposed method can 

achieve a higher accuracy than Binary Relevance, Label Powerset, and Probabilistic Classifier Chains 

(Dembczyński, Cheng and Hüllermeier, 2010) for semi-automated classification. 

The rest of this paper is organized as follows: In Section 2, we review elements of semi-automated 

classification for open-ended questions. In Section 3, we review approaches to multi-label classification. 

In Section 4, we present the details of the proposed approach. In Section 5, we evaluate the proposed 

method as well as other commonly used algorithms based on multi-label text data from open-ended 

questions. In Section 6, we conclude with a discussion. 

 
2  Semi-automated classification for text data 
 

This section describes how text answers to open ended-questions are converted into ngram variables 

and how a learning algorithm is evaluated in semi-automated classification. 

 
2.1  Converting text answers into ngram variables 
 

To use text answers as the input features for a learning algorithm, we may transform the original texts 

into a different representation using text mining approaches. A common transformation approach is to 

create indicator variables, each of which indicates the presence or absence of a certain word (unigram) or 

a short word sequence (bigram, or more generally, ngram variables) (Sebastiani, 2002; Schonlau, 

Guenther and Sucholutsky, 2017). Applying this technique, we may convert any text answer into a vector 

in which each element is binary and corresponds to a word (or a word sequence). Instead of indicator 

variables, variables containing word frequency can also be used (Manning, Raghavan and Schütze, 2008; 

Guenther and Schonlau, 2016). 

Typically, there are several thousands of ngram variables including redundant words. We may reduce 

the number of ngram variables by applying some preprocessing techniques such as stemming (i.e., 

reducing words to their grammatical root) and thresholding (i.e., removing words occurred less than a 
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certain time) and removing very common words (stopwords) (Manning et al., 2008; Guenther and 

Schonlau, 2016). 

 
2.2  Production rate 
 

Semi-automated classification requires a score or a probability that shows a level of confidence about 

the prediction. A threshold on that score or probability divides the text answers into easy-to-classify and 

hard-to-classify texts. All new text answers with high scores above a threshold may be categorized 

automatically and all others are categorized manually. The threshold is a user-specified value and can be 

set depending on the combination of desired prediction accuracy in the easy-to-classify group and the 

acceptable number of difficult-to-classify answers that need manual coding. The production rate refers to 

as the fraction of text answers that belong to the easy-to-classify group. That is, the production rate is the 

proportion of observations that can be categorized automatically. In general, production rate and accuracy 

are inversely related. If we chose a low production rate, only the easiest answers will be in the easy-to-

classify group and the accuracy of the automatic classification will be high. If we increase the production 

rate, more complicated answers will be automatically classified and accuracy will tend to decrease. 

For multi-label data, the definition of accuracy is no longer obvious. Evaluation measures for multi-

label data are discussed in Section 3.1. 

 
3  Multi-label classification 
 

Consider a set of possible output labels  1, 2, , .L=L  In multi-label classification, each instance 

with a feature vector dx R  is associated with a subset of these labels. Equivalently, the subset can be 

described as ( )1 2= , , , ,Ly y yY  where = 1iy  if label i  is associated with the instance, and = 0iy  

otherwise. A multi-label classifier h  learns from training data to predict ( ) ( )1 2
ˆ ˆ ˆ ˆ= = , , , Ly y yh x Y  

for a given .x  

Next, we review some common multi-label algorithms and their relationship to an evaluation criterion, 

subset accuracy. 

 
3.1  Evaluating multi-label algorithms in semi-automated classification 
 

Evaluating the classification of a text answer into a single label is straightforward: the label is either 

correct or not and accuracy refers to the percentage of correctly classified answers; equivalently, error 

refers to the percentage of misclassified answers. For answers that are classified into multiple labels, there 

are several ways to combine the accuracy of each single label to an overall evaluation measure for the set 

of multiple labels. These evaluation measures include subset accuracy, Hamming loss, F-measure and log 

loss. For a predicted set of multiple labels, subset accuracy is 1 if all of the L  labels are correctly 

predicted and 0 otherwise. Hamming loss evaluates the fraction of misclassified labels. F-measure is the 
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harmonic mean of precision and recall and log loss evaluates the uncertainty of the prediction averaged 

over the labels when a probability score for each label is given. 

In this paper we develop a methodology for subset accuracy (equivalently, in terms of loss, 0/1 loss). 

This is a strict metric because a zero score is given even if all labels are correctly classified except one. 

However, subset accuracy is appropriate for semi-automated classification because if an algorithm has 

difficulty classifying even a single label, the entire observation needs to be manually classified. That is, 

automated classification shall be conducted only if the model is highly confident in the entire predicted 

label set. 

Because subset accuracy requires that all labels are simultaneously correctly classified, we are 

interested in finding the label set *Y  that maximizes the joint probability conditional on a text answer :x  

 ( ) ( )*
1= argmax = argmax , , .LY P P y yY YY x x   

In the next section we discuss common approaches to estimating the joint probability proposed in the 

machine learning community. 

 
3.2  Multi-label approaches that optimize subset accuracy 
 

Various approaches have been proposed for predicting multi-label outcomes. Since we use subset 

accuracy as the evaluation measure, we focus on methods that aim to maximize the joint conditional 

distribution. 

The simplest approach, called Binary Relevance (BR), transforms a multi-label problem into separate 

binary problems. That is, BR constructs a binary classification model for each label independently. For an 

unseen observation, the prediction set of labels is obtained simply by combining the individual binary 

results. In other words, the predicted label set is the union of the results predicted from the L  binary 

models. If each of the binary models produces probability outcomes, BR can produce an estimate for 

( ) ( ) ( )1 2 .LP y P y P yx x x  Note that this coincides with the joint probability ( )1 , , LP y y x  if the 

labels are independent (conditional on ).x  This implies that the product of the probabilities obtained by 

BR will estimate ( )1 , , LP y y x  accurately only if the labels are conditionally independent. The joint 

probability may be inaccurate if the labels are substantially correlated given .x  

Another approach tailored for subset accuracy is Label Powerset learning (LP). This approach 

transforms a multi-label classification into a multi-class (i.e., multinomial) problem by treating each 

unique label set Y  that exists in the training data as a single class. For example, when 3L =  there could 

be up to 32  classes ,ic ( )= 1, , 8i  observed in the training data. Then any algorithm for multi-class 

problems can be applied using the transformed ic  classes. Training a multi-class classifier takes into 

consideration dependencies between labels. For a new observation, LP predicts the most probable class 

(i.e., the most probable label set). If an algorithm for multi-class data gives probabilistic outputs (some 

algorithms classify without computing probabilities), LP directly estimates the class probabilities (i.e., the 
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joint probability ( )).P Y x  However, this approach cannot estimate the joint probability for any label set 

unseen in the training data. As a consequence, if the true label set of the new observation is an unseen 

observation the prediction cannot be correct. Another drawback of LP is that the number of classes in the 

transformed problem can increase exponentially (up to 2 L  number of classes). This can be problematic 

when L is large since each combination of labels may be present in just one or a few observations in the 

training data which makes the learning process difficult. 

A third approach to multi-label learning is Classifier Chains (CC) (Read, Pfahringer, Holmes and 

Frank, 2009, 2011). As in binary relevance, in CC also a binary model is fit for each label. However, CC 

fits the binary models sequentially and uses the binary label results obtained from previous models as 

additional predictors in subsequent models. That is, the model for the thi  label iy  uses x  and 1 1, , iy y −  

as features. (For example, the model for 1y  uses x  as features, the model for 2y  uses x  and 1y  as 

features and so on.) Passing label information between binary classifiers allows CC to take label 

dependencies into account. In the prediction stage, CC successively predicts the labels one at a time. The 

prediction results of the previous labels are used for predicting the next label in the chain. 

This idea is extended to Probabilistic Classifier Chains (PCC) (Dembczyński et al., 2010). PCC 

explains CC using a probabilistic model. Specifically, the conditional joint distribution can be described as  

 ( ) ( ) ( )1 1 1 1
=2

, ..., = , , ,
L

L j j
j

P y y P y P y y y −x x x  (3.1) 

and PCC estimates the probabilities ( ) ( ) ( )1 2 1 1 2 1, , , , , , , , .L LP y P y y P y y y y −x x x  

PCC finds the label set that maximizes the right hand side of equation (3.1). However, there is no 

closed-form solution for finding the label set. A few different solutions have been suggested. 

Dembczyński et al. (2010) used an exhaustive search (ES) that considers all possible combinations. 

However, an exhaustive search may not be practical when L  is large, because the number of possible 

combinations ( )2L  increases exponentially. To overcome this problem, optimization strategies based on 

the uniform cost search (UCS) (Dembczyński, Waegeman and Hüllermeier, 2012) and the *A  algorithm 

(Mena, Montañés, Quevedo and Del Coz, 2015) have been proposed. First, the estimated joint conditional 

probability may be represented by a probability binary tree. Then a search algorithm finds the optimal path 

(in our case, the path that gives the highest joint probability) from the root and the terminal node. 

Compared with ES, UCS substantially reduces the computational cost for PCC to reach the label set with 

the highest joint probability (Dembczyński et al., 2012). 

In theory, when applying the product rule, the order of the categories 1 , , Ly y  does not matter. For 

example, both ( ) ( )1 2 1 ,P y P y yx x  and ( ) ( )2 1 2 ,P y P y y xx  equal to ( )1 2, .P y y x  In practice, the 

two chains may lead to different estimates. This means the performance of PCC may be affected by the 

order of the labels in the chain. 

To alleviate the influence of the category order, an ensembling approach (EPCC) (Dembczyński et al., 

2010) that combines multiple probabilistic chains has been proposed. First m  PCC models are trained 
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where each PCC model is based on a randomized order of the labels. In the prediction stage, the average 

conditional joint probability over the m  PCC models is computed for each possible label set. Then the 

predicted label set is the label set with the highest average predicted probability. Let ( )ˆ
jP Y x  be the 

conditional joint probability estimated by the thj  PCC model. The ensemble strategy predicts the label set 

Ŷ  such that  

 
( )

=1
ˆ

ˆ = argmax .

m

jj
P

m


Y

Y x
Y   

Note that EPCC does not combine the predicted label sets but conditional joint probabilities. To find the 

highest average probability from m  PCC models, all individual probabilities are required and this forces 

us to use ES to compute the conditional joint probability for all 2 L  label combinations from all m  PCC 

models. Hence, although EPCC reduces the problem of influence of label order, the method will not be 

useful if the problem deals with a large number of labels or when m  is large. To reduce the computational 

cost for combining multiple PCC models, we propose a new approach to ensembling the PCC models in 

the next section. 

 
4  The majority-voted-based ensemble of PCC for semi-automated 

classification 
 

The proposed method aims to ensemble multiple PCC models at much less computational cost. As 

mentioned in Section 3.2, the best label set (with the highest joint probability) for a single PCC can be 

found by a fast search strategy. In this paper, we use UCS, since the implementation is simple and the 

algorithm always finds the optimal solution. Using UCS, the proposed method obtains ˆ
jY ( )= 1, , ,j m  

the label set predicted by the thj  PCC model and ˆ ,jP  the estimated probability that ˆ
jY  is the true label 

set. Among the m  predicted label sets, the proposed method chooses the most frequent label set for the 

final prediction. That is,  ( )
1

ˆ ˆ ˆ= mode , , .mY Y Y  In case there are ties in the mode, we choose the label 

set whose averaged probability estimate is the highest. 

Semi-automatic classification requires a score that measures how easy/hard the prediction is. Whether 

a text answer is classified automatically or manually is determined based on this score. Next, a score is 

proposed: Let J  be the set that contains all indices j ( )1 j m   for which ˆ
jY  is the most frequent one 

 ( )ˆ ˆi.e., = : = .jJ j Y Y  The proposed score for the prediction is  

          
ˆ

=
ji J

P J

J m
 

   
       


 (4.1) 

 
ˆ

= .
ji J

P

m


 (4.2) 
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The first factor of equation (4.1) is the average joint probability of the predicted label set. The second 

factor of equation (4.1) is the fraction of the PCC models that predict the predicted label set among the m  

models. Multiplying the two components makes sense: a prediction may be more accurate if the (average) 

probability related to the chosen label set is high (the first factor) and more individual chain models vote 

for the same label set (the second component). We call this approach Majority-vote-based Ensemble of 

Probabilistic Classifier Chains (MEPCC). We later show empirically that combining the two factors 

indeed improves performance over just using a single factor. Table 4.1 illustrates an example for 5 labels 

( )5L =  and 7 PCC models ( )7 .m =  The MEPCC approach stores the probability of one label set from 

each PCC model. Because MEPCC combines over the probabilities corresponding to the best label set 

from different PCC models, MEPCC can take advantage of the UCS (or any other) strategy. Note that a 

search strategy like UCS cannot be used for EPCC where all individual probabilities for all label 

combinations are required. More succinctly, MEPCC combines over the maximal probabilities of each 

PCC, whereas EPCC maximizes over the average probabilities, requiring evaluation of all individual 

probabilities. We summarize the procedure of MEPCC in Algorithm 1. 

 

Table 4.1 

An example of the MEPCC classification of a single observation with = 5L  and = 7m  
 

PCC model Prediction 1
y  

2
y  

3
y  

4
y  

5
y  

1 5
( , , x)P y y  

1 1Ŷ  1 1 0 0 1 0.875 

2 2Ŷ  1 1 0 0 1 0.921 

3 3Ŷ  0 0 1 1 0 0.743 

4 4Ŷ  0 0 0 1 0 0.882 

5 5Ŷ  0 0 0 1 0 0.643 

6 6Ŷ  0 1 0 1 0 0.739 

7 7Ŷ  1 1 0 0 1 0.824 

final prediction Ŷ  1 1 0 0 1 
0.875 0.921 0.824

= = 0.374
7


+ +

 

 
 

Algorithm 1. The MEPCC algorithm 

Input: Number of models ,m  an instance vector ,x  corresponding PCC models ,jh  the uniform cost search algorithm U  

for = 1j  to m  do 

 (a) Using jh  and ,U  obtain ( )ˆ = argmaxj PYY Y x  

 (b) Store ( )ˆ ˆ=j jP P Y x  

end for 

Obtain the label set  ( )
1

ˆ ˆ ˆ= mode , , mY Y Y  

Obtain  ˆ ˆ= : =jJ j Y Y  

Obtain the score 
ˆ

=
ji J

P

m
 

 

Return Ŷ  and   
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5  Experiments 

 
5.1  Data 
 

We evaluated the performance of the MEPCC algorithm on three different data sets: Civil 

disobedience, Immigrant and Happy data (the Happy data are available upon request by contacting Marika 

Wenemark marika.wenemark@liu.se. The Immigrant and Civil Disobedience data are available from the 

GESIS Datorium http://dx.doi.org/10.7802/1795). For each data set, an open-ended question was asked to 

the respondents and their answers have been coded manually with possibly multiple labels. 

The Civil data set was collected to study cross-cultural equivalence about Civil disobedience. Behr, 

Braun, Kaczmirek and Bandilla (2014) first asked respondents a closed-ended question from the ISSP 

(ISSP Research Group, 2012) How important is it that citizens may engage in acts of Civil disobedience 

when they oppose government actions? (Not at all important 1 − Very important 7). The respondents were 

then asked: What ideas do you associate with the phrase “Civil disobedience”? Please give examples. 

Answers were classified into 12 labels: non-productive, violence, disturbances, peaceful, listing activities, 

breadth of actions, breaking law, breaking rules, government:dissatisfaction, government:deep rift, 

copy/paste from the Internet, other. The survey data were collected in different languages and we use a 

merged data set (Spanish, German and Danish) that contains 1,029 observations. 

The Immigrant data set was collected to study cross-national equivalence of measures of xenophobia. 

In the 2003 International Social Survey Program (ISSP) on National Identity, the questionnaire contained 

four statements regarding beliefs on Immigrants such as Immigrants take jobs from people who were born 

in Germany. After rating each statement, respondents were asked to answer to an open-ended question: 

Which type of Immigrants were you thinking of when you answered the question? The previous statement 

was: [text of the corresponding item]. Braun, Behr and Kaczmirek (2013) classified answers into 14 

labels: non-productive, positive, negative, neutral/work, general, Muslim countries, eastern European, 

Asia, ex-Yugoslavia, EU15, sub Sahara, Sinti/Roma, legal/illegal, other. In this article, we use 1,006 

observations from the German survey. 

The Happy data set was collected to study the relationship between positive factors and mental health 

and care needs. Wenemark, Borgstedt-Risberg, Garvin, Dahlin, Jusufbegovic, Gamme, Johansson and 

Bjrn (2018) asked respondents “Name some positive things in your life, that are uplifting or make you 

Happy: (you may write several things)”. Answers were classified into 13 labels: nothing, relationships 

(family or romantic), working/studying, health, self-esteem, joy/happiness, well-being: 

drinking/eating/drugs/sex, spirituality, money, nature, hobbies, culture, and exercise. The data set contains 

2,350 observations. 

Table 5.1 contains summary statistics about the three data sets. 
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Table 5.1 

Summary statistics of data sets: number of total observations, features and labels and average number of 

relevant labels, and percentage of observations that are associated with more than one label | | > 1
(P )

L  
 

Data #  observations #  features L av. #  of labels | | > 1
P

L  

Civil 1,029 305 12 1.15 13.80% 

Immigrant 1,006 273 14 1.19 13.72% 

Happy 2,350 492 13 2.77 87.40% 

 
5.2  Experimental setup 
 

We compared the proposed MEPCC method against BR and LP and PCC. For PCC, we used the 

uniform search to reach a predicted label set and the estimated probability of equation (3.1) for the 

confidence score of the prediction. EPCC was not included in the comparison because its computational 

cost makes it infeasible for prediction for our data sets. (In our experiment on the Immigrant data with 14 

labels, running the exhaustive search for PCC ( )1m =  for a single prediction took a single computer 

(Intel Core i7 CPU with 8GB RAM) over 30 minutes. This implies that predicting 200 observations using 

EPCC ( )10m =  would take more than 1,000 hours.) Support vector machines (SVM) (Vapnik, 2000) 

were used as the base classifier on unscaled variables with a linear kernel and tuning parameter = 1.C  

For probabilistic output, the SVM scores were converted into probabilities using Platt’s method (Platt, 

2000). The analysis was conducted in R  (R Core Team, 2014) using the 1071e  package (Meyer, 

Dimitriadou, Hornik, Weingessel and Leisch, 2014) for SVM. 

For each data set, 5-fold cross validation (CV) was performed. That is, we randomly divided the data 

into five equal-sized parts and used the first four parts as the training data and the last part as the test data. 

Performance evaluation is only made on the test data. Each of the five parts were used as test data and the 

results were averaged. 

 
5.3  Performance of the MEPCC approach 
 

We first investigated the performance of the MEPCC. The score in equation (4.1) has two components. 

To demonstrate that both components are helpful, we evaluate the proposed score as well as two different 

scores where one of the components is missing. That is, we compared the MEPCC with three different 

scores , 1  and 2:  

                   (MEPCC) =
ji J

J

J m
 

   
       

 P
  

      (MEPCC  11) =
ji J

J
 

 
−   

 

 P
  

      (MEPCC 
22) = .

J

m


 
−  
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Prioritizing the text answers based on 2  results in many ties. The tied answers were randomly reordered 

to be able to calculate subset accuracy at each production rate. Figure 5.1 shows the subset accuracy of 

each approach as a function of the production rate. The text answers with higher scores were classified 

first. For example, production rate 0.2 means only 20% of the test data with the highest scores were 

classified automatically by the models. When the production rate equals 1, there was no difference 

between the MEPCC models because the predicted label sets are always the same. The difference is how 

they prioritize the text answers from the easiest-to-classify to the hardest-to-classify answers. When the 

production rate was less than 1, MEPCC outperformed MEPCC-1 and MEPCC-2 for all three data. The 

results show that both components in equation (4.1) were helpful for prioritizing the observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Subset accuracy of three variations on MEPCC as a function of production rate. 
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5.4  Effect of the number of PCC models 
 

We then investigated to what extent the number of PCC models affects the predictive performance of 

MEPCC. Figure 5.2 shows the performance of MEPCC for different number of PCC models ( ) .m  When 

m  was low, increasing m  led to huge improvement of the subset accuracy of MEPCC. However, once 

there were enough PCC models (e.g., 10),m =  adding more PCC models did not improve the subset 

accuracy. The empirical results show that MEPCC does not require many PCC models for performing 

well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 The effect of the number of PCC models (m) used for MEPCC. 
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highest score. MEPCC used   as a score, while each of the other approaches used the probability of the 

predicted label set estimated by that method. Note when = 1,m  MEPCC and PCC are identical; the score 

  coincides with the probability of the label set predicted by PCC. 

Figures 5.3 and 5.4 illustrate the respective subset accuracy and Hamming loss for the different 

methods as a function of the production rate on the Happy, Immigrant and Civil data. For the Immigrant 

and Happy data, the highest subset accuracy at most production rates was obtained by MEPCC. For the 

Civil data, MEPCC and LP performed the best. In terms of Hamming loss, MEPCC achieved the lowest 

error at most production rates for all data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Semi-automated result (subset accuracy) for the three data from the 5-fold cross validation. 
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Figure 5.4 Semi-automated result (Hamming loss) for the three data from the 5-fold cross validation. 

 
Next, we consider the performance of each method given target predicted accuracy values. To decide the 

fraction of automatic categorization, a practitioner will typically set a threshold probability above which 

texts are coded automatically. For MEPCC, the relationship between true accuracy and the confidence 

score ( )  were estimated via cross-validation on the training data. We used Platt’s scaling to convert the 

confidence scores into probability outputs. Since Platt’s scaling could improve the level of calibration 

(Niculescu-Mizil and Caruana, 2005), the same technique was also applied to BR, LP and PCC. 

Table 5.2 illustrates the tradeoff between the percentages of automated prediction and the 

corresponding subset accuracy of each method as a function of different thresholds. The threshold refers 

to the minimum predicted subset accuracy required for automated prediction. The minimum predicted 

subset accuracy helps us decide which text answers should be classified automatically and which should 
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be classified manually. For example, if the client decides that at least 80% accuracy is required for 

automated classification, then approximately 39.3% of the Civil data, 42.5% of the Immigrant data, and 

27.6% of the Happy data can be classified automatically by MEPCC with subset accuracy 0.891, 0.916 

and 0.857, respectively. Note that this is a huge improvement compared to applying BR that could only 

automatically classify 9.3% of the Civil data, 12.8% of the Immigrant data, and 8.7% of the Happy data 

with lower subset accuracies. Table 5.3 shows the relationship between predicted and actual accuracy by 

aggregating to ranges of predictions for each method and data set. For MEPCC the actual accuracy is 

within the range of the predicted accuracy in most cases, much better than for the other methods. 

 
Table 5.2  

Semi-automated result for the three data at different decision thresholds. P represents the percentage of 

automated predictions and SA represents the subset accuracy for the automated prediction results 
 

Data Threshold 
BR LP PCC MEPCC 

P SA P SA P SA P SA 

Civil 0.9 0.7% 0.667 16.5% 0.967 0.0% NA 13.0% 0.978 

 0.8 9.3% 0.893 34.3% 0.898 15.1% 0.787 39.3% 0.891 

 0.7 18.4% 0.846 46.6% 0.852 36.4% 0.817 45.8% 0.860 

 0.6 25.4% 0.768 50.6% 0.831 52.1% 0.771 52.9% 0.820 

Immigrant 0.9 3.7% 0.858 11.1% 0.959 1.3% 0.558 31.5% 0.947 

 0.8 12.8% 0.779 30.4% 0.890 27.7% 0.859 42.5% 0.916 

 0.7 26.6% 0.743 38.6% 0.863 42.4% 0.829 55.1% 0.862 

 0.6 41.7% 0.715 53.6% 0.806 50.5% 0.795 62.7% 0.839 

Happy 0.9 1.3% 0.592 8.9% 0.850 0.1% 0.750 1.0% 0.830 

 0.8 8.7% 0.734 14.3% 0.802 7.2% 0.726 27.6% 0.857 

 0.7 32.8% 0.776 17.7% 0.793 29.9% 0.767 43.7% 0.817 

 0.6 53.2% 0.745 22.2% 0.761 49.2% 0.744 52.0% 0.790 

 
Table 5.3 

Semi-automated result for the three data at different ranges of thresholds. P represents the percentage of 

automated predictions and SA represents the subset accuracy for the automated prediction results 
 

Data 
Predicted 

accuracy 

BR LP PCC MEPCC 

P SA P SA P SA P SA 

Civil  0.9, 1.0  0.7% 0.667 16.5% 0.967 0.0% NA 13.0% 0.978 

  )0.8, 0.9  8.7% 0.896 17.8% 0.834 15.1% 0.787 26.2% 0.846 

  )0.7, 0.8  9.0% 0.769 12.2% 0.710 21.3% 0.828 6.5% 0.681 

  )0.6, 0.7  7.0% 0.566 4.1% 0.584 15.7% 0.655 7.1% 0.563 

Immigrant  0.9, 1.0  3.7% 0.858 11.1% 0.959 1.3% 0.558 31.5% 0.947 

  )0.8, 0.9  9.1% 0.750 19.3% 0.843 26.4% 0.869 11.0% 0.829 

  )0.7, 0.8  13.8% 0.710 8.2% 0.747 14.7% 0.757 12.5% 0.688 

  )0.6, 0.7  15.1% 0.602 15.0% 0.659 8.1% 0.623 7.7% 0.670 

Happy  0.9, 1.0  1.3% 0.592 8.9% 0.850 0.1% 0.750 1.0% 0.830 

  )0.8, 0.9  7.4% 0.755 5.4% 0.717 7.1% 0.730 26.5% 0.858 

  )0.7, 0.8  24.0% 0.792 3.4% 0.751 22.7% 0.779 16.2% 0.749 

  )0.6, 0.7  20.4% 0.693 4.6% 0.615 19.3% 0.703 8.3% 0.647 
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Table 5.4 shows the runtime of each method for training the model and predicting all instances in test 

data (Intel Core i7 CPU with 8GB RAM). Unsurprisingly, the runtime of MEPCC at = 10m  is roughly 

10 times of that of PCC in both of the training and prediction stages. 

 
Table 5.4 

Runtime (in seconds) of each method for the three data 
 

Data Stage BR LP PCC MEPCC 

Civil Train 1.688 0.641 1.128 11.787 

 Prediction 0.269 0.044 37.142 374.611 

Immigrant Train 1.363 0.510 0.894 8.724 

 Prediction 0.200 0.056 35.369 334.075 

Happy Train 11.160 16.164 7.371 78.293 

 Prediction 0.567 3.691 177.847 1,746.529 

 
6  Discussion 
 

Using three examples, we have investigated several approaches for automated classification for any 

desired production rate when data are multi-labeled. In terms of subset accuracy and Hamming loss, the 

proposed method, MEPCC, achieved the best performance at most production rates in all three data sets. 

There were trade-offs between the prediction performance and the production rate for all methods. At 

low production rates, high subset accuracy and low Hamming loss were achieved for a small number of 

easy-to-classify answers. However, accuracy (loss) tended to decrease (increase) as more difficult answers 

were included (i.e., production rate increased). 

Either subset accuracy or production rate can be set at a target rate which determines the second 

measure. For example, targeting 80% minimum subset accuracy for an automated prediction, MEPCC 

categorizes 39.3% of the Civil data, 42.5% of the Immigrant data, and 27.6% of the Happy data 

automatically. Such a reduction is considerable. In an applied research environment, reducing the need for 

manual coding in a data set with 5,000 observations, a reduction by 50% may save several weeks of 

coding time. If production rate is fix at 80%, MEPCC could achieve a subset accuracy of 70% (Civil), 

75% (Immigrant), and 68% (Happy). 

The Hamming loss represents the fraction of misclassified labels. Figure 5.4 shows that the 

improvement of MEPCC over BR was quite noticeable at lower production rates but relatively small at 

100% production rate. 

MEPCC outperformed PCC at most production rates on all three data. This shows that combining 

multiple PCC models substantially improves the performance. As can be seen from Figure 5.2, even 

combining 5 models resulted in a substantial improvement throughout the whole range of production rate. 

The difference tended to be greater at lower production rates. This means MEPCC is even more preferred 

for semi-automated classification, where a high accuracy is required rather than a high production rate. 

The performance of MEPCC converged as m  increased in all three data sets. The difference between the 
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MEPCC models were negligibly small when should be an equation was larger than 10. This is a desirable 

result in practice because employing too many PCC models for an ensemble model is unnecessary. 

For all three data we found that the proposed method was not sensitive to the choice of the search 

algorithm for each PCC model (results and figures not shown). That is, the classification results of 

MEPCC with the uniform cost search were similar to those with the greedy search. While the proposed 

method uses the uniform cost search, the greedy approach may also be considered especially when the fast 

prediction time matters. 

Figure 5.3 shows LP beats BR for the Civil and Immigrant data sets and BR beats LP for the Happy 

data set with respect to subset accuracy. We see two reasons: 1) LP performed well when the number of 

unique label sets was relatively small (Civil: 39, Immigrant: 59). However, the performance of LP was not 

effective but less well for the Happy data where the number of unique label sets was large (346). 2) BR 

does not take into account correlations among the labels. BR beat LP where bivariate label correlation 

were low (Happy data) and LP beat BR where bivariate label correlations were larger (Civil and 

Immigrant Data). Compared to BR and LP, MEPCC seems to be robust to those aspects (the number of 

unique label sets and the magnitude of label correlations). 

The semi-automatic procedure introduced here works best in repeated survey questions where results 

from previous waves have been labeled or for one-off questions where the sample size is large. How large 

should the training data be? We have used 5-fold cross-validation to evaluate the algorithm, but cross-

validation is not appropriate in a production environment. If the question was asked in a previous wave, 

train the algorithm on all labeled data from all previous waves. If not, set a “sufficiently large” number of 

texts aside for labeling and training, and use the semi-automatic procedure on the remainder of the data. 

How large “sufficiently large” is depends on the task at hand. For single labeling tasks we have found that 

often 500 training samples are sufficient (Schonlau and Couper, 2016). There is a tradeoff: a larger data 

set predicts more accurately but also reduces the scope for time savings as fewer unlabeled observations 

remain. Under reasonable assumptions, Schonlau and Couper (2016) suggested human coding time 

savings for a single-label semi-automatic coding procedure attempting to code 1,000 (9,500) texts might 

be 14 (133) hours. 133 hours is equivalent to 16.6 eight-hour working days. Whether those time savings 

are large enough to warrant implementation of a semi-automatic procedure may be best decided with 

knowledge of the specific task and in the context of the specific production environment. 

If some label combinations cannot occur in individual data sets, such constraints on label combinations 

may be added. For example, for the Happy data, if the label “nothing” is turned on all other labels must be 

turned off. Knowing that “nothing” is incompatible with other labels requires some domain expertise. It 

would be straightforward to modify the algorithm to accommodate this constraint. Of course, all methods 

except BR already exploit dependencies between labels; implementing this constraint may not affect 

performance very much. We did not implement such constraints in this article to avoid the appearance of 

the algorithms heavily relying on the constraints. 

Limitations of this work include that the experimental study was conducted using three text data sets 

only. While there is no guarantee that performance will be equally good on other data sets, data used in 
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this paper consider different topics in different languages, which increases the appeal of MEPCC. Also, all 

of the multi-label algorithms in this article used the same base learner (SVM) for classification. While 

SVM is one of the best performing approaches, other learning methods that produce probability outcomes 

could be chosen. 

In conclusion, we investigated semi-automated classification for open-ended questions when the data 

are multi-labelled using existing multi-label algorithms. We have proposed a new algorithm for semi-

automatic classification that effectively combines multiple PCC models. The experimental results on three 

different example data show that the proposed approach outperforms BR, LP and PCC in terms of subset 

accuracy and Hamming loss at most production rates. Although we focused on survey data from open-

ended questions, the proposed approach can also be applied to other types of multi-label data when semi-

automated classification is desired. A comprehensive analysis encompassing a variety of data in the 

context of semi-automated classification deserves further investigation. 
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