Firth’s penalized likelihood for proportional hazards regressions for complex surveys
Section 4. Summary

Firth’s penalized likelihood is useful for obtaining maximum likelihood estimates from a monotone likelihood from proportional hazards regression models. We proposed a weight scaling method and demonstrated that Firth’s penalized likelihood using the scaled weights have some desirable properties for complex surveys. A simulation study shows that estimated biases in point estimates and standard errors using the scaled weights are lower than estimated biases using the unscaled weights. Although Firth’s penalized likelihood produces “good” estimates in most simulated data sets, there are a few data sets in which the Firth penalty failed to produce “good” convergences. The Firth penalized likelihood that uses scaled weights successfully corrected for a monotone likelihood when we estimated hazard rates for heart attacks using a data set from the NHEFS. Although the numeric results are quite encouraging, further research is needed to derive asymptotic distributions of the estimators obtained by using Firth’s penalized likelihood.

We recommend the unpenalized likelihood when convergence is not an issue, but we recommend Firth’s penalized likelihood using the scaled weights when a monotone likelihood is encountered in fitting proportional hazards regression models for complex surveys.

Acknowledgements

I am grateful to Ying So, Randy Tobias, and Ed Huddleston at SAS Institute Inc. for their valuable assistance in the preparation of this article. I would also like to thank the two anonymous referees and the associate editor for their constructive suggestions.

Appendix 1

Consistency of the Firth penalized likelihood estimator

The estimators in Section 2 are defined as the solution to a system of equations that are constructed by using the score functions from proportional hazards regression models. In this appendix, we show that under certain regularity conditions these estimators are design consistent. Properties of estimators that are solutions to a set of estimating equations are well studied in the survey literature. For example, see Binder (1983), Godambe and Thompson (1986), and Fuller (2009, Section 1.3.4).

However, the estimating equations for proportional hazards regression models are more complex than the estimating equations for generalized linear models because the score functions involve weighted sums over the sampled units. Binder (1992) and Lin (2000) showed that the estimators obtained by solving the estimating equations for proportional hazards regression models are consistent. In this appendix, we follow arguments similar to those of Lin (2000) and Andersen and Gill (1982).

Several technical assumptions are necessary to show that the point estimates are consistent. We need assumptions about the estimating equations, the finite population, and the sample design – to whit: 

All these assumptions are common in the sample survey literature; for example, see Fuller (2009). The score functions for proportional hazards regression models involve ratios of means of exponential functions that are infinitely differentiable.

Let U N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFvbqvdaWgaaWcbaGaamOtaaqabaaaaa@3CBB@ and F N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFgbGrdaWgaaWcbaGaamOtaaqabaaaaa@3C9D@ denote, respectively, the index set and values for the N th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@33FC@ finite population in a sequence of populations indexed by N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobGaaiilaaaa@329D@ and let A N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGbbWaaSbaaSqaaiaad6eaaeqaaa aa@32DF@ be a sample of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGUbaaaa@320D@ from U N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFvbqvdaWgaaWcbaGaamOtaaqabaGccaGGUaaa aa@3D77@ To study large sample properties for sample-based estimators, we assume sequences of population and samples such that N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobGaeyOKH4QaeyOhIukaaa@354B@ and ( N n ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaad6eacaaMe8UaeyOeI0 IaaGjbVlaad6gaaiaawIcacaGLPaaacqGHsgIRcqGHEisPcaGGSaaa aa@3C7F@ keeping the sampling fraction, n N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaWcbaWcbaGaamOBaaqaaiaad6eaaa GccaGGSaaaaa@33B6@ fixed.

Assume F N = { ( t i , Δ i , Z i ( ) ) } i = 1 N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFgbGrdaWgaaWcbaGaamOtaaqabaGccaaMe8Ua aGypaiaaysW7daGadeqaaiaayIW7daqadeqaaiaadshadaWgaaWcba GaamyAaaqabaGccaaISaGaaGjbVlabfs5aenaaBaaaleaacaWGPbaa beaakiaaiYcacaaMi8UaaGjbVlaabQfadaWgaaWcbaGaamyAaaqaba GcdaqadeqaaiaayIW7cqGHflY1caaMi8oacaGLOaGaayzkaaaacaGL OaGaayzkaaGaaGjcVdGaay5Eaiaaw2haamaaDaaaleaacaWGPbGaaG ypaiaaigdaaeaacaWGobaaaaaa@5E8B@ is an independent random sample of size N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobaaaa@31ED@ from the joint distribution of ( T , Δ , Z ( ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaadsfacaaISaGaaGjbVl abfs5aejaaiYcacaaMe8UaaeOwamaabmqabaGaaGjcVlabgwSixlaa yIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGSaaaaa@41EC@ where t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG0baaaa@3213@ is the failure time or the censoring time, whichever is less; Δ = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqqHuoarcaaMe8UaaGypaiaaysW7ca aIXaaaaa@371C@ if the failure time is less than the censoring time and 0 otherwise; and Z ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8Wqpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGAbWaaeWabeaacaaMi8UaeyyXIC TaaGjcVdGaayjkaiaawMcaaaaa@38EF@ is a vector of possibly time-varying explanatory variables.

Let β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoaaaa@325A@ be a set of regression parameters for the superpopulation that is defined by the joint distribution of ( T , Δ , Z ( ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaaiaadsfacaaISaGaaGjbVl abfs5aejaaiYcacaaMe8UaamOwamaabmqabaGaaGjcVlabgwSixlaa yIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUaaaaa@41F2@ Let β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoWaaSbaaSqaaiaad6eaaeqaaa aa@3359@ be a set of finite population parameters obtained by solving the estimating equations when all N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobaaaa@31EF@ units in the population are observed, and let β ^ N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaamOtaa qabaaaaa@3369@ be an estimator of β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoWaaSbaaSqaaiaad6eaaeqaaa aa@3359@ that is obtained by solving the weighted estimating equations by using only the sampled units. Our objective is to show that β ^ N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaamOtaa qabaaaaa@3369@ approaches β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoWaaSbaaSqaaiaad6eaaeqaaa aa@3359@ and that they both approach β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoaaaa@325A@ as the sample size and population size increase.

Consider the estimating equations that correspond to Firth’s penalized likelihood described in Section 2. For simplicity, we write these equations when there are no tied events. To further simplify notation, we write each component of the estimating equations separately. The finite population parameters, β N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoWaaSbaaSqaaiaad6eaaeqaaO Gaaiilaaaa@3413@ are a solution to the penalized partial likelihood score function, U N ( β ) = ( U N , 1 ( β ) , , U N , P ( β ) ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbWaaSbaaSqaaiaad6eaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8+a aeWabeaacaWGvbWaaSbaaSqaaiaad6eacaaISaGaaGjbVlaaigdaae qaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGilaiaaysW7cqWI MaYscaaISaGaaGjbVlaadwfadaWgaaWcbaGaamOtaiaaiYcacaaMc8 UaamiuaaqabaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaiaawIca caGLPaaadaahaaWcbeqaaOGamai2gkdiIcaacaGGSaaaaa@540B@ where

U N , p ( β ) = N 1 i U N Δ i [ Z i ( t i ) S p ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) + 0.5 tr ( [ N 1 i U N Δ i { S ( 2 ) ( β , t i ) S ( 0 ) ( β , t i ) ( S ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) ) ( S ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) ) } ] 1 { ( Q p ( 2 ) ( β , t i ) S ( 0 ) ( β , t i ) Q p ( 0 ) ( β , t i ) S ( 0 ) ( β , t i ) S ( 2 ) ( β , t i ) S ( 0 ) ( β , t i ) ) ( Q p ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) Q p ( 0 ) ( β , t i ) S ( 0 ) ( β , t i ) S ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) ) ( S ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) ) ( S ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) ) ( Q p ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) Q p ( 0 ) ( β , t i ) S ( 0 ) ( β , t i ) S ( 1 ) ( β , t i ) S ( 0 ) ( β , t i ) ) } ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeGacaaabaGaamyvamaaBaaale aacaWGobGaaGilaiaaysW7caWGWbaabeaakmaabmqabaGaaCOSdaGa ayjkaiaawMcaaaqaaiaai2dacaaMe8UaamOtamaaCaaaleqabaGaey OeI0IaaGymaaaakmaaqafabeWcbaGaamyAaiabgIGiopXvP5wqonvs aeHbmv3yPrwyGmuySXwANjxyWHwEaGabciab=vfavnaaBaaameaaca WGobaabeaaaSqab0GaeyyeIuoakiabfs5aenaaBaaaleaacaWGPbaa beaakmaadmqabaGaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqaba GaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiabgkHi TmaalaaabaGaam4uamaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8 UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaI SaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaai aadofadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGL OaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaadshadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaaGaey4kaSIaaGimaiaai6ca caaI1aGaaGjbVlaabshacaqGYbWaaeWabqaabeqaamaadmaabaGaam OtamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqafabeWcbaGaamyA aiabgIGiolab=vfavnaaBaaameaacaWGobaabeaaaSqab0GaeyyeIu oakiabfs5aenaaBaaaleaacaWGPbaabeaakmaacmaabaWaaSaaaeaa caWGtbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIYaGaaGjcVdGaay jkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaWG0bWaaSbaaSqa aiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaam4uamaaCaaaleqaba WaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqa deqaaiaahk7acaaISaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaaaaacqGHsisldaqadaqaamaalaaabaGaaC4uamaaCaaa leqabaWaaeWabeaacaaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaa Gcdaqadeqaaiaahk7acaaISaGaamiDamaaBaaaleaacaWGPbaabeaa aOGaayjkaiaawMcaaaqaaiaadofadaahaaWcbeqaamaabmqabaGaaG jcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGa aGilaiaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaa aacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaahofadaahaaWcbeqa amaabmqabaGaaGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaOWaae WabeaacaWHYoGaaGilaiaadshadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaaaeaacaWGtbWaaWbaaSqabeaadaqadeqaaiaayIW7ca aIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYca caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaaGaay jkaiaawMcaamaaCaaaleqabaGccWaGyBOmGikaaaGaay5Eaiaaw2ha aaGaay5waiaaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaam aacmqaeaqabeaadaqadaqaamaalaaabaGaamyuamaaDaaaleaacaWG WbaabaWaaeWabeaacaaMi8UaaGOmaiaayIW7aiaawIcacaGLPaaaaa Gcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshadaWgaaWcbaGaamyA aaqabaaakiaawIcacaGLPaaaaeaacaWGtbWaaWbaaSqabeaadaqade qaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGa aCOSdiaaiYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaaaaacqGHsisldaWcaaqaaiaadgfadaqhaaWcbaGaamiC aaqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaO WaaeWabeaacaWHYoGaaGilaiaadshadaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaaaeaacaWGtbWaaWbaaSqabeaadaqadeqaaiaayI W7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaa iYcacaWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaam aalaaabaGaam4uamaaCaaaleqabaWaaeWabeaacaaMi8UaaGOmaiaa yIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaamiDam aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadofadaah aaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaa aaaOWaaeWabeaacaWHYoGaaGilaiaadshadaWgaaWcbaGaamyAaaqa baaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaaabaGaeyOeI0Yaae WaaeaadaWcaaqaaiaahgfadaqhaaWcbaGaamiCaaqaamaabmqabaGa aGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYo GaaGilaiaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaa aeaacaWGtbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVd GaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaWG0bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiabgkHiTmaalaaaba GaamyuamaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGimaiaa yIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaamiDam aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiaadofadaah aaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaa aaaOWaaeWabeaacaWHYoGaaGilaiaadshadaWgaaWcbaGaamyAaaqa baaakiaawIcacaGLPaaaaaWaaSaaaeaacaWHtbWaaWbaaSqabeaada qadeqaaiaayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqa baGaaCOSdiaaiYcacaWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOa GaayzkaaaabaGaam4uamaaCaaaleqabaWaaeWabeaacaaMi8UaaGim aiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaam iDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaaaiaawIca caGLPaaadaqadaqaamaalaaabaGaaC4uamaaCaaaleqabaWaaeWabe aacaaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaa hk7acaaISaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawM caaaqaaiaadofadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaM i8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaadshada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzk aaWaaWbaaSqabeaakiadaITHYaIOaaaabaGaeyOeI0YaaeWaaeaada WcaaqaaiaahofadaahaaWcbeqaamaabmqabaGaaGjcVlaaigdacaaM i8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaadshada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWGtbWaaWba aSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaa aakmaabmqabaGaaCOSdiaaiYcacaWG0bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaamaabmaabaWaaSaaae aacaWHrbWaa0baaSqaaiaadchaaeaadaqadeqaaiaayIW7caaIXaGa aGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaam4uamaa CaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPa aaaaGcdaqadeqaaiaahk7acaaISaGaamiDamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaaaaacqGHsisldaWcaaqaaiaadgfadaqhaa WcbaGaamiCaaqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGa ayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaadshadaWgaaWcbaGaam yAaaqabaaakiaawIcacaGLPaaaaeaacaWGtbWaaWbaaSqabeaadaqa deqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqaba GaaCOSdiaaiYcacaWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGa ayzkaaaaamaalaaabaGaaC4uamaaCaaaleqabaWaaeWabeaacaaMi8 UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaI SaGaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaai aadofadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGL OaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaadshadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaWba aSqabeaakiadaITHYaIOaaaaaiaawUhacaGL9baaaaGaayjkaiaawM caaaGaay5waiaaw2faaaqaaaqaaaaaaaa@0439@

where

S ( a ) ( β , t ) = N 1 i U N I ( t i t ) exp ( β Z i ( t ) ) [ Z i ( t ) ] a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGtbWaaWbaaSqabeaadaqadeqaai aayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOS diaaiYcacaaMe8UaamiDaaGaayjkaiaawMcaaiaaysW7caaI9aGaaG jbVlaad6eadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqbqabSqa aiaadMgacqGHiiIZtCvAUfKttLearyat1nwAKfgidfgBSL2zYfgCOL haiqGacqWFvbqvdaWgaaadbaGaamOtaaqabaaaleqaniabggHiLdGc caWGjbWaaeWabeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVl abgwMiZkaaysW7caWG0baacaGLOaGaayzkaaGaciyzaiaacIhacaGG WbWaaeWabeaaceWHYoGbauaacaWHAbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaaaiaawIca caGLPaaadaWadeqaaiaahQfadaWgaaWcbaGaamyAaaqabaGcdaqade qaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaGaay5waiaaw2fa amaaCaaaleqabaGaey4LIqSaamyyaaaaaaa@7904@

Q p ( a ) ( β , t ) = N 1 i U N I ( t i t ) exp ( β Z i ( t ) ) Z i , p ( t ) [ Z i ( t ) ] a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGrbWaa0baaSqaaiaadchaaeaada qadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaakmaabmqa baGaaCOSdiaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaiaaysW7ca aI9aGaaGjbVlaad6eadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaae qbqabSqaaiaadMgacqGHiiIZtCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFvbqvdaWgaaadbaGaamOtaaqabaaaleqaniab ggHiLdGccaWGjbWaaeWabeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlabgwMiZkaaysW7caWG0baacaGLOaGaayzkaaGaciyzaiaa cIhacaGGWbWaaeWabeaaceWHYoGbauaacaWHAbWaaSbaaSqaaiaadM gaaeqaaOWaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaa aiaawIcacaGLPaaacaWGAbWaaSbaaSqaaiaadMgacaaISaGaaGjbVl aadchaaeqaaOWaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGL PaaadaWadeqaaiaahQfadaWgaaWcbaGaamyAaaqabaGcdaqadeqaai aayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaGaay5waiaaw2faamaa CaaaleqabaGaey4LIqSaamyyaaaaaaa@84D1@

and where a = 0, 1, 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGHbGaaGjbVlaai2dacaaMe8UaaG imaiaaiYcacaaMe8UaaGymaiaaiYcacaaMe8UaaGOmaiaacUdaaaa@3D59@ Z i ( t ) = ( Z i , 1 ( t ) , , Z i , p ( t ) ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGAbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7daqadeqaaiaadQfadaWgaaWcbaGaamyAaiaaiYcaca aMe8UaaGymaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjk aiaawMcaaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGAbWaaS baaSqaaiaadMgacaaISaGaaGjbVlaadchaaeqaaOWaaeWabeaacaaM i8UaamiDaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaa WcbeqaaOGamai2gkdiIcaacaGG7aaaaa@5D33@ S ( 1 ) ( β , t ) = ( S 1 ( 1 ) ( β , t ) , , S P ( 1 ) ( β , t ) ) ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHtbWaaWbaaSqabeaadaqadeqaai aayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOS diaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaiaaysW7caaI9aGaaG jbVlaaiIcacaWGtbWaa0baaSqaaiaaigdaaeaadaqadeqaaiaayIW7 caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacY cacaaMe8UaamiDaaGaayjkaiaawMcaaiaaiYcacaaMe8UaeSOjGSKa aGilaiaaysW7caWGtbWaa0baaSqaaiaadcfaaeaadaqadeqaaiaayI W7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaa cYcacaaMe8UaamiDaaGaayjkaiaawMcaaiqaiMcagaqbaiaacUdaaa a@63C5@ tr ( ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaeiDaiaabkhacaaMc8UaaG jcVpaabmqabaGaaGjcVlabgwSixlaayIW7aiaawIcacaGLPaaaaaa@3EAA@ denotes the trace of a matrix; I ( ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGjbWaaeWabeaacaaMi8UaeyyXIC TaaGjcVdGaayjkaiaawMcaaaaa@38E0@ denotes the indicator function; p = 1, 2, , P ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGWbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaa ysW7caWGqbGaai4oaaaa@40E8@ and P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGqbaaaa@31F1@ is the number of regression parameters. Note that S ( a ) ( β , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGtbWaaWbaaSqabeaadaqadeqaai aayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOS diaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaaaa@3DBB@ and Q p ( a ) ( β , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGrbWaa0baaSqaaiaadchaaeaada qadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaakmaabmqa baGaaCOSdiaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaaaa@3EAE@ depend on N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobGaaiilaaaa@329F@ although the notation does not reflect this for reasons of simplicity.

In defining the score function for the penalized likelihood, we assume that the information matrix for the finite population, I N ( β , t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGjbWaaSbaaSqaaiaad6eaaeqaaO WaaeWabeaacaWHYoGaaiilaiaaysW7caWG0baacaGLOaGaayzkaaGa aiilaaaa@39A1@ is always positive definite.

However, in any realistic situation, not all units in the finite population are available. Let a sample A N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGbbWaaSbaaSqaaiaad6eaaeqaaa aa@32E1@ be selected by using a probability design that assigns a nonzero selection probability, π i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaaqaba GccaGGSaaaaa@34AD@ to every unit in the population. Let w i = π i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaO GaaGjbVlaai2dacaaMe8UaeqiWda3aa0baaSqaaiaadMgaaeaacqGH sislcaaIXaaaaaaa@3B9D@ be the design weight. A sample-based estimator, β ^ N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaamOtaa qabaGccaGGSaaaaa@3423@ is obtained by solving the estimated penalized partial likelihood score equations. Assuming that N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobaaaa@31EF@ is known, a sample-based estimator for U N , p ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbWaaSbaaSqaaiaad6eacaaISa GaaGjbVlaadchaaeqaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaaa aa@38FF@ is

U ^ N,p ( β )= N 1 i A N w i Δ i [ Z i ( t i ) S ^ p ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) +0.5tr( [ N 1 i A N w i Δ i { S ^ ( 2 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) } ] 1 { ( Q ^ p ( 2 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) Q ^ p ( 0 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) S ^ ( 2 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( Q ^ p ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) Q ^ p ( 0 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( Q ^ p ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) Q ^ p ( 0 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) } ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9z8vrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGvbGbaKaadaWgaaWcbaGaamOtai aaiYcacaWGWbaabeaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaiab g2da9iaad6eadaahaaWcbeqaaiabgkHiTiaaigdaaaGcdaaeqbqabS qaaiaadMgacqGHiiIZcaWGbbWaaSbaaWqaaiaad6eaaeqaaaWcbeqd cqGHris5aOGaaGPaVlaadEhadaWgaaWcbaGaamyAaaqabaGccqqHuo ardaWgaaWcbaGaamyAaaqabaGcdaWadeqaaiaahQfadaWgaaWcbaGa amyAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaamyAaaqabaaaki aawIcacaGLPaaacaaMe8UaeyOeI0IaaGjbVpaalaaabaGabm4uayaa jaWaa0baaSqaaiaadchaaeaadaqadeqaaiaayIW7caaIXaGaaGjcVd GaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacYcacaaMe8UaamiD amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiqadofaga qcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIca caGLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaGjbVlaadshadaWgaa WcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaGaey4kaSIaaGimaiaa i6cacaaI1aGaaGjcVlaabshacaqGYbWaaeWabqaabeqaaiaayIW7ca aMi8+aamWaaeaacaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWa aabuaeqaleaacaWGPbGaeyicI4SaamyqamaaBaaameaacaWGobaabe aaaSqab0GaeyyeIuoakiaaykW7caWG3bWaaSbaaSqaaiaadMgaaeqa aOGaeuiLdq0aaSbaaSqaaiaadMgaaeqaaOWaaiWaaeaadaWcaaqaai qadofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGOmaiaayIW7 aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaGjbVlaads hadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaaceWGtbGb aKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOa GaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaaysW7caWG0bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiabgkHiTmaabmaaba WaaSaaaeaaceWHtbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVlaa igdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiilai aaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaa baGabm4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaG jcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacYcacaaMe8Ua amiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaaaiaawI cacaGLPaaadaqadaqaamaalaaabaGabC4uayaajaWaaWbaaSqabeaa daqadeqaaiaayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabm qabaGaaCOSdiaacYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaa aOGaayjkaiaawMcaaaqaaiqadofagaqcamaaCaaaleqabaWaaeWabe aacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaa hk7acaGGSaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawI cacaGLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIO aaaacaGL7bGaayzFaaaacaGLBbGaayzxaaWaaWbaaSqabeaacqGHsi slcaaIXaaaaaGcbaWaaiWabqaabeqaaiaaykW7daqadaqaamaalaaa baGabmyuayaajaWaa0baaSqaaiaadchaaeaadaqadeqaaiaayIW7ca aIYaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacYca caaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaa qaaiqadofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaa yIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaGjbVl aadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaGaeyOe I0YaaSaaaeaaceWGrbGbaKaadaqhaaWcbaGaamiCaaqaamaabmqaba GaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWH YoGaaiilaiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOa GaayzkaaaabaGabm4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7 caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacY cacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca aaaadaWcaaqaaiqadofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8 UaaGOmaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaGG SaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPa aaaeaaceWGtbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaicda caaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaays W7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaaGa ayjkaiaawMcaaaqaaiabgkHiTmaabmaabaWaaSaaaeaaceWHrbGbaK aadaqhaaWcbaGaamiCaaqaamaabmqabaGaaGjcVlaaigdacaaMi8oa caGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaaysW7caWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGabm4uayaa jaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkai aawMcaaaaakmaabmqabaGaaCOSdiaacYcacaaMe8UaamiDamaaBaaa leaacaWGPbaabeaaaOGaayjkaiaawMcaaaaacqGHsisldaWcaaqaai qadgfagaqcamaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGim aiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaG jbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaa ceWGtbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8 oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaaysW7caWG 0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaamaalaaaba GabC4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIXaGaaGjc VdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacYcacaaMe8Uaam iDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiqadofa gaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawI cacaGLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaGjbVlaadshadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaa WaaeWaaeaadaWcaaqaaiqahofagaqcamaaCaaaleqabaWaaeWabeaa caaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk 7acaGGSaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaaaeaaceWGtbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVl aaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiil aiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aaaaGaayjkaiaawMcaamaaCaaaleqabaGccWaGyBOmGikaaaqaaiab gkHiTmaabmaabaWaaSaaaeaaceWHtbGbaKaadaahaaWcbeqaamaabm qabaGaaGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaiilaiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaaabaGabm4uayaajaWaaWbaaSqabeaadaqadeqaaiaa yIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdi aacYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaa wMcaaaaaaiaawIcacaGLPaaadaqadaqaamaalaaabaGabCyuayaaja Waa0baaSqaaiaadchaaeaadaqadeqaaiaayIW7caaIXaGaaGjcVdGa ayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacYcacaaMe8UaamiDam aaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqaaiqadofagaqc amaaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcaca GLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaGjbVlaadshadaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaaaaGaeyOeI0YaaSaaaeaace WGrbGbaKaadaqhaaWcbaGaamiCaaqaamaabmqabaGaaGjcVlaaicda caaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaays W7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGa bm4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVd GaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaacYcacaaMe8UaamiD amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaadaWcaaqaai qahofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGymaiaayIW7 aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaGGSaGaaGjbVlaads hadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaaceWGtbGb aKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOa GaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaaysW7caWG0bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawMcaam aaCaaaleqabaGccWaGyBOmGikaaaaacaGL7bGaayzFaaaaaiaawIca caGLPaaaaiaawUfacaGLDbaaaaa@3324@

where

S ^ ( a ) ( β , t ) = N 1 i A N w i I ( t i t ) exp ( β Z i ( t ) ) [ Z i ( t ) ] a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGtbGbaKaadaahaaWcbeqaamaabm qabaGaaGjcVlaadggacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaiilaiaaysW7caWG0baacaGLOaGaayzkaaGaaGjbVlaai2 dacaaMe8UaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqafa beWcbaGaamyAaiabgIGiolaadgeadaWgaaadbaGaamOtaaqabaaale qaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWGPbaabeaakiaa dMeadaqadeqaaiaadshadaWgaaWcbaGaamyAaaqabaGccaaMe8Uaey yzImRaaGjbVlaadshaaiaawIcacaGLPaaaciGGLbGaaiiEaiaaccha daqadeqaaiqahk7agaqbaiaahQfadaWgaaWcbaGaamyAaaqabaGcda qadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaGaayjkaiaa wMcaamaadmqabaGaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqaba GaaGjcVlaadshacaaMi8oacaGLOaGaayzkaaaacaGLBbGaayzxaaWa aWbaaSqabeaacqGHxkcXcaWGHbaaaaaa@72DD@

Q ^ p ( a ) ( β , t ) = N 1 i A N w i I ( t i t ) exp ( β Z i ( t ) ) Z i , p ( t ) [ Z i ( t ) ] a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGrbGbaKaadaqhaaWcbaGaamiCaa qaamaabmqabaGaaGjcVlaadggacaaMi8oacaGLOaGaayzkaaaaaOWa aeWabeaacaWHYoGaaiilaiaaysW7caWG0baacaGLOaGaayzkaaGaaG jbVlaai2dacaaMe8UaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaa kmaaqafabeWcbaGaamyAaiabgIGiolaadgeadaWgaaadbaGaamOtaa qabaaaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWGPbaa beaakiaadMeadaqadeqaaiaadshadaWgaaWcbaGaamyAaaqabaGcca aMe8UaeyyzImRaaGjbVlaadshaaiaawIcacaGLPaaaciGGLbGaaiiE aiaacchadaqadeqaaiqahk7agaqbaiaahQfadaWgaaWcbaGaamyAaa qabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaGa ayjkaiaawMcaaiaadQfadaWgaaWcbaGaamyAaiaaiYcacaaMe8Uaam iCaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMca amaadmqabaGaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqabaGaaG jcVlaadshacaaMi8oacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWba aSqabeaacqGHxkcXcaWGHbaaaaaa@7EB0@

are the NHT estimators for S ( a ) ( β , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGtbWaaWbaaSqabeaadaqadeqaai aayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOS diaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaaaa@3DBB@ and Q p ( a ) ( β , t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGrbWaa0baaSqaaiaadchaaeaada qadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaakmaabmqa baGaaCOSdiaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaiaacYcaaa a@3F5E@ respectively.

Because S ^ ( a ) ( β , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGtbGbaKaadaahaaWcbeqaamaabm qabaGaaGjcVlaadggacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaiilaiaaysW7caWG0baacaGLOaGaayzkaaaaaa@3DCB@ and Q ^ p ( a ) ( β , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGrbGbaKaadaqhaaWcbaGaamiCaa qaamaabmqabaGaaGjcVlaadggacaaMi8oacaGLOaGaayzkaaaaaOWa aeWabeaacaWHYoGaaiilaiaaysW7caWG0baacaGLOaGaayzkaaaaaa@3EBE@ use weighted sums over sampled units, we need techniques defined in Lin (2000) to study large sample properties of these estimators. Define G i ( t ) = Δ i I ( t i t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7cqqHuoardaWgaaWcbaGaamyAaaqabaGccaWGjbWaae WabeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgsMiJkaa ysW7caWG0baacaGLOaGaayzkaaGaaiilaaaa@4A09@ G ( t ) = N 1 i U N G i ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGhbWaaeWabeaacaaMi8UaamiDai aayIW7aiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7caWGobWaaWba aSqabeaacqGHsislcaaIXaaaaOWaaabeaeqaleaacaWGPbGaeyicI4 8exLMBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5baceiGae8xvau1a aSbaaWqaaiaad6eaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadEeada WgaaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGa ayjkaiaawMcaaiaacYcaaaa@57FD@ and G ^ ( t ) = i A N w i G i ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGhbGbaKaadaqadeqaaiaayIW7ca WG0bGaaGjcVdGaayjkaiaawMcaaiaaysW7caaI9aGaaGjbVpaaqaba beWcbaGaamyAaiabgIGiolaadgeadaWgaaadbaGaamOtaaqabaaale qaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWGPbaabeaakiaa dEeadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaG jcVdGaayjkaiaawMcaaiaac6caaaa@4DA1@ Then the finite population score functions can be written using stochastic integration,

U N,p ( β )= N 1 i U N 0 [ Z i ( t i ) S p ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) +0.5tr( [ N 1 i A N 0 { S ( 2 ) ( β, t i ) S ( 0 ) ( β, t i ) ( S ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) ) ( S ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) ) }dG( t i ) ] 1 { ( Q p ( 2 ) ( β, t i ) S ( 0 ) ( β, t i ) Q p ( 0 ) ( β, t i ) S ( 0 ) ( β, t i ) S ( 2 ) ( β, t i ) S ( 0 ) ( β, t i ) ) ( Q p ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) Q p ( 0 ) ( β, t i ) S ( 0 ) ( β, t i ) S ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) ) ( S ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) ) ( S ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) ) ( Q p ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) Q p ( 0 ) ( β, t i ) S ( 0 ) ( β, t i ) S ( 1 ) ( β, t i ) S ( 0 ) ( β, t i ) ) } ) ]d G i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9u8vrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbWaaSbaaSqaaiaad6eacaaISa GaaGjbVlaadchaaeqaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaGa eyypa0JaaGjbVlaaykW7caWGobWaaWbaaSqabeaacqGHsislcaaIXa aaaOWaaabuaeqaleaacaWGPbGaeyicI48exLMBb50ujbqegWuDJLgz HbYqHXgBPDMCHbhA5baceiGae8xvau1aaSbaaWqaaiaad6eaaeqaaa WcbeqdcqGHris5aOGaaGPaVpaapedabeWcbaGaaGimaaqaaiabg6Hi LcqdcqGHRiI8aOWaamWabeaacaWHAbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaaMi8UaamiDamaaBaaaleaacaWGPbaabeaakiaayIW7 aiaawIcacaGLPaaacaaMe8UaeyOeI0IaaGjbVpaalaaabaGaam4uam aaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGymaiaayIW7aiaa wIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaacaWGtbWaaWba aSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaa aakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaaaacqGHRaWkcaaMe8UaaGimaiaai6 cacaaI1aGaaGjcVlaabshacaqGYbGaaGPaVpaabmqaeaqabeaacaaM e8+aamWaaeaacaWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaa buaeqaleaacaWGPbGaeyicI4SaamyqamaaBaaameaacaWGobaabeaa aSqab0GaeyyeIuoakiaaykW7daWdXaqabSqaaiaaicdaaeaacqGHEi sPa0Gaey4kIipakmaacmaabaWaaSaaaeaacaWGtbWaaWbaaSqabeaa daqadeqaaiaayIW7caaIYaGaaGjcVdGaayjkaiaawMcaaaaakmaabm qabaGaaCOSdiaaiYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaa aOGaayjkaiaawMcaaaqaaiaadofadaahaaWcbeqaamaabmqabaGaaG jcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGa aGilaiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaay zkaaaaaiaaysW7cqGHsislcaaMe8+aaeWaaeaadaWcaaqaaiaahofa daahaaWcbeqaamaabmqabaGaaGjcVlaaigdacaaMi8oacaGLOaGaay zkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0bWaaSbaaSqa aiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaam4uamaaCaaaleqaba WaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqa deqaaiaahk7acaaISaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqaba aakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqa aiaahofadaahaaWcbeqaamaabmqabaGaaGjcVlaaigdacaaMi8oaca GLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0bWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaam4uamaaCa aaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaa aaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshadaWgaaWcbaGaam yAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqa beaakiadaITHYaIOaaaacaGL7bGaayzFaaGaamizaiaadEeadaqade qaaiaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaiaa wUfacaGLDbaadaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaadaGade abaeqabaWaaeWaaeaadaWcaaqaaiaadgfadaqhaaWcbaGaamiCaaqa amaabmqabaGaaGjcVlaaikdacaaMi8oacaGLOaGaayzkaaaaaOWaae WabeaacaWHYoGaaGilaiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaabaGaam4uamaaCaaaleqabaWaaeWabeaaca aMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7a caaISaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaaaaGaaGjbVlabgkHiTiaaysW7daWcaaqaaiaadgfadaqhaaWc baGaamiCaaqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaay zkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0bWaaSbaaSqa aiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaam4uamaaCaaaleqaba WaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqa deqaaiaahk7acaaISaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqaba aakiaawIcacaGLPaaaaaWaaSaaaeaacaWGtbWaaWbaaSqabeaadaqa deqaaiaayIW7caaIYaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqaba GaaCOSdiaaiYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaaqaaiaadofadaahaaWcbeqaamaabmqabaGaaGjcVl aaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGil aiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aaaaGaayjkaiaawMcaaaqaaiabgkHiTiaaysW7daqadaqaamaalaaa baGaaCyuamaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGymai aayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjb VlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaaca WGtbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjk aiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDamaaBa aaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaacaaMe8UaeyOeI0Ia aGjbVpaalaaabaGaamyuamaaDaaaleaacaWGWbaabaWaaeWabeaaca aMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7a caaISaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaaaeaacaWGtbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGa aGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaMe8 UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaadaWc aaqaaiaahofadaahaaWcbeqaamaabmqabaGaaGjcVlaaigdacaaMi8 oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG 0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGaam4uam aaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGL PaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaaeWa aeaadaWcaaqaaiaahofadaahaaWcbeqaamaabmqabaGaaGjcVlaaig dacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaa ysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaba Gaam4uamaaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaa wIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaaacaGLOaGaayzk aaWaaWbaaSqabeaakiadaITHYaIOaaaabaGaeyOeI0IaaGjbVpaabm aabaWaaSaaaeaacaWHtbWaaWbaaSqabeaadaqadeqaaiaayIW7caaI XaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcaca aMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaqa aiaadofadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oaca GLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0bWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawM caamaabmaabaWaaSaaaeaacaWHrbWaa0baaSqaaiaadchaaeaadaqa deqaaiaayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqaba GaaCOSdiaaiYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaaqaaiaadofadaahaaWcbeqaamaabmqabaGaaGjcVl aaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGil aiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aaaiaaysW7cqGHsislcaaMe8+aaSaaaeaacaWGrbWaa0baaSqaaiaa dchaaeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaa aakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDamaaBaaaleaacaWG PbaabeaaaOGaayjkaiaawMcaaaqaaiaadofadaahaaWcbeqaamaabm qabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaGilaiaaysW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGcca GLOaGaayzkaaaaamaalaaabaGaaC4uamaaCaaaleqabaWaaeWabeaa caaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk 7acaaISaGaaGjbVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaaaeaacaWGtbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWa GaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaM e8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaaai aawIcacaGLPaaadaahaaWcbeqaaOGamai2gkdiIcaaaaGaay5Eaiaa w2haaaaacaGLOaGaayzkaaaacaGLBbGaayzxaaGaamizaiaadEeada WgaaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGa ayjkaiaawMcaaaaa@6044@

and the sample-based score functions are

U ^ N,p ( β )= N 1 i U N 0 I( i A n ) w i [ Z i ( t i ) S ^ p ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) +0.5tr( [ N 1 i U N 0 I( i A N ) w i { S ^ ( 2 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) }d G i ( t ) ] 1 { ( Q ^ p ( 2 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) Q ^ p ( 0 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) S ^ ( 2 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( Q ^ p ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) Q ^ p ( 0 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) ( Q ^ p ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) Q ^ p ( 0 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) S ^ ( 1 ) ( β, t i ) S ^ ( 0 ) ( β, t i ) ) } ) ]d G i ( t ). MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9u81qpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGvbGbaKaadaWgaaWcbaGaamOtai aaiYcacaWGWbaabeaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaiab g2da9iaaykW7caWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaa buaeqaleaacaWGPbGaeyicI48exLMBb50ujbqegWuDJLgzHbYqHXgB PDMCHbhA5baceiGae8xvau1aaSbaaWqaaiaad6eaaeqaaaWcbeqdcq GHris5aOGaaGPaVpaapedabeWcbaGaaGimaaqaaiabg6HiLcqdcqGH RiI8aOGaamysamaabmqabaGaamyAaiaaykW7cqGHiiIZcaaMc8Uaam yqamaaBaaaleaacaWGUbaabeaaaOGaayjkaiaawMcaaiaadEhadaWg aaWcbaGaamyAaaqabaGcdaWadeqaaiaahQfadaWgaaWcbaGaamyAaa qabaGccaaMb8+aaeWabeaacaaMi8UaamiDamaaBaaaleaacaWGPbaa beaakiaayIW7aiaawIcacaGLPaaacqGHsisldaWcaaqaaiqadofaga qcamaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGymaiaayIW7 aiaawIcacaGLPaaaaaGccaaMb8+aaeWabeaacaWHYoGaaGilaiaayk W7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGa bm4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVd GaayjkaiaawMcaaaaakiaaygW7daqadeqaaiaahk7acaaISaGaaGPa VlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaGaey 4kaSIaaGimaiaai6cacaaI1aGaaeiDaiaabkhacaaMc8+aaeWabqaa beqaamaadmqabaGaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakm aaqafabeWcbaGaamyAaiabgIGiolab=vfavnaaBaaameaacaWGobaa beaaaSqab0GaeyyeIuoakiaaykW7daWdXaqabSqaaiaaicdaaeaacq GHEisPa0Gaey4kIipakiaadMeadaqadeqaaiaadMgacaaMc8Uaeyic I4SaaGPaVlaadgeadaWgaaWcbaGaamOtaaqabaaakiaawIcacaGLPa aacaWG3bWaaSbaaSqaaiaadMgaaeqaaOWaaiWaaeaadaWcaaqaaiqa dofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGOmaaGaayjkai aawMcaaaaakiaaygW7daqadeqaaiaahk7acaaISaGaaGPaVlaadsha daWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaaceWGtbGbaK aadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdaaiaawIcacaGLPaaa aaGccaaMb8+aaeWabeaacaWHYoGaaGilaiaaykW7caWG0bWaaSbaaS qaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaiabgkHiTmaabmaabaWa aSaaaeaaceWHtbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaig daaiaawIcacaGLPaaaaaGccaaMb8+aaeWabeaacaWHYoGaaGilaiaa ykW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaba Gabm4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaaacaGL OaGaayzkaaaaaOGaaGzaVpaabmqabaGaaCOSdiaaiYcacaaMc8Uaam iDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaaaiaawIca caGLPaaadaqadaqaamaalaaabaGabC4uayaajaWaaWbaaSqabeaada qadeqaaiaayIW7caaIXaaacaGLOaGaayzkaaaaaOGaaGzaVpaabmqa baGaaCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaaqaaiqadofagaqcamaaCaaaleqabaWaaeWabeaa caaMi8UaaGimaaGaayjkaiaawMcaaaaakiaaygW7daqadeqaaiaahk 7acaaISaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIca caGLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaa aacaGL7bGaayzFaaGaamizaiaadEeadaWgaaWcbaGaamyAaaqabaGc caaMb8+aaeWabeaacaaMi8UaamiDaaGaayjkaiaawMcaaaGaay5wai aaw2faamaaCaaaleqabaGaeyOeI0IaaGymaaaaaOqaamaacmqaeaqa beaadaqadaqaamaalaaabaGabmyuayaajaWaa0baaSqaaiaadchaae aadaqadeqaaiaayIW7caaIYaaacaGLOaGaayzkaaaaaOGaaGzaVpaa bmqabaGaaCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaacaWGPbaabe aaaOGaayjkaiaawMcaaaqaaiqadofagaqcamaaCaaaleqabaWaaeWa beaacaaMi8UaaGimaaGaayjkaiaawMcaaaaakiaaygW7daqadeqaai aahk7acaaISaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaakiaa wIcacaGLPaaaaaGaeyOeI0YaaSaaaeaaceWGrbGbaKaadaqhaaWcba GaamiCaaqaamaabmqabaGaaGjcVlaaicdaaiaawIcacaGLPaaaaaGc caaMb8+aaeWabeaacaWHYoGaaGilaiaaykW7caWG0bWaaSbaaSqaai aadMgaaeqaaaGccaGLOaGaayzkaaaabaGabm4uayaajaWaaWbaaSqa beaadaqadeqaaiaayIW7caaIWaaacaGLOaGaayzkaaaaaOGaaGzaVp aabmqabaGaaCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaacaWGPbaa beaaaOGaayjkaiaawMcaaaaadaWcaaqaaiqadofagaqcamaaCaaale qabaWaaeWabeaacaaMi8UaaGOmaaGaayjkaiaawMcaaaaakiaaygW7 daqadeqaaiaahk7acaaISaGaaGPaVlaadshadaWgaaWcbaGaamyAaa qabaaakiaawIcacaGLPaaaaeaaceWGtbGbaKaadaahaaWcbeqaamaa bmqabaGaaGjcVlaaicdaaiaawIcacaGLPaaaaaGccaaMb8+aaeWabe aacaWHYoGaaGilaiaaykW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGc caGLOaGaayzkaaaaaaGaayjkaiaawMcaaaqaaiabgkHiTiaaykW7da qadaqaamaalaaabaGabCyuayaajaWaa0baaSqaaiaadchaaeaadaqa deqaaiaayIW7caaIXaaacaGLOaGaayzkaaaaaOGaaGzaVpaabmqaba GaaCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaacaWGPbaabeaaaOGa ayjkaiaawMcaaaqaaiqadofagaqcamaaCaaaleqabaWaaeWabeaaca aMi8UaaGimaaGaayjkaiaawMcaaaaakiaaygW7daqadeqaaiaahk7a caaISaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcaca GLPaaaaaGaeyOeI0YaaSaaaeaaceWGrbGbaKaadaqhaaWcbaGaamiC aaqaamaabmqabaGaaGjcVlaaicdaaiaawIcacaGLPaaaaaGccaaMb8 +aaeWabeaacaWHYoGaaGilaiaaykW7caWG0bWaaSbaaSqaaiaadMga aeqaaaGccaGLOaGaayzkaaaabaGabm4uayaajaWaaWbaaSqabeaada qadeqaaiaayIW7caaIWaaacaGLOaGaayzkaaaaaOGaaGzaVpaabmqa baGaaCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaacaWGPbaabeaaaO GaayjkaiaawMcaaaaadaWcaaqaaiqahofagaqcamaaCaaaleqabaWa aeWabeaacaaMi8UaaGymaaGaayjkaiaawMcaaaaakiaaygW7daqade qaaiaahk7acaaISaGaaGPaVlaadshadaWgaaWcbaGaamyAaaqabaaa kiaawIcacaGLPaaaaeaaceWGtbGbaKaadaahaaWcbeqaamaabmqaba GaaGjcVlaaicdaaiaawIcacaGLPaaaaaGccaaMb8+aaeWabeaacaWH YoGaaGilaiaaykW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOa GaayzkaaaaaaGaayjkaiaawMcaamaabmaabaWaaSaaaeaaceWHtbGb aKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaigdaaiaawIcacaGLPa aaaaGccaaMb8+aaeWabeaacaWHYoGaaGilaiaaykW7caWG0bWaaSba aSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaabaGabm4uayaajaWaaW baaSqabeaadaqadeqaaiaayIW7caaIWaaacaGLOaGaayzkaaaaaOGa aGzaVpaabmqabaGaaCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaaca WGPbaabeaaaOGaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaahaaWc beqaaOGamai2gkdiIcaaaeaacqGHsislcaaMc8+aaeWaaeaadaWcaa qaaiqahofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGymaaGa ayjkaiaawMcaaaaakiaaygW7daqadeqaaiaahk7acaaISaGaaGPaVl aadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaaceWG tbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdaaiaawIcaca GLPaaaaaGccaaMb8+aaeWabeaacaWHYoGaaGilaiaaykW7caWG0bWa aSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaaGaayjkaiaawM caamaabmaabaWaaSaaaeaaceWHrbGbaKaadaqhaaWcbaGaamiCaaqa amaabmqabaGaaGjcVlaaigdaaiaawIcacaGLPaaaaaGccaaMb8+aae WabeaacaWHYoGaaGilaiaaykW7caWG0bWaaSbaaSqaaiaadMgaaeqa aaGccaGLOaGaayzkaaaabaGabm4uayaajaWaaWbaaSqabeaadaqade qaaiaayIW7caaIWaaacaGLOaGaayzkaaaaaOGaaGzaVpaabmqabaGa aCOSdiaaiYcacaaMc8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaay jkaiaawMcaaaaacaaMi8UaaGjcVlabgkHiTiaayIW7caaMi8+aaSaa aeaaceWGrbGbaKaadaqhaaWcbaGaamiCaaqaamaabmqabaGaaGjcVl aaicdaaiaawIcacaGLPaaaaaGccaaMb8+aaeWabeaacaWHYoGaaGil aiaaykW7caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaa aabaGabm4uayaajaWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaaa caGLOaGaayzkaaaaaOGaaGzaVpaabmqabaGaaCOSdiaaiYcacaaMc8 UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaaaadaWc aaqaaiqahofagaqcamaaCaaaleqabaWaaeWabeaacaaMi8UaaGymaa GaayjkaiaawMcaaaaakiaaygW7daqadeqaaiaahk7acaaISaGaaGPa VlaadshadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaaeaace WGtbGbaKaadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdaaiaawIca caGLPaaaaaGccaaMb8+aaeWabeaacaWHYoGaaGilaiaaykW7caWG0b WaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaaaaGaayjkaiaa wMcaamaaCaaaleqabaGccWaGyBOmGikaaaaacaGL7bGaayzFaaaaai aawIcacaGLPaaaaiaawUfacaGLDbaacaWGKbGaam4ramaaBaaaleaa caWGPbaabeaakiaaygW7daqadeqaaiaayIW7caWG0baacaGLOaGaay zkaaGaaiOlaaaa@70B7@

Note that the quantities S ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGtbWaaWbaaSqabeaadaqadeqaai aayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaaaaa@37B3@ and Q p ( a ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGrbWaa0baaSqaaiaadchaaeaada qadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaaaaa@38A6@ are simply means over finite population quantities. Define the limits of these means as follows:

s ( a ) ( β , t ) := lim N S ( a ) ( β , t ) = lim N N 1 i U N I ( t i t ) exp ( β Z i ( t ) ) [ Z i ( t ) ] a q p ( a ) ( β , t ) := Q p ( a ) ( β , t ) = N 1 i U N I ( t i t ) exp ( β Z i ( t ) ) Z i , p ( t ) [ Z i ( t ) ] a g ( t ) := lim N N 1 i U N G i ( t ) α := lim N N 1 i U N 0 Z i ( t ) d G i ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9x8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaGaaeGbcaaaaeaacaWHZbWaaWbaaS qabeaadaqadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaaaa kmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDaaGaayjkaiaawMcaaa qaaiaaiQdacaaI9aGaaGjbVlaaykW7daGfqbqabSqaaiaad6eacqGH sgIRcqGHEisPaeqakeaaciGGSbGaaiyAaiaac2gaaaGaaGPaVlaaho fadaahaaWcbeqaamaabmqabaGaaGjcVlaadggacaaMi8oacaGLOaGa ayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0baacaGLOa GaayzkaaaabaaabaGaaGypaiaaysW7caaMc8+aaybuaeqaleaacaWG obGaeyOKH4QaeyOhIukabeGcbaGaciiBaiaacMgacaGGTbaaaiaayk W7caWGobWaaWbaaSqabeaacqGHsislcaaIXaaaaOWaaabuaeqaleaa caWGPbGaeyicI48exLMBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5b aceiGae8xvau1aaSbaaWqaaiaad6eaaeqaaaWcbeqdcqGHris5aOGa amysamaabmqabaGaamiDamaaBaaaleaacaWGPbaabeaakiaaysW7cq GHLjYScaaMe8UaamiDaaGaayjkaiaawMcaaiGacwgacaGG4bGaaiiC amaabmqabaGabCOSdyaafaGaaCOwamaaBaaaleaacaWGPbaabeaakm aabmqabaGaaGjcVlaadshacaaMi8oacaGLOaGaayzkaaaacaGLOaGa ayzkaaWaamWabeaacaWHAbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabe aacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaaaiaawUfacaGLDbaa daahaaWcbeqaaiabgEPielaadggaaaaakeaacaWGXbWaa0baaSqaai aadchaaeaadaqadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMca aaaakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDaaGaayjkaiaawM caaaqaaiaaiQdacaaI9aGaaGjbVlaaykW7caWGrbWaa0baaSqaaiaa dchaaeaadaqadeqaaiaayIW7caWGHbGaaGjcVdGaayjkaiaawMcaaa aakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDaaGaayjkaiaawMca aaqaaaqaaiaai2dacaaMe8UaaGPaVlaad6eadaahaaWcbeqaaiabgk HiTiaaigdaaaGcdaaeqbqabSqaaiaadMgacqGHiiIZcqWFvbqvdaWg aaadbaGaamOtaaqabaaaleqaniabggHiLdGccaWGjbWaaeWabeaaca WG0bWaaSbaaSqaaiaadMgaaeqaaOGaaGjbVlabgwMiZkaaysW7caWG 0baacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWabeaaceWHYo GbauaacaWHAbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaaMi8Ua amiDaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaWGAbWaaS baaSqaaiaadMgacaaISaGaaGjbVlaadchaaeqaaOWaaeWabeaacaaM i8UaamiDaiaayIW7aiaawIcacaGLPaaadaWadeqaaiaahQfadaWgaa WcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjk aiaawMcaaaGaay5waiaaw2faamaaCaaaleqabaGaey4LIqSaamyyaa aaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMi8Uaam4zamaabmqabaGaaGjcVlaadshacaaMi8oacaGLOaGaay zkaaaabaGaaGOoaiaai2dacaaMe8UaaGPaVpaawafabeWcbaGaamOt aiabgkziUkabg6HiLcqabOqaaiGacYgacaGGPbGaaiyBaaaacaaMc8 UaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqafabeWcbaGa amyAaiabgIGiolab=vfavnaaBaaameaacaWGobaabeaaaSqab0Gaey yeIuoakiaaykW7caWGhbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaa caaMi8UaamiDaiaayIW7aiaawIcacaGLPaaaaeaacaaMc8UaaGPaVl aaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaeqySdegabaGaaGOoaiaai2dacaaMe8UaaG PaVpaawafabeWcbaGaamOtaiabgkziUkabg6HiLcqabOqaaiGacYga caGGPbGaaiyBaaaacaaMc8UaamOtamaaCaaaleqabaGaeyOeI0IaaG ymaaaakmaaqafabeWcbaGaamyAaiabgIGiolab=vfavnaaBaaameaa caWGobaabeaaaSqab0GaeyyeIuoakiaaykW7daWdXaqabSqaaiaaic daaeaacqGHEisPa0Gaey4kIipakiaaykW7caWHAbWaaSbaaSqaaiaa dMgaaeqaaOWaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPa aacaWGKbGaam4ramaaBaaaleaacaWGPbaabeaakmaabmqabaGaaGjc VlaadshacaaMi8oacaGLOaGaayzkaaGaaiOlaaaaaaa@71EF@

Thus the finite population score function, U N , p ( β ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbWaaSbaaSqaaiaad6eacaaISa GaaGjbVlaadchaaeqaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaGa aiilaaaa@39AF@ converges to the superpopulation score function u N , p ( β ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG1bWaaSbaaSqaaiaad6eacaaISa GaaGjbVlaadchaaeqaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaGa aiilaaaa@39CF@ where

u N , p ( β ) = α 0 s p ( 1 ) ( β , t ) s ( 0 ) ( β , t ) d g ( t ) + 0.5 tr ( 0 [ 0 { s ( 2 ) ( β , t ) s ( 0 ) ( β , t ) ( s ( 1 ) ( β , t ) s ( 0 ) ( β , t ) ) ( s ( 1 ) ( β , t ) s ( 0 ) ( β , t ) ) } d g ( t ) ] 1 { ( q p ( 2 ) ( β , t ) s ( 0 ) ( β , t ) q p ( 0 ) ( β , t ) s ( 0 ) ( β , t ) s ( 2 ) ( β , t ) s ( 0 ) ( β , t ) ) ( q p ( 1 ) ( β , t ) s ( 0 ) ( β , t ) q q p ( 0 ) ( β , t ) s ( 0 ) ( β , t ) s ( 1 ) ( β , t ) s ( 0 ) ( β , t ) ) ( s ( 1 ) ( β , t ) s ( 0 ) ( β , t ) ) ( s ( 1 ) ( β , t ) s ( 0 ) ( β , t ) ) ( q p ( 1 ) ( β , t ) s ( 0 ) ( β , t ) q p ( 0 ) ( β , t ) s ( 0 ) ( β , t ) s ( 1 ) ( β , t ) s ( 0 ) ( β , t ) ) } d g ( t ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9x8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG1bWaaSbaaSqaaiaad6eacaaISa GaaGjbVlaadchaaeqaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaGa aGypaiaaysW7caaMc8UaeqySdeMaaGjbVlabgkHiTiaaysW7daWdXa qabSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaalaaabaGaam4C amaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGymaiaayIW7ai aawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadsha aiaawIcacaGLPaaaaeaacaWGZbWaaWbaaSqabeaadaqadeqaaiaayI W7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaa iYcacaaMe8UaamiDaaGaayjkaiaawMcaaaaacaWGKbGaam4zamaabm qabaGaaGjcVlaadshacaaMi8oacaGLOaGaayzkaaGaey4kaSIaaGim aiaai6cacaaI1aGaaeiDaiaabkhacaaMc8+aaeWabqaabeqaamaape dabeWcbaGaaGimaaqaaiabg6HiLcqdcqGHRiI8aOWaamWaaeaadaWd XaqabSqaaiaaicdaaeaacqGHEisPa0Gaey4kIipakmaacmaabaWaaS aaaeaacaWGZbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIYaGaaGjc VdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaMe8Uaam iDaaGaayjkaiaawMcaaaqaaiaadohadaahaaWcbeqaamaabmqabaGa aGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYo GaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaaaiabgkHiTmaabmaa baWaaSaaaeaacaWHZbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIXa GaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaM e8UaamiDaaGaayjkaiaawMcaaaqaaiaadohadaahaaWcbeqaamaabm qabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaaaaGaayjkai aawMcaamaabmaabaWaaSaaaeaacaWHZbWaaWbaaSqabeaadaqadeqa aiaayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaC OSdiaaiYcacaaMe8UaamiDaaGaayjkaiaawMcaaaqaaiaadohadaah aaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaa aaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0baacaGLOaGaayzk aaaaaaGaayjkaiaawMcaamaaCaaaleqabaGccWaGyBOmGikaaaGaay 5Eaiaaw2haaiaaysW7caWGKbGaam4zamaabmqabaGaaGjcVlaadsha caaMi8oacaGLOaGaayzkaaaacaGLBbGaayzxaaWaaWbaaSqabeaacq GHsislcaaIXaaaaaGcbaWaaiWabqaabeqaamaabmaabaWaaSaaaeaa caWGXbWaa0baaSqaaiaadchaaeaadaqadeqaaiaayIW7caaIYaGaaG jcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaMe8Ua amiDaaGaayjkaiaawMcaaaqaaiaadohadaahaaWcbeqaamaabmqaba GaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWH YoGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaaaiabgkHiTmaala aabaGaamyCamaaDaaaleaacaWGWbaabaWaaeWabeaacaaMi8UaaGim aiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGaaG jbVlaadshaaiaawIcacaGLPaaaaeaacaWGZbWaaWbaaSqabeaadaqa deqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqaba GaaCOSdiaaiYcacaaMe8UaamiDaaGaayjkaiaawMcaaaaadaWcaaqa aiaadohadaahaaWcbeqaamaabmqabaGaaGjcVlaaikdacaaMi8oaca GLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0baa caGLOaGaayzkaaaabaGaam4CamaaCaaaleqabaWaaeWabeaacaaMi8 UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaI SaGaaGjbVlaadshaaiaawIcacaGLPaaaaaaacaGLOaGaayzkaaWaa0 baaSqaamaaBaaameaadaWgaaqaaiaaygW7aeqaaaqabaaaleaadaah aaadbeqaamaaCaaabeqaaiaaygW7aaaaaaaaaOqaaiabgkHiTmaabm aabaWaaSaaaeaacaWHXbWaa0baaSqaaiaadchaaeaadaqadeqaaiaa yIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdi aaiYcacaaMe8UaamiDaaGaayjkaiaawMcaaaqaaiaadohadaahaaWc beqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaO WaaeWabeaacaWHYoGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaa aiabgkHiTmaalaaabaGaamyCamaaDaaaleaacaWGWbaabaWaaeWabe aacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaa hk7acaaISaGaaGjbVlaadshaaiaawIcacaGLPaaaaeaacaWGZbWaaW baaSqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMca aaaakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDaaGaayjkaiaawM caaaaadaWcaaqaaiaahohadaahaaWcbeqaamaabmqabaGaaGjcVlaa igdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaGilai aaysW7caWG0baacaGLOaGaayzkaaaabaGaam4CamaaCaaaleqabaWa aeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqade qaaiaahk7acaaISaGaaGjbVlaadshaaiaawIcacaGLPaaaaaaacaGL OaGaayzkaaWaaeWaaeaadaWcaaqaaiaahohadaahaaWcbeqaamaabm qabaGaaGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaabaGaam4Cam aaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGL PaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshaaiaawIcaca GLPaaaaaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYaIOaaaa baGaeyOeI0YaaeWaaeaadaWcaaqaaiaahohadaahaaWcbeqaamaabm qabaGaaGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaa caWHYoGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaaabaGaam4Cam aaCaaaleqabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGL PaaaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshaaiaawIcaca GLPaaaaaaacaGLOaGaayzkaaWaaeWaaeaadaWcaaqaaiaahghadaqh aaWcbaGaamiCaaqaamaabmqabaGaaGjcVlaaigdacaaMi8oacaGLOa GaayzkaaaaaOWaaeWabeaacaWHYoGaaGilaiaaysW7caWG0baacaGL OaGaayzkaaaabaGaam4CamaaCaaaleqabaWaaeWabeaacaaMi8UaaG imaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7acaaISaGa aGjbVlaadshaaiaawIcacaGLPaaaaaGaeyOeI0YaaSaaaeaacaWGXb Waa0baaSqaaiaadchaaeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGa ayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDaa GaayjkaiaawMcaaaqaaiaadohadaahaaWcbeqaamaabmqabaGaaGjc VlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaG ilaiaaysW7caWG0baacaGLOaGaayzkaaaaamaalaaabaGaaC4Camaa CaaaleqabaWaaeWabeaacaaMi8UaaGymaiaayIW7aiaawIcacaGLPa aaaaGcdaqadeqaaiaahk7acaaISaGaaGjbVlaadshaaiaawIcacaGL PaaaaeaacaWGZbWaaWbaaSqabeaadaqadeqaaiaayIW7caaIWaGaaG jcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSdiaaiYcacaaMe8Ua amiDaaGaayjkaiaawMcaaaaaaiaawIcacaGLPaaadaahaaWcbeqaaO Gamai2gkdiIcaaaaGaay5Eaiaaw2haaiaadsgacaWGNbWaaeWabeaa caaMi8UaamiDaiaayIW7aiaawIcacaGLPaaaaaGaayjkaiaawMcaai aac6caaaa@17FD@

Now assume that the population quantities, Z i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHAbWaaSbaaSqaaiaadMgaaeqaaO Gaaiilaaaa@33D3@ that are used to define the score functions have finite moments and the sequence of sample designs is such that any smooth functions of NHT estimators are consistent. Because U N ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbWaaSbaaSqaaiaad6eaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaaaaa@35C7@ is a smooth function of population totals, and each total is estimated by using a NHT estimator, U ^ N ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGvbGbaKaadaWgaaWcbaGaamOtaa qabaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaaa@35D7@ is design-consistent for U N ( β ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGvbWaaSbaaSqaaiaad6eaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaiOlaaaa@3679@ That is, ( U N ( β ) U ^ N ( β ) ) | F N = o ( 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaabceqaamaabmqabaGaamyvamaaBa aaleaacaWGobaabeaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaiaa ysW7cqGHsislcaaMe8UabmyvayaajaWaaSbaaSqaaiaad6eaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaGPa VdGaayjcSdWexLMBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5bacei Gae8Nray0aaSbaaSqaaiaad6eaaeqaaOGaaGjbVlaai2dacaaMe8Ua am4BamaabmqabaGaaGjcVlaaigdacaaMi8oacaGLOaGaayzkaaGaai Olaaaa@59B0@ Therefore, by using arguments similar to Lin (2000) and Andersen and Gill (1982), it can be shown that β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCOSdmaaBaaaleaacaWGob aabeaaaaa@34EA@ and β ^ N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaadaWgaaWcbaGaamOtaa qabaaaaa@3369@ converge to the same limit.

Because n / N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaWcgaqaaiaad6gaaeaacaWGobaaaa aa@32F8@ is fixed, A N w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaaeqaqabSqaaiaadgeadaWgaaadba GaamOtaaqabaaaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaa caWGPbaabeaaaaa@387C@ is the NHT estimator for N , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobGaaiilaaaa@329F@ and U ^ ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGvbGbaKaadaqadeqaaiaahk7aai aawIcacaGLPaaaaaa@34CE@ is a consistent estimator (not necessarily unbiased) of 0, both U ^ ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWGvbGbaKaadaqadeqaaiaahk7aai aawIcacaGLPaaaaaa@34CE@ and ( n / N ) U ^ ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaamaalyaabaGaamOBaaqaai aad6eaaaaacaGLOaGaayzkaaGabmyvayaajaWaaeWabeaacaWHYoaa caGLOaGaayzkaaaaaa@3834@ converge to the same limit with the same order of convergence. It is straightforward to show that ( n / N ) U ^ ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaamaalyaabaGaamOBaaqaai aad6eaaaaacaGLOaGaayzkaaGabmyvayaajaWaaeWabeaacaWHYoaa caGLOaGaayzkaaaaaa@3834@ and ( n / A N w i ) U ^ ( β ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaqadeqaamaalyaabaGaamOBaaqaam aaqababeWcbaGaamyqamaaBaaameaacaWGobaabeaaaSqab0Gaeyye IuoakiaaykW7caWG3bWaaSbaaSqaaiaadMgaaeqaaaaaaOGaayjkai aawMcaaiqadwfagaqcamaabmqabaGaaCOSdaGaayjkaiaawMcaaiaa cYcaaaa@3F7B@ the estimating equations that use the scaled weights, have the same expectation.

Appendix 2

SAS program to obtain the Firth penalized likelihood estimates

The SAS statements at the end of this section fit a proportional hazards regression model using the scaled weights in Firth’s penalized likelihood. The PROC statement invokes the procedure, and the VARMETHOD = JK option requests the jackknife variance estimation method. You can also specify VARMETHOD = TAYLOR, VARMETHOD = BRR, or VARMETHOD = BOOT to request the Taylor series linearized, balanced repeated replication, or bootstrap replication variance estimation method, respectively. The DETAILS sub-option of the VARMETHOD = JK option prints estimates from each replicate sample along with the convergence status. The WEIGHT statement specifies the sampling weights, the STRATA statement specifies the strata, and the CLUSTER statement specifies the PSUs. The MODEL statement specifies the analysis model. The FIRTH option in the MODEL statement requests Firth’s penalized likelihood. The two HAZARDRATIO statements requests hazard ratios for blood cholesterol and smoking, respectively. The ODS OUTPUT statement stores replicate estimates and convergence status from each replicate in the SAS data set RepEstimatesFirth. This data set is useful for checking the convergence status of every replicate sample.

Start of text box

proc surveyphreg data = NHEFS varmethod=jk (details);

class
Gender HighBloodChol Race Smoker;
weight
ObservationWeight;
strata
Stratum;
cluster
PSU;
model
EventTime*HeartAttack(2) = Income HighBloodChol Smoker Race Gender Race*Gender / firth;
hazardratio
HighBloodChol;
hazardratio
Smoker;
ods output
repestimates=RepEtimatesFirth;

run;

End of text box

References

Andersen, P.K., and Gill, R.D. (1982). Cox’s regression model counting process: A large sample study. Annals of Statistics, 10, 1100-1120.

Bender, R., Augustin, T. and Blettner, M. (2005). Generating survival times to simulate Cox proportional hazards models. Statistics in Medicine, 24, 1713-1723.

Binder, D.A. (1983). On the variances of asymptotically normal estimators from complex surveys. International Statistical Review, 51, 279-292.

Binder, D.A. (1990). Fitting Cox’s proportional hazards models from survey data. Proceedings of the Survey Research Methods Section, American Statistical Association, 342-347.

Binder, D.A. (1992). Fitting Cox’s proportional hazards models from survey data. Biometrika, 79, 139-147.

Binder, D.A., and Patak, Z. (1994). Use of estimating functions for estimation from complex surveys. Journal of the American Statistical Association, 89(427),1035-1043.

Boudreau, C., and Lawless, J.F. (2006). Survival analysis based on the proportional hazards model and survey data. Canadian Journal of Statistics, 34, 203-216.

Breslow, N.E. (1974). Covariance analysis of censored survival data. Biometrics, 30, 89-99.

Chambers, R.L., and Skinner, C.J. (2003). Analysis of Survey Data. Chichester, UK: John Wiley & Sons, Inc.

Chambless, L.E., and Boyle, K.E. (1985). Maximum likelihood methods for complex sample data: Logistic regression and discrete proportional hazards models. Communications in Statistics - Theory and Methods, 14, 1377-1392.

Cox, D.R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, Series B, (with discussion), 34, 187-220.

Cox, D.R. (1975). Partial likelihood. Biometrika, 62, 269-276.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 27-38.

Fuller, W.A. (1975). Regression analysis for sample survey. Sankhyā, Series C, 37, 117-132.

Fuller, W.A. (2009). Sampling Statistics. Hoboken, NJ: John Wiley & Sons, Inc.

Godambe, V.P., and Thompson, M.E. (1986). Parameters of superpopulation and survey population: Their relationships and estimation. International Statistical Review, 54, 127-138.

Heinze, G. (1999). The Application of Firth’s Procedure to Cox and Logistic Regression. Technical Report 10, updated January 2001, Department of Medical Computer Sciences, Section of Clinical Biometrics, University of Vienna.

Heinze, G., and Schemper, M. (2001). A solution to the problem of monotone likelihood in Cox regression. Biometrics, 51, 114-119.

Heinzel, G., Rüdiger, A. and Schilling, R. (2002). Spectrum and Spectral Density Estimation by the Discrete Fourier Transform (DFT), Including a Comprehensive List of Window Functions and Some New Flat-Top Windows. Tech. rep., Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Teilinstitut Hannover.

Kish, L., and Frankel, M.R. (1974). Inference from complex samples. Journal of the Royal Statistical Society, Series B, 36, 1-37.

Korn, E.L., and Graubard, B.I. (1999). Analysis of Health Surveys. New York: John Wiley & Sons, Inc.

Lee, E.W., Wei, L.J. and Amato, D.A. (1992). Cox-type regression analysis for large numbers of small groups of correlated failure time observations. Survival Analysis: State of the Art, (Eds., J.P. Klein and P.K. Goel), Dordrecht, Netherlands: Kluwer Academic, 237-247.

Lin, D.Y. (2000). On fitting Cox’s proportional hazards models to survey data. Biometrika, 87, 37-47.

Lin, D.Y., and Wei, L.J. (1989). The robust inference for the proportional hazards model. Journal of the American Statistical Association, 84, 1074-1078.

Mukhopadhyay, P.K. (2010). Not hazardous to your health: Proportional hazards modeling for survey data with the SURVEYPHREG procedure. Proceedings of the SAS Global Forum 2010 Conference. Cary, NC: SAS Institute Inc. http://support.sas.com/resources/papers/proceedings10/254-2010.pdf.

Mukhopadhyay, P.K., An, A.B., Tobias, R.D. and Watts, D.L. (2008). Try, try again: Replication-based variance estimation methods for survey data analysis in SAS 9.2. Proceedings of the SAS Global Forum 2008 Conference. Cary, NC: SAS Institute Inc. http://www2.sas.com/proceedings/forum2008/367-2008.pdf.

Pfeffermann, D. (1993). The role of sampling weights when modeling survey data. International Statistical Review, 61, 317-337.

Rao, J.N.K. (2005). Interplay between sample survey theory and practice: An appraisal. Survey Methodology, 31, 2, 117-138. Paper available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2005002/article/9040-eng.pdf.

SAS Institute Inc. (2018). SAS/STAT 15.1 User’s Guide. Cary, NC: SAS Institute Inc. http://go.documentation.sas.com/?docsetId=statug&docsetTarget=titlepage.htm&docsetVersion=15.1&locale=en.

Shao, J., and Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer-Verlag.

Sitter, R.R. (1992). Comparing three bootstrap methods for survey data. Canadian Journal of Statistics, 20, 135-154.

Wolter, K.M. (2007). Introduction to Variance Estimation. 2nd Ed. New York: Springer.


Date modified: