Firth’s penalized likelihood for proportional hazards regressions for complex surveys
Section 2. Weight scaling

Let w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaa aa@3332@ be the weight for unit i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbGaaiOlaaaa@32BC@ We propose to use w ˜ i = ( A N 1 / A N w i ) w i = ( n / A N w i ) w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWG3bGbaGaadaWgaaWcbaGaamyAaa qabaGccaaMe8UaaGypaiaaysW7daqadaqaamaalyaabaWaaabeaeqa leaacaWGbbWaaSbaaWqaaiaad6eaaeqaaaWcbeqdcqGHris5aOGaaG ymaaqaamaaqababeWcbaGaamyqamaaBaaameaacaWGobaabeaaaSqa b0GaeyyeIuoakiaadEhadaWgaaWcbaGaamyAaaqabaaaaaGccaGLOa GaayzkaaGaaGjbVlaadEhadaWgaaWcbaGaamyAaaqabaGccaaMe8Ua aGypaiaaysW7daqadaqaamaalyaabaGaamOBaaqaamaaqababeWcba GaamyqamaaBaaameaacaWGobaabeaaaSqab0GaeyyeIuoakiaadEha daWgaaWcbaGaamyAaaqabaaaaaGccaGLOaGaayzkaaGaaGjbVlaadE hadaWgaaWcbaGaamyAaaqabaaaaa@56C6@ as the scaled weight. By construction, the scaled weights are invariant to the scale of the weight. That is, w ˜ i * = ( n / A N γ w i ) γ w i = ( n / A N w i ) w i = w ˜ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWG3bGbaGaadaqhaaWcbaGaamyAaa qaaiaacQcaaaGccaaMe8UaaGypaiaaysW7daqadeqaamaalyaabaGa amOBaaqaamaaqababeWcbaGaamyqamaaBaaameaacaWGobaabeaaaS qab0GaeyyeIuoakiaaykW7cqaHZoWzcaWG3bWaaSbaaSqaaiaadMga aeqaaaaaaOGaayjkaiaawMcaaiaaysW7cqaHZoWzcaWG3bWaaSbaaS qaaiaadMgaaeqaaOGaaGjbVlaai2dacaaMe8+aaeWabeaadaWcgaqa aiaad6gaaeaadaaeqaqabSqaaiaadgeadaWgaaadbaGaamOtaaqaba aaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWGPbaabeaa aaaakiaawIcacaGLPaaacaaMe8Uaam4DamaaBaaaleaacaWGPbaabe aakiaaysW7caaI9aGaaGjbVlqadEhagaacamaaBaaaleaacaWGPbaa beaaaaa@6064@ for all γ 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHZoWzcaaMe8UaeyiyIKRaaGjbVl aaicdacaGGUaaaaa@3910@

Firth’s penalized likelihood is given by L p ( β ) = L ( β ) | I ( β ) | 0.5 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGmbWaaSbaaSqaaiaadchaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8Ua amitamaabmqabaGaaCOSdaGaayjkaiaawMcaamaaemqabaGaaGjcVp XvP5wqonvsaeHbmv3yPrwyGmuySXwANjxyWHwEaGabciab=Leajnaa bmqabaGaaCOSdaGaayjkaiaawMcaaiaayIW7aiaawEa7caGLiWoada ahaaWcbeqaaiaaicdacaaIUaGaaGynaaaakiaacYcaaaa@5409@ where L ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGmbWaaeWabeaacaWHYoaacaGLOa Gaayzkaaaaaa@34B5@ and I ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFjbqsdaqadeqaaiaahk7aaiaawIcacaGLPaaa aaa@3E6E@ are the unpenalized likelihood and information matrix, respectively. The penalized log likelihood is

l p ( β ) = l ( β ) + 0.5 log ( | I ( β ) | ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaSbaaSqaaiaadchaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGjbVlaai2dacaaMe8Ua amiBamaabmqabaGaaCOSdaGaayjkaiaawMcaaiaaysW7cqGHRaWkca aMe8UaaGimaiaai6cacaaI1aGaciiBaiaac+gacaGGNbWaaeWabeaa caaMi8+aaqWabeaacaaMi8+exLMBb50ujbqegWuDJLgzHbYqHXgBPD MCHbhA5baceiGae8xsaK0aaeWabeaacaWHYoaacaGLOaGaayzkaaGa aGjcVdGaay5bSlaawIa7aiaayIW7aiaawIcacaGLPaaacaGGUaaaaa@5F8B@

In particular, when the scaled weights are used, the Breslow unpenalized log partial likelihood (Breslow, 1974) is

l ( β ) = k = 1 K { β i D k w ˜ i Z i ( t k ) ( i D k w ˜ i ) log i R k w ˜ i exp ( β Z i ( t k ) ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaeWabeaacaWHYoaacaGLOa GaayzkaaGaaGjbVlaai2dacaaMe8+aaabCaeqaleaacaWGRbGaaGyp aiaaigdaaeaacaWGlbaaniabggHiLdGcdaGadeqaaiqahk7agaqbam aaqafabeWcbaGaamyAaiabgIGiopXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaGabciab=reaenaaBaaameaacaWGRbaabeaaaSqab0 GaeyyeIuoakiaaykW7ceWG3bGbaGaadaWgaaWcbaGaamyAaaqabaGc caaMi8UaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDam aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaaysW7cqGHsisl caaMe8+aaeWabeaadaaeqbqabSqaaiaadMgacqGHiiIZcqWFebarda WgaaadbaGaam4AaaqabaaaleqaniabggHiLdGcceWG3bGbaGaadaWg aaWcbaGaamyAaaqabaaakiaawIcacaGLPaaacaaMe8UaciiBaiaac+ gacaGGNbWaaabuaeqaleaacaWGPbGaeyicI4Sae8Nuai1aaSbaaWqa aiaadUgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlqadEhagaacamaaBa aaleaacaWGPbaabeaakiGacwgacaGG4bGaaiiCamaabmqabaGabCOS dyaafaGaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDam aaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMca aaGaay5Eaiaaw2haaaaa@85FF@

where w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaa aa@3332@ is the unscaled weight for unit i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbGaaiOlaaaa@32BC@

Denote

S k ( a ) ( β ) = i R k w ˜ i exp ( β Z i ( t k ) ) [ Z i ( t k ) ] a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaC4uamaaDaaaleaacaWGRb aabaWaaeWabeaacaaMi8UaamyyaiaayIW7aiaawIcacaGLPaaaaaGc daqadeqaaiaahk7aaiaawIcacaGLPaaacaaMe8UaaGypaiaaysW7da aeqbqabSqaaiaadMgacqGHiiIZtCvAUfKttLearyat1nwAKfgidfgB SL2zYfgCOLhaiqGacqWFsbGudaWgaaadbaGaam4Aaaqabaaaleqani abggHiLdGccaaMc8Uabm4DayaaiaWaaSbaaSqaaiaadMgaaeqaaOGa ciyzaiaacIhacaGGWbGaaGPaVpaabmqabaGabCOSdyaafaGaaCOwam aaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaamaadmqabaGaaC OwamaaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDamaaBaaaleaa caWGRbaabeaaaOGaayjkaiaawMcaaaGaay5waiaaw2faamaaCaaale qabaGaey4LIqSaamyyaaaaaaa@6CB1@

where k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGRbaaaa@320C@ is the k th MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGRbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@341A@ -ordered event time, a = 0, 1, 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGHbGaaGjbVlaai2dacaaMe8UaaG imaiaaiYcacaaMe8UaaGymaiaaiYcacaaMe8UaaGOmaiaacYcaaaa@3D4A@ [ Z i ( t k ) ] 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaWadeqaaiaahQfadaWgaaWcbaGaam yAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgEPielaaic daaaaaaa@3BAF@ is 1, [ Z i ( t k ) ] 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaWadeqaaiaahQfadaWgaaWcbaGaam yAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgEPielaaig daaaaaaa@3BB0@ is the vector Z i ( t k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHAbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaWG0bWaaSbaaSqaaiaadUgaaeqaaaGccaGLOaGaayzk aaGaaiilaaaa@377C@ and [ Z i ( t k ) ] 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaWadeqaaiaahQfadaWgaaWcbaGaam yAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaiabgEPielaaik daaaaaaa@3BB1@ is the matrix [ Z i ( t k ) ] [ Z i ( t k ) ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaadaWadeqaaiaahQfadaWgaaWcbaGaam yAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaam4Aaaqabaaakiaa wIcacaGLPaaaaiaawUfacaGLDbaadaWadeqaaiaahQfadaWgaaWcba GaamyAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaam4Aaaqabaaa kiaawIcacaGLPaaaaiaawUfacaGLDbaadaahaaWcbeqaaOGamai2gk diIcaacaGGUaaaaa@442B@

Then the score function is given by

U ( β ) ( U ( β 1 ) , , U ( β p ) ) = l ( β ) β = k = 1 K { i D k w ˜ i Z i ( t k ) i D k w ˜ i S k ( 1 ) ( β ) S k 0 ( β ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeWacaaabaGaaGjcVlaahwfada qadeqaaiaahk7aaiaawIcacaGLPaaaaeaacqGHHjIUdaqadeqaaiaa dwfadaqadeqaaiabek7aInaaBaaaleaacaaIXaaabeaaaOGaayjkai aawMcaaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGvbWaaeWa beaacqaHYoGydaWgaaWcbaGaamiCaaqabaaakiaawIcacaGLPaaaai aawIcacaGLPaaadaahaaWcbeqaaOGamai2gkdiIcaaaeaaaeaacaaI 9aWaaSaaaeaacqGHciITcaWGSbWaaeWabeaacaWHYoaacaGLOaGaay zkaaaabaGaeyOaIyRaaCOSdaaaaeaaaeaacaaI9aWaaabCaeqaleaa caWGRbGaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGcdaGadeqaam aaqafabeWcbaGaamyAaiabgIGiopXvP5wqonvsaeHbmv3yPrwyGmuy SXwANjxyWHwEaGabciab=reaenaaBaaameaacaWGRbaabeaaaSqab0 GaeyyeIuoakiaaykW7ceWG3bGbaGaadaWgaaWcbaGaamyAaaqabaGc caWHAbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaWG0bWaaSbaaS qaaiaadUgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlabgkHiTiaaysW7 daaeqbqabSqaaiaadMgacqGHiiIZcqWFebardaWgaaadbaGaam4Aaa qabaaaleqaniabggHiLdGccaaMc8Uabm4DayaaiaWaaSbaaSqaaiaa dMgaaeqaaOWaaSaaaeaacaWHtbWaa0baaSqaaiaadUgaaeaadaqade qaaiaayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGa aCOSdaGaayjkaiaawMcaaaqaaiaadofadaqhaaWcbaGaam4Aaaqaai aaicdaaaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaaaacaGL7bGa ayzFaaaaaaaa@95C9@

and the Fisher information matrix is given by

I ( β ) = 2 l ( β ) β 2 = k = 1 K i D k w ˜ i { S k ( 2 ) ( β ) S k ( 0 ) ( β ) [ S k ( 1 ) ( β ) S k ( 0 ) ( β ) ] [ S k ( 1 ) ( β ) S k ( 0 ) ( β ) ] } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeGacaaabaWexLMBb50ujbqegW uDJLgzHbYqHXgBPDMCHbhA5baceiGae8xsaK0aaeWabeaacaWHYoaa caGLOaGaayzkaaaabaGaeyypa0JaaGjbVlabgkHiTmaalaaabaGaey OaIy7aaWbaaSqabeaacaaIYaaaaOGaamiBamaabmqabaGaaCOSdaGa ayjkaiaawMcaaaqaaiabgkGi2kaahk7acaaMi8+aaWbaaSqabeaaca aIYaaaaaaaaOqaaaqaaiaai2dacaaMe8+aaabCaeqaleaacaWGRbGa aGypaiaaigdaaeaacaWGlbaaniabggHiLdGcdaaeqbqabSqaaiaadM gacqGHiiIZcqWFebardaWgaaadbaGaam4AaaqabaaaleqaniabggHi LdGccaaMc8Uabm4DayaaiaWaaSbaaSqaaiaadMgaaeqaaOWaaiWabe aadaWcaaqaaiaahofacaaMi8+aa0baaSqaaiaadUgaaeaadaqadeqa aiaayIW7caaIYaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaC OSdaGaayjkaiaawMcaaaqaaiaadofadaqhaaWcbaGaam4Aaaqaamaa bmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabe aacaWHYoaacaGLOaGaayzkaaaaaiaaysW7cqGHsislcaaMe8+aamWa beaadaWcaaqaaiaahofacaaMi8+aa0baaSqaaiaadUgaaeaadaqade qaaiaayIW7caaIXaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGa aCOSdaGaayjkaiaawMcaaaqaaiaadofadaqhaaWcbaGaam4Aaaqaam aabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWa beaacaWHYoaacaGLOaGaayzkaaaaaaGaay5waiaaw2faamaadmqaba WaaSaaaeaacaWHtbGaaGjcVpaaDaaaleaacaWGRbaabaWaaeWabeaa caaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk 7aaiaawIcacaGLPaaaaeaacaWGtbWaa0baaSqaaiaadUgaaeaadaqa deqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqaba GaaCOSdaGaayjkaiaawMcaaaaaaiaawUfacaGLDbaadaahaaWcbeqa aOGamai2gkdiIcaaaiaawUhacaGL9baacaGGUaaaaaaa@AFA1@

Denote

Q k p ( a ) ( β ) = i R k w ˜ i exp ( β Z i ( t k ) ) Z i , p ( t k ) [ Z i ( t k ) ] a MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCyuamaaDaaaleaacaWGRb GaamiCaaqaamaabmqabaGaaGjcVlaadggacaaMi8oacaGLOaGaayzk aaaaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGjbVlaai2daca aMe8+aaabuaeqaleaacaWGPbGaeyicI48exLMBb50ujbqegWuDJLgz HbYqHXgBPDMCHbhA5baceiGae8Nuai1aaSbaaWqaaiaadUgaaeqaaa WcbeqdcqGHris5aOGaaGPaVlqadEhagaacamaaBaaaleaacaWGPbaa beaakiGacwgacaGG4bGaaiiCamaabmqabaGabCOSdyaafaGaaCOwam aaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaiaadQfadaWgaa WcbaGaamyAaiaaiYcacaaMe8UaamiCaaqabaGcdaqadeqaaiaadsha daWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaaIBbGaaCOwam aaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDamaaBaaaleaacaWG RbaabeaaaOGaayjkaiaawMcaaiaai2fadaahaaWcbeqaaiabgEPiel aadggaaaaaaa@74D6@

where a = 0, 1, 2 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGHbGaaGjbVlaai2dacaaMe8UaaG imaiaaiYcacaaMe8UaaGymaiaaiYcacaaMe8UaaGOmaiaacUdaaaa@3D59@ p = 1, , P ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGWbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGqbGaai4oaaaa @3DE9@ and Z i ( t ) = ( Z i , 1 ( t ) , , Z i , p ( t ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHAbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaacaaMe8Ua aGypaiaaysW7daqadeqaaiaadQfadaWgaaWcbaGaamyAaiaaiYcaca aMe8UaaGymaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjk aiaawMcaaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGAbWaaS baaSqaaiaadMgacaaISaGaaGjbVlaadchaaeqaaOWaaeWabeaacaaM i8UaamiDaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaGGUa aaaa@5A13@ Then

I ( β ) β p = k = 1 K i D k w ˜ i { [ Q k p ( 2 ) ( β ) S k ( 0 ) ( β ) Q k p ( 0 ) ( β ) S k ( 0 ) ( β ) S k ( 2 ) ( β ) S k ( 0 ) ( β ) ] [ Q k p ( 1 ) ( β ) S k ( 0 ) ( β ) Q k p ( 0 ) ( β ) S k ( 0 ) ( β ) S k ( 1 ) ( β ) S k ( 0 ) ( β ) ] [ S k ( 1 ) ( β ) S k ( 0 ) ( β ) ] [ S k ( 1 ) ( β ) S k ( 0 ) ( β ) ] [ Q k p ( 1 ) ( β ) S k ( 0 ) ( β ) Q k p ( 0 ) ( β ) S k ( 0 ) ( β ) S k ( 1 ) ( β ) S k ( 0 ) ( β ) ] } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeWacaaabaWaaSaaaeaacqGHci ITtCvAUfKttLearyat1nwAKfgidfgBSL2zYfgCOLhaiqGacqWFjbqs daqadeqaaiaahk7aaiaawIcacaGLPaaaaeaacqGHciITcqaHYoGyda WgaaWcbaGaamiCaaqabaaaaaGcbaGaeyypa0ZaaabCaeqaleaacaWG RbGaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGcdaaeqbqabSqaai aadMgacqGHiiIZcqWFebardaWgaaadbaGaam4Aaaqabaaaleqaniab ggHiLdGccaaMc8Uabm4DayaaiaWaaSbaaSqaaiaadMgaaeqaaOWaai qabeaacaaMi8+aamWabeaadaWcaaqaaiaahgfadaqhaaWcbaGaam4A aiaadchaaeaadaqadeqaaiaayIW7caaIYaGaaGjcVdGaayjkaiaawM caaaaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaaqaaiaadofadaqh aaWcbaGaam4AaaqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOa GaayzkaaaaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaaaaiaaysW7 cqGHsislcaaMe8+aaSaaaeaacaWHrbGaaGjcVpaaDaaaleaacaWGRb GaamiCaaqaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzk aaaaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaaabaGaam4uamaaDa aaleaacaWGRbaabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIca caGLPaaaaaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaaGaaGjbVp aalaaabaGaaC4uamaaDaaaleaacaWGRbaabaWaaeWabeaacaaMi8Ua aGOmaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7aaiaawI cacaGLPaaaaeaacaWGtbWaa0baaSqaaiaadUgaaeaadaqadeqaaiaa yIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOSda GaayjkaiaawMcaaaaaaiaawUfacaGLDbaadaqhaaWcbaaabaWaaWba aWqabeaaaaaaaaGccaGL7baaaeaaaeaacaaMe8UaaGzbVlaaywW7ca aMf8UaaGzbVlabgkHiTmaadmqabaWaaSaaaeaacaWHrbGaaGjcVpaa DaaaleaacaWGRbGaamiCaaqaamaabmqabaGaaGjcVlaaigdacaaMi8 oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaaa baGaam4uamaaDaaaleaacaWGRbaabaWaaeWabeaacaaMi8UaaGimai aayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7aaiaawIcacaGL PaaaaaGaaGjbVlabgkHiTiaaysW7daWcaaqaaiaahgfadaqhaaWcba Gaam4AaiaadchaaeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjk aiaawMcaaaaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaaqaaiaado fadaqhaaWcbaGaam4AaaqaamaabmqabaGaaGjcVlaaicdacaaMi8oa caGLOaGaayzkaaaaaOWaaeWabeaacaWHYoaacaGLOaGaayzkaaaaam aalaaabaGaaC4uaiaayIW7daqhaaWcbaGaam4AaaqaamaabmqabaGa aGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYo aacaGLOaGaayzkaaaabaGaam4uamaaDaaaleaacaWGRbaabaWaaeWa beaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaai aahk7aaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaWaamWabeaadaWc aaqaaiaahofadaqhaaWcbaGaam4AaaqaamaabmqabaGaaGjcVlaaig dacaaMi8oacaGLOaGaayzkaaaaaOWaaeWabeaacaWHYoaacaGLOaGa ayzkaaaabaGaam4uamaaDaaaleaacaWGRbaabaWaaeWabeaacaaMi8 UaaGimaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqaaiaahk7aaiaa wIcacaGLPaaaaaaacaGLBbGaayzxaaWaaWbaaSqabeaakiadaITHYa IOaaaabaaabaGaaGzbVlaaywW7caaMf8UaaGPaVlaayIW7daGaceqa aiaaywW7cqGHsisldaWadeqaamaalaaabaGaaC4uamaaDaaaleaaca WGRbaabaWaaeWabeaacaaMi8UaaGymaiaayIW7aiaawIcacaGLPaaa aaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaeaacaWGtbWaa0baaS qaaiaadUgaaeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaa wMcaaaaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaaaaaiaawUfaca GLDbaadaWadeqaamaalaaabaGaaCyuamaaDaaaleaacaWGRbGaamiC aaqaamaabmqabaGaaGjcVlaaigdacaaMi8oacaGLOaGaayzkaaaaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaaabaGaam4uamaaDaaaleaa caWGRbaabaWaaeWabeaacaaMi8UaaGimaiaayIW7aiaawIcacaGLPa aaaaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaaGaaGjbVlabgkHi TiaaysW7daWcaaqaaiaahgfadaqhaaWcbaGaam4Aaiaadchaaeaada qadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqa baGaaCOSdaGaayjkaiaawMcaaaqaaiaadofadaqhaaWcbaGaam4Aaa qaamaabmqabaGaaGjcVlaaicdacaaMi8oacaGLOaGaayzkaaaaaOWa aeWabeaacaWHYoaacaGLOaGaayzkaaaaamaalaaabaGaaC4uamaaDa aaleaacaWGRbaabaWaaeWabeaacaaMi8UaaGymaiaayIW7aiaawIca caGLPaaaaaGcdaqadeqaaiaahk7aaiaawIcacaGLPaaaaeaacaWGtb Waa0baaSqaaiaadUgaaeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGa ayjkaiaawMcaaaaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaaaaai aawUfacaGLDbaadaahaaWcbeqaaOGamai2gkdiIcaaaiaaw2haaaaa aaa@7525@

where p = 1, , P . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGWbGaaGjbVlaai2dacaaMe8UaaG ymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGqbGaaiOlaaaa @3DDC@

Point estimates and Taylor linearized standard errors for the penalized likelihood are obtained from the score functions and the Hessian as described in Section 1.2. The jackknife standard errors are obtained by maximizing the penalized likelihood in every replicate sample.

Appendix 1 shows that under certain regularity conditions, the point estimators obtained by maximizing Firth’s penalized likelihood are design-consistent.

2.1  Penalized likelihoods and the scale of weights

In this section, we derive a relationship between the penalized log likelihood that uses scaled weights and the penalized log likelihood that uses unscaled weights, and we demonstrate that Firth’s penalized likelihood using unscaled weights does not have the invariance property.

Let l ( β w ˜ ; w ˜ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaeWabeaacaWHYoWaaSbaaS qaaiqadEhagaacaaqabaGccaaI7aGaaGjbVlqadEhagaacaaGaayjk aiaawMcaaaaa@3973@ be the log likelihood using weights w ˜ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWG3bGbaGaacaGGSaaaaa@32D7@ and let l ( β w ; w ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaeWabeaacaWHYoWaaSbaaS qaaiaadEhaaeqaaOGaaG4oaiaaysW7caWG3baacaGLOaGaayzkaaaa aa@3955@ be the log likelihood using weights w , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bGaaiilaaaa@32C8@ where w ˜ i = α w i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWG3bGbaGaadaWgaaWcbaGaamyAaa qabaGccaaMe8UaaGypaiaaysW7cqaHXoqycaWG3bWaaSbaaSqaaiaa dMgaaeqaaaaa@3AE1@ for all i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbaaaa@320A@ and α 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHXoqycaaMe8UaeyiyIKRaaGjbVl aaicdacaGGUaaaaa@3908@ The Breslow log likelihood can be written as

l ( β w ˜ ; w ˜ ) = k = 1 K { β w ˜ i D k w ˜ i Z i ( t k ) ( i D k w ˜ i ) log i R k w ˜ i exp ( β w ˜ Z i ( t k ) ) } = k = 1 K { β w ˜ α i D k w i Z i ( t k ) ( α i D k w i ) log i R k α w i exp ( β w ˜ Z i ( t k ) ) } = α k = 1 K { β w ˜ i D k w i Z i ( t k ) ( i D k w i ) log i R k w i exp ( β w ˜ Z i ( t k ) ) } k = 1 K ( α i D k w i ) log α = α l ( β w ˜ ; w ) k = 1 K ( α i D k w i ) log α . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9u8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeqbcaaaaeaacaWGSbWaaeWabe aacaWHYoWaaSbaaSqaaiqadEhagaacaaqabaGccaaI7aGaaGjbVlqa dEhagaacaaGaayjkaiaawMcaaaqaaiabg2da9iaaysW7caaMc8+aaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGc daGadeqaaiaahk7adaqhaaWcbaGabm4DayaaiaaabaaccaqcLbwacq WFYaIOaaGcdaaeqbqabSqaaiaadMgacqGHiiIZtCvAUfKttLearyat 1nwAKfgidfgBSL2zYfgCOLhaiqGacqGFebardaWgaaadbaGaam4Aaa qabaaaleqaniabggHiLdGccaaMc8Uabm4DayaaiaWaaSbaaSqaaiaa dMgaaeqaaOGaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqabaGaam iDamaaBaaaleaacaWGRbaabeaaaOGaayjkaiaawMcaaiaaysW7cqGH sislcaaMe8+aaeWabeaadaaeqbqabSqaaiaadMgacqGHiiIZcqGFeb ardaWgaaadbaGaam4AaaqabaaaleqaniabggHiLdGccaaMc8Uabm4D ayaaiaWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaGaciiBai aac+gacaGGNbWaaabuaeqaleaacaWGPbGaeyicI4Sae4Nuai1aaSba aWqaaiaadUgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlqadEhagaacam aaBaaaleaacaWGPbaabeaakiGacwgacaGG4bGaaiiCamaabmqabaGa aCOSdmaaDaaaleaaceWG3bGbaGaaaeaajugybiab=jdiIcaakiaahQ fadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGa am4AaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhaca GL9baaaeaaaeaacaaI9aGaaGjbVlaaykW7daaeWbqabSqaaiaadUga caaI9aGaaGymaaqaaiaadUeaa0GaeyyeIuoakiaaykW7daGadeqaai aahk7adaqhaaWcbaGabm4DayaaiaaabaqcLbwacqWFYaIOaaGccqaH XoqydaaeqbqabSqaaiaadMgacqGHiiIZcqGFebardaWgaaadbaGaam 4AaaqabaaaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWG PbaabeaakiaahQfadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaads hadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaaMe8UaeyOe I0IaaGjbVpaabmqabaGaeqySde2aaabuaeqaleaacaWGPbGaeyicI4 Sae4hraq0aaSbaaWqaaiaadUgaaeqaaaWcbeqdcqGHris5aOGaaGPa VlaadEhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaciGGSb Gaai4BaiaacEgadaaeqbqabSqaaiaadMgacqGHiiIZcqGFsbGudaWg aaadbaGaam4AaaqabaaaleqaniabggHiLdGccaaMc8UaeqySdeMaam 4DamaaBaaaleaacaWGPbaabeaakiGacwgacaGG4bGaaiiCamaabmqa baGaaCOSdmaaDaaaleaaceWG3bGbaGaaaeaajugybiab=jdiIcaaki aahQfadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadshadaWgaaWc baGaam4AaaqabaaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawU hacaGL9baaaeaaaeaacaaI9aGaaGjbVlaaykW7cqaHXoqydaaeWbqa bSqaaiaadUgacaaI9aGaaGymaaqaaiaadUeaa0GaeyyeIuoakiaayk W7daGadeqaaiaahk7adaqhaaWcbaGabm4DayaaiaaabaqcLbwacqWF YaIOaaGcdaaeqbqabSqaaiaadMgacqGHiiIZcqGFebardaWgaaadba Gaam4AaaqabaaaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaa caWGPbaabeaakiaahQfadaWgaaWcbaGaamyAaaqabaGcdaqadeqaai aadshadaWgaaWcbaGaam4AaaqabaaakiaawIcacaGLPaaacaaMe8Ua eyOeI0IaaGjbVpaabmqabaWaaabuaeqaleaacaWGPbGaeyicI4Sae4 hraq0aaSbaaWqaaiaadUgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaa dEhadaWgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaciGGSbGaai 4BaiaacEgadaaeqbqabSqaaiaadMgacqGHiiIZcqGFsbGudaWgaaad baGaam4AaaqabaaaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaale aacaWGPbaabeaakiGacwgacaGG4bGaaiiCamaabmqabaGaaCOSdmaa DaaaleaaceWG3bGbaGaaaeaajugybiab=jdiIcaakiaahQfadaWgaa WcbaGaamyAaaqabaGcdaqadeqaaiaadshadaWgaaWcbaGaam4Aaaqa baaakiaawIcacaGLPaaaaiaawIcacaGLPaaaaiaawUhacaGL9baaae aaaeaacaaMe8UaaGPaVlaaysW7caaMc8UaeyOeI0YaaabCaeqaleaa caWGRbGaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGccaaMc8+aae WabeaacqaHXoqydaaeqbqabSqaaiaadMgacqGHiiIZcqGFebardaWg aaadbaGaam4AaaqabaaaleqaniabggHiLdGccaaMc8Uaam4DamaaBa aaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiGacYgacaGGVbGaai4z aiabeg7aHbqaaaqaaiaai2dacaaMe8UaaGPaVlabeg7aHjaadYgada qadeqaaiaahk7adaWgaaWcbaGabm4DayaaiaaabeaakiaaiUdacaaM e8Uaam4DaaGaayjkaiaawMcaaiaaysW7cqGHsislcaaMe8+aaabCae qaleaacaWGRbGaaGypaiaaigdaaeaacaWGlbaaniabggHiLdGccaaM c8+aaeWabeaacqaHXoqydaaeqbqabSqaaiaadMgacqGHiiIZcqGFeb ardaWgaaadbaGaam4AaaqabaaaleqaniabggHiLdGccaaMc8Uaam4D amaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMcaaiGacYgacaGGVb Gaai4zaiabeg7aHjaac6caaaaaaa@7FCC@

Because the second term on the right-hand side does not contain β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoGaaiilaaaa@330A@ the derivative and the Hessian of the log likelihood are only a multiplier of α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHXoqyaaa@32BB@ and the parameter estimates and standard errors are invariant to the scale of the weights.

However, the following relation shows that the point estimates that are obtained by maximizing the penalized log likelihood are not invariant to the scale of the weights:

l p ( β w ˜ ; w ˜ ) = l ( β w ˜ ; w ˜ ) + 0.5 log | I ( β w ˜ ; w ˜ ) | = α l ( β w ˜ ; w ) + 0.5 log | α I ( β w ˜ ; w ) | k = 1 K ( α i D k w i ) log α = α l ( β w ˜ ; w ) + 0.5 { log | I ( β w ˜ ; w ) | + p log α } k = 1 K ( α i D k w i ) log α = α { l ( β w ˜ ; w ) + 0.5 log | I ( β w ˜ ; w ) | } k = 1 K ( α i D k w i ) log α + 0.5 { p log α + ( 1 α ) log | I ( β w ˜ ; w ) | } = α l p ( β w ˜ ; w ) k = 1 K ( α i D k w i ) log α + 0.5 { p log α + ( 1 α ) log | I ( β w ˜ ; w ) | } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9u8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeWbcaaaaeaacaWGSbWaaSbaaS qaaiaadchaaeqaaOWaaeWabeaacaaMi8UaaCOSdmaaBaaaleaaceWG 3bGbaGaaaeqaaOGaaG4oaiaaysW7ceWG3bGbaGaaaiaawIcacaGLPa aaaeaacaaI9aGaaGjbVlaaykW7caWGSbWaaeWabeaacaWHYoWaaSba aSqaaiqadEhagaacaaqabaGccaaI7aGaaGjbVlqadEhagaacaaGaay jkaiaawMcaaiaaysW7cqGHRaWkcaaMe8UaaGimaiaai6cacaaI1aGa ciiBaiaac+gacaGGNbWaaqWabeaacaaMi8UaamysamaabmqabaGaaC OSdmaaBaaaleaaceWG3bGbaGaaaeqaaOGaaG4oaiaaysW7ceWG3bGb aGaaaiaawIcacaGLPaaacaaMi8oacaGLhWUaayjcSdaabaaabaGaaG ypaiaaysW7caaMc8UaeqySdeMaamiBamaabmqabaGaaCOSdmaaBaaa leaaceWG3bGbaGaaaeqaaOGaaG4oaiaaysW7caWG3baacaGLOaGaay zkaaGaaGjbVlabgUcaRiaaysW7caaIWaGaaGOlaiaaiwdaciGGSbGa ai4BaiaacEgadaabdeqaaiaayIW7cqaHXoqycaWGjbWaaeWabeaaca WHYoWaaSbaaSqaaiqadEhagaacaaqabaGccaaI7aGaaGjbVlaadEha aiaawIcacaGLPaaacaaMi8oacaGLhWUaayjcSdGaaGjbVlabgkHiTi aaysW7daaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaadUeaa0Ga eyyeIuoakmaabmqabaGaeqySde2aaabuaeqaleaacaWGPbGaeyicI4 8exLMBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5baceiGae8hraq0a aSbaaWqaaiaadUgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadEhada WgaaWcbaGaamyAaaqabaaakiaawIcacaGLPaaaciGGSbGaai4Baiaa cEgacqaHXoqyaeaaaeaacaaI9aGaaGjbVlaaykW7cqaHXoqycaWGSb WaaeWabeaacaWHYoWaaSbaaSqaaiqadEhagaacaaqabaGccaaI7aGa aGjbVlaadEhaaiaawIcacaGLPaaacaaMe8Uaey4kaSIaaGjbVlaaic dacaaIUaGaaGynamaacmqabaGaaGjcVlGacYgacaGGVbGaai4zamaa emqabaGaaGjcVlaadMeadaqadeqaaiaahk7adaWgaaWcbaGabm4Day aaiaaabeaakiaaiUdacaaMe8Uaam4DaaGaayjkaiaawMcaaiaayIW7 aiaawEa7caGLiWoacaaMe8Uaey4kaSIaaGjbVlaadchaciGGSbGaai 4BaiaacEgacqaHXoqycaaMi8oacaGL7bGaayzFaaGaaGjbVlabgkHi TiaaysW7daaeWbqabSqaaiaadUgacaaI9aGaaGymaaqaaiaadUeaa0 GaeyyeIuoakiaaykW7daqadeqaaiabeg7aHnaaqafabeWcbaGaamyA aiabgIGiolab=reaenaaBaaameaacaWGRbaabeaaaSqab0GaeyyeIu oakiaaykW7caWG3bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzk aaGaciiBaiaac+gacaGGNbGaeqySdegabaaabaGaaGypaiaaysW7ca aMc8UaeqySde2aaiWabeaacaaMi8UaamiBamaabmqabaGaaCOSdmaa BaaaleaaceWG3bGbaGaaaeqaaOGaaG4oaiaaysW7caWG3baacaGLOa GaayzkaaGaaGjbVlabgUcaRiaaysW7caaIWaGaaGOlaiaaiwdaciGG SbGaai4BaiaacEgadaabdeqaaiaayIW7caWGjbWaaeWabeaacaWHYo WaaSbaaSqaaiqadEhagaacaaqabaGccaaI7aGaaGjbVlaadEhaaiaa wIcacaGLPaaacaaMi8oacaGLhWUaayjcSdGaaGjcVdGaay5Eaiaaw2 haaiaaysW7cqGHsislcaaMe8+aaabCaeqaleaacaWGRbGaaGypaiaa igdaaeaacaWGlbaaniabggHiLdGccaaMc8+aaeWabeaacqaHXoqyda aeqbqabSqaaiaadMgacqGHiiIZcqWFebardaWgaaadbaGaam4Aaaqa baaaleqaniabggHiLdGccaaMc8Uaam4DamaaBaaaleaacaWGPbaabe aaaOGaayjkaiaawMcaaiGacYgacaGGVbGaai4zaiabeg7aHbqaaaqa aiaaywW7cqGHRaWkcaaMe8UaaGimaiaai6cacaaI1aWaaiWabeaaca aMi8UaamiCaiGacYgacaGGVbGaai4zaiabeg7aHjaaysW7cqGHRaWk caaMe8+aaeWabeaacaaIXaGaaGjbVlabgkHiTiaaysW7cqaHXoqyai aawIcacaGLPaaaciGGSbGaai4BaiaacEgadaabdeqaaiaayIW7caWG jbWaaeWabeaacaaMi8UaaCOSdmaaBaaaleaaceWG3bGbaGaaaeqaaO GaaG4oaiaaysW7caWG3baacaGLOaGaayzkaaGaaGjcVdGaay5bSlaa wIa7aiaayIW7aiaawUhacaGL9baaaeaaaeaacaaI9aGaaGjbVlaayk W7cqaHXoqycaWGSbWaaSbaaSqaaiaadchaaeqaaOWaaeWabeaacaWH YoWaaSbaaSqaaiqadEhagaacaaqabaGccaaI7aGaaGjbVlaadEhaai aawIcacaGLPaaacaaMe8UaeyOeI0IaaGjbVpaaqahabeWcbaGaam4A aiaai2dacaaIXaaabaGaam4saaqdcqGHris5aOGaaGPaVpaabmqaba GaeqySde2aaabuaeqaleaacaWGPbGaeyicI4Sae8hraq0aaSbaaWqa aiaadUgaaeqaaaWcbeqdcqGHris5aOGaaGPaVlaadEhadaWgaaWcba GaamyAaaqabaaakiaawIcacaGLPaaaciGGSbGaai4BaiaacEgacqaH XoqyaeaaaeaacaaMf8Uaey4kaSIaaGjbVlaaicdacaaIUaGaaGynam aacmqabaGaaGjcVlaadchaciGGSbGaai4BaiaacEgacqaHXoqycaaM e8Uaey4kaSIaaGjbVpaabmqabaGaaGymaiaaysW7cqGHsislcaaMe8 UaeqySdegacaGLOaGaayzkaaGaciiBaiaac+gacaGGNbWaaqWabeaa caaMi8UaamysamaabmqabaGaaCOSdmaaBaaaleaaceWG3bGbaGaaae qaaOGaaG4oaiaaysW7caWG3baacaGLOaGaayzkaaGaaGjcVdGaay5b SlaawIa7aiaayIW7aiaawUhacaGL9baacaGGUaaaaaaa@CF30@

The additional term in the right hand side of the preceding equation involves the regression parameters. Thus the point estimates and the standard errors are not invariant to the scale of the weights.

By construction, point estimates that use the penalized log likelihood and the scaled weights are invariant to the scale of the weights.

2.2  Example that uses scaled weights

Consider the myeloma study described in Section 1.1. We refit the same proportional hazards regression model using LogBUN, HGB, and Contrived as explanatory variables, but now we use scaled weights in constructing Firth’s penalized likelihood.

Table 2.1 displays point estimates and standard errors from Firth’s penalized likelihood using scaled weights and the Taylor linearized variance estimator. These statistics are invariant to the scale of the weights.


Table 2.1
Parameter estimates and their standard errors using the Taylor linearized method with the Firth correction and scaled weights
Table summary
This table displays the results of Parameter estimates and their standard errors using the Taylor linearized method with the Firth correction and scaled weights. The information is grouped by (appearing as row headers), Weight w1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ , w3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ , w5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ (appearing as column headers).
Weight w1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ Weight w3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ Weight w5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
LogBUN 1.722 0.564 1.722 0.564 1.722 0.564
HGB -0.112 0.064 -0.112 0.064 -0.112 0.064
Contrived 3.815 0.458 3.815 0.458 3.815 0.458

Standard errors using jackknife replicates are also invariant to the scale of the weights. For replicate variance estimation methods, every set of replicate weights must be scaled using the same scaling factor that is used to scale the full sample weights. Table 2.2 displays point estimates and standard errors from Firth’s penalized likelihood using scaled weights and the jackknife replicate variance estimator.


Table 2.2
Parameter estimates and their standard errors using jackknife replicates with the Firth correction and scaled weights
Table summary
This table displays the results of Parameter estimates and their standard errors using jackknife replicates with the Firth correction and scaled weights. The information is grouped by (appearing as row headers), Weight w1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ , w3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ , w5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ (appearing as column headers).
Weight w1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ Weight w3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ Weight w5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
LogBUN 1.722 0.653 1.722 0.653 1.722 0.653
HGB -0.112 0.074 -0.112 0.074 -0.112 0.074
Contrived 3.815 0.642 3.815 0.642 3.815 0.642

Estimates from the penalized log likelihood using the scaled weights also have the closeness property. The ratios of jackknife standard errors to Taylor linearized standard errors are 1.16, 1.17, and 1.40 for all three sets of weights for the variables LogBUN, HGB, and Contrived, respectively (Tables 2.1 and 2.2).


Date modified: