Firth’s penalized likelihood for proportional hazards regressions for complex surveys
Section 1. Introduction

The Cox proportional hazards regression model (Cox, 1972) is widely used to analyze survival data. It is a semiparametric model that explains the effect of explanatory variables on hazard rates. The model assumes a linear form for the effect of the explanatory variables but allows an unspecified form for the underlying survivor function. The parameters of the model are estimated by maximizing a partial likelihood (Cox, 1972, 1975).

For estimating canonical parameters in the exponential family distributions, Firth (1993) suggested multiplying the likelihood by the Jeffreys prior to obtain a maximum likelihood estimate that is first-order unbiased. The penalized likelihood is of the form

L p ( β ) = L ( β ) | I ( β ) | 0.5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGmbWaaSbaaSqaaiaadchaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGjbVlaaykW7caaI9aGa aGjbVlaaykW7caWGmbWaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaG PaVpaaemqabaGaaGjcVlaadMeadaqadeqaaiaahk7aaiaawIcacaGL PaaacaaMi8oacaGLhWUaayjcSdWaaWbaaSqabeaacaaIWaGaaGOlai aaiwdaaaaaaa@4E34@

where L ( β ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGmbWaaeWabeaacaWHYoaacaGLOa Gaayzkaaaaaa@34B5@ is the unpenalized likelihood, I MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGjbaaaa@31EA@ is the information matrix, and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoaaaa@325A@ is a vector of regression parameters. Firth’s penalized likelihood is a very useful technique in practice, not only to reduce bias but also to correct for monotone likelihoods.

Proportional hazards regression models often suffer from monotone likelihoods, in which the likelihood converges to a finite value but at least one parameter diverges (Heinze, 1999). Firth’s penalized likelihood is also used to correct monotone likelihoods and to obtain parameter estimates that converge (Heinze, 1999; Heinze and Schemper, 2001; Heinzel, Rüdiger and Schilling, 2002).

Although Firth’s penalized likelihood is useful for reducing biases and for obtaining estimates from monotone likelihoods, the penalized likelihood is not studied for complex surveys involving unequal weights. It is reasonable to use a weighted likelihood for complex surveys to compensate for unequal weighting (Fuller, 1975; Binder and Patak, 1994). Survey data sets commonly include design weights or analysis weights for which the sum of the weights is an estimator of the population size. However, these unscaled weights will not appropriately scale the information matrix that is used in the penalty term. It is desirable for proportional hazards regression parameters for survey data to have the following two properties:

In this article, we first show that if the Firth correction is not used, then both the invariance and closeness are satisfied; but if the Firth correction is used with the unscaled weights, then the point estimates and the standard errors are not invariant to the scale of the weights. That is, if the weights are multiplied by a constant and the Firth correction is used, then the point estimates and standard errors will be different. We then propose a commonsense weight scaling method and demonstrate that the Firth correction using the scaled weights has both properties. The only difference between the scaled and unscaled weights is that the sum of the scaled weights is equal to the sample size, but the sum of the unscaled weights is an estimator of the population size.

1.1  Example that uses unscaled weights

 We used a data set from a study of 65 myeloma patients who were treated with alkylating agents (Lee, Wei and Amato, 1992) to demonstrate the properties of Firth’s penalized likelihood that uses unscaled weights. Survival times in months were recorded for each patient. Patients who were alive after the study period were considered to be censored. The following variables were available for each patient:

To create a monotone likelihood, we added a new explanatory variable, Contrived, such that its value at all event times is the largest of all values in the risk set (see the example “Firth’s Correction for Monotone Likelihood” in “The PHREG Procedure” in SAS Institute Inc. (2018)). The variable Contrived has the value 1 if the observed survival time is less than or equal to 65; otherwise it has the value 0.

To demonstrate the effect of weights in Firth’s penalized likelihood, we created three weight variables, w1, w3, and w5, with the values of 1, 1,000, and 100,000 for each observation, respectively. Proportional hazards regression parameters are estimated by maximizing a weighted likelihood as described in Section 1.2. Because w 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bGaaGymaaaa@32D3@ has the value 1 for all observations, using w 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bGaaGymaaaa@32D3@ in the analysis is equivalent to performing the unweighted analysis.

We fitted the following two proportional hazards models using the PHREG procedure in SAS/STAT® (see “The PHREG Procedure” in SAS Institute Inc. (2018)):

λ ( t , Z ) = λ 0 ( t ) exp ( β 1 LogBUN + β 2 HGB ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaqadeqaaiaadshacaaISa GaaGjbVlaahQfaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2dacaaM e8UaaGPaVlabeU7aSnaaBaaaleaacaaIWaaabeaakmaabmqabaGaaG jcVlaadshacaaMi8oacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWa aeWabeaacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaqGmbGaae4Bai aabEgacaqGcbGaaeyvaiaab6eacaaMe8UaaGPaVlabgUcaRiaaysW7 caaMc8UaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaeisaiaabEeaca qGcbaacaGLOaGaayzkaaaaaa@5FC7@

λ ( t , Z ) = λ 0 ( t ) exp ( β 1 LogBUN + β 2 HGB + β 3 Contrived ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaqadeqaaiaadshacaaISa GaaGjbVlaahQfaaiaawIcacaGLPaaacaaMe8UaaGPaVlaai2dacaaM c8UaaGjbVlabeU7aSnaaBaaaleaacaaIWaaabeaakmaabmqabaGaaG jcVlaadshacaaMi8oacaGLOaGaayzkaaGaciyzaiaacIhacaGGWbWa aeWabeaacqaHYoGydaWgaaWcbaGaaGymaaqabaGccaqGmbGaae4Bai aabEgacaqGcbGaaeyvaiaab6eacaaMe8UaaGPaVlabgUcaRiaaysW7 caaMc8UaeqOSdi2aaSbaaSqaaiaaikdaaeqaaOGaaeisaiaabEeaca qGcbGaaGjbVlaaykW7cqGHRaWkcaaMe8UaaGPaVlabek7aInaaBaaa leaacaaIZaaabeaakiaaboeacaqGVbGaaeOBaiaabshacaqGYbGaae yAaiaabAhacaqGLbGaaeizaaGaayjkaiaawMcaaaaa@71B6@

where λ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaqadeqaaiaayIW7caWG0b GaaGjcVdGaayjkaiaawMcaaaaa@3875@ and λ 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaaGimaaqaba GcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaaa@3965@ are the hazard function and the baseline hazard function, respectively. Firth’s penalized likelihood is not required in order to fit the first model without Contrived (the likelihood converged in three iteration steps), but the second model containing the variable Contrived does not converge without the Firth penalty in the likelihood. Table 1.1 displays the value of the likelihood and the three regression coefficients for 14 iterations. Although the objective function and the coefficients for LogBun and HGB converge to a finite value after the fourth iteration, the coefficients for Contrived diverges. This is an example of a monotone likelihood for the variable Contrived. Because of this monotonicity, Firth’s penalized likelihood must be used to fit the second model containing Contrived.


Table 1.1
Maximum likelihood iteration history showing a monotone likelihood for the variable Contrived
Table summary
This table displays the results of Maximum likelihood iteration history showing a monotone likelihood for the variable Contrived. The information is grouped by Iteration Number (appearing as row headers), Likelihood Value, LogBun, HGB and Contrived (appearing as column headers).
Iteration Number Likelihood Value LogBun HGB Contrived
1 -140.693405 1.994882 -0.084319 1.466331
2 -137.784163 1.679468 -0.109068 2.778361
3 -136.971190 1.714061 -0.111564 3.938095
4 -136.707893 1.718174 -0.112273 5.003054
5 -136.616426 1.718755 -0.112370 6.027436
6 -136.583520 1.718829 -0.112382 7.036445
7 -136.571515 1.718839 -0.112384 8.039764
8 -136.567113 1.718841 -0.112384 9.040985
9 -136.565495 1.718841 -0.112384 10.041434
10 -136.564900 1.718841 -0.112384 11.041600
11 -136.564681 1.718841 -0.112384 12.041660
12 -136.564601 1.718841 -0.112384 13.041683
13 -136.564571 1.718841 -0.112384 14.041691
14 -136.564560 1.718841 -0.112384 15.041694

If Contrived is not used as an explanatory variable, then all three sets of weights produce the same point estimates and Taylor linearized variance estimates (Table 1.2). The delete-one jackknife variance estimates are also the same for all three sets of weights. Thus, the point estimates and the standard errors are invariant to the scale of the weights when the Firth correction is not used.


Table 1.2
Parameter estimates and standard errors without the Firth correction for all three sets of weights
Table summary
This table displays the results of Parameter estimates and standard errors without the Firth correction for all three sets of weights. The information is grouped by (appearing as row headers), Estimate and Std. Err. (appearing as column headers).
Estimate Std. Err.
LogBun 1.674 0.583
HGB -0.119 0.060

However, if the unscaled weights are used, then the point estimates for Contrived are not invariant to the scale of the weights. Table 1.3 displays the parameter estimates for three sets of weights when Contrived is used as an explanatory variable (and Firth’s penalized likelihood is applied). Because the likelihood is not monotone (Table 1.1) for LogBun and HGB, the point estimates for these two coefficients are not affected by the scale of the weights.


Table 1.3
Parameter estimates with the Firth correction and unscaled weights
Table summary
This table displays the results of Parameter estimates with the Firth correction and unscaled weights. The information is grouped by (appearing as row headers), Weight (équation) and Weight (équation) (appearing as column headers).
Weight w1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ Weight w3 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@ Weight w5 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacPqpw0le9 v8qqaqFD0xXdHaVhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeqabeqadiWa ceGabeqabeGabeqadeaakeaacaWG3bGaaGymaaaa@3500@
Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
LogBun 1.722 0.584 1.719 1.85E-2 1.719 1.85E-3
HGB -0.112 0.061 -0.112 1.93E-3 -0.112 1.93E-4
Contrived 3.815 1.558 10.629 1.38 14.633 1.02

If Contrived is not used as an explanatory variable, then the ratio of jackknife standard errors to Taylor linearized standard errors is 1.13 and 1.10 for all three sets of weights for the variables LogBun and HGB, respectively. Thus the ratio of the jackknife variance to the Taylor linearized variance for the unpenalized likelihood is invariant to the scale of weights, and it is reasonable to expect the ratio to be invariant when the penalized likelihood is used.

1.2  A brief review of point and variance estimates for regression parameters for finite populations

Before we discuss the weight scaling method, we briefly review point and variance estimates for regression parameters for proportional hazards regression of complex surveys involving unequal weights. Lin and Wei (1989); Binder (1990, 1992); Lin (2000); and Boudreau and Lawless (2006) discussed pseudo-maximum likelihood estimation of proportional hazard regression parameters for survey data. For a more general description for estimating regression parameters for complex surveys, see Kish and Frankel (1974); Godambe and Thompson (1986); Pfeffermann (1993), Korn and Graubard (1999, Chapter 3), Chambers and Skinner (2003, Chapter 2), and Fuller (2009, Section 6.5). Wolter (2007) described different variance estimation techniques for survey data.

Let U N = { 1, 2, , N } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFvbqvdaWgaaWcbaGaamOtaaqabaGccaaMe8Ua aGPaVlaai2dacaaMe8UaaGPaVpaacmqabaGaaGymaiaaiYcacaaMe8 UaaGOmaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGobaacaGL 7bGaayzFaaaaaa@5025@ be the set of indices and let F N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFgbGrdaWgaaWcbaGaamOtaaqabaaaaa@3C9F@ be the set of values for a finite population of size N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGobGaaiOlaaaa@32A1@ The survival time of each member of the finite population is assumed to follow its own hazard function, λ i ( t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaamyAaaqaba GcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaiaacYca aaa@3A49@ expressed as

λ i ( t ) = λ ( t ; Z i ( t ) ) = λ 0 ( t ) exp ( Z i ( t ) β ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaamyAaaqaba GcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaiaaysW7 caaMc8UaaGypaiaaysW7caaMc8Uaeq4UdW2aaeWabeaacaWG0bGaaG 4oaiaaysW7caWHAbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaaM i8UaamiDaiaayIW7aiaawIcacaGLPaaaaiaawIcacaGLPaaacaaMe8 UaaGPaVlaai2dacaaMe8UaaGPaVlabeU7aSnaaBaaaleaacaaIWaaa beaakmaabmqabaGaaGjcVlaadshacaaMi8oacaGLOaGaayzkaaGaaG jbVlGacwgacaGG4bGaaiiCamaabmqabaGaaCOwamaaDaaaleaacaWG PbaabaaccaqcLbwacqWFYaIOaaGcdaqadeqaaiaayIW7caWG0bGaaG jcVdGaayjkaiaawMcaaiaayIW7caaMe8UaaCOSdaGaayjkaiaawMca aaaa@7251@

where λ 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaaGimaaqaba GcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaaa@3965@ is an arbitrary and unspecified baseline hazard function, Z i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHAbWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaaaaa@38C8@ is a vector of size P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGqbaaaa@31F1@ of explanatory variables for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@3419@ unit at time t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG0bGaaiilaaaa@32C5@ and β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCOSdaaa@33EB@ is a vector of unknown regression parameters.

The partial likelihood function introduced by Cox (1972, 1975) eliminates the unknown baseline hazard λ 0 ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaH7oaBdaWgaaWcbaGaaGimaaqaba GcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaaaa@3965@ and accounts for censored survival times. If the entire population is observed, then this partial likelihood function can be used to estimate β . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoGaaiOlaaaa@330C@ Let β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoWaaSbaaSqaaiaad6eaaeqaaa aa@3359@ be the desired estimator.

Assuming a working model with uncorrelated responses, β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoWaaSbaaSqaaiaad6eaaeqaaa aa@3359@ is obtained by maximizing the partial log likelihood,

l N ( β ) = i U N log { L ( β ; Z i ( t ) , t i ) } MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaSbaaSqaaiaad6eaaeqaaO WaaeWabeaacaWHYoaacaGLOaGaayzkaaGaaGjbVlaaykW7caaI9aGa aGjbVlaaykW7daaeqbqabSqaaiaadMgacqGHiiIZtCvAUfKttLeary at1nwAKfgidfgBSL2zYfgCOLhaiqGacqWFvbqvdaWgaaadbaGaamOt aaqabaaaleqaniabggHiLdGcciGGSbGaai4BaiaacEgadaGadeqaai aabYeadaqadeqaaiaahk7acaaI7aGaaGjbVlaahQfadaWgaaWcbaGa amyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawM caaiaaiYcacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjk aiaawMcaaaGaay5Eaiaaw2haaaaa@6418@

with respect to β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoGaaiilaaaa@330A@ where L ( β ; Z i ( t ) , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaqGmbWaaeWabeaacaWHYoGaaG4oai aaysW7caWHAbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaaMi8Ua amiDaiaayIW7aiaawIcacaGLPaaacaaISaGaaGjbVlaadshadaWgaa WcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@4311@ is Cox’s partial likelihood function.

Assume that a probability sample A N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGbbWaaSbaaSqaaiaad6eaaeqaaa aa@32E1@ is selected from the finite population U N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFvbqvdaWgaaWcbaGaamOtaaqabaGccaGGUaaa aa@3D79@ Let π i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaaqaba aaaa@33F3@ be the selection probability and w i ( = π i 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bWaaSbaaSqaaiaadMgaaeqaaO WaaeWabeaacqGH9aqpcqaHapaCdaqhaaWcbaGaamyAaaqaaiabgkHi TiaaigdaaaaakiaawIcacaGLPaaaaaa@3A56@ be the sampling weight for unit i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbGaaiOlaaaa@32BC@ Further assume that explanatory variables Z i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCOwamaaBaaaleaacaWGPb aabeaakmaabmqabaGaaGjcVlaadshacaaMi8oacaGLOaGaayzkaaaa aa@3A59@ and survival time t i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaa aa@332F@ are available for every unit in sample A N . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGbbWaaSbaaSqaaiaad6eaaeqaaO GaaiOlaaaa@339D@ A design unbiased estimator for the finite population log likelihood is

l ( β ) = i A N π i 1 log { L ( β ; Z i ( t ) , t i ) } = i A N w i log { L ( β ; Z i ( t ) , t i ) } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaeWabeaacaWHYoaacaGLOa GaayzkaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daaeqbqabSqa aiaadMgacqGHiiIZcaWGbbWaaSbaaWqaaiaad6eaaeqaaaWcbeqdcq GHris5aOGaaGPaVlabec8aWnaaDaaaleaacaWGPbaabaGaeyOeI0Ia aGymaaaakiGacYgacaGGVbGaai4zamaacmqabaGaaeitamaabmqaba GaaCOSdiaaiUdacaaMi8UaaGjbVlaahQfadaWgaaWcbaGaamyAaaqa baGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaayjkaiaawMcaaiaaiY cacaaMe8UaamiDamaaBaaaleaacaWGPbaabeaaaOGaayjkaiaawMca aaGaay5Eaiaaw2haaiaaysW7caaMc8UaaGypaiaaysW7caaMc8+aaa buaeqaleaacaWGPbGaeyicI4SaamyqamaaBaaameaacaWGobaabeaa aSqab0GaeyyeIuoakiaaykW7caWG3bWaaSbaaSqaaiaadMgaaeqaaO GaciiBaiaac+gacaGGNbWaaiWabeaacaqGmbWaaeWabeaacaWHYoGa aG4oaiaayIW7caaMe8UaaCOwamaaBaaaleaacaWGPbaabeaakmaabm qabaGaaGjcVlaadshacaaMi8oacaGLOaGaayzkaaGaaGilaiaaysW7 caWG0bWaaSbaaSqaaiaadMgaaeqaaaGccaGLOaGaayzkaaaacaGL7b GaayzFaaGaaiOlaaaa@8B26@

A sample-based estimator β ^ N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCOSdyaajaWaaSbaaSqaai aad6eaaeqaaaaa@34FA@ for the finite population quantity β N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCOSdmaaBaaaleaacaWGob aabeaaaaa@34EA@ can be obtained by maximizing the partial pseudo-log likelihood l ( β ; Z i ( t ) , t i ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaeWabeaacaWHYoGaaG4oai aaysW7caWHAbWaaSbaaSqaaiaadMgaaeqaaOWaaeWabeaacaaMi8Ua amiDaiaayIW7aiaawIcacaGLPaaacaaISaGaaGjbVlaadshadaWgaa WcbaGaamyAaaqabaaakiaawIcacaGLPaaaaaa@4333@ with respect to β . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWHYoGaaiOlaaaa@330C@ The design-based variance for β ^ N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCOSdyaajaWaaSbaaSqaai aad6eaaeqaaaaa@34FA@ is obtained by assuming that the set of finite population values F N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFgbGrdaWgaaWcbaGaamOtaaqabaaaaa@3C9F@ is fixed.

The weighted Breslow likelihood can be expressed as

L ( β ) = k = 1 K exp ( β D k w i Z i ( t ) ) { R k w i exp ( β Z i ( t ) ) } D k w i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGmbWaaeWabeaacaWHYoaacaGLOa GaayzkaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daqeWbqabSqa aiaadUgacaaI9aGaaGymaaqaaiaadUeaa0Gaey4dIunakiaaysW7ca aMc8+aaSaaaeaaciGGLbGaaiiEaiaacchadaqadaqaaiqahk7agaqb amaaqababaGaam4DamaaBaaaleaacaWGPbaabeaaaeaatCvAUfKttL earyat1nwAKfgidfgBSL2zYfgCOLhaiqGacqWFebardaWgaaadbaGa am4AaaqabaaaleqaniabggHiLdGccaWHAbWaaSbaaSqaaiaadMgaae qaaOWaaeWabeaacaaMi8UaamiDaiaayIW7aiaawIcacaGLPaaaaiaa wIcacaGLPaaaaeaadaGadaqaamaaqababaGaam4DamaaBaaaleaaca WGPbaabeaaaeaacqWFsbGudaWgaaadbaGaam4Aaaqabaaaleqaniab ggHiLdGcciGGLbGaaiiEaiaacchadaqadeqaaiqahk7agaqbaiaahQ fadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjc VdGaayjkaiaawMcaaaGaayjkaiaawMcaaaGaay5Eaiaaw2haamaaCa aaleqabaWaaabeaeaacaWG3bWaaSbaaWqaaiaadMgaaeqaaaqaaiab =reaenaaBaaabaGaam4AaaqabaaabeGdcqGHris5aaaaaaaaaa@7D5B@

where R k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFsbGudaWgaaWcbaGaam4Aaaqabaaaaa@3CD4@ is the risk set just before the k th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGRbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@341B@ ordered event time t ( k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG0bWaaSbaaSqaamaabmqabaGaaG jcVlaadUgacaaMi8oacaGLOaGaayzkaaaabeaakiaacYcaaaa@3897@ D k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFebardaWgaaWcbaGaam4Aaaqabaaaaa@3CB8@ is the set of individuals who fail at the t ( k ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG0bWaaSbaaSqaamaabmqabaGaaG jcVlaadUgacaaMi8oacaGLOaGaayzkaaaabeaakiaacYcaaaa@3897@ and K MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGlbaaaa@31EC@ is the number of distinct event times.

The point estimates for β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCOSdaaa@33EB@ are obtained by maximizing l ( β ) = log [ L ( β ) ] . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGSbWaaeWabeaacaWHYoaacaGLOa GaayzkaaGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7ciGGSbGaai4B aiaacEgadaWadeqaaiaadYeadaqadeqaaiaahk7aaiaawIcacaGLPa aaaiaawUfacaGLDbaacaGGUaaaaa@44DA@

Although the weights are sufficient for estimating regression coefficients for the finite population, stratification and clustering information must also be used to estimate sampling variability. In order to estimate sampling variability, you can use either the Taylor series linearization method or a replication method.

1.2.1  Analytic variance estimator using the Taylor series linearization method

The Taylor series linearization method uses a sum of squares of the weighted score residuals to estimate the sampling variability.

Define Z ¯ ( β , t ) = S ( 1 ) ( β , t ) S ( 0 ) ( β , t ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCOwayaaraWaaeWabeaaca WHYoGaaGilaiaaysW7caWG0baacaGLOaGaayzkaaGaaGjbVlaaykW7 caaI9aGaaGjbVlaaykW7daWcbaWcbaGaaC4uamaaCaaameqabaWaae WabeaacaaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaaWcdaqadeqa aiaahk7acaaISaGaaGjbVlaadshaaiaawIcacaGLPaaaaeaacaWGtb WaaWbaaWqabeaadaqadeqaaiaayIW7caaIWaGaaGjcVdGaayjkaiaa wMcaaaaalmaabmqabaGaaCOSdiaaiYcacaaMe8UaamiDaaGaayjkai aawMcaaaaakiaacYcaaaa@5A74@ where

S ( 0 ) ( β , t ) = A N w i I ( t i t ) exp ( β Z i ( t ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGtbWaaWbaaSqabeaadaqadeqaai aayIW7caaIWaGaaGjcVdGaayjkaiaawMcaaaaakmaabmqabaGaaCOS diaacYcacaaMe8UaamiDaaGaayjkaiaawMcaaiaaysW7caaMc8UaaG ypaiaaysW7caaMc8+aaabuaeqaleaacaWGbbWaaSbaaWqaaiaad6ea aeqaaaWcbeqdcqGHris5aOGaaGPaVlaadEhadaWgaaWcbaGaamyAaa qabaGccaWGjbWaaeWabeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGa aGjbVlaaykW7cqGHLjYScaaMe8UaaGPaVlaadshaaiaawIcacaGLPa aaciGGLbGaaiiEaiaacchadaqadeqaaiqahk7agaqbaiaahQfadaWg aaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjcVdGaay jkaiaawMcaaaGaayjkaiaawMcaaaaa@66EE@

and

S ( 1 ) ( β , t ) = A N w i I ( t i t ) exp ( β Z i ( t ) ) Z i ( t ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaC4uamaaCaaaleqabaWaae WabeaacaaMi8UaaGymaiaayIW7aiaawIcacaGLPaaaaaGcdaqadeqa aiaahk7acaGGSaGaaGjbVlaadshaaiaawIcacaGLPaaacaaMe8UaaG PaVlaai2dacaaMe8UaaGPaVpaaqafabeWcbaGaamyqamaaBaaameaa caWGobaabeaaaSqab0GaeyyeIuoakiaaykW7caWG3bWaaSbaaSqaai aadMgaaeqaaOGaamysamaabmqabaGaamiDamaaBaaaleaacaWGPbaa beaakiaaysW7cqGHLjYScaaMe8UaamiDaaGaayjkaiaawMcaaiGacw gacaGG4bGaaiiCamaabmqabaGabCOSdyaafaGaaCOwamaaBaaaleaa caWGPbaabeaakiaaiIcacaWG0bGaaGykaaGaayjkaiaawMcaaiaahQ fadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bGaaGjc VdGaayjkaiaawMcaaiaac6caaaa@6A85@

The score residual for the i th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@3419@ subject is

u i ( β ) = Δ i { Z i ( t i ) Z ¯ ( β , t i ) } j A N [ Δ j w j I ( t i t j ) exp ( β Z i ( t j ) ) S ( 0 ) ( β , t j ) { Z i ( t j ) Z ¯ ( β , t j ) } ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaafaqaaeGacaaabaGaaCyDamaaBaaale aacaWGPbaabeaakmaabmqabaGaaCOSdaGaayjkaiaawMcaaiaai2da aeaacqqHuoardaWgaaWcbaGaamyAaaqabaGcdaGadeqaaiaahQfada WgaaWcbaGaamyAaaqabaGcdaqadeqaaiaayIW7caWG0bWaaSbaaSqa aiaadMgaaeqaaaGccaGLOaGaayzkaaGaaGjbVlabgkHiTiaaysW7ce WHAbGbaebadaqadeqaaiaahk7acaGGSaGaaGjbVlaadshadaWgaaWc baGaamyAaaqabaaakiaawIcacaGLPaaaaiaawUhacaGL9baaaeaaae aacqGHsisldaaeqbqabSqaaiaadQgacqGHiiIZcaWGbbWaaSbaaWqa aiaad6eaaeqaaaWcbeqdcqGHris5aOWaamWabeaacqqHuoardaWgaa WcbaGaamOAaaqabaGcdaWcaaqaaiaadEhadaWgaaWcbaGaamOAaaqa baGccaWGjbWaaeWabeaacaWG0bWaaSbaaSqaaiaadMgaaeqaaOGaaG jbVlabgwMiZkaaysW7caWG0bWaaSbaaSqaaiaadQgaaeqaaaGccaGL OaGaayzkaaGaciyzaiaacIhacaGGWbWaaeWabeaacaaMi8UabCOSdy aafaGaaCOwamaaBaaaleaacaWGPbaabeaakmaabmqabaGaamiDamaa BaaaleaacaWGQbaabeaaaOGaayjkaiaawMcaaaGaayjkaiaawMcaaa qaaiaadofadaahaaWcbeqaamaabmqabaGaaGjcVlaaicdacaaMi8oa caGLOaGaayzkaaaaaOWaaeWabeaacaWHYoGaaiilaiaaysW7caWG0b WaaSbaaSqaaiaadQgaaeqaaaGccaGLOaGaayzkaaaaamaacmqabaGa aGjcVlaahQfadaWgaaWcbaGaamyAaaqabaGcdaqadeqaaiaadshada WgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaacaaMe8UaeyOeI0Ia aGjbVlqahQfagaqeaiaayIW7daqadeqaaiaahk7acaaISaGaaGjbVl aadshadaWgaaWcbaGaamOAaaqabaaakiaawIcacaGLPaaaaiaawUha caGL9baaaiaawUfacaGLDbaaaaaaaa@9A30@

where Δ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqqHuoardaWgaaWcbaGaamyAaaqaba aaaa@339B@ is the event indicator.

Then the Taylor linearized variance estimator is

V ^ ( β ^ ) = I 1 ( β ^ ) G I 1 ( β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHwbGbaKaadaqadeqaaiqahk7aga qcaaGaayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8+e xLMBb50ujbqegWuDJLgzHbYqHXgBPDMCHbhA5baceiGae8xsaK0aaW baaSqabeaacqGHsislcaaIXaaaaOWaaeWabeaaceWHYoGbaKaaaiaa wIcacaGLPaaacaaMe8Uaae4raiab=LeajnaaCaaaleqabaGaeyOeI0 IaaGymaaaakmaabmqabaGabCOSdyaajaaacaGLOaGaayzkaaaaaa@533F@

where I ( β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaatCvAUfKttLearyat1nwAKfgidfgBSL 2zYfgCOLhaiqGacqWFjbqsdaqadeqaaiqahk7agaqcaaGaayjkaiaa wMcaaaaa@3E7E@ is the observed information matrix and the p × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGWbGaey41aqRaamiCaaaa@351D@ matrix G MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaC4raaaa@337D@ is defined as

G = i , j A N : i < j π i π j π i j π i j ( u ^ i π i u ^ j π j ) ( u ^ i π i u ^ j π j ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaC4raiaaysW7caaMc8UaaG ypaiaaysW7caaMc8+aaabuaeqaleaacaWGPbGaaGilaiaaysW7caWG QbGaeyicI4SaamyqamaaBaaameaacaWGobaabeaaliaaiQdacaaMe8 UaamyAaiaaykW7caaI8aGaaGPaVlaadQgaaeqaniabggHiLdGccaaM c8+aaSaaaeaacqaHapaCdaWgaaWcbaGaamyAaaqabaGccqaHapaCda WgaaWcbaGaamOAaaqabaGccaaMe8UaeyOeI0IaaGjbVlabec8aWnaa BaaaleaacaWGPbGaamOAaaqabaaakeaacqaHapaCdaWgaaWcbaGaam yAaiaadQgaaeqaaaaakmaabmaabaGaaGjcVpaalaaabaGabCyDayaa jaWaaSbaaSqaaiaadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadM gaaeqaaaaakiaaysW7caaMc8UaeyOeI0IaaGjbVlaaykW7daWcaaqa aiqahwhagaqcamaaBaaaleaacaWGQbaabeaaaOqaaiabec8aWnaaBa aaleaacaWGQbaabeaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaOGa mai2gkdiIcaadaqadaqaamaalaaabaGabCyDayaajaWaaSbaaSqaai aadMgaaeqaaaGcbaGaeqiWda3aaSbaaSqaaiaadMgaaeqaaaaakiaa ysW7caaMc8UaeyOeI0IaaGjbVlaaykW7daWcaaqaaiqahwhagaqcam aaBaaaleaacaWGQbaabeaaaOqaaiabec8aWnaaBaaaleaacaWGQbaa beaaaaaakiaawIcacaGLPaaaaaa@89A9@

where π i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHapaCdaWgaaWcbaGaamyAaiaadQ gaaeqaaaaa@34E2@ are the joint inclusion probabilities for units i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbaaaa@320A@ and j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGQbGaaiOlaaaa@32BD@

In particular, for stratified cluster designs in which the PSUs are selected by using a simple random sample without replacement, the p × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGWbGaaGjbVlabgEna0kaaysW7ca WGWbaaaa@3837@ matrix G MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaC4raaaa@337C@ reduces to

G = h = 1 H n h ( 1 f h ) n h 1 i = 1 n h ( e h i + e ¯ h ) ( e h i + e ¯ h ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaC4raiaaysW7caaMc8UaaG ypaiaaysW7caaMc8+aaabCaeqaleaacaWGObGaaGypaiaaigdaaeaa caWGibaaniabggHiLdGccaaMc8+aaSaaaeaacaWGUbWaaSbaaSqaai aadIgaaeqaaOWaaeWabeaacaaIXaGaaGjbVlabgkHiTiaaysW7caWG MbWaaSbaaSqaaiaadIgaaeqaaaGccaGLOaGaayzkaaaabaGaamOBam aaBaaaleaacaWGObaabeaakiaaysW7cqGHsislcaaMe8UaaGymaaaa daaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gadaWgaaadba GaamiAaaqabaaaniabggHiLdGcdaqadeqaaiaahwgadaWgaaWcbaGa amiAaiaadMgacqGHRaWkaeqaaOGaaGjbVlabgkHiTiaaysW7caaMc8 UaaGjcVlqahwgagaqeamaaBaaaleaacaWGObGaeyyXICTaeyyXICna beaaaOGaayjkaiaawMcaamaaCaaaleqabaGccWaGyBOmGikaamaabm qabaGaaCyzamaaBaaaleaacaWGObGaamyAaiabgUcaRaqabaGccaaM e8UaeyOeI0IaaGjbVlaaykW7caaMi8UabCyzayaaraWaaSbaaSqaai aadIgacqGHflY1cqGHflY1aeqaaaGccaGLOaGaayzkaaaaaa@8356@

where e h i + MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCyzamaaBaaaleaacaWGOb GaamyAaiabgUcaRaqabaaaaa@3684@ is the weighted sum of the score residuals, u ^ h i j , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWH1bGbaKaadaWgaaWcbaGaamiAai aadMgacaWGQbaabeaakiaacYcaaaa@35DA@ in stratum h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObaaaa@3209@ and PSU i ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbGaai4oaaaa@32C9@ e ¯ h .. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCyzayaaraWaaSbaaSqaai aadIgacaaIUaGaaGOlaaqabaaaaa@363C@ is the mean of e h i + ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UaaCyzamaaBaaaleaacaWGOb GaamyAaiabgUcaRaqabaGccaGG7aaaaa@374D@ n h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadIgaaeqaaa aa@3328@ is the number of PSUs; and f h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadIgaaeqaaa aa@3320@ is the sampling fraction in stratum h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObGaaiOlaaaa@32BB@

These estimators are well studied in the sample survey literature. For example, Binder (1992) and Lin (2000) provide conditions under which β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCOSdyaajaaaaa@33FB@ and V ^ ( β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCOvayaajaWaaeWabeaacu aHYoGygaqcaaGaayjkaiaawMcaaaaa@36D7@ are consistent. Chambless and Boyle (1985) derived the design-based variance and asymptotic normality for discrete proportional hazards models.

1.2.2  Replication variance estimator using the delete-one jackknife method

The jackknife method is a commonly used replication variance estimation method for complex surveys. To create replicates, it deletes (assigns a zero weight to) one PSU at a time from the full sample. In each replicate, the sampling weights of the remaining PSUs are modified by the jackknife coefficient α r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHXoqydaWgaaWcbaGaamOCaaqaba GccaGGUaaaaa@349A@ The modified weights are called replicate weights.

Let PSU i r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbWaaSbaaSqaaiaadkhaaeqaaa aa@332D@ in stratum h r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObWaaSbaaSqaaiaadkhaaeqaaa aa@332C@ be omitted from the r th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGYbWaaWbaaSqabeaacaqG0bGaae iAaaaaaaa@3422@ replicate; then the replicate weights and jackknife coefficients are given by

w h i j ( r ) = { 0 i = i r and h = h r w h i j / α r i i r and h = h r w h i j h h r MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG3bWaa0baaSqaaiaadIgacaWGPb GaamOAaaqaamaabmqabaGaaGjcVlaadkhacaaMi8oacaGLOaGaayzk aaaaaOGaaGjbVlaaykW7caaI9aGaaGjbVlaaykW7daGabaqaauaaba qadiaaaeaacaaIWaaabaGaamyAaiaaysW7caaI9aGaaGjbVlaadMga daWgaaWcbaGaamOCaaqabaGccaaMe8UaaGPaVlaabggacaqGUbGaae izaiaaysW7caaMc8UaamiAaiaaysW7caaI9aGaaGjbVlaadIgadaWg aaWcbaGaamOCaaqabaaakeaadaWcgaqaaiaadEhadaWgaaWcbaGaam iAaiaadMgacaWGQbaabeaaaOqaaiabeg7aHnaaBaaaleaacaWGYbaa beaaaaaakeaacaWGPbGaaGjbVlabgcMi5kaaysW7caWGPbWaaSbaaS qaaiaadkhaaeqaaOGaaGjbVlaaykW7caqGHbGaaeOBaiaabsgacaaM e8UaaGPaVlaadIgacaaMe8UaaGypaiaaysW7caWGObWaaSbaaSqaai aadkhaaeqaaaGcbaGaam4DamaaBaaaleaacaWGObGaamyAaiaadQga aeqaaaGcbaGaamiAaiaaysW7cqGHGjsUcaaMe8UaamiAamaaBaaale aacaWGYbaabeaaaaaakiaawUhaaaaa@84D6@

and α r = n h r 1 n h r , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacqaHXoqydaWgaaWcbaGaamOCaaqaba GccaaMe8UaaGPaVlaai2dacaaMe8UaaGPaVpaaleaaleaacaWGUbWa aSbaaWqaaiaadIgadaWgaaqaaiaadkhaaeqaaaqabaWccqGHsislca aIXaaabaGaamOBamaaBaaameaacaWGObWaaSbaaeaacaWGYbaabeaa aeqaaaaakiaacYcaaaa@43B2@ respectively, for all observation units j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGQbaaaa@320B@ in stratum h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObaaaa@3209@ and PSU i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGPbGaaiOlaaaa@32BC@ The number of PSUs in stratum h r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObWaaSbaaSqaaiaadkhaaeqaaa aa@332C@ is n h r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadIgadaWgaa adbaGaamOCaaqabaaaleqaaOGaaiOlaaaa@3513@

The jackknife method can be applied to estimate variances for the estimated regression parameters for Cox’s model because the model parameters are solutions of a set of estimating equations that are smooth functions of totals (the corresponding score functions are given in Section 2). Properties of jackknife variance estimators for proportional hazard regression models are discussed in Shao and Tu (1995, Section 8.3).

To apply the jackknife method, model parameters are estimated by using the full sample and by using every replicate sample. Let β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaaaaa@326A@ be the estimated proportional hazards regression coefficients from the full sample, and let β ^ r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaaMi8UabCOSdyaajaWaaSbaaSqaai aadkhaaeqaaaaa@351E@ be the estimated regression coefficients from the r th MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGYbWaaWbaaSqabeaaciGG0bGaai iAaaaaaaa@3426@ replicate. Then the covariance matrix of β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaaaaa@326A@ is estimated by

V ^ ( β ^ ) = r = 1 R α r ( β ^ r β ^ ) ( β ^ r β ^ ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHwbGbaKaadaqadeqaaiqahk7aga qcaaGaayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8+a aabCaeqaleaacaWGYbGaaGypaiaaigdaaeaacaWGsbaaniabggHiLd GccaaMc8UaeqySde2aaSbaaSqaaiaadkhaaeqaaOWaaeWabeaaceWH YoGbaKaadaWgaaWcbaGaamOCaaqabaGccaaMe8UaeyOeI0IaaGjbVl qahk7agaqcaaGaayjkaiaawMcaamaabmqabaGabCOSdyaajaWaaSba aSqaaiaadkhaaeqaaOGaaGjbVlabgkHiTiaaysW7ceWHYoGbaKaaai aawIcacaGLPaaadaahaaWcbeqaaOGamai2gkdiIcaacaGGUaaaaa@5C4A@

If the sampling fractions are not ignorable, then the covariance matrix of β ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHYoGbaKaaaaa@326A@ is estimated by

V ^ ( β ^ ) = r = 1 R α r ( 1 f r ) ( β ^ r β ^ ) ( β ^ r β ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaaceWHwbGbaKaadaqadeqaaiqahk7aga qcaaGaayjkaiaawMcaaiaaysW7caaMc8UaaGypaiaaysW7caaMc8+a aabCaeqaleaacaWGYbGaaGypaiaaigdaaeaacaWGsbaaniabggHiLd GccaaMc8UaeqySde2aaSbaaSqaaiaadkhaaeqaaOWaaeWabeaacaaI XaGaeyOeI0IaamOzamaaBaaaleaacaWGYbaabeaaaOGaayjkaiaawM caamaabmqabaGabCOSdyaajaWaaSbaaSqaaiaadkhaaeqaaOGaaGjb VlabgkHiTiaaysW7ceWHYoGbaKaaaiaawIcacaGLPaaadaqadeqaai qahk7agaqcamaaBaaaleaacaWGYbaabeaakiaaysW7cqGHsislcaaM e8UabCOSdyaajaaacaGLOaGaayzkaaWaaWbaaSqabeaakiadaITHYa IOaaaaaa@60E2@

where f r = n h r N h r MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGMbWaaSbaaSqaaiaadkhaaeqaaO GaaGjbVlaai2dacaaMe8+aaSqaaSqaaiaad6gadaWgaaadbaGaamiA amaaBaaabaGaamOCaaqabaaabeaaaSqaaiaad6eadaWgaaadbaGaam iAamaaBaaabaGaamOCaaqabaaabeaaaaaaaa@3D66@ is the sampling fraction in stratum h r . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGObWaaSbaaSqaaiaadkhaaeqaaO GaaiOlaaaa@33E8@

In practice, both Taylor linearized variance and jackknife variance estimates are used to construct Wald t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWG0baaaa@3215@ confidence intervals with R H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGsbGaaGjbVlabgkHiTiaaysW7ca WGibaaaa@36C7@ degrees of freedom, where R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGsbaaaa@31F3@ is the number of PSUs (or the number of replicates) and H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpq0dc9vqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaGaaeaadaaakeaacaWGibaaaa@31E9@ is the number of strata.

It is straightforward to show that the jackknife variance estimator is algebraically equivalent to the Taylor linearized estimator for design linear estimators. But for design nonlinear estimators, such as the regression coefficients for proportional hazards regression models, the jackknife method tends to produce slightly higher variance estimates than the Taylor linearized method (Fuller, 2009).

Note that if the full sample estimate suffers from a monotone likelihood, then it is very likely that most replicate samples will also suffer from monotone likelihoods. This will results in many “unusable” replicate estimates.

Survey data analysis procedures in SAS/STAT support both Taylor linearized and replication variance estimation methods (Mukhopadhyay, An, Tobias and Watts, 2008).


Date modified: