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Estimation and inference of domain means subject to 

qualitative constraints 

Cristian Oliva-Aviles, Mary C. Meyer and Jean D. Opsomer1 

Abstract 

In many large-scale surveys, estimates are produced for numerous small domains defined by cross-

classifications of demographic, geographic and other variables. Even though the overall sample size of such 

surveys might be very large, samples sizes for domains are sometimes too small for reliable estimation. We 

propose an improved estimation approach that is applicable when “natural” or qualitative relationships (such as 

orderings or other inequality constraints) can be formulated for the domain means at the population level. We 

stay within a design-based inferential framework but impose constraints representing these relationships on the 

sample-based estimates. The resulting constrained domain estimator is shown to be design consistent and 

asymptotically normally distributed as long as the constraints are asymptotically satisfied at the population 

level. The estimator and its associated variance estimator are readily implemented in practice. The applicability 

of the method is illustrated on data from the 2015 U.S. National Survey of College Graduates. 
 

Key Words: Design-based estimation; Monotone estimation; National Survey of College Graduates. 

 

 

1  Introduction 
 

For many large-scale surveys, a goal is to produce estimates for a large number of domains, many of 

which might have small sample size. These domains are typically created by cross-classifying categorical 

variables such as demographic, geographic or other similar characteristics of interest. For instance, the 

U.S. Current Population Survey releases estimates for domains defined by sex, age, race and/or 

educational attainment. Similarly, the U.S. American Community Survey produces detailed estimates by 

sex, age, race/ethnicity for different levels of geography (depending on the release). In another example 

we will discuss further below, the U.S. National Survey of College Graduates is interested in estimates 

defined by crossing level and field of degree, occupation and gender. Depending on the survey program, 

such “granular” estimates are often as important as the higher-level or population estimates. 

However, although the overall sample size of such surveys might be very large, samples sizes for 

numerous domains are often too small for reliable estimates. One possible approach to avoid this problem 

could be to aggregate small domains into bigger scales so that more reliable direct estimators can be 

produced for those scales, leading to the generation of more aggregated information than the actual 

desired scale. An alternative to producing small domain estimates could be changing from a design-based 

to a model-based estimation methodology such as small area models. While that is certainly a statistically 

valid approach for creating precise estimates at small scales, it is labor-intensive and sensitive to potential 

model misspecification. It also replaces the sampling error by model error, so that the mode of inference 

changes. For those reasons, statistical agencies prefer to stay within the design-based approach, which 

offers robustness and also allows to stay with the standard mode of inference for surveys. 

mailto:jopsomer@mac.com
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In this paper, we present an estimation approach that is applicable when “natural” or qualitative 

relationships are expected to hold among the domain means at the population level. These relationships 

can be used to stabilize the sample domain estimates, while staying within the design-based mode of 

estimation and inference. The type of relationships we are considering here lead to inequalities among 

population domain means. For instance, certain job types might be expected to receive better salaries than 

others, or individuals with graduate degrees in a given discipline are expected to have higher salaries than 

those without graduate degrees in that discipline. However, given that small domains tend to produce 

estimates with high variability, such expected population-level relationships are often violated at the 

sample level. While such violations should be expected by data users due to statistical variability, they 

might lead them to question the overall reliability of the survey, by producing “absurd” estimates. 

There is a large literature in survey statistics related to calibrating survey estimates, see e.g. Särndal, 

Swensson and Wretman (1992) for an overview. While these estimators also rely on constraints, there are 

important differences, including the fact that the constraints are equality constraints and that they are 

applied to the survey weights, not the estimates themselves. While we do not explore this here, it would be 

possible to combine calibration and constrained estimation, since the latter could use calibrated domain 

estimates as the starting point for constructing constrained domain estimates. In the model-based setting, 

Rueda and Lombardía (2012) adapted methods in small area estimation for the case of monotonically 

ordered domain means. 

Recently, Wu, Meyer and Opsomer (2016) proposed a domain mean estimation methodology that 

relies on the assumption of monotone population domain means along a single domain-defining 

categorical variable (e.g., age classes). By combining the monotonicity information of domain means and 

design-based estimators in the estimation stage, they proposed a constrained estimator that respects the 

monotone assumption. Such an estimator was shown to improve precision and variability of domain mean 

estimates in comparison with direct estimators, given that the assumption of monotonicity is reasonable. 

We generalize this work here by allowing a much larger class of constraints between domain means, 

applicable to the multi-dimensional setting. Many other types of constraints beyond monotonicity may be 

expected to hold between population domain means in real surveys, especially in the presence of domains 

defined by the cross-classifications of many categorical variables. In general, any set of linear inequality 

constraints can be represented through a constraint matrix, where each row defines a constraint and each 

column a domain mean. For illustration of a constraint matrix, suppose the variable of interest is the 

annual average salary of faculty in land-grant universities of a certain size. Further, consider domains 

generated from the cross-classification of the variables job position 1( ;x  1 = Untenured and 2 = Tenured) 

and three specific departments 2( ;x  1 = Anthropology, 2 = English and 3 = Engineering). Under the 

assumptions that, on average within a discipline, tenured faculty have higher salaries than untenured 

faculty; and that, within tenured and untenured, Engineering faculty members are expected to have higher 

salaries than those in either the Anthropology or English departments, then we can express the 

corresponding restrictions as,  
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( )11 21 12 22 13 23= , , , , , ,     μ
T

 with ij  representing the mean of the domain that corresponds to 

1 =x i  and 2 = ;x j 0  being the zero vector, and the inequality being element-wise. This paper 

describes a new constrained estimator for population domain means that respect constraints that can be 

expressed with matrix inequalities of the form given in (1.1). By combining design-based domain mean 

estimators with these shape constraints, we propose a broadly applicable estimator that improves precision 

and variability of the most common direct estimators. 

The remainder of the paper is organized as follows. In Section 2 we formally introduce the constrained 

estimator and propose a linearization-based method for variance estimation. This section also contains 

some scenarios of interest where shape constraints can naturally arise for survey data. Section 3 states the 

main theoretical properties of the constrained estimator. The necessary assumptions used in these 

theoretical derivations are also stated in this section. Proofs of main theorems and auxiliary lemmas are 

provided in the Appendix. Section 4 shows through simulations that the constrained estimator improves 

domain mean estimation and variability in comparison with the unconstrained estimator, even when the 

assumed shape holds only approximately at the population level. Section 5 demonstrates the advantages of 

the proposed methodology on real survey data through an application to the 2015 National Survey of 

College Graduates. A few concluding remarks are provided in Section 6. 

 
2  Constrained estimation and inference for domain means 

 
2.1  Notation and preliminaries 
 

Let NU  be the set of elements in a population of size .N  Consider a sample Ns  of size Nn  that is 

drawn from NU  using a probability sampling design ( ) .Np   Denote ( ), = Prk N Nk s   and , =kl N  

( )Pr ,N Nk s l s   as the first and second order inclusion probabilities, respectively. Assume that 

, ,> 0, > 0k N kl N   for , .Nk l U  To simplify notation, we will adopt the usual convention of 

suppressing the subscript N  unless it is needed for clarity. Denote  
= 1

D

d d
U  as a domain partition of ,U  

where D  is the number of domains and each dU  is of size .dN  Also, let ds  be the subset of size dn  of s  

that belongs to .dU  
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For any study variable ,y ( )
1

= , ,
DU U Uy yy

T
 denotes the vector of population domain means, 

where  

 = .d

D

kk U

U

d

y
y

N


 (2.1) 

We will focus on the Hájek estimator of ,
DUy  given by  

 =
ˆ
d

d

k kk s

s

d

y
y

N




 (2.2) 

with ˆ = 1 ,
d

d kk s
N 

  and let sy  to be the vector of estimators. The results will also hold for the 

Horvitz-Thompson estimator with minor modifications, but it will not be explicitly addressed in what 

follows. 

 
2.2  Proposed estimator 
 

Assume there is information available regarding relationships between the population domain means 

that can be expressed with m  constraints through a m D  irreducible constraint matrix .A  A matrix A  

is irreducible if none of its rows is a positive linear combination of other rows, and if the origin is also not 

a positive linear combination of its rows (Meyer, 1999). In practical terms, this means that there are no 

redundant constraints in .A  To take advantage of sy  to obtain an estimator that respects these shape 

constraints, we propose the constrained estimator ( )
1

= , ,
Ds s s θ

T
 to be the unique vector that 

solves the following constrained weighted least squares problem,  

 ( ) ( )min subject to ;s s s− − 
θ

y θ W y θ Aθ 0
T

 (2.3) 

where sW  is the diagonal matrix with elements 1 2
ˆ ˆ ˆ ˆ ˆ ˆ, , , ,DN N N N N N  and 

=1
ˆ ˆ= .

D

dd
N N  The 

constrained problem in equation (2.3) can be alternatively written as finding the unique vector s  that 

solves  

 
2

min subject to ,s s− z A 0


   (2.4) 

where 1 2= ,s s sz W y 1 2= ,sW θ  and 1 2= .s s
−A AW  The transformed constrained matrix sA  is also 

irreducible if A  is, and it depends on the sample although A  does not. The solution s  is the projection 

of sz  onto the set of vectors   that satisfy the condition .s A 0  This set is a polyhedral convex cone, 

called the constraint cone s  defined by ;sA  specifically,  

  = : .D
s s  A 0 R  (2.5) 

We use the notation ( )= ,s s s z  where ( ) u S  stands for the projection of u  onto the set ,S  

i.e., the closest vector in S  to .u  
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Projections onto such cones are well understood; see Rockafellar (1970) or Meyer (1999) for details. In 

terms of this work, the main results from cone projection theory are summarized here. The cone can be 

characterized by a set of edges generating the cone; that is, a vector is in the cone if and only if it is a 

linear combination of the edges with non-negative coefficients. (Picture a pyramid with vertex at the 

origin, extending out indefinitely.) Subsets of the edges define the faces of the cone, and the projection of 

sz  onto the cone lands on one of the faces. Once the edges defining this face are determined, the 

projection can be characterized as an ordinary least-squares projection onto the linear space spanned by 

this subset of edges. This property is crucial for both the algorithm for projection and for inference, 

because the projection onto the cone can be characterized as a linear projection. 

For this work, we will project sz  onto the polar cone 0
s  (Rockafellar, 1970, page 121), defined as  

  0 = : , 0, ,D
s s     ρ ρ  R  (2.6) 

where , = .u v u vT  That is, the polar cone is the set of vectors that form obtuse angles with all vectors 

in .s  The polar cone is analogous to the orthogonal space in linear least-squares projections, in that the 

projection of a vector onto the polar cone is the residual of its projection onto the constraint cone, and 

vice-versa. Meyer (1999) showed that the negative rows of an irreducible matrix are the edges 

(generators) of the polar cone, leading to the following characterization of the polar cone in (2.6):  

 0

=1

= : = , 0, = 1, 2, , ,
j

m
D

s j s j
j

a a j m
 

   
 

ρ ρ γR  (2.7) 

where 
1 2
, , ,

ms s sγ γ γ  are the rows of .s−A  Robertson, Wright and Dykstra (1988, page 17) 

established necessary and sufficient conditions for a vector s  to be the projection of sz  onto .s  That 

is, s s   solves the constrained problem in (2.4) if and only if  

 , = 0, and , 0, .s s s s s s− −    z z       

Moreover, the above conditions can be adapted to the polar cone as follows: the vector 0
s s ρ  

minimizes 
2

s −z ρ  over 0
s  if and only if  

 , = 0, and , 0 for = 1, 2, , .
js s s s s s j m− − z ρ ρ z ρ γ  (2.8) 

The conditions in (2.8) can be used to show that the projection of sz  onto the polar cone 0
s  coincides 

with the projection onto the linear space generated by the edges 
jsγ  such that , = 0.

js s s−z ρ γ  This 

set of edges could be empty, meaning that the projection onto 0
s  is equal to the projection onto the zero 

vector. In that case, the unconstrained minimum satisfies all the constraints. Alternatively, this set of edges 

might not be unique. To formalize these ideas, denote  , = :
js J sV j Jγ  for any  1, 2, , .J m  

Define the set ,s JF  as,  
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 , = : = , 0, ,
j

D
s J j s j

j J

a a j J


 
   

 
ρ ρ γF R  (2.9) 

where , =s  0F  by convention. (Technically, this set is the closure of a face of the cone.) That is, ,s JF  

is a closed polyhedral sub-cone of 0
s  that starts at the origin and is defined by the edges in , .s JV  Further, 

let ( ),s JVL  be the linear space generated by the vectors in , .s JV  It is shown in Meyer (1999) that 

projecting onto 0
s  is equivalent to projecting onto ( ), ,s JVL  for an appropriate set .J  If the rows of the 

constraint matrix A  are linearly independent, then the minimal set J  is unique; otherwise there may be 

more than one J  that defines the linear space. In the latter case, however, the projection is still unique 

(see Theorem 1 of the next section). 

Wu et al. (2016) considered the solution to (2.3), in the special case of a monotone relationship 

between domains defined along a single categorical variable. In that case, the solution is equivalent to that 

of the Pooled Adjacent Violator Algorithm (PAVA), which has an explicit expression in terms of a 

pooling of neighboring domains. The theoretical results in Wu et al. (2016) were obtained using that 

explicit expression, and hence do not apply to the more general setting considered here. Nevertheless, as 

was the case with the simple 6-domain example in Section 1 and in many situations of practical interest, 

the specific matrix A  will often correspond to a multivariate partial ordering of the domain means. Under 

partial ordering, the solution to the constrained minimization in (2.3) is again equivalent to a pooling of 

neighboring domains in such a way that the partial order constraints are respected. See for instance 

Robertson et al. (1988, page 23) for an explicit expression of this pooled domain expression under partial 

ordering, including the definition of the pooling. However, unlike PAVA in the univariate case, this does 

not lead to a practical general computational algorithm. In the current paper, we will allow for arbitrary 

irreducible constraint matrix ,A  which will include partial ordering and univariate monotonicity as 

special cases. 

One possible general approach to computing s  is based on the edges of the constraint cone .s  

However, the number of edges can be considerably larger than the number of constraints for large values 

of ,D  especially for the case when there are more constraints than domains (see Meyer, 1999). Moreover, 

given the lack of a general closed form solution for the edges of s  (when > ),m D  the edges need to 

be computed numerically in that case. This task is computationally demanding, which makes this 

approach an inefficient way to compute .s  A more efficient algorithm based on computing the projection 

onto the polar cone has been developed: the Cone Projection Algorithm (CPA) (Meyer, 2013). This 

alternative approach takes advantage of the easy-to-find edges 
jsγ  of the polar cone, the conditions in 

(2.8), and the fact that ( ) ( )0= .s s s s s  −  z z z  The latter fact is a key component on the proofs 

of the main theoretical results shown in this paper. CPA has been implemented in the software R into the 

coneproj package. See Liao and Meyer (2014) for further details. 

For the situations in which the constraints correspond to complete or partial ordering, the CPA solution 

once again corresponds to domain pooling. After this, the domain mean estimates can be explicitly 
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computed as sample-based domain means for the CPA-determined pooled domains. This greatly facilitates 

incorporating this methodology into survey estimation practice, because the pooled domain definitions can 

be readily communicated as part of the instructions accompanying a survey dataset release, and the 

estimates can be calculated without requiring access to specialized software. 

 
2.3  Variance estimation of 

ds
  

 

Estimating appropriately the variance of 
ds  is a complicated task, derived from the fact that the 

projection of sz  onto 0
s  (or onto )s  might not always land on the same linear space ( ),s JVL  for 

different samples .s  To better understand that, we define sG  as the set of all subsets  1, 2, ,J m  

such that ( ) ( )( )0
, ,= ,s s s s J s JV   z z L F  as defined in (2.9). As noted earlier, there could be 

different sets 1J  and 2J  such that the projection onto the polar cone 0
s  is equal to projecting onto either 

( )
1,s JVL  or ( )

2, .s JVL  However, independently of which set is chosen, the projection sρ  is unique. 

To illustrate the above point, consider the following restrictions when there are only 3 domains: the 

first domain mean is expected to be at the most equal to the second domain mean, and the third domain 

mean is expected to be at least equal to the average of the first two domain means. Hence, the constraint 

matrix A  can be expressed as  

 
1 1 0

= .
1 1 2

− 
 
− − 

A   

Suppose it is observed that 
1 2 3

= < .s s sy y y  The transformed vector sz  has elements of the form  

 
1 1 2 2 3 3

1 2 3
ˆ ˆ ˆ

= , = , = .
ˆ ˆ ˆs s s s s s

N N N
z y z y z y

N N N
  

In this setting, it is straightforward to see that ( )0 = .s s z 0  In the process of computing it using the 

general algorithm, we project sz  onto each of the 22 = 4  linear spaces generated by the polar cone 

edges  

 
1 2

1 2 1 2 3

ˆ ˆ ˆ ˆ ˆ
= , , 0 , = , , 2 .

ˆ ˆ ˆ ˆ ˆs s

N N N N N

N N N N N

   
− −   

   
   

γ γ

T T

  

Hence, it can be seen that the conditions ( ) ( )( )0
, ,= =s s s s J s JV   z 0 z L F  are satisfied only 

for =J   and  = 1 ,J  which implies that   = , 1 .s G  Moreover, note that ,sV   and  , 1sV  do 

not span the same linear spaces, which is what complicates the variance estimation of .
ds  In the model-

based case with continuous variables, the set of sample vectors where these scenarios occur has measure 

zero. However, they cannot be excluded in the design-based setting. 

We propose a variance estimator for 
ds  that relies on the sets in sG  and is based on linearization 

methods. Consider any fixed set ,sJ  G  and let ,s JP  be the projection matrix corresponding to the 

linear space ( ), ,s JVL  where ,s P  is the matrix of zeros by convention. By the selection of ,J  then sρ  
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can be expressed as , ,s J sP z  which implies that 
sθ  can be written as 1 2 1 2

, ,= ,s J s s s J s s
−−θ y W P W y  

where we add the subscript J  in 
sθ  to be aware that the expression depends on the chosen .J  

Now, observe that ,s Jθ  is a smooth non-linear function of the ˆ ’sdt  and the ˆ ’s,dN  where 
d̂t  is the 

Horvitz-Thompson estimator of = .
d

d kk U
t y

  Therefore, treating J  as fixed, we obtain the 

asymptotic variance of ,ds J  via Taylor linearization (Särndal et al., 1992, page 175) as  

 ( ),AV = ,
d

k l

s J kl
k U l U k l

u u


  

  (2.10) 

where = ,kl kl k l   −  and  

 
=1 =1

= 1 1 for = 1, 2, , ,
i i

D D

k i k k U i k U
i i

u y k N  +    

with 1A  being the indicator variable for the event ,A  and  

 
( ) ( ) ( ) ( )1 1 1 1 1 1 1 1

, ,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , , , , , , , , , , , , , , ,
= ; = .

ˆˆ
d d

D D D D D D D D

s J s J

i it t N N t t N N t t N N t t N N

i i
t N

 
 

= =

 

 
  

In addition, a consistent estimator of the asymptotic variance in (2.10) is given by  

 ( ),

ˆ ˆ
ˆ = ,

d

kl k l

s J
k s l s kl k l

u u
V 

   


  (2.11) 

where  

 
=1 =1

ˆˆˆ = 1 1 for = 1, 2, , ,
i i

D D

k i k k s i k s
i i

u y k N  +    

with ˆˆ ,i i   obtained from ,i i   by substituting the appropriate Horvitz-Thompson estimators for each 

population total. We propose the estimator in (2.11), computed at the J  obtained in the sample, as a 

variance estimator of .
ds  

To provide a clear example of the proposed variance estimator for ,
ds  consider the setting presented 

at the beginning of this subsection. Since   = , 1 ,s G  it might be of interest to compute the 

estimated variance of ,ds J  for  = 1J  and certain .d  The matrix  , 1sP  is the projection matrix 

corresponding to the linear space generated by 
1
,sγ  given by  

   ( )

2 1 2

1

1 2 1 2 1, 1

ˆ ˆ ˆ 0

ˆ ˆ ˆ ˆ ˆ= 0 .

0 0 0

s

N N N

N N N N N
−

 −
 
 + −
 
 
 

P   
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Note that  , 1sP  is a function of ( )
1 2 3

ˆ ˆ ˆ, ,N N N  because 
1sγ  is. Using the above equation,  , 1sθ  can be 

simplified to the following expression,  

 

       ( ) 1 2 1 2

31 2 3

1 2 1 2

, 1 , 1 , 1 , 1

1 2 1 2

1 2 1 2 3

1 2 1 2 3

ˆ ˆ ˆ ˆ
= , , = , ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
= , , .

ˆ ˆ ˆ ˆ ˆ

s s s s

ss s s s

N y N y N y N y
y

N N N N

t t t t t

N N N N N

  
 + +
  + + 

+ + 
 

+ + 

θ

T

T

T

  

Therefore, given a domain ,d  the ’s  and ’s  can be derived by taking the partial derivatives of  , 1ds  

with respect to the ˆ’st  and ˆ ’s,N  and evaluating such derivatives at the ’st  and ’s.N  For = 2,d  that is,  

 

( )

1 2 3

1 2

1 2

1 2 32

1 2

1
= = , = 0,

= = , = 0.

N N

t t

N N

  

  

+

+
−

+

  

The ˆ’s  and ˆ’s  are computed by substituting Horvitz-Thompson estimators in the above equations, 

which are then used to evaluate ˆ
ku  for each k  in the sample .s  Finally, the proposed variance estimator 

in (2.11) can be computed. 

 
3  Properties of the constrained estimator 

 
3.1  Assumptions 
 

To derive our theoretical results, we make assumptions on the asymptotic behavior of the population 

NU  and the sampling design :Np  
 

A1. The number of domains D  is fixed.  

A2. 1lim sup < ,
r

N kk U
N y−

→ 
  for = 1, 2.r  

A3. For = 1, , ,d D  there exist constants d  and > 0dr  such that ( )1 2
, =

dU N dy O N −−  

and ( )1 2
, ,d N dN N r O N −− =  for all .d  

A4. The sample size Nn  is non-random and satisfies 0 < < 1.limN Nn N→  In addition, there 

exists , 0 < < 1,  such that ,d N Nn n D  for all d  and all .N  

A5. For all ,N > 0,min
Nk U k   *

, > 0,min
Nk l U kl    and  

                
, :

< .lim sup max
N

N kl
k l U k lN

n
 → 
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A6. The Horvitz-Thompson estimator ˆ
Nsx  of the 2D -dimensional vector of population means 

( )1
1 1= , , , , ,

NU D DN t t N N−x
T
 satisfies  

                ( ) ( ) ( )
1 2

2
ˆ ˆvar , ,

N N N N

d

p s s U D

−
→−x x x 0 IN   

and  

                ( ) ( ) ( )1ˆ ˆ ˆvar var = ;
N N Ns p s p No n −−x x   

where qI  denotes the identity matrix of dimension ,q  the design variance-covariance 

matrix ( )ˆvar
N Np sx  is positive definite, and ( )ˆ ˆvar

Nsx  is the Horvitz-Thompson estimator 

of var .
Np  

 

Assumption A1 establishes that the number of domains remains constant as the population size 

changes. The condition in Assumption A2 is made to ensure design consistency of Horvitz-Thompson 

estimators at the population and domain levels. In particular, note that this condition is satisfied when the 

variable y  is bounded, which can be naturally assumed for many types of survey variables. Assumption 

A3 guarantees that the population domain means and sizes converge to the limiting values d  and ,dr  

respectively. Alternatively, the   values can be thought as superpopulation expectations for a distribution 

that generates the population elements ky  as independent draws. In fact, our theoretical results depend on 

whether the assumed constraints hold for these superpopulation expectations and not for the population 

domain means. Although this might seem to be inappropriate given our interest on using constraints at the 

population level, Assumption A3 ensures that the shape of the domain means would be reasonably close to 

the shape of the superpopulation means. Assumption A4 states that the sample size in each domain cannot 

be smaller than a fraction of the ratio ,n D  which would be obtained by dividing equally the sample size 

over all domains. This assumption aims to ensure that the moments of smooth functions of the 1
d̂N t−  and 

the 1 ˆ
dN N−  are bounded. Also, it assumes that the sample size is non-random. This can be adapted to a 

random sample size by imposing certain conditions on the expected sample size ( ) .p nE  Assumption A5 

establishes non-zero lower bounds for both first and second order inclusion probabilities, and states that 

the design covariances kl  must converge to zero at least as fast as 1.n −  Assumption A6 ensures 

asymptotic normality for ˆ ,
Nsx  which is needed to maintain normality properties on non-linear estimators 

that are expressed as smooth functions of ˆ .
Nsx  It is also used to establish consistency conditions on the 

variance-covariance estimator. For specific designs, asymptotic normality results are available in the 

literature, including the classical result by Hájek (1960) for Poisson sampling and simple random 

sampling without replacement. Additional central limit theorems for stratified sampling include Krewski 

and Rao (1981), who considered stratified unequal probability samples with replacement, Bickel and 

Freedman (1984), who considered stratified simple random sampling without replacement, and Breidt, 

Opsomer and Sanchez-Borrego (2016), who considered general unequal probability designs, with or 

without replacement. 
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3.2  Main results 
 

We derive the theoretical properties of the constrained estimator by focusing on the projection onto 

0
s  instead of .s  Recall that the edges of the polar cone 0

s  are simply the m  rows of ,s−A  denoted 

by ;
jsγ  and that ,sρ  the projection onto 0 ,s  can be described by the sets .sJ  G  Being able to 

characterize the property that sJ  G  in terms of the vectors in ,s JV  allow us to obtain theoretical 

convergence rates, which are used to develop inference properties of the constrained estimator. When the 

set sJ  G  produces a set of linear independent vectors , ,s JV  then it is straightforward that sρ  can be 

written as ( )
1

, , , , ,= ,s J s s J s J s J s J s

−
P z A A A A zT T  where ,s JA  denotes the matrix formed by the rows of 

sA  in positions .J  Hence, based on the conditions in (2.8), sJ  G  if and only if  

 ( )
1

, , , ,, 0 for , and
js s J s s s J s J s J sj J

−
−   z P z γ A A A z 0T  (3.1) 

in this case, where the latter condition assures that ( )( ), , .s s J s JV z L F  However, it is possible that 

the set sJ  G  produces a set of linearly dependent vectors , .s JV  In that case, Theorem 1 below 

guarantees that it is always possible to find a subset *J J  such that *,s J
V  is a linearly independent set 

that spans the same linear space as ,s JV  and that satisfies * .sJ  G  Thus, analogous conditions as in 

(3.1) can be established using *J  instead of .J  

 

Theorem 1. Let A  be a m D  irreducible matrix with rows .j−γ  Let 0  be its corresponding polar 

cone. For any set  1, 2, , ,J m  define  = : .J jV j Jγ  Further, denote 
JF  to be the 

subcone of 0  generated by the edges given by the set .J  For a vector ,z  define its set G  to be formed 

by all sets  1, 2, ,J m  such that ( ) ( )( )0 = .J JV   z z L F  Suppose J  is a non-

empty set such that JV  is a linearly dependent set and .J  .G  Then, there exists *J J  such that 

*J
V  is a linearly independent set, ( ) ( )* = ,JJ

V VL L  and * .J  .G  
 

All above concepts that have been defined at the sample level can be analogously defined at the 

superpopulation level. In particular, let G  be the set of all subsets  1, ,J m  such that 

( ) ( )( )0
, ,= ,J JV       z z L F  where ,z 0 ,

, JV  and , JF  are the analogous versions of 

,sz 0 ,s ,s JV  and ,s JF  obtained by substituting sy  and sW  by ( )1= , , D μ  and =W  

( )1 2diag , , , .Dr r r  Necessary and sufficient conditions as in (2.8) can be analogously established to 

characterize the vector ρ  to be the projection onto 0 .  

Recall the set sG  could vary for different samples. Also, note that highly variable small samples are 

likely to choose sets sJ  G  that are not chosen in the “asymptotically correct” .G  However, as the 

sample size increases, these incorrect choices are less likely to occur since the sample domain means get 

closer to the limiting population domain means. This idea is made more precise in Theorem 2, which 

states that sets that are not in G  have an asymptotically negligible probability of being chosen in the 

sample. 

 

Theorem 2. Consider any set  1, 2, ,J m  such that .J  .G  Then, ( ) ( )1= .sP J O n− G  
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Theorem 3 below shows the asymptotic normality of the constrained estimator and justifies the use of 

the linearization-based variance estimator for the observed projection (or pooling, in the case of partial 

ordering) for asymptotic inference for the finite population domain mean. This generalizes Theorem 2 of 

Wu et al. (2016), where only monotone restrictions were considered. Note the presence of a bias term B  

in the mean of the asymptotic distribution. This undesirable situation occurs when there is more than one 

set J  G  such that their corresponding edges in , JV  span different linear spaces, or equivalently, that 

the projection onto the polar cone 0
  belongs to the intersection of those different linear spaces. 

However, when the constraints hold strictly, i.e., > ,Aμ 0  the vector z  is strictly inside the constraint 

cone ,  and in this case there is no set J    such that ( )( ), = .JV  z 0L  Thus, in this case, the 

bias term vanishes. 

 

Theorem 3. Suppose that μ  satisfies .Aμ 0  Consider any set J  such that .sJ  .G  Then  

 ( ) ( ) ( )
1 2

,
ˆ , 1 ,

d d ds J s UV y B 
−

→−
L N   

for any = 1, 2, , ,d D  where ( )= n
N

B O  is a bias term that vanishes when > .Aμ 0  
 

Theorem 3 relies on the fact that the assumed shape constraints hold for the vector of limiting domain 

means μ  instead of for the vector of population domain means .Uy  In the next section, we show through 

simulations that the constrained estimator improves both estimation and variability when the population 

domains are approximately close to the assumed shape, in comparison with unconstrained estimators. 

 
4  Performance of constrained estimator 

 
4.1  Simulations 
 

We run simulation experiments to measure the performance of the proposed methodology to carry out 

estimation and inference of population domain means. Given a pair of natural numbers 1D  and 2 ,D  we 

generate the limiting domain means d  from the monotone bivariate function ( )1 2,x x  given by  

 ( )
( )

( )

2 2

1 2 1 1

2 2

4 exp 0.5 2
, = 1 4 .

1 exp 0.5 2

x D
x x x D

x D


+
+ +

+ +
  

The d  are created by evaluating ( )1 2,x x  at every combination of 1 1= 1, 2, ,x D  and 2 = 1,x  

22, , ,D  producing a total number of domains equal to 1 2= .D D D  We set 1 = 6D  and 2 = 4.D  

Note that although the function ( )1 2,x x  produces a matrix rather than a vector of domain means, it can 

be vectorized in order to represent the limiting domain means as the vector .μ  For each domain ,d  we 

generate its = =dN N D 400 elements by adding independent and normally distributed noise with 

mean 0 and variance 2  to the .d  Once the elements of the population have been simulated, then the 
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population domain means Uy  are computed. The population domain means used for simulations when 

= 1  are displayed in Figure 4.1. Observe that these domain means are reasonably (not strictly) 

monotone with respect to 1x  and 2 .x  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Population domain means for simulations when = 1.  

 

 
Samples are drawn from a stratified sampling design without replacement, with 4 strata that cut across 

the D  domains. Strata are constructed using an auxiliary variable   that is correlated with the variable of 

interest .y  The vector   is created by adding independent standard normally distributed noise to ,d D  

for each element in domain .d  Then, stratum membership is assigned by sorting the vector   and creating 

4 blocks of 4 =N 2,400 elements each based on the sorted .  To make the design informative, we 

sample =n 480 elements divided across strata in (60, 120, 120, 180). This probability sampling design is 

similar to the one described in Wu et al. (2016). 

We consider 4 different scenarios obtained from the combination of two possible types of shape 

constraints and = 1  or 2. The first type of constraints assumes the population domain means are 

monotone increasing with respect to both 1x  and 2x  (double monotone), while the second type of 

constraints assumes monotonicity only with respect to 1x  (only 1x  monotone). For a fixed ,  the exact 
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same population is considered for the two possible types of constraints. For each scenario, the 

unconstrained sy  and constrained 
sθ  estimates are computed along with their linearization-based 

variance estimates (see (2.11)). Constrained estimates are computed using the CPA, and their variance 

estimates are computed by relying on the sample-selected set .sJ  G  In addition, 95% Wald confidence 

intervals based on the normal distribution are constructed for both estimators. 

To measure the precision of sy  and 
sθ  as estimators of the population domain means ,Uy  we 

consider the Weighted Mean Squared Error (WMSE) given by  

 ( ) ( ) ( )WMSE = ,s s U U s Uy y − − φ φ W φ
T

E   

where sφ  could be either the unconstrained or constrained estimator and UW  is the diagonal matrix with 

elements ,dN N = 1, , .d D  The WMSE values are approximated by simulations as  

 
( )( ) ( )( )

=1

1
,

B
b b

s U U s U
bB

− − φ y W φ y
T

  

where B  is the number of simulations, and 
( )b
sφ  is the estimator for the thb  sample. 

Simulation results are summarized in Figures 4.2 - 4.5, and are based on =R 10,000 replications. 

These display the 24 domains divided in groups of 6, where each group is assumed to be monotone. For 

the double monotone scenario, similar plots with groups of 4 monotone domains each can be also 

pictured. As illustrated in the fits of a single sample in these figures, it can be seen that the constrained 

estimates can be exactly equal to the unconstrained estimates for some domains. In those cases, their 

variance estimates are also equal. Overall, confidence intervals for the constrained estimator tend to be 

tighter in comparison with those for the unconstrained estimator. On average, the constrained estimator 

behaves slightly differently than the population domain means, due to the latter’s non-strict monotonicity. 

As an advantage, the percentiles for the constrained estimator are narrower, demonstrating that the 

distribution of the proposed estimator is tighter than the distribution of the unconstrained estimator. For 

small values of ,  the unconstrained estimates are more likely to satisfy the assumed restrictions, which 

leads to small improvements on the constrained estimator over the unconstrained. In contrast, shape 

assumptions tend to be more severely violated in unconstrained estimates for larger values of ,  allowing 

the proposed estimator to gain much more efficiency on these cases. This latter property can be noted by 

observing that the constrained estimator percentile band gets farther away from the unconstrained 

estimator band as   increases. 

In terms of variability, the constrained estimator has the smaller variance of the two estimators. 

Interestingly, it gets overestimated by its corresponding linearization-based variance estimate. In contrast, 

the variance estimate of the unconstrained estimator underestimates the true variance, which is a known 

and often observed drawback of linearization variances. Despite this difference, confidence intervals for 

both estimators demonstrate a similar good coverage rate when = 1,  meanwhile such coverage gets 

slightly improved by the constrained estimator when = 2.  
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Figure 4.2 Plots of simulation results for the unconstrained and constrained estimators under the double 

monotone scenario with = 1 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Figure 4.3 Plots of simulation results for the unconstrained and constrained estimators under the only 
1

x  

monotone scenario with = 1 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Figure 4.4 Plots of simulation results for the unconstrained and constrained estimators under the double 

monotone scenario with = 2 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Figure 4.5 Plots of simulation results for the unconstrained and constrained estimators under the only 
1

x  

monotone scenario with = 2 . In the “Mean and percentiles” plot, 
dU

y  is hidden by 
ds

y . 
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Table 4.1 shows that the constrained estimator is more precise on average than the unconstrained 

estimator. The precision of the constrained estimator improves when the monotonicity with respect to the 

two variables is assumed, instead of only with respect to 1.x  This is expected here, because the underlying 

surface is indeed doubly monotone, so that the estimator benefits from imposing the stronger constraint. 

 
Table 4.1 

Empirical WMSE values 
 

 Unconstrained Only 
1

x  monotone Double monotone 

= 1   0.0593   0.0362   0.0298  

= 2   0.2384   0.1175   0.0832  

 
4.2  Replication methods for variance estimation 
 

In practice, it is common for large-scale surveys to use replication-based methods for variance 

estimation. Examples of such surveys are the last editions of the NHANES and the National Survey of 

College Graduates (NSCG). To study the performance of replication-based variance estimators under the 

proposed constrained methodology, we carry out simulation studies based on the delete-a-group Jackknife 

(DAGJK) variance estimator proposed by Kott (2001). 

We perform replication-based simulation experiments using the setting described in Section 4.1. To 

compute the DAGJK variance estimator, we first randomly create G  equal-sized groups within each of 

the 4 strata. Then, for each replicate = 1, , ,g G  we delete the thg  group in each of the strata, adjust 

the remaining weights by ( ) ( )1
= ,g G

k kG
w w

−
 where 1= ;k kw  −  and compute the replicate constrained 

estimate ( )g
sθ  using the adjusted weights. The DAGJK variance estimate of ,

ds ( )JK
ˆ ,

dsV   is obtained by 

calculating  

 ( ) ( )( )
2

JK
=1

1
ˆ = .

d d d

G
g

s s s
g

G
V

G
  

−
−   

A replication-based variance estimator of 
dsy  is obtained by substituting 

sθ  by .sy  

Our simulations consider only the double monotone scenario, with = 1 or 2, and =G 10, 20 or 30. 

The sample size is set to either =n 480 or =n 960, where the latter case is obtained by doubling the 

original sample size in each strata. Figures 4.6 - 4.9 contain simulation results based on 10,000 

replications. In contrast to the behavior of the linearization-based variance estimates, it can be seen that 

the DAGJK estimates tend to overestimate the variance of the unconstrained estimator, as is often 

observed in practice. Both replication-based and linearization-based variance estimates of the constrained 

estimator overestimate the true variance, so that the results are more consistent across variance estimation 

methods. As the number of groups G  increases, DAGJK estimates tend to be greater, especially for small 

values of .  Such increments on DAGJK estimates have the direct consequence of increasing the 

coverage rate as G  gets larger. In addition, the coverage rate for both estimators is improved (closer to 
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0.95) when the sample size is increased. Overall, it appears that replication variance estimation is a 

practical alternative to linearization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 480 and = 1. 
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Figure 4.7 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 480 and = 2. 
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Figure 4.8 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 960 and = 1. 
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Figure 4.9 Variance estimation (top) and coverage rate (bottom) simulation results based on linearization 

and DAGJK methods for the unconstrained (left) and constrained (right) estimators, under the 

double monotone scenario with =
N

n 960 and = 2. 
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5  Application of constrained estimator to NSCG 
 

To demonstrate the utility of the proposed constrained methodology in real survey data, we consider 

the 2015 National Survey of College Graduates (NSCG), which is sponsored by the National Center for 

Science and Engineering Statistics (NCSES) within the National Science Foundation, and is conducted by 

the U.S. Census Bureau. The 2015 NSCG data and documentation are available on the NSF website 

(www.nsf.gov/statistics/srvygrads). The purpose of the NSCG is to provide data on the characteristics of 

U.S. college graduates, with particular focus on those in the science and engineering workforce. 

We consider the total earned income before deductions in previous year (2014) to be the variable of 

interest (denoted by EARN). To avoid the high skewness of this variable, a log transformation is 

performed. Moreover, we take into account only those who reported a positive earning amount. A total of 

76,389 observations was considered in our analysis. In addition, 252 domains are considered. These are 

determined by the cross-classification of four predictor variables. These variables and their assumed 

constraints are as follows: 
 

• Time since highest degree. This variable defines the year of award of highest degree. The period 

from 2015 to 1959 is divided into 9 categories, where the first 8 categories (denoted by 1-8) are 

of 6 years each, and the last category (denoted by 9) is of 9 years. Constraint: given the other 

predictors, the average total earned income increases with respect to the time since highest 

degree from year category 1 to 7. No assumption is made with respect to categories 8 and 9, as 

those people are likely to be retired (at least 42 years since their highest degree).  

• Field of study. This nominal variable defines the field of study for highest degree, based on a 

major group categorization provided within the 2015 NSCG. The 7 categories for this variable 

are: 

1: Computer and mathematical sciences,  

2: Biological, agricultural and environmental life sciences,  

3: Physical and related sciences,  

4: Social and related sciences,  

5: Engineering,  

6: S&E-related fields,  

7: Non-S&E fields.  

Constraint: given the other predictors, the average total earned income for each of the fields 2 

and 4 is less than for the fields 1, 3 and 5. No assumption is made with respect to categories 6 

and 7, as they cover many fields for which a reasonable order restriction might be complicated 

to impose. 

• Postgrad. This binary variable defines whether the highest degree is at the postgraduate level 

(YES) or at the Bachelor’s level (NO). Constraint: given the other predictors, the average total 

earned income is higher for those with postgraduate studies. 
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• Supervise. This binary variable defines whether supervising others is a responsibility in the 

principal job (YES) or not (NO). Constraint: given the other predictors, the average total earned 

income is higher for those who supervise others in their principal job.  

 

Figures 5.1 and 5.2 show the unconstrained and constrained estimates for each of the four groups 

obtained from the cross-classification of the Postgrad and Supervise binary variables. Note that since the 

assumed constraints constitute a partial ordering, then the constrained estimates are obtained by pooling 

domains. These figures show that the constrained estimator has a smoother behavior than the 

unconstrained. Moreover, it tends to correct for the some of the “spikes” produced by the unconstrained 

estimator, which are usually a consequence of a very small sample size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.1 Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data, 

given that Postgrad = NO is fixed. 

(a) Supervise = YES (unconstrained).                                  (b) Supervise = YES (constrained). 

 (c) Supervise = NO (unconstrained).                                    (d) Supervise = NO (constrained). 
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Figure 5.2 Unconstrained (left) and constrained (right) domain mean estimates for the 2015 NSCG data, 

given that Postgrad = YES is fixed. 
 

Standard errors for both unconstrained and constrained estimates are computed using the 2015 NSCG 

replicate weights, which are based on successive difference replication method (Opsomer, Breidt, White 

and Li, 2016). The replicate weights and adjustment factors were provided by the Program Director of the 

Human Resources Statistics Program from the NCSES and are available upon request. 

Figure 5.3 displays the ratio of these estimates for each of the 252 domains. In the vast majority of 

cases, the standard error estimates of the proposed estimator are lower than those for the unconstrained 

estimator, with improvements of as much as 7 times smaller. However, there are some cases where the 

opposite behavior occurs. These are investigated in Figure 5.4, which shows plots of two different domain 

(a) Supervise = YES (unconstrained).                                  (b) Supervise = YES (constrained). 

 (c) Supervise = NO (unconstrained).                                    (d) Supervise = NO (constrained). 
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“slices”: one with respect to the Time since highest degree variable and other with respect to Field 

category. These plots include unconstrained and constrained estimates, Wald confidence intervals and 

sample sizes. Each of these two slices contain one of the two domains that can be easily identified in 

Figure 5.3 to have the smallest ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Ratio of the estimated standard errors of unconstrained estimates over those for constrained 

estimates for the 2015 NSCG data. 

 
The first of these domains is displayed in Figure 5.4(a) and 5.4(c), indexed by 5. The unconstrained 

estimates for the domains indexed by 5 and 6 violate the monotonicity assumption, and thus, are being 

pooled to obtain the constrained estimates (additional pooling with domains in other “slices” is also 

occurring, but not visible in this plot). As can be seen in Figure 5.4(a), the confidence interval is narrower 

for the unconstrained estimates. However, the estimated standard error of the unconstrained estimator of 

domain 6 is very large, and pooling with domain 5 greatly stabilizes both the estimator and the estimated 

standard errors for that domain. Figure 5.4(c) shows that the samples sizes on these domains are 

reasonably large at approximately 100 observations each, implying that the noticed monotonicity violation 

might be in fact true in the population. The final decision on the balance between the improved stability of 

some domains with the potential for bias due to incorrect constraints would need to be carefully evaluated. 

The second domain where unconstrained estimates produce smaller standard deviation estimates is 

displayed in Figure 5.4(b) and 5.4(d), indexed by 1. Here, this domain is being pooled with its neighboring 

domain to obtain the constrained estimate. However, as these two domains have very low sample sizes, 

the unconstrained estimates might be considered as unreliable, so that their estimated standard errors are 
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not a good indication of their precision. The constrained estimator appears to be preferred here because of 

the increase in the effective cell size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Unconstrained and constrained estimates with Wald confidence intervals (top) and sample sizes 

(bottom) for the 2015 NSCG data, given that Postgrad = YES and Supervise = YES. 
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6  Conclusions 
 

We have proposed a general methodology to estimate domain means which makes it possible 

incorporate natural restrictions between domains into design-based estimation. It was shown to improve 

estimation and inference, especially on small domains. As this new methodology covers a broad range of 

shape assumptions beyond univariate monotonicity, it aims to jointly take advantage of several types of 

qualitative information that arises naturally for survey data. Additional shapes that may be imposed 

include convexity or log-concavity; the latter might be imposed if the population domain means are 

believed to be increasing and then decreasing over a set of domains. Future work by the authors will 

include a “relaxed monotone” estimator to be used when the population domain means are “roughly” 

monotone in some sequence of domains. For the relaxed monotone estimator, a type of moving average 

over the domains is used to implement the constraints, allowing the estimator to have some departures 

from monotonicity. 

We also proposed a design-based variance estimation method of the estimator, which only requires 

knowledge of the sample-specific constraint set. Replication-based methods are shown to behave 

similarly. From the computational side, the estimator is based on the Cone Projection Algorithm which is 

efficiently implemented in the package coneproj and freely available. In the important practical case of 

partial ordering, the constrained estimator is equivalent to a pooling of neighboring domains, so that once 

the constraint set is identified by CPA, subsequent computations of estimators and variance estimators can 

be done directly using traditional design-based estimation for the relevant domains. 

An important practical issue, as illustrated in the NSCG analysis in Section 5, is the determination of 

when the imposed constraint might not be valid for a particular survey application. Recently, Oliva-

Aviles, Meyer and Opsomer (2019) proposed the sample-based Cone Information Criterion as a criterion 

to choose between the constrained and unconstrained fits for the estimator of Wu et al. (2016). That 

approach is generalizable to the setting considered here, and is currently under development. 

 
Appendix 
 

The first part of this appendix contains lemmas used to obtain the theoretical results discussed in this 

paper. Proofs of the theorems are included at the end of this appendix. 
 

Lemma 1. If a non-zero vector can be written as the positive linear combination of linearly dependent 

non-zero vectors, then it can be expressed as the positive linear combination of a linearly independent 

subset of these.  
 

Proof. Let v  be a non-zero vector such that it can be written as 
=1

=
k

i ii
av  where 1 2, , , k  

are non-zero vectors and > 0ia  for = 1, 2, , .i k  If this set of vectors is not linearly independent, 

then there exist constants 1 , , ,kb b  not all zero, such that 
=1

= ,
k

i ii
b 0  and for any ,c  R =v  

( )
=1

.
k

i i ii
a cb+  Let : 0= ;min

ii b i ic a b−  then 0i ia cb+   for = 1, ,i k  but for at least 
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one ,i  = 0.i ia cb+  Then we have written v  as a positive linear combination of a proper subset of the 

vectors. If this subset is still linearly dependent, the process can be repeated. 
 

Lemma 2. If A  is a m D  irreducible matrix and B  is a D D  nonsingular matrix, then =A AB  

is also irreducible.  
 

Proof. Suppose =A c 0T  for some ,mc R .c 0  Then =B A c 0T T  implies that =A c 0T  by 

the non-singularity of .B  Because A  is irreducible, we must have ,=c 0  so the origin is not a positive 

linear combination of rows of .A  Next, suppose that one of the rows of A  is a positive linear combination 

of other rows of .A  This means we can write = ,A b 0T  where = 1jb −  for some  1, ,j m  

and 0,ib  .i j  But =A b 0T  implies that =B A b 0T T  implies that =A b 0T  by the non-

singularity of .B  We can’t have =A b 0T  for this ,b  so we can’t have a row of A  is a positive linear 

combination of other rows of .A  Therefore, A  is irreducible. 
 

Lemma 3. Let A  be a m D  matrix. Also, let 1S  and 2S  be D D  diagonal matrices with nonzero 

elements on the diagonal. For any set  1, 2, , ,J m  denote ,i JV  to be the set of vectors in rows 

J  of = ,i iA AS = 1, 2.i  Then, for any * ,J J  

 ( ) ( ) ( ) ( )* *1, 2,1, 2,
= = .J JJ J

V V V VL L L L   

 

Proof. Let , = ,i J J iA A S = 1, 2;i  where JA  denotes the submatrix of A  that contains the rows in 

positions .J  First, assume that ( ) ( )* 1,1,
= .JJ

V VL L  Since * ,J J  it is straightforward to see that 

( ) ( )* 2,2,
.JJ

V VL L  Now, consider any ( )2, JVv L  so that 2, 2= =J Jv A a S A aT T  for some 

vector .a  Then, we have ( )1
1 2 1 1,= .J JV− S S v S A a LT  By assumption, there exists a vector b  such 

that 1
1 2 =−S S v *1 .

J
S A bT  Therefore, ( )* *2 2,

= .
J J

Vv S A b LT  Thus, ( ) ( )*2, 2,
.J J

V VL L  

Analogously, it follows that ( ) ( )* 2,2,
= JJ

V VL L  implies ( ) ( )* 1,1,
= .JJ

V VL L  
 

Lemma 4. Under Assumptions A1-A5, the following statements hold: 

(i) The 1
d̂N t−  are uniformly bounded.  

(ii) The 1 ˆ
dN N−  are uniformly bounded above and uniformly bounded away from zero.  

(iii) var ( ) ( )1 1ˆ =dN t O n− −  and var ( ) ( )1 1ˆ = .dN N O n− −  

(iv) ( ) ( )
21 1ˆ =d d dN t r O n− − − E  and ( ) ( )

2
1 1ˆ = .d dN N r O n− − − E  

 

Proof.  

(i) Note that  

                
ˆ

= d
k k kk s k Ud

y yt

N N N





 


 
  

which does not depend on ,s  and is bounded independently of N  by Assumption A2.  
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(ii) From Assumptions A4 and A5, note that  

                1 1 1 1
ˆ

= 1 ,
d

d d

k d
k s

n n N
N N N

DN N N


  − − − −



      

where both lower and upper bounds do not depend on ,s  and are bounded for all N  by 

Assumptions A1 and A4.  

(iii) Note that  

                ( ) ( )
2

1 1

2 , :

ˆvar = var max
d

d
d

kk U

d k k kl
k l U k lk s

y n
n N t n N y n

N N




− −

 

 
 +  

 


   

which is bounded by Assumptions A2, A4 and A5. Setting 1ky   and following an 

analogous argument, it can be shown that ( ) ( )1 ˆvar = 1 .dn N N O−  

(iv) Since  

                ( ) ( )
2

21 1ˆ ˆ= var ,
d

d

d d d d U d d

N
N t r N t y r

N
 − −  

 − + −  
 

E   

Assumption A3 and (iii) lead to the desired conclusion. Analogously, we find  

                ( ) ( )
2

1 1ˆ = .d dN N r O n− − −
 

E   

 

Proof of Theorem 1. First, suppose that ( ) ( )( )0 = = .JV  z z 0L  In that case, any subset 

*J J  such that JV  is linearly independent will satisfy ( )( )* *= .
J J

V z 0L F  Hence, it is 

enough to choose *J J  such that *J
V  is linearly independent and spans ( ) .JVL  Now, suppose that 

( )0 .  z 0  Since ( ) ( )( )0 = ,J JV   z z L F ( )( )JV z L  can be written as the positive 

linear combination of vectors ,jγ .j J  Moreover, ( )( ) , = 0J jV− z z γL  for .j J  From 

Lemma 1, there exists 0J J  such that 
0JV  is linearly independent and ( )( )JV z L  can be written 

as a positive linear combination of the vectors in 
0
,JV  which implies that ( )( )

0
.J JV z L F  In 

addition, since ( )( ) , = 0J jV−z z γL  for 0 ,j J ( )( ) ( )( )
0

= .J JV V z zL L  Thus, ( )0 = z  

( )( )
0

.JV z L  If ( ) ( )
0

=J JV VL L  then *
0=J J  satifies all required conditions. Now, assume that 

( ) ( )
0

.J JV VL L  The fact that ( )( ) ( )( )
0

=J JV V z zL L  implies that ( )( )
1

=JV z L  

( )( )
0JV z L  for any set 1J  such that 0 1 .J J J   Further, since ( )( )

0 0J JV z L F  then 

( )( )
1 1

.J JV z L F  Thus, it is enough to choose the set *J  such that *
0J J J   and *J

V  is a 

linearly independent set that spans ( ) .JVL  
 

Proof of Theorem 2. To prove this theorem, we start with a set J  G  and find necessary conditions for 

such set to belong to .sG  These necessary conditions, expressed as inequalities in terms of smooth and 

continuous functions of the ˆ
dN N  and the ˆ ,dt N  are then used to bound the probability of interest. 
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Finally, we use Theorem 5.4.3 in Fuller (1996) to show that this probability converges to zero with a rate 

of ( )1 .O n−  

Let ,A , JA  and 
d

γ  be the analogous versions of ,sA ,s JA  and 
dsγ  obtained by substituting sy  

and sW  by μ  and ,W  respectively. Lemma 2 ensures that both sA  and A  are irreducible since A  is. 

First, suppose   G  and let = .J   Then, from conditions in (2.8), s  G  if and only if 

, 0
js s z γ  for = 1, 2, , .j m  In contrast, suppose that , 0

j  z γ  for = 1, 2, , .j m  

Hence, ,  G  which contradicts our choice of .J  Therefore, there exists 0j  such that 

0

, > 0.
j z γ  Then, we have  

 

( ) ( ) ( )

( )

0 0 0 0

0 0

0

0 0

0

2

2

2

0 , = , , ,

, ,
= 1

,

1
, ,

,

j j j j

j j

j

j j

j

s s s s s

s s

s s

P P P

P

   

 

 

 

 

    − 

 − 
   
    

  −
  

z γ z γ z γ z γ

z γ z γ

z γ

z γ z γ
z γ

G

E

  

where the last inequality is obtained by an application of Markov’s inequality (see for example Casella 

and Berger (2002), Section 3.6.1). We show now that the expected value in the last term is ( )1 .O n−  Note 

that the expression inside of the expected value in the above inequality is a function of vector 

( )1 1 1 1
1 1

ˆ ˆˆ ˆˆ = , , , , , .s D DN t N t N N N N− − − −x
T

 Let ( )
1f   be such a function (which does not depend 

on ),N  and denote ( )1 1 1= , , , , , .D D Dr r r r  x  To apply Theorem 5.4.3 in Fuller (1996) with 

= 1, = 2s  and ( )1 2= ,Na O n−  first we need to show that the following conditions are satisfied: 

(a) ( ) ( )
2 1ˆ = .s O n

− −
 

x xE  

(b) 1f  is uniformly bounded in a closed and bounded sphere ..S  

(c) ( ) ( )1 2,

1

i if x  is continuous in x  over ,.S  where  

                ( ) ( ) ( )1

0

1

, ,

1 0 1 =
= .r

i i r

r

i i

x x

f f


 
x x

x x   

(d) x  is an interior point of ..S  

(e) There is a finite number K  such that  

                ( ) ( )1 2,

1 for all ,i if K x x S   

                ( ) ( ) ( )1

1 1and .if K f K  x x   

 

Condition (a) is directly met by Lemma 4 (iv). In addition, Lemma 4 (i)-(ii) guarantees that there exist a 

constant > 1M  such that 1
d̂N t M−   and 1 1 ˆ .dM N N M− −   Hence, there exists a closed and 

bounded sphere S  that it is contained within these constant bounds. Moreover, from Assumption A3, we 

can conclude that , x S  so condition (d) is satisfied. To show that condition (b) is met, note that 1f  is 
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a continuous function in S  since both 1 2
sW −  and 

dsy  exist for any .x .S  Therefore, the Extreme 

Value Theorem (see Theorem 4.15 in Rudin (1976)) ensures that 1f  is uniformly bounded in ..S  

Conditions (c) and (e) are satisfied since 1f  is a continuous rational function in ,.S  implying that 1f  is 

infinitely differentiable and its derivatives are bounded in ..S  Finally, all conditions (a)-(e) are fulfilled. 

Therefore, from Theorem 5.4.3 in Fuller (1996), we can conclude that ( )  ( )1
1 = ,f O n−xE  since 1f  

and its first derivative with respect to the 1
d̂N t−  and 1 ˆ

dN N−  evaluate to zero at .x  

Now, take any J    such that ,J  G  and assume that .sJ  G  Theorem 1 guarantees that we 

can always choose a subset *J J  such that * ,sJ  G *,s J
V  is linearly independent, and ( )*,

=
s J

VL  

( ), .s JVL  Note that ( )( ) ( )* * * * *

1

, , , , ,
= .s ss J s J s J s J s J

V
−

 z A A A A zL T T  Let ( )* * * *

1

, , , ,
= .ss J s J s J s J

−
b A A A zT  

Hence, from conditions in (2.8), we have that sJ  G  implies that *,
,

s J
b 0  and * *, ,

, 0
js ss J s J

− z A b γT  

for any .j  Define ( )* * * *

1

, , , ,
=

J J J J    

−
b A A A zT  and assume that *,

,
J
b 0  and * *, ,

, 0
jJ J  

− z A b γT  

for = 1, 2, , .j m  These conditions would imply that * ,J  G  contradicting the original 

assumption that ,J  G  since ( ) ( )* ,,
= JJ

V V
L L  from Lemma 3. Therefore, either there is an 

element of *, J
b  that is strictly negative or there exists 0j  such that * *

0, ,
, > 0.

jJ J  
−z A b γT  

Hence, proving that ( ) ( )1=sP J O n− G  in any of these two scenarios will conclude the proof. 

Suppose the th
0j  element of *, J

b  is strictly negative. That is, *
0 ,

< 0,j J
e bT  where je  denotes the 

indicator vector that is 1 for entry j  and 0 otherwise. Then, we have  

 

( ) ( ) ( )

( )
( )

* * * *
0 0 0 0

* *
0 0

*
0

, , , ,

2

2 , ,

,

0 =

1
.

s j j j js J s J J J

j js J J

j J

P J P P
 





   −  −

  −
 

e b e b e b e b

e b e b
e b

G T T T T

T T

T
E

  

Denote ( )2
ˆ

sf x  to the expression inside the above expected value. An analogous argument to the one used 

for the function 1f  can be applied to the rational continuous function 2f  over ,S  to conclude that 

( )  ( )1
2

ˆ = .sf O n−xE  Note that we also used the fact that * *, ,s J s J
A A T  is an invertible matrix for any 

.x S  

Lastly, suppose there exists 0j  such that * *
0 0

, , ,
= , > 0,

jj J J   
 −z z A b γT  and denote 

0, =j
 z * *

0, ,
, .

js ss J s J
−z A b γT  Then, we have  

 

( ) ( ) ( )

( )

0 0 0 0

0 0

0

, , , ,

2

, ,2
,

0 =

1
.

s s

s

s j j j j

j j

j

P J P P
 





   

 


   − 

  − 

z z z z

z z

z

G

E
  

Denote ( )3
ˆ

sf x  to the expression inside the above expected value. An analogous argument to the one used 

for the functions 1 2,f f  is applied to conclude that ( )  ( )1
3

ˆ = .sf O n−xE  
 

Proof of Theorem 3. Take any sJ  G  and any domain .d  Note that the condition Aμ 0  implies that 

.  G  Then, we can write 
d ds Uy −  as  
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 ( ) ( ) ( )= , = , =
\

= 1 1 1 ,
d d d d d G d G d G d G

c
G G

s U s U J s J U J J s J U J J
J J

y y y y y
 

  
  

− − + − + − 
G G

  

where we used that , = .
d ds sy   Now, an unfeasible variance estimator ( ),AV

ds J  can be written as  

 ( ) ( ) ( ) ( ), = , = , =
\

AV = AV 1 AV 1 AV 1 .
d d d G G d G G

c
G G

s J s J s J J J s J J J
J J

y
 

  
  

+ + 
G G

  

Hence,  

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

1 2 1 2

, =

1 2

, , =
\

1 2

, , =

1 2

=

1 2

, , , =
\

1 2

,

AV = AV 1

AV 1

AV 1

= AV 1

AV 1

AV

d d d d d d

d G d G d G

G

d G d G d G
c

G

d d

d G d G d G G

G

d G
c

G

s J s U s s U J

s J s J U J J
J

s J s J U J J

J

s s U J

s J s J U J J J
J

s J

J

y y y y

y

y

y y y









 

 

 

  

 

− −



−

 

−



−



−

 

−



− −

+ −

+ −


−



+ −

+









G

G

G

G
( )

( ) ( )

( ) ( )

, , =

1 2

, , =
\

1 2

, , =

1 2 3

1

AV 1

AV 1

= ,

d G d G G

d G d G d G

G

d G d G d G
c

G

s J U J J J

s J U J U J J
J

s J U J U J J

J

N N N

y

y

c c c







 

 

−

 

−




− 



 
+ − 

 

 
+ − 

  

+ +





G

G
  

where ,d GU J  is the population version of , .
d Gs J  A first order term Taylor expansion of ,d Gs J  and 

Assumption A6 allow to conclude that each term of the form  

 ( ) ( )
1 2

, , ,AV
d G d G d Gs J s J U J  

−
−   

converges in distribution to a standard normal distribution. Therefore, 1Nc  also converges to a standard 

normal distribution. Note that for each ,c
GJ  G  

 ( ) ( ) ( ) ( )
1 2 1 2 1 2 1 2

, , , ,AV = AV = ( ),
d G d G d d G d G ds J U J U s J U J Uy n n y O n   

− −
− −         

while ( )1
=1 =

GJ J pO n −  by Theorem 2 (since ).sJ  G  Thus, ( )1 2
3 = .N pc O n −  Now, note that 

,d GU J − ( )1 2=
dUy O N −  when \GJ  G  by Assumption A3. Hence, for any \ ,GJ  G  

 ( ) ( ) ( ) ( )
1 2 1 2 1 2

, , , ,AV = AV = ,
d G d G d d G d G ds J U J U s J U J U

n
y n n y O

N
   

− −  
− −        
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which implies that ( )2 = n
N N

c O  (bias term). Thus, by combining these properties of 1 ,Nc 2 Nc  and 

3 ,Nc  we conclude that  

 ( ) ( ) ( )
1 2

,AV , 1 ,
d d ds J s Uy B 

−
→−
L N   

where ( )= .n
N

B O  

Now, write the feasible variance estimator ( ),
ˆ

ds JV   as  

 ( ) ( ) ( ) ( ), = , = , =
\

ˆ ˆ ˆ ˆ= 1 1 1 .
d d d G G d G G

c
G G

s J s J s J J J s J J J
J J

V V y V V
 

  
  

+ + 
G G

  

By Assumption A6, we have that ( ) ( ) ( )1
, ,

ˆ AV =
d G d Gs J s J pV o n  −−  for any ,GJ  which implies that 

( ) ( ) ( )
1 2 1 2 1 2

, ,
ˆ AV = .

d ds J s J pV o n  −−  Hence, an application of Slutsky’s theorem allows to replace 

( )
1 2

,AV
ds J

−
 by ( )

1 2

,
ˆ .

ds JV 
−

 

To prove the last part of this theorem, just note that >Aμ 0  implies  = . G  Thus, the term 2 Nc  

does not exist and the bias term vanishes.  
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