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Local polynomial estimation for a small area mean under 
informative sampling 

Marius Stefan and Michael A. Hidiroglou1 

Abstract 

Model-based methods are required to estimate small area parameters of interest, such as totals and means, when 
traditional direct estimation methods cannot provide adequate precision. Unit level and area level models are 
the most commonly used ones in practice. In the case of the unit level model, efficient model-based estimators 
can be obtained if the sample design is such that the sample and population models coincide: that is, the 
sampling design is non-informative for the model. If on the other hand, the sampling design is informative for 
the model, the selection probabilities will be related to the variable of interest, even after conditioning on the 
available auxiliary data. This will imply that the population model no longer holds for the sample. Pfeffermann 
and Sverchkov (2007) used the relationships between the population and sample distribution of the study 
variable to obtain approximately unbiased semi-parametric predictors of the area means under informative 
sampling schemes. Their procedure is valid for both sampled and non-sampled areas. Verret, Rao and 
Hidiroglou (2015) studied alternative procedures that incorporate a suitable function of the unit selection 
probabilities as an additional auxiliary variable. Their procedure resulted in approximately unbiased empirical 
best linear unbiased prediction (EBLUP) estimators for the small area means. In this paper, we extend the 
Verret et al. (2015) procedure by not assuming anything about the inclusion probabilities. Rather, we 
incorporate them into the unit level model via a smooth function of the inclusion probabilities. This function is 
estimated via a local approximation resulting in a local polynomial estimator. A conditional bootstrap method 
is proposed for the estimation of mean squared error (MSE) of the local polynomial and EBLUP estimators. 
The bias and efficiency properties of the local polynomial estimator are investigated via a simulation. Results 
for the bootstrap estimator of MSE are also presented. 

 
Key Words: Local polynomial estimation; EBLUP estimation; Augmented model; Nested error model; Informative 

sampling; Conditional bootstrap. 
 
 
1  Introduction 
 

Population totals and means are often required for small subpopulations (or areas). When the inference 
is based on the area specific sample data, the resulting small area parameter estimators (direct estimators) 
are not of adequate precision due to the small area specific sample sizes. As a result, it becomes necessary 
to borrow strength across areas. Indirect estimators (predictors) that borrow strength are obtained when a 
model is used for the population of small areas. The model provides a link to related small areas. As a 
consequence, a model-based small area indirect estimator uses all the observations in the national sample, 
as well as the observations from the small area. 

Suppose that the population of interest, U  of size ,N  consists of M  non-overlapping areas with iN  
units in the thi  small area iU ( )1, , .i M=  A sample, ,s  of m  areas is first selected using a specified 
sampling scheme with inclusion probabilities i imp = ( )1, , ,i M=  where ip  denotes the 
selection probability of small area .i  Subsamples is  of specified sizes in  are independently selected from 
each small area iU  according to a specified sampling design with selection probabilities j ip  

( )1
1 .iN

j ij
p

=
=  The inclusion probabilities are j i i j in p =  with sampling weights 1 .j i j iw  −=  

We consider the selection probabilities j ip  proportional to a size measure, ,ijc  related to the response 
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variable :ijy  that is 
1

.iN
j i ij ikk

p c c
=

=   We assume that all small areas are sampled, that is .m M=  
The resulting overall sample size is 

1
.M

ii
n n

=
=   

The basic population nested error regression model introduced by Battese, Harter and Fuller (1988) is 
given by 

 , 1, , ; 1, , ,x βT
ij ij i ij iy v e j N i M= + + = =  (1.1) 

where ijy  is the value of the response variable for unit j  in small area ,i ( )11, , ,x T
i j ij ijpx x=  is the 

vector of covariates, ( )0 1, , ,β T
p  =  is the vector of fixed effects, and ( )iid 2~ 0,i vv N   are the 

random small area effects independent of the unit level errors ( )iid 2~ 0, .ij ee N   The estimation of small 
area means, 1

1
,iN

i i ijj
Y N y−

=
=   is of primary interest. 

If the sampling design is non-informative for the model, that is if the model (1.1) holds for the sample, 
then efficient model-based estimators of the small area means iY  can be obtained using empirical best 
linear unbiased prediction (EBLUP) (see Rao and Molina, 2015, Chapter 6 for an excellent account of the 
procedure). In this case, both the sample and population models coincide, allowing the use of (1.1) on the 
sample data to estimate .iY  

If the selection probability j ip  is related to ijy  even after conditioning on ,ijx  the sampling design is 
informative and the model (1.1) no longer holds for the sample. Consequently, the EBLUP estimator, that 
is based on (1.1) for the sample, may be heavily biased. It is, therefore, necessary to develop estimators 
that can account for sample selection, thereby reducing estimation bias. To this end, Verret et al. (2015) 
augmented model (1.1) by including the variable ( ) ,j ig p  where ( )j ig p  is a specified function of the 
probability .j ip  Their model for the sample is given by 

 ( )0 0 0 0 , 1, , ; 1, , ,x βT
ij ij j i i ij iy g p v e j n i M= + + + = =  (1.2) 

where ( )iid 2
0 0~ 0,i vv N   and independent of ( )iid 2

0 0~ 0, ,ij ee N   and ( )0 00 01 0, , , .T
p  =β  Verret 

et al. (2015) checked the adequacy of (1.2) after fitting the model to sample data ( ), , ,xij ij j iy p  
1, , ; 1, , ,ij n i M= =  for different choices of ( )g   that provide the best fit to the data. They 

suggested the following four possibilities for the choice of ( ) :j ig p ,j ip ( )log ,j ip ( ) 1
j i i j iw n p −

=  
and 1 .i j i j in w p −=  Since their sample model is parametric, the EBLUP theory can be used to estimate 
the relevant parameters using model (1.2).  

Verret et al. (2015) illustrated via a simulation that the resulting EBLUP estimator, denoted as VRHˆ ,iY  
obtained under (1.2), performs well under informative sampling design by reducing both bias and mean 
squared error as compared to the EBLUP estimator, EBLUPˆ ,iY  obtained from the sample data under the 
non-augmented model (1.1). Their simulation study compared their approach to the one used in 
Pfeffermann and Sverchkov (2007). Their simulation results showed that the bias-adjusted estimator of 
Pfeffermann and Sverchkov (2007) performed well under informative sampling in terms of bias, but that 
its MSE is significantly larger than the corresponding MSE of the EBLUP estimator based on the 
augmented model. 
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In this paper, we make no assumptions concerning the form of the function ( ) .j ig p  Instead, we 
incorporate the ’sj ip  into the model (1.1) via an unknown smooth function ( )0 .j im p  Our smooth 
function ( )0m   does not have a parametric form such as the one in Verret et al. (2015). We suppose that 

( )0m   can be locally approximated by a polynomial of order .q  For each point l  in small area ,kU  the 
corresponding polynomial is obtained by the Taylor expansion of ( )0 j im p  in a neighbourhood of .l kp  
For each point ( ),l k  in the population, we replace ( )0 j im p  by the corresponding parametric 
approximation and fit the resulting model just as in parametric fitting. We refer to this method as 
parametric polynomial localization. 

This local approximation results in an augmented model that is semi-parametric. Such models have 
been applied to small area estimation by Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008). 
These authors chose a technique based on penalized splines to estimate the non-parametric part of their 
models. Breidt and Opsomer (2000) and Breidt, Opsomer, Johnson and Ranalli (2007) used the local 
polynomial technique in survey sampling theory to construct model-assisted estimators. Their estimators 
were based on non-parametric models without random effects. To the best of our knowledge, the 
estimation of a small area mean ,iY  based on a local polynomial technique under semiparametric models 
has hardly been investigated. 

The paper is structured as follows. Section 2 provides a review of two methods that result in estimators 
that account for sample selection: these methods were developed by Pfeffermann and Sverchkov (2007) 
and by Verret et al. (2015). In Section 3, we present a three-step procedure to estimate the proposed semi-
parametric augmented model and the small area mean iY  using a local polynomial approximation. We 
label the resulting estimator of the small area mean as LPˆ .iY  The mean squared error (or MSE) of LPˆ

iY  is 
estimated in Section 4 by a parametric conditional bootstrap method. The conditional bootstrap method is 
also used to estimate the MSE of EBLUP estimators obtained under augmented model (1.2). In Section 5, 
we conduct a simulation study under the design-model (or )pm  framework to compare the bias and MSE 
of the new estimator LPˆ

iY  to the EBLUP estimator, as well as to the two estimators discussed in Verret 
et al. (2015). We also study the performance of the conditional bootstrap procedure in estimating the MSE 
of the proposed local polynomial and EBLUP estimators studied in Verret et al. (2015). The performance 
is evaluated in terms of mean relative bias and mean confidence interval level. Concluding remarks are 
given in Section 6. 

 
2  Existing methods 
 

Suppose that the population model (1.1) holds for the sample. Let X i  be the area mean of the 
population values .ijx  Then the EBLUP estimator of X βT

i i iv = +  is given by 

 ( )EBLUP ˆ ˆˆ ˆˆ ˆ ,X β X x βTT
i i i i i i i iv y  = + = + −  (2.1) 

where ( )2 2 2ˆ ˆ ˆ ˆ ,i v v e in   = +
1

,in
i ij ij

y y n
=

=  1
x xin

i ij ij
n

=
=   are the unweighted sample 

means of the response variable y  and the covariates ,x  and ( )ˆˆˆ .T
i i i iv y= − x β  The estimator of the 

regression vector β  in (1.1) is 
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 ( ) ( )
1

1 1 1 1

ˆ ˆ ˆ .β x x x x x
i in nM MT

ij ij i i ij i i ij
i j i j

y 

−

= = = =

   = − −   
   
     (2.2) 

The estimated variance components ( )2 2ˆ ˆ,v e   are obtained by the Henderson method of fitting of 
constants (HFC) or restricted maximum likelihood (REML) (see Battese et al., 1988 and Chapter 7 in Rao 
and Molina, 2015). The EBLUP estimator of the area mean iY  may be written in terms of EBLUPˆ i  as 

 ( ) ( ) EBLUP EBLUP1ˆ ˆˆ .X x βT
i i i i i i i i

i

Y N n n y
N

 = − + + −
 

 (2.3) 

Note that EBLUP EBLUPˆ ˆi iY   if the sampling fraction i in N  is sufficiently small. The EBLUP estimator 
EBLUP

îY  is design consistent under simple random sampling (SRS) or stratified SRS with proportional 
allocation within small area ,iU  leading to equal ’s.j ip  

Pfeffermann and Sverchkov (2007) studied the estimation of small area means under informative 
sampling, assuming the following model for the sample data 

 ;  1, , ; 1, , ,x αT
ij ij i ij iy u h j n i M= + + = =  (2.4) 

where ( )iid 2~ 0, ,i uu N   and ( )iid 2~ 0, .ij i hh j s N   They assumed that the unit design weight 
1

j i j iw  −=  is random with conditional expectation 

 
( ) ( )

( )
, , ,

exp ,

x x

x a
si j i ij ij i si j i ij ij

T
i ij ij

E w y v E w y

k dy

=

= +  (2.5)
 

where a  and d  are fixed unknown constants and  

 ( )
1

exp .
iN

i T
i ij ij i

ji

N
k dy N

n =

 
= − − 

 
 x a   

The Pfeffermann and Sverchkov (2007) estimator of iY  provides protection against informative sampling 
supposing that this assumption holds. The estimator is given by 

 ( ) ( )  ( )PS EBLUP 21ˆ ˆˆˆ ˆ ,X x αT
i i i iu i i i i i i h

i

Y N n n y N n d
N

  = − + + − + −
   (2.6) 

where EBLUPˆ ˆ ˆX αT
iu i iu = +  is the EBLUP estimator of X αT

iu i iu = +  under the sample model 
(2.4) and d̂  is an estimator of d  in the model (2.5) for the weights .j iw  The last term in (2.6) corrects for 
any bias due to informative sampling under (2.5). Pfeffermann and Sverchkov (2007) obtained the 
estimator d̂  of d  in (2.5) by regressing the sampling weights j iw  on ( )exp .T

i ij ijk dy+x a  The 
coefficients ,ik a  and d  may be estimated by fitting the model (2.5) using the NLIN procedure in SAS or 
function nls in Splus. This involves iterative calculations and the initial values for a  and d  are obtained 
by regressing ( )log j iw  on x ij  and .ijy  Initial values for ˆ ,ik 1, ,i M=  are taken as .i i ik N n=  



Survey Methodology, June 2020 33 

 

 
Statistics Canada, Catalogue No. 12-001-X 

The Verret et al. (2015) estimator is obtained when the EBLUP theory is applied to model (1.2). Let 
( )( )aug ,x x TT

ij ij j ig p=  be the vector x ij  augmented by the variable ( ) ,j ig p iG  the area mean of the 
population values ( ) ,j ig p  and 0 0 0 0 .T

i i i iG v = + +X β  The EBLUP estimator of 0 i  is given by 

 ( ) ( )EBLUP
0 0 0 0 0 0 0 0 0

ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆ ,X β X x βTT
i i i i i i i i i i i iG v y G g     = + + = + − + −  (2.7) 

where ( )2 2 2
0 0 0 0ˆ ˆ ˆ ˆ ,i v v e in   = + ( )1

in
i j i ij

g g p n
=

=   and ( )0 0 0 0
ˆˆˆˆ .T

i i i i iv y g = − −x β  
The parameters, ( )0 0,β   are estimated by 

 ( ) ( ) ( )
1

aug aug aug aug aug
0 0 0 0

1 1 1 1

ˆ ˆ ˆ ˆ, ,β x x x x x
i in nM MT TT

ij ij i i ij i i ij
i j i j

y  

−

= = = =

   = − −   
   
     (2.8) 

with ( )aug aug
1

, .in TT
i ij i i ij

n g
=

= =x x x  The model parameters ( )2 2
0 0ˆ ˆ,v e   are estimated by HFC or 

REML method. The estimator of the area mean ,iY  denoted VRHˆ ,iY  may be written in terms of EBLUP
0ˆ i  as 

 ( ) ( ) ( ) VRH EBLUP
0 0 0

1ˆ ˆ ˆˆ .X x β TT
i i i i i i i i i i

i

Y N n n y G g
N

  = − + + − + −
 

 (2.9) 

 
3  The local polynomial estimator 
 
3.1  The estimation of a small area mean 
 

The objective is to estimate the mean iY  for small area iU  for 1, , .i M=  Splitting the population 

iU  into observed units in the sample, is  of size ,in  and non-observed units in the non-sampled portion, 

i i is U s=  of size ,i iN n−  we can express iY  as 

 
1

.
i i

i ij ij
j s j si

Y y y
N  

 
= + 

 
   (3.1) 

Given that we do not know the y  values for the non-observed units in sets is  for 1, , ,i M=  we 
need to estimate them. Denoting as ˆ ijy  the estimator of ijy  for such units, the resulting estimator of the 
mean iY  is 

 
1ˆ ˆ .

i i

i ij ij
j s j si

Y y y
N  

 
= + 

 
   (3.2) 

We obtain estimators ˆ ijy  of ,ijy  for ,ij s  based on an augmented model that includes an unknown 
smooth function of the selection probabilities ,j ip  denoted ( )0 .j im p  The proposed augmented semi-
parametric sample model is given by 

 ( )1 0 1 1 , 1, , ; 1, , ,x βT
ij ij j i i ij iy m p v e j n i M= + + + = =  (3.3) 
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where ( )iid 2
1 1~ 0,i vv N   and independent of ( )iid 2

1 1~ 0, .ij ee N   The vector ( )1, ,= T
ij ij ijpx xx  in model 

(3.3) represents the covariates ijx  without a constant (i.e., the intercept) and ( )1 11 1, ,= T
p β  a 

vector of fixed effects. Model (3.3) is semi-parametric as the response variable ijy  depends linearly on the 
vector of auxiliary variables, ,ijx  and the probability of selection j ip  enters non-parametrically through 
the smooth function ( )0 .m   

We assume that model (3.3) has a similar covariance structure with the one associated with model 
(1.2): the small area effects 1iv  and random errors 1ije  are iid, normally distributed and independently of 
one another. However, the semi-parametric model (3.3) is more flexible than the parametric model (1.2), 
as it does not force the function ( )0 j im p  to be of a specific form. There is a disadvantage to this set-up. 
Since model (3.3) is not a linear mixed model, the general EBLUP theory given in Section 2 cannot be 
applied directly to obtain estimators of ( )0 ,j im p 1β  and 1 .iv  Consequently, we propose to estimate (3.3) 
by combining the EBLUP theory for linear mixed models and the local polynomial technique (Fan and 
Gijbels, 1996). 

We estimate (3.3) in three steps. In the first step, we obtain estimates of ( )0 ,j im p ( )0ˆ ,j im p  
1, , , 1, , ,ij N i M= =  for all units in the population. These estimates are local in character as 

they are based on the local polynomial technique. Estimates ( )0ˆ , j i im p j s  for the observed units are 
then used in the second step to obtain global estimators of 1β  and 1 , 1, , .iv i M=  We denote these 
estimators as glo,1β̂  and glo,1ˆ , 1, , .iv i M=  Finally, in the third step, we use the local estimators 

( )0ˆ j im p  for the unobserved units, obtained in the first step, and the global estimators glo,1β̂  and glo,1ˆ iv  
obtained in the second step, to estimate ijy  for  ij s  and 1, , .i M=  The resulting estimators of 

,ijy  denoted as ˆ ,ijy  are 

 ( )glo,1 0 glo,1
ˆˆ ˆ ˆ , .x βT

ij ij j i i iy m p v j s= + +   (3.4) 

The ˆ ’sijy  are incorporated into equation (3.2) to obtain the estimator of the small area mean ˆ .iY  

We now proceed to describe the first step in more detail. Following Ruppert and Matteson (2015), we 
estimate the values of the unknown function ( )0 l km p  for all units kl U  and small areas ,k  with 

1, , ,k M=  by using local polynomial regression. Local polynomial regression is based on the 
principle that a smooth function can be approximated locally by a low-degree polynomial. We 
approximate ( )0 j im p  in model (3.3) by a thq -degree polynomial, say ( )1 ,j im p  using a Taylor 
expansion around .l kp  The approximation is given by 

 ( ) ( ) ( ) ( ) ( )1 0 0
1

1
, ; 1, , ,

!

q
aa

j i l k l k j i l k i
a

m p m p m p p p j s i M
a=

= + −  =  (3.5) 

where ( ) ( )
0

a
l km p  is the tha  derivative of ( )0 j im p  evaluated at .l kp  The function ( )1 j im p  depends 

on ,kl U  but we suppress this dependence to simplify the notation.  

For each point ,l kp ; 1, , ,kl U k M =  in model (3.3) we replace ( )0 j im p  by its 
approximation ( )1 j im p  given by (3.5). The resulting model is given by 
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 ( ) ( ) ( ) ( )1 0 0 1 1
1

1
,  ; 1, , .

!
x β

q
a aT

ij ij l k l k j i l k i ij i
a

y m p m p p p v e j s i M
a=

= + + − + +  =  (3.6) 

Model (3.6) is an approximate local model for (3.3) depending on the point kl U  of the population. 
Estimates of 1β  and 1iv  based on (3.6) will be denoted by loc,1β̂  and loc,1ˆ .iv  Notice that (3.6) allows the 
estimation of ( )0 ,l km p  the value of the smooth function ( )0 m  at a point .l kp  We express (3.6) as  

 ( )1 0 1 1
1

: ; 1, , ,x β
q

aT
ij ij a j i l k i ij i

a
y u u p p v e j s i M

=
= + + − + +  =  (3.7) 

where ( ) ( )
0 !a

a l ku m p a=  for 0, , .a q=  Model (3.7) is a linear mixed model with fixed 
parameters ( )1 0, , , qu uβ  and random small area effects 1 , 1, , .iv i M=  

Let 0û  be an estimator of 0u  obtained by fitting model (3.7). An approximate estimator of 
( )0 0l km p u=  is given by ( )0 0ˆ ˆ .l km p u=  Since we require estimators of ( )0 l km p  for kl U  and 

1, , ,k M=  we use 
1=

= 
M

ii
N N  models (3.7). As pointed out by an Associate Editor, if N  is 

large, estimating the values of ( )0 m  for all points in the population can be computationally intensive. 

It is more convenient to work with matrix notation. To this end, we define ( )1, , ,
i

T
i i iny y=y

( )1, , ,X x x
i

TT T
i i in= ( ) ( )( )0, 0 1 0, , ,m

i

T
i i n im p m p= ( )1 11 1, ,v T

Mv v=  and ( )1 1 1 1, , .e
i

T
i i ine e=  

Model (3.3) can be expressed in a matrix form by stacking the observations, and the resulting equation is 

 1 0 1 1,y Xβ m Zv e= + + +  (3.8) 

where ( )1col ,i M i =y y ( )1col ,i M i =X X ( )0 1 0,col ,i M i =m m  1diag  =
ii M nZ 1  and 1e =  

( )1 1col .ei M i   

For unit l  in small area ,kU  we define the ( )1 +n q  matrix: 

 

( ) ( )

( ) ( )

1 1 1 11

,

1
M M

q
l k l k

q
n M l k n M l k

p p p p

p p p p

 − −


= 


 − − 

Q   

where 
1=

= 
M

ii
n n  is the total sample size. Let ( ) ( ) ( ) ( ) ( )( )1

0 | 0 | 0 |, 1!, , ! Tq
l k l k l km p m p m p q=u

represent the vector of derivatives of the function ( )0m   evaluated at .l kp  The terms Q  and u  depend 
on the unit kl U  where the localization is realized. We omitted their dependence on the unit l  from 
small area kU  in order not to burden the notation. We define vector 1m  obtained by stacking the n  values 
of the function ( )1 m  defined by (3.5). That is, 1 1 1,col ( )m mi M i =  with 1, 1 1|( ( ), ,m i im p=  

1 ( )) .
i

T
n im p  This allows to approximate 0m  by 0 1.m m  The vector 1m  is given by 1 .=m Qu  It 

then follows that an approximation to (3.8) in a neighbourhood of kl U  is 

 1 1 1.y Xβ Qu Zv e= + + +  (3.9) 

Equations (3.8) and (3.9) are the matrix form equivalents of equations (3.3) and (3.7), respectively. The 
matrix X  in (3.9) does not include the constant term that represents the intercept, because this term is 
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already included in .Q  Equation (3.9) is a standard linear mixed effects model with fixed parameters 
( )fixed 1 ,= TT Tβ β u  and random small area effects 1 .v  We denote by ( ) 2

1 1 ,v MV = =v G I ( )1e iV =  
2
1R I

ii e n=  and ( )  1 1diag  = = i M iV e R R  as the respective covariance matrices of 1 ,v 1ie  and 

1.e  The covariance matrix of iy  is given by ( ) 2 2
1 1 .

i ii i v n e nV  = = +y V J I  The matrices MI  and 

inI  are the identity matrices of order M  and in  respectively, whereas 
inJ  is the square matrix of order 

in  with all its elements equal to 1. It follows that ( )  1diag .i M iV  = =y V V  

Assume that V  is known and that 1v  and 1e  are normally distributed. Using classical EBLUP theory, 
estimators of fixedβ  and 1v  can be obtained by minimizing 

 ( ) ( )1 1
1 1 1 1 1 1.− − = − − − − − − +

T Ty Xβ Qu Zv R y Xβ Qu Zv v G v   

Note that all the observations that are included in   are equally weighted. However, we need to modify 
  to be in line with how local polynomial estimation is carried out. To this end, referring back to 
equation (3.7), we estimate its parameters by associating kernel weights ( )( )j i l kK p p h h−  to each 
sampled unit ; 1, , .ij s i M =  These kernel weights are chosen so as to give a larger weight to the 
sample points that are close to ,kl U  and a smaller weight to those that are further away. The weight 

( )K  is a probability density function and h  is a bandwidth controlling the size of the local 
neighbourhood. We explain in Section 3.2 how an optimal bandwidth can be obtained. Let W  be the 

n n  diagonal matrix of kernel weights given by 

 
1
1

1
diag .

i

j i l k

j n
i M

p p
K

h h 

 

−   
=  

  
W   

The matrix W  depends on unit l  from small area kU  and the bandwidth .h  We do not include the 
subscripts kl U  and h  in the definition of the matrix ,W  in order not to burden notation. Following 
Wu and Zhang (2002), the incorporation of the kernel weights in   lead us to minimize W  where 

 ( ) ( )1 2 1 1 2 1
1 1 1 1 1 1 ,− − = − − − − − − +

T T
W y Xβ Qu Zv W R W y Xβ Qu Zv v G v   

and 1 2W  represents the square root of the matrix .W  

Estimating the parameters of (3.9) by minimizing W  is equivalent to estimating those given by 

 1 2 1 2 1 2 1 2
1 1 1.W y W Xβ W Qu W Zv e= + + +  (3.10) 

The weighted EBLUP based on (3.9) with the matrix of weights given by W  corresponds to a classical 
EBLUP obtained from model (3.10). Define 1 2 ,y W yw =  1 2 1 2,X W X W Qw =  and 1 2 .Z W Zw =  
Equation (3.10) can be rewritten as 

 fixed 1 1.y X β Z v ew w w= + +  (3.11) 

Let ( )loc, fixed loc,1
ˆ ˆ ˆ,=

TT Tβ β u  and ( )loc,1 loc,11 loc,1ˆ ˆ ˆ, ,= T
Mv vv  be the EBLUP estimators of the fixed 

and random effects of (3.11). The estimators loc, fixedβ̂  and loc,1v̂  are based on local estimators of the 
variance components ( )2 2

1 1, .v e   The estimators of these components, denoted as 2 2
loc,1 loc,1ˆ ˆ( , ),v e   are 
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obtained using HFC or REML methods under model (3.11). Given that 0 |( ( ),u l km p=  
( ) ( )1
0 0( ) 1!, , ( ) !) ,q T

l k l km p m p q  an estimator 0ˆ ( )l km p  of 0 ( )l km p  is the first component 0û  of ˆ .u  

Notice that loc,1
ˆ ,β ( )0ˆ l km p  and loc,1ˆ kv  could be used to obtain local estimates loc,ˆ kly  for the unknown 

value ,kly  where ( )loc, loc,1 0 loc,1
ˆˆ ˆ ˆT

kl kl l k ky m p v= + +x β  for .kl s  However, a referee pointed out 
that, in practice, this methodology would not likely to be well behaved because it requires a strong balance 
of the small areas across the range of the probabilities .l kp  If this balance is not respected, the resulting 
estimation would suffer severely from this localization. As a consequence, we opted for a global 
estimation of 1β  and 1 .v  

We now explain the second step of our procedure. Parameters 1β  and 1v  can be estimated globally 
based on the estimations ( )0ˆ j im p  and the auxiliary data ijx  associated with the sample units. For 

 ij s  and 1, , ,i M=  define a new variable, say ,  as 

 ( )0ˆ , ; 1, , .= −  =ij ij j i iy m p j s i M   

The n  values ij  represent the differences between the observed ’sijy  and their local estimators 
( )0ˆ .j im p  Using model (3.3),   satisfies the following model  

 glo,1 glo,1 glo,1 , ; 1, , ,x βT
ij ij i ij iv e j s i M = + +  =  (3.12) 

where ( )2
glo,1 glo,1~ 0,i vv N   and ( )2

glo,1 glo,1~ 0, .ij ee N   The subscript glo indicates that (3.12) is a 
global model. 

Given that (3.12) represents a parametric linear mixed effects model, we can use the classical 
(unweighted) EBLUP to estimate its parameters. Let glo,1β̂  and glo,1ˆ iv  be the respective empirical best 
linear unbiased estimators of glo,1β  and glo,1 .iv  Let ( )2 2

glo,1 glo,1ˆ ˆ,v e   be the estimators of the variance 
components ( )2 2

glo,1 glo,1,v e   where HFC or REML can be used to estimate these parameters. We estimate 
( )2 2

1 1 1 1, , ,i v ev  β  of model (3.3) by ( )2 2
glo,1 glo,1 glo,1 glo,1

ˆ ˆ ˆ ˆ, , ,i v ev  β  using model (3.12). The global 
estimators glo,1

ˆ ,β glo,1ˆ iv  and ( )2 2
glo,1 glo,1ˆ ˆ,v e   are free of bias caused by informative sampling design 

because ij  is no longer related to the ’sj ip  after conditioning on .ijx  

The third step estimates the non observed ijy  values, for  ij s  and 1, , ,i M=  by plugging into 
equation (3.4): i. the local estimators ( )0ˆ j im p  for ,ij s  obtained in the first step, and ii. the global 
estimators glo,1β̂  and glo,1ˆ iv  obtained in the second step. The resulting ˆ ’s,ijy  for ,ij s  are inserted into 
(3.2) to compute the estimator ˆ .iY  Note that îY  requires ijx  and j ip  are known for all the units of the 
population. A referee pointed out that, in practice, this assumption may limit the applicability of the 
proposed procedure. This could be remedied if National Statistical Offices provided access to the selection 
probabilities of all units, as they may be needed in applications such as this one.  
 

3.2  Bandwidth selection 
 

Local polynomials require the specification of the kernel ( ) ,K   the order of the polynomial fit ,q  as 
well as the bandwidth .h  Fan and Gijbels (1996) state that values of q  larger than 1 do not bring a 
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significant improvement as compared to the linear fit ( )1 .q =  Fan and Gijbels (1996) also state that the 
choice of h  is far more important than the degree of the polynomial. In what follows, we use a normal 
density kernel, and chose q  equal to one, as this leads to satisfactory results for most applications.  

The optimal h  is determined using the cross-validation method (CV). For a given ,h  compute the 
estimator of ijy  given by (3.4) using the sample that remains after the thj  unit has been removed from 

.is  Denoting the resulting estimator of ijy  as ,ijy  we follow Wu and Zhang (2002) and define the CV 
criterion as 

 ( ) ( )2

1

1 1
CV .

i

M

ij ij
i j si

h y y
M n= 

= −    

The term 1 in  takes into account the number of observations within small area .iU  The optimal 
bandwidth opth  is obtained by minimizing the ( )CV .h  Given opt ,h  the local polynomial estimator of the 
small area mean iY  given by (3.2) is denoted as LPˆ .iY  

 
4  MSE estimation based on the bootstrap  
 

The MSE estimation of small area estimators is a challenging problem even in the case of classical 
EBLUP estimators. The general EBLUP theory provides a closed form approximation to ( )EBLUPˆMSE iY  
based on a linearization method. Using this approximation, an estimator for ( )EBLUPˆMSE iY  can be 
obtained (see Prasad and Rao, 1990 for details). Verret et al. (2015) used the closed form approximation to 
estimate the mean squared error estimator for VRH

îY  given in (2.9). This was possible because estimator 
VRH

îY  is a standard EBLUP obtained under a linear mixed model that includes the additional known 
variable ( ) .j ig p  No new theory is needed to estimate the MSE of VRHˆ .iY  In our case, given the repeated 
local estimation of model (3.6), it is not possible to obtain a closed-form approximation to the mean 
squared error of LPˆ ,iY ( )LPˆMSE ,iY  nor for its estimator ( )LPˆmse .iY  We used two variants of the 
bootstrap procedure to estimate the MSE of the small area estimators that we have discussed so far. For 
estimating the MSE of EBLUPˆ ,iY  we used an unconditional bootstrap, whereas for LPˆ ,iY VRH1

îY  and VRH2ˆ ,iY  
we used a conditional bootstrap. We proceed to describe how each bootstrap type is computed. 

We first describe the unconditional bootstrap. This is a variant of the parametric bootstrap of Hall and 
Maiti (2006), proposed by González-Manteiga, Lombardia, Molina, Morales and Santamaria (2008). This 
procedure can be used for estimating the MSE of EBLUP

îY  that is based on model (1.1) because the 
estimates of the various parameters in model (1.1) do not depend on the selection probabilities 

: ; 1, , .j i ip j s i M =  The y  values are predicted by generating ( )* 2ˆ~ 0,i vv N   and
( )* 2ˆ~ 0, ,ij ee N   where ( )2 2ˆ ˆ,v e   are the HFC or REML estimators of ( )2 2, .v e   Using the EBLUP 

estimator β̂  of ,β  bootstrap values of ijy  are obtained as 

 * * *ˆ , ; 1, , .x βT
ij ij i ij iy v e j U i M= + +  =  (4.1) 

The bootstrap version of the target parameter iY  is computed as * 1 *
1

.iN
i i ijj

Y N y−
=

=   The bootstrap 
version of the EBLUP estimator EBLUP

îY  is given by 
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 ( )EBLUP* * *1ˆ ˆ ,
i i

i ij ij
j s j si

Y y y
N  

= +    

where * * *ˆˆ ˆT
ij ij iy v= +x β  and ( )* *ˆ ˆ, ivβ  are the EBLUP estimators of ( ), ivβ  that are based on 

( )* , , ,ij ij iy j sx  for 1, , .i M=  Repeating the above procedure B  times, the bootstrap estimator 
of ( )EBLUPˆMSE iY  is 

 ( ) ( ) ( )( )2
EBLUP EBLUP* *

boot
1

1ˆ ˆmse ,
B

i i i
b

Y Y b Y b
B =

= −  (4.2) 

where ( )EBLUP*
îY b  and ( )*

iY b  are the values of EBLUP*
îY  and *

iY  for the thb  bootstrap replicate. Since the 
estimators ( )2 2ˆ ˆ ˆ, ,v e β  are severely biased due to the informative sampling design, we expect that 

( )EBLUP
boot

ˆmse iY  will be a biased estimator of ( )EBLUPˆMSE .iY  This is because it is based on the 
population model (1.1), and that this model does not hold for the sample.  

We now turn to the estimation of ( )LPˆMSE iY  via the conditional bootstrap. Recall that LP
îY  is based 

on the augmented model (3.3). It is therefore natural to use this model when we estimate the precision of 
the local polynomial estimator. It is not possible to use the parametric unconditional bootstrap as it would 
require the generation of bootstrap values ( )* *,ij j iy p  for both ijy  and ,j ip  and this would imply that we 
would need to know how the ’sijy  are related to the selection probabilities .j ip  As the Associate Editor 
pointed out, the exact relationship between ijy  and j ip  is not known in practice. We therefore opted to 
keep the selection probabilities j ip  associated with the initial sample, and generate bootstrap values only 
for the response variable .ijy  The resulting bootstrap is conditional on , ; 1, , ,j i ip j U i M =  
and it is for this reason that we label it as conditional parametric bootstrap. It has been used by Rao, 
Sinha and Dumitrescu (2014), and more recently by Chatrchi (2018) to estimate the MSE under a 
penalized spline mixed model.  

In our context, for estimating ( )LPˆMSE ,iY  we proceed as follows. We generate ( )* 2
1 glo,1ˆ~ 0,i vv N   

and ( )* 2
1 glo,1ˆ~ 0, ,ij ee N   and obtain the bootstrap responses 

 ( )* * *
1 glo,1 0 1 1

ˆ ˆ , ; 1, , .x βT
ij ij j i i ij iy m p v e j U i M= + + +  =  (4.3) 

The ( )0ˆ ’sj im p  were estimated using the local model (3.6). The triplet ( )2 2
glo,1 glo,1 glo,1

ˆ ˆ ˆ, ,v e β  was 
estimated using the global model (3.12) and the sample data ( ), , , ; 1, , .ij ij j i iy p j s i M =x  
The population bootstrap mean is * 1 *

1 11
.iN

i i ijj
Y N y−

=
=   Let *

glo,1
ˆ ,β ( )*

0ˆ j im p  and *
glo,1ˆ iv  be bootstrap 

versions of estimators glo,1
ˆ ,β ( )0ˆ j im p  and glo,1ˆ ,iv  that are based on bootstrap data ( )*

1 , , ,xij ij j iy p  
; 1, ,ij s i M =  and the opth  obtained with the original data set ( ), , ,xij ij j iy p ;ij s  

1, , .i M=  We did not re-compute the optimal *
opth  associated with ( )*

1 , , ,xij ij j iy p ;ij s  
1, , ,i M=  as it would result in far too many computations in the Monte Carlo study. The bootstrap 

procedure is therefore conditional on , ; 1, , =j i ip j U i M  and opth  obtained with the initial 
sample. Given that is  is the set of non-sampled units in area ,i  the predicted bootstrap values *

1ˆ ijy  for 
,ij s  are obtained as 

 ( )* * * *
1 glo,1 0 glo,1

ˆˆ ˆ ˆ .x βT
ij ij j i iy m p v= + +  (4.4) 
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The resulting estimator of *
1iY  is 

 ( )* * *
1 1 1

1ˆ ˆ .
i i

i ij ij
j s j si

Y y y
N  

= +    

Repeating the above procedure B  times, the conditional bootstrap estimator of MSE of the local 
polynomial estimator of iY  is given by 

 ( ) ( ) ( )( )2
LP * *

boot 1 1
1

1ˆ ˆmse  ,
B

i i i
b

Y Y b Y b
B =

= −  (4.5) 

where ( )*
1̂iY b  and ( )*

1iY b  are the values of *
1̂iY  and *

1iY  for the thb  bootstrap replicate.  

The conditional bootstrap can also be used for estimating the mean squared error of an EBLUP 
estimator, VRHˆ ,iY  based on the augmented model (1.2) proposed by Verret et al. (2015). We included this 
procedure in the simulation given in Section 5, to get an idea of how the resulting MSE estimators 
compare to those obtained for LPˆ .iY  The steps for obtaining the ( )VRHˆmse iY  are similar to those used for 
obtaining the mse of the local polynomial estimator LPˆ .iY  In this case, bootstrap values for the responses 

ijy  are based on the augmented model (1.2) and the estimators ( )0 0
ˆ ˆ, β  and ( )2 2

0 0ˆ ˆ,v e   obtained when 
the classical EBLUP theory is used with the sample data ( )( ), , , ; 1, , .ij ij j i iy g p j s i M =x  

 
5  Simulation study 
 

The set-up of the simulation study follows the one used in Verret et al. (2015). We considered a 
population with M = 15 small areas and iN = 15 units within each small area. The relatively small 
number of small areas and units within areas were chosen so as to alleviate the computational burden. We 
used a single auxiliary variable .x  The population x -values were generated from a gamma distribution 
with mean 10 and variance 50. The population ijy -values were generated by the following model 

 4 ; 1, , 15; 1, , 15,ij ij i ijy x v e i j= + + + = =  (5.1) 

where ( )iid 2~ 0,i vv N   and ( )iid 2~ 0,ij ee N   with 2 =v 0.5 and 2 =e 2. 

We considered a single sample size, =in 3, within a small area. We used Conditional Poisson 
Sampling (CPS) to select unequal probability samples within the small areas, with probabilities 
proportional to specified sizes ijc  (see Tillé, 2006, Chapter 5). We considered two different choices of the 
sizes ijc  in the simulation study. The first choice uses 

 
( )1

exp ,
3 5

i ij ij
ij

e

v e
c





+  
= − +  

  
 (5.2) 

where ( )iid~ 0, 1 .ij N  The size measures (5.2) are equivalent to those used by Pfeffermann and Sverchkov 
(2007) in their simulation study and satisfy the relationship (2.5) on the weights 1 .j i j iw  −=  

The second choice of size measures, following Asparouhov (2006), involves two different types of size 
measures: invariant (I) and non-invariant (NI). For the invariant case, ijc  is independent of iv  given ;ijx  
otherwise, it is called non-invariant. Invariant size measures are given by 
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1

*
2

1 1
1 exp 1 .ij ij ijc e e

 

−
   

= + − + −   
   

 (5.3) 

Non-invariant size measures are taken as 

 ( ) ( )
1

* *
2

1 1
1 exp 1 ,ij i ij i ijc v e v e

 

−
    

= + − + + − +   
   

 (5.4) 

where the random pair ( )* *,i ijv e  is generated independently of ( ),i ijv e  using the same distributions as iv  
and .ije  These size measures were used by Asparouhov (2006). The coefficient   controls for the 
variation of the weights and the value   controls the level of informativeness of the sampling design. We 
chose = 0.5 and 1, 2, 3=  and   corresponding to several levels of informativeness generated by 

ijc  in (5.3) and (5.4). Increasing   decreases informativeness, with =   corresponding to non-
informative sampling. If some of the ’sj i  exceeded one, they were set to one, and the probabilities were 
recomputed for the remaining units. 
 

5.1  Performance of the local polynomial estimator of 
i

Y  
 

We compared the bias and mean squared error of the estimators EBLUPˆ ,iY VRH
îY  and LPˆ .iY  The EBLUP 

estimator EBLUP
îY  based on (1.1) assumes that the sample model coincides with the population model, 

thereby ignoring the informativeness of the sampling design. We studied two versions of VRH
îY  

investigated by Verret et al. (2015) for various choices of ( )g   that account for informativeness. They are 
EBLUP estimators based on the augmented sample model (1.2). They are denoted as VRH1

îY  when 
( ) =j i j ig p p  and VRH2

îY  when ( ) ( )log .j i j ig p p=  We report results only for these g  functions, as 
they outperform others given in Verret et al. (2015). Finally, LP

îY  represents our new local polynomial 
estimator. 

The bias and the mean squared error of the estimators were computed using =R 1,000 simulated 
samples selected under a design-model approach. For each run, 1, , ,r R=  we first generated the 
population ijy -values under the population model (5.1) and computed ( ) ,r

iY  the mean of the small area i  
in the thr  generated population. Samples of sizes 3=in  were then selected within the small areas using 
CPS with probabilities proportional to specified sizes ( )r

ijc  given by (5.2) for the Pfeffermann and 
Sverchkov (2007) (PS) size measures, and (5.3) and (5.4) corresponding to the invariant and non-invariant 
cases in the case of the Asparouhov (2006) (AP) size measures. From each simulated sample r
( )1, , ,r R=  the estimates ( )EBLUPˆ ,r

iY ( )VRH1ˆ ,r
iY ( )VRH2ˆ r

iY  and ( )LPˆ r
iY  were computed for each small area 

.iU  An optimal bandwidth ( )
opt

rh  was found for ( )LPˆ r
iY  using the cross-validation criterion. A grid of the 

form (0.01, 0.02, 0.03, …, 0.15) covered the possible values for ( )
opt

rh  in populations generated by (5.1). 

For a given estimator of the small area mean ,iY  we considered the following performance measures: 
 

Average Absolute Bias 

 
1

1
AB AB ,

=
= 

M

i
iM
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where 

 ( ) ( )( )
1

1 ˆAB .
R

r r
i i i

r
Y Y

R =
= −   

Average Root Mean Squared Error 

 ( ) ( )( )2

1 1

1 1 ˆRMSE .
M R

r r
i i

i r
Y Y

M R= =
= −    

Table 5.1 reports on the average absolute bias ( )AB  of estimators EBLUPˆ ,iY VRH1ˆ ,iY VRH2
îY  and LP

îY  under 
the PS size measures (5.2) and AP size measures (5.3 and 5.4) for 1, 2, 3=  and .  

 
Table 5.1 
Average absolute bias ( )AB  for the PS and AP size measures 
  
                            Estimator  
 
Generation  
of j i

p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 0.309 0.020 0.004 0.011 
 AP 1=  I 0.431 0.002 0.036 0.004 

NI 0.425 0.010 0.035 0.005 
2=  I 0.206 0.017 0.022 0.024 

NI 0.219 0.019 0.016 0.016 
3=  I 0.139 0.005 0.012 0.033 

NI 0.137 0.008 0.013 0.019 
=   I 0.008 0.008 0.008 0.026 

NI 0.006 0.006 0.006 0.021 

 
As observed in Verret et al. (2015), the AB  of the EBLUP estimator EBLUP

îY  with just the auxiliary 
variable ,x  is quite a bit larger than those based on the augmented models ( j ip  and log ( )),j ip  and the 
local polynomial method. This holds regardless of how the size measures have been generated (PS or AP). 
The AB  of EBLUP

îY  attains its highest value (0.431) when the design is very informative ( )1 , =  and 
decreases as   increases. This observation also holds for the estimators based on the augmented models. 
The inclusion of j ip  or ( )log ,j ip  as an augmenting variable, in the model results in small AB’s,  with 
the highest being 0.036. Comparing the AB’s  of the local polynomial estimator LP

îY  to those associated 
with the VRH augmented models, we observe that they are comparable for 1=  and 2, =  and 
slightly larger for 3.   

Table 5.2 reports the simulation results on the average root mean squared error ( )RMSE  of the 
estimators for both the PS size measures (5.2) and the AP size measures (5.3 and 5.4) for 1, 2, 3=  and 

.  The EBLUP, EBLUPˆ ,iY  based on model (1.1) without the augmenting variable ( ) ,j ig p  has the largest 
RMSE’s  (0.740 for I and 0.752 for NI) for the AP size measures corresponding to 1, =  and 0.685 for 
the PS size measure. The RMSE  decreases as   increases: 0.608 for I and 0.610 for NI in the case of 
non-informative sampling ( ) . =   The RMSE’s  for VRH1ˆ ,iY VRH2

îY  and LP
îY  are significantly smaller 

than those associated with EBLUP
îY  when sampling is very informative ( )1=  and for the PS size 
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measure. There are small differences in terms of RMSE  between our non-parametric approach and the 
parametric approach in Verret et al. (2015). 
 
Table 5.2 
Average root mean squared error ( )RMSE  for the PS and AP size measures 
  
                            Estimator 
 
Generation 
of 

j i
p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 0.685 0.229 0.200 0.200 
 AP 1=  I 0.740 0.089 0.170 0.087 

NI 0.752 0.158 0.200 0.149 
2=  I 0.644 0.562 0.568 0.557 

NI 0.650 0.557 0.555 0.555 
3=  I 0.617 0.588 0.591 0.612 

NI 0.619 0.587 0.589 0.607 
=   I 0.608 0.619 0.621 0.626 

NI 0.610 0.622 0.625 0.629 

 
When the sampling is less informative ( )3 , =  the local linear estimator LP

îY  is better than EBLUPˆ ,iY  
but its RMSE  is slightly larger than those associated with the parametric estimators VRH1

îY  and VRH2ˆ .iY  In 
this case, we observe that the estimated function ( )0 j im p  is close to a flat line, and this implies that the 
local linear approximation is not as appropriate. This explains why LP

îY  is slightly worse than VRH1
îY  and 

VRH2
îY  when the level of informativeness of the sampling is low. A local polynomial estimator performs 

well when the function ( )0 m  is meaningfully non-constant. 

When the sample is non-informative ( ) , =  EBLUP
îY  is better than VRH1ˆ ,iY VRH2

îY  and LP
îY  in both 

invariant and non-invariant case. This conclusion is somewhat different from that of Verret et al. (2015) 
where for =   their estimators EBLUPˆ ,iY VRH1

îY  and VRH2
îY  have equal AB  and RMSE  values. Verret 

et al. (2015) used both larger populations and samples, and this may explain why their augmented models 
produced estimators as good as the population model under non-informative sampling designs. Under our 
simulation set-up, we found that the AB  and RMSE  of the EBLUP are small for   values larger than 6: 
this corresponds to a sample design that is almost non-informative. In this case, we recommend using 
EBLUP. 
 

5.2  Performance of the MSE estimators 
 

We now turn to the performance of the bootstrap procedures for estimating the MSEs of the EBLUP, 
VRH and local polynomial estimators. Let îY  be an estimator of iY  and ( )boot

ˆmse iY  be the bootstrap 
estimator of ( )ˆMSE .iY  From =R 1,000 simulated populations and samples, we first computed 
measures of MSE values as 

 ( ) ( ) ( )( )2

1

1ˆ ˆMSE ,
=

= −
R

r r
i i i

r
Y Y Y

R
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where ( )r
iY  is the true mean, and ( )ˆ r

iY  is the value of the estimator for the thr  population. Let 

( )boot
ˆmse iY  be the bootstrap estimator of ( )ˆMSE .iY  It is denoted as ( )EBLUP

boot
ˆmse iY  for the EBLUP 

estimator EBLUPˆ ,iY  and corresponds to the parametric (unconditional) bootstrap method given by 
equation (4.2). For our local polynomial estimator LP

îY  and the Verret et al. (2015) estimators, VRH1
îY  

and VRH2ˆ ,iY  the mse values, denoted as ( )LP
boot

ˆmse iY  and ( )VRH 
boot

ˆmse ,j
iY  for 1=j  and 2=j  

respectively, are computed using the conditional parametric bootstrap method of Section 4. For each 
selected sample in the thr  simulated population ( )1, , ,r R=  we used =B 400 bootstraps to 
compute the thr  value of ( )boot

ˆmse ,iY  that we denote as ( ) ( )boot
ˆmse .r
iY  We considered two measures to 

evaluate the performance of ( )boot
ˆmse :iY  average absolute relative bias and average confidence 

interval. These measures are defined as follows: 
 

Average Absolute Relative Bias: 

 
( )( )

( )
boot

1

ˆmse1
ARB = 1 ,ˆMSE=

−
M i

i i

E Y

M Y
  

where  

 ( )( ) ( ) ( )boot boot
1

1ˆ ˆmse = mse .
=


R
r

i
r

E Y Y
R

  

 

Average Confidence Level: 

 
1

1
CL = CL ,

=

M

i
iM

  

where ( ) ( )( )1
1

CL = I IC−
=


R r r

i ir
R Y  and ( ) ( ) ( ) ( )boot

ˆ ˆIC 1.96 mse .rr r
i iY Y = 

  
 

Table 5.3 reports simulation results on the average relative bias ( )ARB  of the MSE estimators for both 
the PS size measures (5.2) and Asparouhov size measures (5.3 and 5.4) for 1, 2, 3=  and .  

 
Table 5.3 
Average relative bias (%) of mse ( )ARB  for the PS and AP size measures 
  
                            Estimator  
 
Generation 
of j i

p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 25.4 3.9 3.4 7.7 
 AP 1=  I 39.9 9.7 14.4 7.5 

NI 46.6 4.1 8.7 10.0 
2=  I 16.0 2.9 3.8 5.9 

NI 21.4 3.8 3.5 5.8 
3=  I 13.4 6.1 6.4 5.8 

NI 15.4 7.3 7.4 8.8 
=   I 4.6 4.2 4.5 6.2 

NI 6.1 6.4 6.3 6.9 
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The ARB  of EBLUPˆ ,iY  based on the model without the augmenting variable ( ) ,j ig p  is very large 
when the sampling is very informative ( )1 : =  39.9% for I and 46.6% for NI. The ARB  gradually 
decreases to around 5% under non-informative sampling ( ) . =   The ARB’s  of both the parametric 
and non-parametric estimators are smaller in general than 10%, with the exception of 14.4% for the VRH2

îY  
estimator that uses ( )log j ip  as an augmenting variable. 

Table 5.4 reports simulation results on the average confidence level ( )CL  associated with the MSE 
estimators for both the PS size measures (5.2) and the AP size measures (5.3 and 5.4) for 1, 2, 3=  and 
  and nominal level of 0.95. 

 
Table 5.4 
Average confidence level of mse ( )CL  for the PS and AP size measures 
  
                            Estimator  
 
Generation  
of j i

p  

EBLUPˆ
i

Y  

without ( )j i
g p  

VRH1ˆ
i

Y  

( )j i j i
g p p=  

VRH2ˆ
i

Y  

( ) ( )log
j i j i

g p p=  

LPˆ
i

Y  

( )0 j i
m p  

 PS 0.898 0.937 0.941 0.936 
 AP 1=  I 0.856 0.918 0.908 0.928 

NI 0.834 0.930 0.920 0.934 
2=  I 0.916 0.937 0.936 0.932 

NI 0.907 0.936 0.933 0.936 
3=  I 0.922 0.927 0.926 0.934 

NI 0.918 0.930 0.933 0.926 
=   I 0.937 0.935 0.935 0.938 

NI 0.934 0.934 0.933 0.931 

 
The EBLUP estimator EBLUP

îY  has the worst coverage when the sample design is very informative. The 
coverage improves as the design becomes less informative. The coverage of the other estimators is 
between 93% and 95%, with the exception of VRH2

îY  (the one that includes log ( ))j ip  with coverage 
slightly lower.  

 
5.3  Inclusion of an augmenting variable 
 

The local polynomial approach results in an automatic way of obtaining a reasonable augmented model 
that is a function of the selection probabilities .j ip  However, given that one does not know whether the 
design is informative or not, should we always include an augmenting variable in the model? If the sample 
design is not informative it is reasonable to use model (1.1). Note that in this case, including the 
augmenting variables, j ip  or ( )log ,j ip  has a very small impact either on the absolute relative bias of 
the estimator and absolute relative bias of the estimated MSE. A similar conclusion was obtained in Verret 
et al. (2015) who used a larger population and sample size.  

The same question arises with respect to the use of the local polynomial procedure. In this case, the 
conclusions are not quite as clear. If the design is very informative, the local polynomial approach gains in 
terms of absolute bias and mean squared error when 1=  or 2. =  When the sampling design is less 
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informative ( )3=  the parametric approach in Verret et al. (2015) is the better choice, but by a very 
small margin. 

In a practical situation, the value of   is not known and the decision to use the augmenting variable in 
a parametric or nonparametric model should be taken. To this end, we follow the suggested procedure in 
Verret et al. (2015) to provide some guidelines on how to decide on this choice for an arbitrary data set. 
Define ,ij i iju v e= +  and fit the following model 0 1= + +ij ij ijy x u   to the sample data by 
ordinary least squares (OLS). The residuals are 0 1 ,ij ij iju y x = − −  where 0  and 1  are the 
OLS estimators of 0  and 1  respectively. Figure 5.1 displays residual plots of ( )( )0ˆ , ,j i ijm p u  

1, , ; 1, ,ij N i M= =  for the AP measures 1, 2, 3=  and   in the invariant case. For 
1, =  the relationship between iju  and ( )0ˆ j im p  is clearly linear, suggesting that the design is 

informative. As   increases, the design is less informative. Note that ( )0 j im p  is constant when 
. =   Similar observations hold for the non-invariant case. For the PS size measures the graph 

resembled the one given in Figure 5.1 when 1. =  
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5.1  Residual plots for the population: AP invariant size measures. 

 
 

Table 5.5 provides the estimated correlation coefficients, ( )( )0ˆ ˆ= cor , ,ij j iu m p  for PS and AP 
size measures for 1, 2, 3=  and .  
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Table 5.5 
Estimated correlation coefficient ( )( )0ˆ ˆ= cor ,

ij j i
u m p  for the PS and AP size measures 

 

Estimated correlation coefficient AP PS 
1 =  2 =  3 =   =   

I NI I NI I NI I NI 

̂  0.870 0.850 0.450 0.510 0.240 0.210 0.007 0.001 0.800 

 
In terms of RMSE,  we noticed in Section 5.1 that EBLUP

îY  is better than the estimators based on 
augmented models for 6.   Results not presented in Table 5.5 show that for 6,   the absolute 
value of the correlation coefficient is less than 0.1. On the basis of this limited simulation, a user could 
decide on the choice of the estimator to use for a real data set as follows: i. If ̂  is larger than 0.5, use 

LPˆ ;iY  ii. If ̂  is less than 0.1, use EBLUPˆ ;iY  iii. otherwise use VRH1
îY  or VRH2ˆ .iY  

 
6  Concluding remarks 
 

In this paper, we studied the estimation of a small area mean under informative sampling by using an 
augmented model approach where the augmenting variable is a smooth function ( )0 j im p  of the selection 
probability .j ip  Our augmented model is semi-parametric. It differs from Verret et al. (2015), in that 
nothing was assumed about the augmenting function ( )0 .m   

We proposed a three-step procedure to estimate the augmented semi-parametric model. Firstly, local 
polynomial fits were estimated for each unit of the population (sampled and non-sampled). Secondly, 
given these local fits a new dependent variable was defined to obtain global estimators of the regression 
parameters and the small area effects. The resulting estimators were used to compute the predicted values 
of the dependent variable, ,y  for all non-sampled units. Finally, using the observed sample values of ,y  
and the predicted values of ,y  we computed the local polynomial estimator LP

îY  for the small area 
mean .iY  

We adopted the conditional parametric bootstrap method to estimate the mean squared error of the 
newly proposed estimator. The conditional bootstrap is a modified version of the parametric bootstrap 
estimator method of Hall and Maiti (2006). 

We carried out a simulation study to compare the bias and mean squared error performance of the 
usual EBLUP, EBLUPˆ ,iY  the augmented EBLUP of Verret et al. (2015), VRHˆ ,iY  and the proposed local 
polynomial estimator, LPˆ .iY  As expected, EBLUP

îY  exhibited large bias under informative sampling. The 
new estimator LP

îY  had equal or smaller MSE than VRH
îY  when the sample design was highly informative. 

If the sample design is less informative, it is better to use one of the two estimators in Verret et al. (2015): 
that is, augment the basic model with either j ip  or ( )log .j ip  Note that in doing so, the gains are very 
small. If the sampling design is very slightly or not at all informative, then estimator EBLUP

îY  based on the 
population model should be used. 
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We also evaluated the performance of the mean squared error bootstrap estimation for the estimators 
EBLUPˆ ,iY VRH

îY  and LPˆ ,iY  in terms of average absolute relative bias ( )ARB  and average confidence level 
( )CL .  The conditional bootstrap provides a good way to estimate the mean squared errors. 

The advantage of the local polynomial approach is that it provides an automatic way of augmenting the 
model when the design is informative. Its biggest disadvantage is its computational burden both in terms 
of parameter estimation and associated reliability. The procedure outlined in Section 5.3 suggests a way to 
determine whether it is worth using it or not. An alternative approach is to augment the unit level model 
with a P-spline term of selection probabilities to account for the informativeness of the sampling design. 
This approach has been recently studied by Chatrchi (2018). 
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