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Suggestion of confidence interval methods for the Cronbach 
alpha in application to complex survey data 

Jihnhee Yu, Ziqiang Chen, Kan Wang and Mine Tezal1 

Abstract 

We discuss a relevant inference for the alpha coefficient (Cronbach, 1951) - a popular ratio-type statistic for the 
covariances and variances in survey sampling including complex survey sampling with unequal selection 
probabilities. This study can help investigators who wish to evaluate various psychological or social instruments 
used in large surveys. For the survey data, we investigate workable confidence intervals by using two approaches: 
(1) the linearization method using the influence function and (2) the coverage-corrected bootstrap method. The 
linearization method provides adequate coverage rates with correlated ordinal values that many instruments 
consist of; however, this method may not be as good with some non-normal underlying distributions, e.g., a 
multi-lognormal distribution. We suggest that the coverage-corrected bootstrap method can be used as a 
complement to the linearization method, because the coverage-corrected bootstrap method is computer-intensive. 
Using the developed methods, we provide the confidence intervals for the alpha coefficient to assess various 
mental health instruments (Kessler 10, Kessler 6 and Sheehan Disability Scale) for different demographics using 
data from the National Comorbidity Survey Replication (NCS-R). 

 
Key Words: Clustered data; Complex survey; Coverage-correction method; Influence function; Linearization. 

 
 

1  Introduction 
 

In this paper, we propose methods to incorporate the survey designs in confidence intervals for the alpha 

coefficient (Cronbach, 1951) based on the large sample approximation (linearization) and the “double” 

bootstrap approach. These methods have not been investigated in the related literature, even though the 

alpha coefficient is widely used in psychology and other relevant research areas. For a practical application 

of these methods, we analyze mental health instruments data from the National Comorbidity Survey 

Replication (NCS-R), a survey conducted between 2001 and 2003 intended to measure the prevalence of 

mental disorders (Kessler, Berglund, Chiu, Demler, Heeringa, Hiripi, Jin, Pennell, Walters, Zaslavsky and 

Zheng, 2004). In the analysis, we show the feasibility of the confidence interval method for the alpha 

coefficient on a survey data set. 

A great deal of psychological and sociological research uses assessment instruments (i.e., questionnaires) 

to obtain quantitative information for a population of interest. Ideally, the different items in one instrument 

measure the same concepts to achieve a high internal consistency. The alpha coefficient, also known as 

Cronbach’s alpha (henceforth referred to as )  is a popular statistic (e.g., a quick search of PubMed with 

the keywords “Cronbach alpha” and “scale” from the years of 2012-2016 brings up more than 700 

publications) that is widely used to measure the internal consistency reliability of various instruments.  

Let x  denote the p -variate column vector of the observations indicating p  items from an instrument, 

and let   indicate the corresponding covariance matrix. The value   is defined as  
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    1 1 tr ,1 1Tp p        

where 1  is the conforming column vector consisting of 1, and tr  indicates the trace of a matrix. The value 

  shows the ratio between the sum of the covariances and the sum of variances and covariances, thus a 

high value for   suggests that the items are highly correlated within the instrument. The theoretical values 

of   range from 0 to 1, where a higher value is considered to be more desirable. The estimator of   

(denoted by ˆ )  is defined as  

    ˆ ˆˆ 1 1 tr ,1 1Tp p        

where ̂  is a consistent estimator of .  The estimator ̂  can take any value less than or equal to 1, including 

negative values. 

In the literature, many confidence interval strategies for   can be found (e.g., van Zyl, Neudecker and 

Nel, 2000; Yuan, Guarnaccia and Hayslip, 2003; Kistner and Muller, 2004; Bonett and Wright, 2015), but 

discussions regarding the applications for complex survey data where observations in the data can have 

unequal weights due to stratifications and multistage cluster sampling (Lohr, 1999) are largely lacking. 

This paper is structured as follows: In Section 2, we propose strategies for obtaining the confidence 

intervals of   using the linearization method and the coverage-corrected bootstrap method. In Section 3, 

simulation results are presented based on scenarios of stratified multi-stage cluster sampling and unequal 

probability sampling scenarios. In Section 4, the developed methods are applied to analyze the NCS-R data 

sets, and the results comparing different demographics are reported. The Section 5 is devoted to the 

concluding remarks. 

 
2  Design-based confidence intervals for    
 

In this section, we discuss two methods to obtain the confidence interval for ,  the confidence interval 

based on the linearization method using the influence function (Deville, 1999; Demnati and Rao, 2004) and 

the coverage-corrected bootstrap method (Hall, Martin and Schucany, 1989). In this discussion, we consider 

strategies to deal with stratification, since stratification is a common feature in surveys and may decrease 

the magnitude of the variances for the statistics of interest (Lohr, 1999). We note that the sampling design 

for the NCS-R used stratification (more details in Section 4). Later, in Section 3, we show that the 

linearization will be sufficient for most practical cases (e.g., scales with ordinal responses); however, the 

coverage rate may not be satisfactory with some non-normal distributions. The coverage-corrected bootstrap 

method when applied to survey data is proposed as a possible alternative to the linearization method in those 

cases (Section 2.2). 

 
2.1  Linearization 
 

A symmetric confidence interval can be obtained based on the normal approximation of an estimator for 

a finite population (Hájek, 1981; Sen, 1995). The linearization method is applied for the variance estimation 



Survey Methodology, December 2019 467 
 

 
Statistics Canada, Catalogue No. 12-001-X 

of complex statistics. In a survey sampling setting, we consider a population index set  1, ,U N   with 

population size .N  A random sample S  of size n  is selected from U  by a sampling design 

   Prp s S s   for all .s U  The value kw  denotes the sampling weight associated with the index 

.k s  For probability sampling, the sampling weight for index k  is the inverse of the first order inclusion 

probability, i.e.,    1Pr .kw k s    For each unit k  of the population ,U  there is a point (or observation) 

kx  of ,R p  a p -dimensional real space. In a similar manner to Deville (1999), let us consider the population 

U  that is represented by the measure M  as having a mass of 1 N  in each of the points .kx  In this way, 

we have 1 1dM   and 1
kk U

ydM N y


   for any vector value   ,k ky y x  where we define the 

integral of a vector as the integral of each component of the vector. The measure M̂  is the estimator of M  

allocating a weight kw N  to any point ,kx k s  and 0 to any other points. Following some conventional 

notation (e.g., Cochran, 1977), let .ydM Y  Also let ˆˆ .ydM Y  The influence function of a 

“functional” T  is defined as  

  
   

0
; lim ,x

t

T M t T M
IT M x

t




 
   

where x  denotes the added unit mass at point x  (Deville, 1999), and the functional T  (Krätschmer, Schied 

and Zähle, 2012) maps a measure to a set (e.g., the real line). The examples of the functional include Y  and 
ˆ .Y  Note that this classical definition of the influence function (Hampel, Ronchetti, Rousseeuw and Stahel, 

1986; Davison and Hinkley, 1997) is slightly different from that of Deville (1999) where he defines a 

measure M  to satisfy .kk U
ydM y


   Let us define the linearized value  ; .k kz IT M x  Let  ˆT M  

indicate the substitution estimator of  T M  by replacing M  by ˆ .M  Assume that the postulate of Deville 

(1999), i.e.,  1 2 1 ˆn N X X    has a zero-mean multi-normal distribution as a limit, where X  and X̂  are 

the population total and the total estimator for general observation ,kx  and N  and n  tend toward infinity. 

This fact leads to  1 2ˆ .pxdM xdM O n     Assuming that T  can be derived for any direction of an 

increase, a similar argument to Deville (1999) gives rise to the result 

 
   

   1 2
1

ˆ 1
1 ,k kc c

k U

T M T M
z w o n

N N






    (2.1) 

for some positive value .c  Equation (2.1) results in the asymptotic variance of  ˆT M   

     ˆˆAvar = var .T M Z  (2.2) 

If   ,T xdM x   then the influence function at kx   k U  is  

  
0

; lim .
i k ii U i U

k kt

x N tx x N
IT M x x

t
 



 
  

 (2.3) 

For a complex statistic as the functions of simple statistics, we have the influence function  

      ,I f T D f IT  (2.4) 
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where f  is a differentiable function on the space of values for T  and  D f  is the matrix of the partial 

derivatives of f  (Deville, 1999). In many cases, the linearized value kz  includes parameters to be 

estimated. Let ˆkz  indicate the approximation of kz  using some statistics estimated by the sample. Deville 

(1999) notes that with a fixed and finite number of estimated parameters, the variance estimators based on 

ˆkz  and kz  are equivalent by an asymptotically negligible quantity. 

Now, we obtain the linearized value for   as follows. Consider a data set  

  1 , , ,X T
nx x    

where kx  is a p -variate observation indicating p  items in an instrument and n  is the sample size. Let ij  

and ˆ ij  , 1, ,i j p   denote the   th,i j  elements of   and ̂  as defined in Section 1, respectively. 

Specifically, we define      
1

1
N

ij i k i k j k j kk
x X x X N


     (Lohr, 1999), where i kx  and i kX  

are thi  element of kx  and its population mean, respectively. For simple random sampling without 

replacement (SRSWOR), we define      ˆ ˆˆ 1 ,ij i k i k j k j kk s
x X x X n


     where n  is the size of 

the sample s  and ˆ
i kX  is the sample mean of i kx  (Lohr, 1999). For obtaining ˆ ij  for more complicated 

sampling methods including unequal probability sampling, we refer to Swain and Mishra (1994) and Patel 

and Bhatt (2016). In survey sampling, the sampling weights are used for correcting the disproportionality 

of the sample regarding the target population of interest (Pfeffermann, 1993). With the complex sampling 

designs often used in practice, failure to consider the sampling designs may provide biased inferences. For 

more of a discussion of the role of sampling weights, we refer to Pfeffermann (1993). For the variance 

estimation of survey data, the linearization method can be applied as in formula (2.2) incorporating the 

sampling weights. Following conventional notations of the vectorization of a matrix, let  vech A  be the 

column vector of nonduplicated elements of the matrix ,A  vec A  be the column vector composed of the 

columns of .A  Let t̂  indicate the collection of statistics as the components of  ˆvechT   and t  indicate the 

collection of corresponding parameters. Specifically, we let     vech , .
TT T

k k kk U k U
t x x N x N

 
    

Also, let the matrix pK  indicate a transition matrix that satisfies the relationship    vech vec ,A AT
pK  

which borrows the transition matrix expression from van Zyl et al. (2000). We propose a linearized value for 

 ˆVar   as  

 
 

         2

1 ˆ ˆ ˆvec tr 2vec vec , 1, , ,
1 ˆ

1 1 I 11 I J
1 1

T T T T T
k p p p k

T

p
z K u k n

p
     

 
 (2.5) 

where a Jacobean matrix  vech ,J T t       ˆ ˆ,
ˆ vech ,J T

t t
t        vech ,

TT T T
k k k ku x x x  and 

I p  is the p p  identity matrix. We can now obtain the linearized value (2.5).  

Derivation of (2.5): We consider the variance of    ˆ ˆ1 tr 1 1Tp p     since its variance is the same as 

 ˆVar .  Let    * 1 tr .1 1Tp p      Also, let    11 1 12 2 13vec , , , , , , , ,T
p p pp           

and    11 1 22 2 33vech , , , , , , , , ,T
p p pp           a 2p -vector and a  1 2p p  -vector, 

respectively. Then, we have  
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 * * tr
.

vech 1 vech
J J

1 1T T T

p

t p

        
       

 (2.6) 

Now, in (2.6), we can show 

   
 

   
 

 
   

 
         

2

2

tr 1 tr tr

vech vech vech

1
vec tr 2vec vec .

1 1

1 1 1 1 1 1

1 1 I 11 I
1 1

T

T T T T TT

T T T T T
p p pT

K

          
         

    


 
(2.7)

 

Using (2.6) and (2.7), we can obtain 

                              
 

         
*

2

1
vec tr 2vec vec .

1
1 1 I 11 I J

1 1
T T T T T

p p pT

p
K

t p


    

  
 (2.8) 

Note that the expression (2.8) is a vector that consists of the derivatives of *  with respect to the 

components of .t  Each element in (2.8) is multiplied by the influence function corresponding to the statistics 

in t  as in (2.4). This is accomplished by multiplying (2.8) by   vech , , 1, , ,
TT T T

k k k ku x x x k n    

which is obtained by using (2.3). Now substituting   by ̂  leads to the linearized value (2.5). 

The formula for the new value (2.5) is easily implemented in the computer code using commonly 

available computer software. The relevant R code is available in the Supplementary Material.  

We note that, in application to survey sampling, the estimate ̂  should be obtained properly by 

incorporating the survey design. The variance is estimated by   ˆVar ,Z  where Var  indicates an operation 

to obtain the variance incorporating the weights and survey design properly, e.g., the Sen-Yates-Grundy 

variance estimator (Sen, 1953; Yates and Grundy, 1953), an unbiased variance estimator for the Horvitz-

Thompson estimator (Horvitz and Thompson, 1952) under designs with fixed sample sizes (e.g., Särndal, 

Swensson and Wretman, 1992) or the variance estimator for sampling with the replacement as a 

conservative approximation (Wolter, 1985). Specifically, in this paper, the variance for the NCS-R data is 

estimated as 

      
1

ˆ ˆVar Var ,
H

h
h

Z Z


   (2.9) 

where   ˆVarh Z  indicates the design-specific variance estimator for stratum  1, , .h h H   Once kz  

values are obtained, standard statistical software for survey sampling such as R package “survey” (Lumley, 

2004) can be used for the calculation of (2.9).  

Now, consider a case that x  is a random variable following a distribution and that an observation is a 

realization of the random variable; in addition, a sample of size n  is obtained according to the random 

variable. In this specific case, we do not consider the finite population, where the design-based variance 

estimation is suitable as shown in the previous discussion. In a random variable setting, let Ẑ  indicate the 

estimator with the measure M̂  as the empirical distribution function (Fernholz, 1991). Employing the 

concept of a robust statistical inference based on the influence function (Davison and Hinkley, 1997), the 

sample variance for the population can be calculated by  
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  1 2

1

ˆVar ( ) ( ) ( 1) ,
n

k
k

Z n z z n



    (2.10) 

where kz  is the linearized value (2.5) obtained from the statistic ̂  based on the sample (size n) and z  is 

the sample mean of ( 1, , ).kz k n   We also note that the formula (2.10) is not constructed for infinite 

populations in survey methodology, where the finite population is seen as a realization from an infinite 

population. In that case, the outcomes of a statistical model give rise to the values of the characteristics of 

interest in the finite population, thus the model-based variance estimation is appropriate (Binder and 

Roberts, 2009). The formula (2.10) can be used for a general data analytical setting, where observations are 

considered as realizations of a random variable. 

 

2.2  The coverage-corrected bootstrap method 
 

The linearization provides reasonable estimates for the confidence intervals; however, in some cases, the 

coverage rate may not be satisfactory when the underlying distributions are non-normal (see Section 3). In 

these cases, some computer-intensive approaches such as the double bootstrap method, which is also called 

the coverage-corrected bootstrap may be implemented (Hall et al., 1989). We primarily discuss the double 

bootstrap method instead of the typical “single” bootstrap method (DiCiccio and Romano, 1988) since we 

observe that the single bootstrap method may not be satisfactory with non-normal underlying distributions 

(e.g., lognormal distribution) in terms of the coverage rate (Table 3.3).  

For adjusting the bootstrap weight, the rescaling method referred to as the Rao-Wu bootstrap (Rao and 

Wu, 1988) is a popular approach for analyzing a lot of survey data, e.g., from Statistics Canada surveys 

(Mach, Saïdi and Pettapiece, 2007). The Rao-Wu bootstrap method is based on the assumption of sampling 

with a replacement, but is often employed for sampling without a replacement as well, when the first-stage 

sampling fraction is negligible (Mach et al., 2007). Herein, we propose implementing the coverage-

corrected bootstrap method using the weight adjustment from Rao and Wu (1988). Among the various 

bootstrap confidence interval techniques (e.g., for these varieties, see Hwang, 1995), we consider the 

percentile bootstrap interval, which is a strictly nonparametric bootstrap approach (Hall, Martin and 

Schucany, 1989).  

The coverage rates of the bootstrap confidence intervals can be corrected by incorporating additional 

bootstrap procedures. Because of bootstrapping the bootstrap sample, this kind of a procedure is referred to 

as the double bootstrap method (Martin, 1992). It is known that this method reduces the coverage error of 

two-sided confidence intervals by a factor of the order 1n   compared to the single bootstrap or normal-

theory confidence intervals (Martin, 1992). Suppose l̂  and û  are the lower and upper bounds of the 

percentile bootstrap confidence interval using the original data. As proposed by Hall et al. (1989), the 

 100 1 %q  coverage-corrected bootstrap confidence interval can be defined as  ˆ ˆ, ,l u    where a 

positive value of   satisfies 

   * *ˆˆ ˆ1 Pr , .q l u        (2.11) 
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The values *l̂  and *û  indicate the lower and upper bounds, respectively, of the confidence interval obtained 

by bootstrapping a resampled data set. The probability in the right-hand side of equation (2.11) is 

empirically evaluated as shown in the following steps.  

Step 1: For each bootstrap sample  1, , ,i i B   we obtain the intervals based on second-time 

resamples,  * *ˆ ˆ, .i il u  

Step 2: We search t  satisfying     * *ˆˆ ˆmin : 1 Pr , 0t q l u         where Pr  indicates 

the empirical probability.  

Step 3: The confidence interval is obtained by     ˆ ˆmax , 0 , min , 1 .l u    

 

We use     ˆ ˆmax , 0 , min , 1l u    since the true   is assumed to be between 0 and 1.  

In the analysis, we have to resample the data without disrupting the survey design structure. The 

bootstrap is carried out within each stratum, and all observations in the same cluster should be kept together 

in a resampled data set (Lohr, 1999). For each resampled data set, new weights need to be obtained (Rao, 

Wu and Yue, 1992). Specifically, let hn  indicate the sample size of the primary sampling unit (PSU) in 

stratum  1, , .h h H   Suppose we resample *
hn  clusters for each stratum. Then, the rescaled weight for 

observation k  in the resample is 

  
* *

*
1 ,

1 1
h h hb

k k k
h h h

n n n
w w m

n n n

         
 (2.12) 

where km  is the number of repetitions of the PSU that observation k  belongs to and kw  is the original 

weight of observation k  (Rao et al., 1992; Mach, Dumais and Robinson, 2005; Mach et al., 2007). When 
* 1,h hn n   the bootstrap weight becomes    1 ,h

h

nb
k k knw w m  which is a conventional bootstrap weight 

(Lohr, 1999). This procedure is repeated to obtain a total of B  bootstrap samples. For the actual data 

analysis, we use 500B   following the common practice of Statistics Canada surveys (Canadian 

Community Health Survey - Annual Component, 2007). To obtain the estimates, the stratification or cluster 

structure is no longer considered since the bootstrap weights take into account the survey design structure 

(Lohr, 1999). The percentile interval will be obtained based on the B  values of the estimates of .  For each 

resample,   is estimated based on the sample variance and covariance matrix incorporating the weights. 

To obtain the coverage-corrected confidence interval, we carry out the additional bootstrap with each 

bootstrap sample in a similar manner to what was explained above. In the simulation and data analysis we 

use 200 bootstrap samples for the second round of bootstrapping. The relevant R code is provided in the 

Supplementary Material. 

 
3  Simulation 
 

We investigate the performance of the proposed methods in two scenarios; stratified two-stage cluster 

sampling and single-stage unequal probability sampling.  
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For stratified two-stage cluster sampling, the finite population is generated using three strata where each 

stratum includes 200 PSUs and 50 secondary sampling units (SSUs) totaling 30,000 SSUs. The underlying 

distributions that are used include the multi-normal distribution, multi-lognormal distribution and correlated 

ordinal data categorized from multi-lognormal distribution variables. The cases of 5p   and 10p   are 

considered. Different means are used for the different strata. The observations are correlated within a PSU. 

See the footnote of Table 3.1 for the detailed parameter information. Simple random sampling is carried out 

at the first-stage and second-stage, respectively, within each stratum. Thus, the appropriate weights are 

calculated per stratum as    h h h hN M n m  for each individual (SSU), where ,hN ,hM hn  and hm  are the 

number of PSUs per stratum, the number of SSUs per PSU, first-stage sample size per stratum, and second-

stage sample size, respectively. Since the population is finite, the true value of   is known from the 

generated population.  

For unequal probability sampling (Table 3.2), we generate a population of 30,000, where the underlying 

distributions of the data are the multi-normal distribution, multi-lognormal distribution and correlated 

ordinal data categorized from the multi-lognormal distribution variables similar to the cases found in 

Table 3.1. See the footnote of Table 3.2 for the detailed parameter information. Each individual i  is 

assigned a random number ix  from the Binomial (20, 0.5) distribution, achieving the semblance of SSU 

sizes per PSUs. For sampling, the first-order inclusion probability is proportional to size ix  (probability 

proportional to size sampling). Thus, the weight for an individual i  is obtained as 1 ,k ik
n x x   where 

n  is the sample size. The sample selection procedure uses the systematic sampling technique that considers 

first-order inclusion probabilities. For the linearization method, the variance is estimated using the usual 

estimator for with-replacement sampling (Mach et al., 2007) as a conservative approximation of the methods 

for without-replacement sampling (Wolter, 1985). Since the sampling fraction is negligible in the 

simulation, the finite population correction is not incorporated. The 95% confidence interval is obtained 

based on the normal approximation. 

Table 3.1 (stratified two-stage cluster sampling) and Table 3.2 (single-stage unequal probability 

sampling) show the coverage rates and average widths of the confidence intervals based on the proposed 

linearization method and the coverage-corrected bootstrap method (1,000 simulations per scenario). The 

linearization method and the coverage-corrected methods are evaluated using same simulated data sets. For 

the coverage-corrected method, we use 200B   for the first bootstrap, 200B   for the second bootstrap. 

The linearized method shows the coverage rates as being close to the target confidence level for the multi-

normal distributions and correlated ordinal data in most scenarios. We note that, in the random variable 

settings, the confidence intervals based on a normal approximation work well with various ordinal data once 

the variance is correctly obtained (Maydeu-Olivares, Coffman and Hartmann, 2007). Our simulation results 

show that the normal approximation works well with the ordinal data in finite population settings as well. 

When the underlying distribution is the multi-lognormal distribution, the coverage rates of the confidence 

intervals based on the normal approximation may be somewhat lower than the target coverage rate, but they 

improve with increasing sample sizes. For the multi-lognormal distribution, the coverage-corrected 
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bootstrap method using the weight adjustment by Rao and Wu (1988) shows substantially improved 

coverage rates comparing to the linearized method. In comparison to the linearization method, the coverage-

corrected bootstrap method has slightly increased widths, and the coverage rates are reasonably close to the 

target confidence level for most cases in Tables 3.1 and 3.2.  

We also note that for the stratified sampling cases with relatively low   values, we can identify cases 

that the coverage-corrected method provides less-than-desirable coverage rates, with the multi-normal or 

ordinal data indicating that the coverage-corrected method is not a panacea for interval estimation. Here, 

the linearization method is a reasonable choice over the coverage-corrected method if the underlying 

distribution is ordinal or normal. 

 
 
Table 3.1 
(Stratified two-stage cluster sampling). The coverage rates (CR) and average widths (Width) of 95% confidence 
intervals based on the linearization method and coverage-corrected method (Double Bt). The values of npsu 
and nssu are the sample sizes for PSUs and SSUs within a PSU, respectively. Two   values indicate   for 

5p   and 10,p   respectively 
 

Method Distribution (npsu, nssu)   
5p   10p   

CR Width CR Width 
Linearization Multi-normal (10, 20) 0.91, 0.91 0.941 0.024 0.946 0.023 

(20, 20) 0.90, 0.91 0.934 0.017 0.962 0.016 
(10, 20) 0.56, 0.67 0.941 0.121 0.944 0.095 
(20, 20) 0.56, 0.67 0.953 0.084 0.961 0.064 

Multi-lognormal (10, 20) 0.85, 0.85 0.904 0.067 0.902 0.059 
(20, 20) 0.86, 0.85 0.908 0.054 0.935 0.049 
(10, 20) 0.51, 0.53 0.913 0.163 0.924 0.154 
(20, 20) 0.51, 0.55 0.933 0.118 0.928 0.108 

Correlated ordinal (10, 20) 0.85, 0.87 0.939 0.043 0.938 0.035 
(20, 20) 0.85, 0.87 0.939 0.030 0.954 0.025 
(10, 20) 0.48, 0.53 0.934 0.147 0.928 0.130 
(20, 20) 0.48, 0.60 0.955 0.103 0.955 0.077 

Double 
Bootstrap 

Multi-normal (10, 20) 0.91, 0.91 0.959 0.026 0.960 0.025 
(20, 20) 0.90, 0.91 0.954 0.019 0.964 0.017 
(10, 20) 0.56, 0.67 0.939 0.120 0.909 0.084 
(20, 20) 0.56, 0.67 0.955 0.084 0.942 0.059 

Multi-lognormal (10, 20) 0.85, 0.85 0.945 0.080 0.959 0.071 
(20, 20) 0.86, 0.85 0.948 0.063 0.963 0.057 
(10, 20) 0.51, 0.53 0.947 0.186 0.942 0.163 
(20, 20) 0.51, 0.55 0.955 0.125 0.942 0.109 

Correlated ordinal (10, 20) 0.85, 0.87 0.964 0.047 0.955 0.038 
(20, 20) 0.85, 0.87 0.950 0.033 0.960 0.026 
(10, 20) 0.48, 0.53 0.937 0.148 0.919 0.121 
(20, 20) 0.48, 0.60 0.957 0.104 0.942 0.073 

 

The values of   are based on the generated finite populations in all scenarios. For multi-normal data, the mean vectors consist 
of values of 1, 1.05 and 1.1 for strata 1, 2, and 3, respectively, and the common covariance within PSUs in addition to the 
covariance within multivariate data is 0.05. The covariance matrix has diagonal elements of 1 and the common off-diagonal 
elements to produce relevant   values. Multi-lognormal data are exponential of multi-normal data with the same mean and 
covariate structures. In the covariance matrix, common off-diagonal values are selected to produce relevant   values. For the 
correlated ordinal data, we first generate the multi-lognormal data with the same structures described above, then categorize them 
to 0, 1, 2 and 3 for values  2, 2  values  10, 10  values  15, and values  10, respectively. 
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Table 3.2 
(Single-stage unequal probability sampling). The coverage rates (CR) and average widths (width) of 95% 
confidence intervals based on the linearization method and coverage-corrected method (Double Bt). The values 
of n  indicate the sample sizes for PSUs. Two   values indicate   for 5p   and 10,p   respectively 
 

Method Distribution n     
5p   10p   

CR Width CR Width 
Linearization Multi-normal 100 0.90, 0.90 0.942 0.063 0.936 0.058 

200 0.90, 0.90 0.921 0.044 0.956 0.042 
100 0.50, 0.51 0.942 0.317 0.936 0.291 
200 0.50, 0.50 0.921 0.219 0.956 0.210 

Multi-lognormal 100 0.85, 0.84 0.816 0.116 0.853 0.104 
200 0.85, 0.85 0.870 0.103 0.901 0.083 
100 0.47, 0.47 0.851 0.346 0.887 0.312 
200 0.48, 0.47 0.911 0.264 0.935 0.253 

Correlated ordinal 100 0.84, 0.86 0.926 0.110 0.923 0.086 
200 0.84, 0.86 0.930 0.078 0.947 0.063 
100 0.43, 0.43 0.938 0.368 0.945 0.335 
200 0.43, 0.42 0.942 0.260 0.948 0.245 

Double Bt Multi-normal 100 0.90, 0.90 0.961 0.073 0.950 0.068 
200 0.90, 0.90 0.953 0.049 0.965 0.047 
100 0.50, 0.51 0.958 0.361 0.951 0.241 
200 0.50, 0.50 0.948 0.335 0.962 0.232 

Multi-lognormal 100 0.85, 0.84 0.912 0.166 0.943 0.138 
200 0.85, 0.85 0.940 0.136 0.948 0.107 
100 0.47, 0.47 0.954 0.436 0.946 0.382 
200 0.48, 0.47 0.946 0.318 0.965 0.295 

Correlated ordinal 100 0.84, 0.86 0.940 0.134 0.937 0.103 
200 0.84, 0.86 0.937 0.090 0.956 0.066 
100 0.43, 0.43 0.954 0.428 0.946 0.388 
200 0.43, 0.42 0.949 0.287 0.957 0.271 

  

The values of   are based on the generated finite populations in all scenarios. For multi-normal data, the mean vectors consist 
of values of 1. The covariance matrix has diagonal elements of 1 and the common off-diagonal elements to produce relevant   
values. Multi-lognormal data are exponential of multi-normal data with the same mean and covariate structures. Common off-
diagonal values are selected to produce relevant   values. For the correlated ordinal data, we first generated the multi-lognormal 
data with the same structures described above, then categorize them to 0, 1, 2 and 3 for values  2, 2  values  10, 10  values 
15, and values  10, respectively. 

 
Thus, we conclude that, for general ordinal data, which are typical responses for most assessment 

instruments, the linearization method will be satisfactory to obtain the confidence intervals. When the 

instruments consist of continuous data and some skewed distributions are observed, the coverage-corrected 

bootstrap method will generally provide more accurate confidence intervals than the normal approximation. 

It may be of interest to compare the performance of the proposed confidence interval methods to other 

existing confidence interval methods in a random variable setting since the proposed methods can be applied 

to these settings, as shown in (2.10). Table 3.3 presents the comparisons of the coverage rates and widths of 

various confidence interval methods based on the data generated from a random variable. The existing 

confidence interval methods can be categorized to either using an analytical distribution based on the multi-

normal distribution, or using a large sample approximation for the normal distribution of ̂  or a 

transformation of ˆ.  For the existing methods, we consider three normal-based confidence intervals and a 

bootstrap method, i.e., confidence intervals based on the exact F distribution using the normal data (van Zyl, 
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Neudecker and Nel, 2000; Kistner and Muller, 2004), a large sample approximation of  ˆlog 1 2  

(van Zyl et al., 2000), a large sample approximation of ̂  based on the “distribution-free” standard error 

estimate (Yuan et al., 2003; Maydeu-Olivares et al., 2007), and the percentile bootstrap confidence interval 

with a single bootstrap (DiCiccio and Romano, 1988). These techniques are compared to the confidence 

intervals based on the linearization method and the coverage-corrected bootstrap method. The data are 

generated from the multi-normal distribution, multi-lognormal distribution, and the correlated ordinal data 

similar to the simulations in the previous tables. The values of   in Table 3.3 are for the random variables. 

In general, the results seem similar to those of finite population cases. The existing confidence interval 

methods, as well as the linearization method, perform unsatisfactorily with the lognormal data, yet their 

coverage rates are close to the target confidence levels using the ordinal data and normal distributions when 

the sample sizes increase. The coverage-corrected bootstrap method shows a coverage rate close to the 

confidence level with a lognormal distribution while providing wider confidence interval widths than the 

other methods. In the case of the multi-normal distribution, the coverage-corrected bootstrap method seems 

to have higher coverage rates than the target confidence level. In comparison with the single bootstrap 

method, the coverage-corrected method increases the coverage rates by 1 to 3% overall for the multi-

lognormal distribution cases. 

 
Table 3.3 
The coverage rates and widths of 95% confidence intervals based on F distribution (F dist), the asymptotic 
distribution of the transformed ̂  (Asymp1), the asymptotic distribution by Yuan et al. (Asymp2), the 
linearization method (Linearization), the percentile bootstrap method with single bootstrap (Single Bt) and the 
coverage corrected method (Double Bt). In the first column, ,p  low ,  and high   values are shown in the 
parentheses 
 

Distribution Approach n  
5p   10p   

Low   High   Low   High   
CR Width CR Width CR Width CR Width 

Multi-normal 
(5, 0.5, 0.9) 
(10, 0.5, 0.9) 

F dist 50 0.955 0.461 0.955 0.092 0.960 0.429 0.960 0.086 
100 0.954 0.319 0.954 0.064 0.943 0.298 0.943 0.060 
200 0.948 0.222 0.948 0.044 0.954 0.208 0.042 0.954 

Asymp1 50 0.954 0.471 0.954 0.094 0.956 0.440 0.956 0.088 
100 0.947 0.322 0.947 0.064 0.939 0.302 0.939 0.060 
200 0.947 0.223 0.947 0.045 0.959 0.209 0.959 0.042 

Asymp2 50 0.937 0.432 0.937 0.086 0.931 0.407 0.931 0.081 
100 0.948 0.311 0.948 0.062 0.943 0.293 0.943 0.059 
200 0.945 0.218 0.945 0.044 0.953 0.205 0.953 0.041 

Linearization 50 0.937 0.441 0.937 0.088 0.937 0.415 0.937 0.083 
100 0.948 0.315 0.948 0.062 0.944 0.296 0.944 0.059 
200 0.946 0.219 0.946 0.044 0.953 0.206 0.953 0.041 

Single Bt 50 0.936 0.490 0.936 0.098 0.935 0.465 0.935 0.093 
100 0.944 0.334 0.944 0.067 0.939 0.314 0.939 0.063 
200 0.944 0.227 0.944 0.045 0.944 0.227 0.965 0.043 

Double Bt 50 0.959 0.498 0.960 0.107 0.959 0.484 0.960 0.103 
100 0.958 0.355 0.960 0.072 0.954 0.336 0.954 0.068 
200 0.954 0.238 0.954 0.048 0.954 0.238 0.974 0.045 

 

The values of   are theoretical values except cases of correlated ordinal data. The   values for the correlated ordinal data are 
obtained based on 60,000 simulations. Structures of the mean vector and covariance matrix follow those explained in Table 3.2. 
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Table 3.3 (continued) 
The coverage rates and widths of 95% confidence intervals based on F distribution (F dist), the asymptotic 
distribution of the transformed ̂  (Asymp1), the asymptotic distribution by Yuan et al. (Asymp2), the 
linearization method (Linearization), the percentile bootstrap method with single bootstrap (Single Bt) and the 
coverage corrected method (Double Bt). In the first column, ,p  low ,  and high   values are shown in the 
parentheses 
 

Distribution Approach n  
5p   10p   

Low   High   Low   High   
CR Width CR Width CR Width CR Width 

Multi-lognormal 
(5, 0.47, 0.85) 
(10, 0.47, 0.84) 

F dist 50 0.919 0.487 0.829 0.151 0.928 0.457 0.860 0.140 
100 0.888 0.337 0.763 0.101 0.884 0.317 0.813 0.095 
200 0.862 0.235 0.727 0.070 0.906 0.221 0.782 0.066 

Asymp1 50 0.921 0.497 0.827 0.155 0.923 0.469 0.859 0.143 
100 0.884 0.341 0.759 0.103 0.888 0.321 0.809 0.097 
200 0.858 0.237 0.720 0.070 0.909 0.223 0.787 0.066 

Asymp2 50 0.837 0.410 0.805 0.146 0.870 0.406 0.844 0.132 
100 0.874 0.338 0.825 0.119 0.883 0.318 0.854 0.108 
200 0.903 0.267 0.853 0.097 0.927 0.244 0.876 0.086 

Linearization 50 0.842 0.419 0.814 0.149 0.878 0.415 0.850 0.135 
100 0.877 0.342 0.828 0.120 0.885 0.321 0.862 0.109 
200 0.903 0.269 0.858 0.098 0.928 0.245 0.879 0.086 

Single Bt 50 0.929 0.472 0.887 0.174 0.930 0.464 0.889 0.158 
100 0.928 0.362 0.883 0.133 0.929 0.337 0.887 0.119 
200 0.932 0.274 0.900 0.102 0.941 0.251 0.917 0.090 

Double Bt 50 0.943 0.524 0.944 0.221 0.950 0.504 0.930 0.199 
100 0.950 0.422 0.935 0.170 0.951 0.385 0.938 0.150 
200 0.955 0.318 0.943 0.126 0.954 0.283 0.948 0.109 

Correlated ordinal 
(5, 0.84, 0.54) 
(10, 0.91, 0.70) 

F dist 50 0.941 0.424 0.926 0.149 0.950 0.256 0.931 0.075 
100 0.931 0.292 0.929 0.102 0.939 0.177 0.904 0.052 
200 0.938 0.203 0.917 0.071 0.956 0.123 0.933 0.036 

Asymp1 50 0.945 0.432 0.919 0.152 0.947 0.262 0.927 0.077 
100 0.930 0.295 0.922 0.103 0.938 0.179 0.907 0.053 
200 0.934 0.204 0.914 0.071 0.954 0.124 0.936 0.036 

Asymp2 50 0.922 0.432 0.911 0.144 0.928 0.242 0.920 0.074 
100 0.928 0.289 0.933 0.108 0.931 0.177 0.918 0.055 
200 0.940 0.205 0.931 0.077 0.950 0.125 0.947 0.039 

Linearization 50 0.928 0.402 0.916 0.147 0.932 0.247 0.923 0.075 
100 0.929 0.292 0.936 0.109 0.936 0.178 0.925 0.056 
200 0.940 0.206 0.931 0.078 0.950 0.126 0.950 0.039 

Single Bt 50 0.927 0.447 0.901 0.163 0.921 0.275 0.898 0.084 
100 0.928 0.308 0.929 0.116 0.935 0.189 0.908 0.059 
200 0.938 0.213 0.935 0.080 0.949 0.131 0.942 0.041 

Double Bt 50 0.950 0.476 0.927 0.189 0.945 0.310 0.934 0.101 
100 0.943 0.334 0.945 0.131 0.951 0.208 0.937 0.069 
200 0.955 0.227 0.948 0.087 0.956 0.140 0.959 0.045 

 

The values of   are theoretical values except cases of correlated ordinal data. The   values for the correlated ordinal data are 
obtained based on 60,000 simulations. Structures of the mean vector and covariance matrix follow those explained in Table 3.2. 

 
4  Application  
 

In this section, we provide detailed information regarding the NCS-R survey and subgroup analysis using 

the data sets. The relevance of the instruments may vary based on the different demographic groups studied, 

and thus a relatively low reliability in a certain group would be an indication that the instrument items may 
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need some adjustments for that group. Using the data from the NCS-R, we investigate the changes of   

using the Kessler 10 (K10, Kessler, Andrews, Colpe, Hiripi, Mroczek, Normand, Walters and Zaslavsky, 

2002), the Kessler 6 (K6, Kessler et al., 2002) and the Sheehan Disability Scale (SDS, Sheehan, Harnett-

Sheehan and Raj, 1996). More details about these scales are explained in Section 4.1. 

 
4.1  The data 
 

The NCS-R is a mental health survey for a nationally representative sample of English-speaking 

noninstitutionalized household residents in the United States (Kessler et al., 2004) and it uses the fully 

structured World Health Organization’s (WHO) World Mental Health Survey version of the Composite 

International Diagnostic Interview (WMH-CIDI) (Byers, Yaffe, Covinsky, Friedman and Bruce, 2010). 

Using computer-assisted personal interviews, the NCS-R was carried out to obtain further information not 

fully covered in the previous baseline National Comorbidity Survey (NCS). A total of 9,282 participants 18 

years and older completed the Part I interview, and a subsample of 5,692 participants completed the Part II 

instruments. The data sets are publicly accessible and downloadable on the ICPSR (Inter-university 

Consortium for Political and Social Research) website (https://www.icpsr.umich.edu/icpsrweb). The NCS-

R is based on a stratified multi-stage probability sample design (42 strata where each stratum has two PSUs, 

totaling 84 PSUs), and the sample weights are provided in the data to reflect the survey design. Each PSU 

consists of metropolitan statistical areas or counties (Kessler et al., 2004). The final weights in the NCS-R 

data are adjusted for nonresponses to the survey instruments. Weights accounting for the designs of the 

different parts of the surveys (i.e., Parts I and II) are provided, respectively, in the NCS-R data. The weights 

are normalized to have a sum equal to 9,282 for Part I and 5,692 for Part II (mean weight = 1), respectively. 

In this case, the weights do not represent the inverse of the selection probabilities. Due to this and the fact 

that the sample size is quite small compared to the total population of interest, the finite population 

correction is not considered in the data analysis. Incorporating these weights corrects the overrepresentation 

of “racial minorities, females, residents of the Midwest, people with 13+ years of education, and residents 

of metropolitan areas” (Kessler et al., 2004).  

The 10-item Kessler psychological distress scale or the K10 is an instrument used to assess the distress 

level of people (Kessler et al., 2002), and the K6 is an abbreviated set of six items from the K10. Both the 

K10 and K6 are considered effective scales for screening mental disorders (Brouwer, Cornelius, 

van der Klink and Groothoff, 2013). The K10 for 30-day symptoms is included in the Part II instruments. It 

is composed of 10 questions of a self-reported assessment of psychological distresses in the worst month of 

the past year for each interviewee. The questions ask feelings such as tiredness, nervousness, hopelessness, 

and so forth. All 10 questions produce an ordinal data scoring of 1 (all of the time) to 5 (none of the time). 

The final total score ranges from 10 to 50 with the higher scores showing more distress. The K10 values in 

the NCS-R have missing data, and the weights given by the NCS-R adjust for survey nonresponses, but they 
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do not adjust for items with missing data. Although these missing data may compromise the unbiasedness 

of the weighted estimation (Alegria, Jackson, Kessler and Takeuchi, 2007), we use only completed data and 

remedial approaches such as weighting class adjustment or imputation of the data are not considered in our 

analysis.  

The SDS assesses functional impairment associated with mental disorders (Sheehan et al., 1996). The 

SDS in the NCS-R assesses disorder-specific role impairments (Sheehan et al., 1996; Druss, Hwang, 

Petukhova, Sampson, Wang and Kessler, 2009). It consists of four questions evaluating the disruption of 

activities associated with home, work, social and close relationship using 0 to 10 scales, with higher scores 

showing more severe impairment. In this paper, among the SDS scales of various mental disorders, we use 

the SDS for the participants with chronic conditions as a Part II instrument. Since the SDS is disorder-

specific, it has missing data. For the data analysis, we use only complete data.  

 

4.2  Subsample analysis 
 

For the subgroups, a domain analysis may be applied. Suppose that a domain indicator function d
kI  

 1, ,d D   has a value of 1 if the unit k  is in a domain d  (i.e., )dk s  and 0 otherwise. Then, the 

statistics of the domain are estimated by modifying the weight as   .d d
k k kw w I  The procedures used to 

obtain the estimates and the corresponding variance or covariance are carried out with the modified weights. 

Since the sample size is not fixed but is rather treated as an estimate, an estimator such as the sample mean 

and sample variance can be considered as the ratio estimator, i.e., both the numerator and the denominator 

are estimated, and the variance of the estimator is obtained accordingly. However, when the sample size is 

large, thus the ratio between the domain sample size and the whole sample size is close to the true population 

ratio, it is known that the variance of the ratio estimator is approximately the same as that of the estimator 

with the fixed sample size using only the subgroup of interest, making “little difference in practice” 

regarding those estimators (Lohr, 1999, page 79). The negligible difference between the domain estimator 

and the estimator using only the subsample can be easily shown using the variance estimator in an unequal 

probability sampling with replacement setting. Let ˆ
dY  indicate the domain estimator of the mean (Lohr, 1999) 

for single-stage sampling, i.e., 
1 1

ˆ ,
d d

n nd d
d k k k k k k k kk k k s k s

Y w I y w I w y w
   

      where the last 

term uses only the subsample. Now, for the variance estimator of ˆ
dY  (Paben, 1999; SAS/STAT user’s guide, 

2010), we can show 

      2 2

1
1

ˆ ˆ
ˆˆ ,

ˆ1 1
d

n k d k d k k d d
d n

k k s ddl dl

w I y Y w y Yn n
V Y

n nNw I 


           
       

 


  (4.1) 

where dn  is the sample size of .ds  Here, the right-hand side of equation (4.1) uses the observation only in 

domain .ds  Based on this fact, the variance for a subgroup is obtained based only on the data from the 

subgroup of interest in this paper. 
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When implementing the bootstrap method, we use * 2,hn   which produces all the positive weights in 

(2.12). In the subsample analysis, the bootstrap sample may contain only one PSU per stratum. In this case, 

the variance cannot be estimated. If we have multiple strata with one PSU, we combine those strata. If we 

have only one stratum with one PSU, we merge that stratum with another stratum arbitrarily. The rationale 

of this practice is that the variance incorporating strata is usually smaller than that without strata, thus such 

a practice may produce a wider (more conservative) confidence interval. 

 
4.3  Results 
 

The estimates of   and their confidence intervals for the whole participants are shown in Table 4.1. The 

table presents the confidence intervals using the coverage-corrected percentile method and the confidence 

interval using the linearization method for each instrument. Between the K10 and K6, it appears that the 

K10 has a higher   estimate. This may be explained by the fact that the removed items from the K10 are 

highly correlated with the remaining items in the K6, thus removing these items results in a reduced ̂  

value. The coverage-corrected percentile method shows confidence intervals that are close to the 

linearization method, while slightly wider. Considering the ease of calculation, when an analysis deals with 

instruments with ordinal data, the results of the similar confidence intervals in Table 4.1 may indicate that 

a normal approximation using the proper variance estimation may be satisfactory for the investigated 

instruments, which do not include the skewed continuous data that we examined in Tables 3.1 and 3.2. 

The subgroup analysis is shown in Table 4.2, where ̂  and the confidence intervals are presented for 

different groups by age, gender and marriage status. The age groups are defined as young (34 years and 

under), middle aged (35-64 years), and old aged (65 years and over) per the available literature (e.g., 

Sunderland, Hobbs, Anderson and Andrews, 2012), where the cut-off points for the age groups are decided 

by epidemiological studies and the traditional definition of old age. The marriage status is defined by 

grouping married and unmarried (including divorced, separated, widowed and never married). Both the 

coverage-corrected bootstrap method and the linearization method provide comparable confidence intervals 

while the coverage-corrected bootstrap produces a slightly wider confidence interval. Considering that the 

coverage-corrected method is computationally intensive, the linearization method may be preferred when 

the instruments consist of ordinal scales.  

 
 
Table 4.1 
Estimates of   and their 95% confidence intervals (CI) for overall sample 
 

Instrument ̂  Cov-Correct CI Linearization CI n  
K10 0.901 (0.893, 0.911) (0.893, 0.909) 2,378 
K6 0.840 (0.829, 0.857) (0.827, 0.852) 3,442 
SDS 0.867 (0.852, 0.883) (0.853, 0.880) 3,983 
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Table 4.2 
Estimates of   and their 95% confidence intervals (CI) for subgroups 
 

Instrument Subgroups ̂  Cov-Correct CI Linearization CI n  
K10 Female 0.898 (0.880, 0.914) (0.882, 0.914) 869 
 Male 0.902 (0.896, 0.912) (0.895, 0.910) 1,509 

 Young age 0.888 (0.875, 0.900) (0.875, 0.900) 890 
 Middle age 0.913 (0.902, 0.925) (0.902, 0.924) 1,281 
 Old age 0.862 (0.827, 0.894) (0.830, 0.893) 207 

 Married 0.895 (0.882, 0.910) (0.882, 0.907) 1,232 
 Unmarried 0.902 (0.892, 0.913) (0.892, 0.912) 1,146 
K6 Female 0.824 (0.805, 0.849) (0.803, 0.844) 1,288 
 Male 0.848 (0.835, 0.866) (0.835, 0.861) 2,154 

 Young age 0.830 (0.810, 0.855) (0.810, 0.849) 1,268 
 Middle age 0.856 (0.842, 0.875) (0.841, 0.870) 1,847 
 Old age 0.773 (0.728, 0.821) (0.725, 0.820) 327 

 Married 0.823 (0.807, 0.844) (0.806, 0.840) 1,805 
 Unmarried 0.851 (0.833, 0.875) (0.832, 0.869) 1,637 
SDS Female 0.874 (0.854, 0.895) (0.853, 0.896) 1,589 
 Male 0.861 (0.844, 0.880) (0.847, 0.876) 2,394 

 Young age 0.837 (0.805, 0.866) (0.808, 0.866) 1,159 
 Middle age 0.883 (0.870, 0.898) (0.871, 0.896) 2,296 
 Old age 0.849 (0.779, 0.903) (0.796, 0.901) 555 

 Married 0.886 (0.870, 0.903) (0.871, 0.900) 2,286 
 Unmarried 0.841 (0.818, 0.864) (0.820, 0.861) 1,697 

 
To this end, we conclude this section with a discussion of the results of the subgroups. Sizable differences 

in ̂  between the groups are found in the age groups with the K10 and K6 and marital status in the SDS. 

There are no overlaps of the confidence intervals between the middle and old-age groups in the K10 and 

K6. This indicates that the questions in the K10 and K6 may be relatively less consistent among the old-age 

group than the middle-age group. For the SDS, there is also no overlap of the confidence intervals between 

the married and the unmarried groups. That is, the consistency of the questions is substantially lower for the 

unmarried group than for the married group. We speculate that the SDS items include the impairment of a 

certain area that may be more relevant to the married group than the unmarried group (e.g., a disruption of 

activities associated with home, work, social and close relationship). 

 
5  Concluding remarks 
 

We explained how to obtain the confidence intervals of   in survey sampling through the linearization 

and coverage-corrected bootstrap methods. Through the simulation study in the setting of multi-stage cluster 

sampling and unequal probability sampling, the linearization method showed the workable property in terms 

of the coverage rate in the case of the multi-normal distribution or correlated ordinal data. When dealing 

with some problematic continuous data such as the multi-lognormal distribution, the coverage-corrected 

bootstrap method showed better performance than the linearization method in terms of the coverage rates. 

The discussed interval estimation methods were applied to the NCS-R data set. The application 
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demonstrated that both the interval estimation methods provide workable options to carry out an inference 

of   incorporating the survey design. 

We conclude this section by noting the following recommendations. First, in the case of an unknown 

continuous and skewed distribution, the coverage-corrected confidence interval is a safe way to provide a 

confidence interval whose actual confidence level may be close to the nominal confidence level. Second, if 

the data are discrete with a large sample size, the normal approximation using the linearization method may 

provide satisfactory coverage rates and be preferred because of the easiness of computation.  
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