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A grouping genetic algorithm for joint stratification and 
sample allocation designs 

Mervyn O’Luing, Steven Prestwich and S. Armagan Tarim1 

Abstract 

Finding the optimal stratification and sample size in univariate and multivariate sample design is hard when the 
population frame is large. There are alternative ways of modelling and solving this problem, and one of the most 
natural uses genetic algorithms (GA) combined with the Bethel-Chromy evaluation algorithm. The GA iteratively 
searches for the minimum sample size necessary to meet precision constraints in partitionings of atomic strata 
created by the Cartesian product of auxiliary variables. We point out a drawback with classical GAs when applied 
to the grouping problem, and propose a new GA approach using “grouping” genetic operators instead of 
traditional operators. Experiments show a significant improvement in solution quality for similar computational 
effort. 

 
Key Words: Grouping genetic algorithm; Optimal stratification; Sample allocation; R software. 

 
 

1  Introduction 
 

In this paper we address the optimization problem of jointly determining stratification and sample 

allocation for univariate and mulitivariate scenarios. To serve this purpose, we refer to (Ballin and Barcaroli, 

2013). In principle the optimal stratification (i.e., that which yields the smallest sample size) can be found 

by testing all possible partitionings of atomic strata, but the number of possible partitionings grows 

exponentially with the number of atomic strata. 

An efficient search algorithm is necessary to avoid evaluating each possible partitioning. Genetic 

algorithms (GAs) often converge quickly to optimal or near optimal solutions, and are particularly good at 

navigating rugged search spaces containing many local minima. The Bethel-Chromy algorithm combines 

similar algorithms from (Bethel, 1985, 1989) and (Chromy, 1987) and is suitable for univariate and 

mulitivariate cases. It uses lagrangian multipliers to find the minimum sample size that meets precision 

constraints for a given stratification. (Ballin and Barcaroli, 2013) combine a GA with this algorithm to 

search for the minimum sample size. It is used to evaluate each partitioning created by the GA. A full 

description of the methodology and problem statement is found in (Ballin and Barcaroli, 2013). However, 

they use a classical GA which is known to be unsuitable for partitioning problems. 

In this paper we propose to apply genetic operators to the GA that are better suited to this application. It 

is an example of the class of evolutionary algorithms called Grouping Genetic Algorithms (GGAs). The GA 

has been updated following this work (Barcaroli, 2019). Section 2 motivates the work and introduces GGAs. 

Section 2.3 describes our GGA for the problem. Section 3 compares the original GA with our GGA on 

publicly-available test data. Section 4 describes a version of our GGA with enhanced performance, using a 

fast C++ implementation of the bethel.r function which we integrated into R using the Rcpp package. 

Section 5 concludes the paper. 
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2  Classical vs grouping genetic algorithms 
 

In this section we discuss “classical” and “grouping” GAs, and explain why the latter are more 

appropriate for our problem. 

 
2.1  Classical genetic algorithms 
 

GAs are a nature-inspired class of optimisation algorithms, modelled on the ability of organisms to solve 

the complex problem of adaptation to life on Earth. The variables of an optimisation problem are called 

genes and their values alleles. A candidate solution is a list of alleles called a chromosome. A set of 

chromosomes is usually called a population, so to avoid confusion with the target population we shall use 

chromosome population when referring to GAs. The objective function (which is maximised by convention) 

is called the chromosome’s fitness. The search for fit chromosomes (solutions with high objective) uses two 

genetic operators: small random changes called mutation, equivalent to small local moves in a hill-climbing 

algorithm; and large changes called crossover in which the genes of two parent chromosomes are 

recombined. One well-known recombination operator is single-point crossover: choose two parent 

chromosomes with alleles  

 1 1, , , , ,N Na a b b    

select a random integer i  (the crossover point) such that 1 < ,i N  and generate two new offspring 

chromosomes  

 1 1 1 1, , , , , , , , , , .i i N i i Na a b b b b a a       

These might be further subjected to random mutation, in which a few alleles are changed, before placing 

them back into the chromosome population. There are a variety of methods for selecting parents and 

replacing existing chromosomes. In generational GAs the entire chromosome population is replaced by 

offspring, and parents are often selected randomly but with a bias toward fitter chromosomes; while in 

steady-state GAs only one offspring is generated in each GA iteration, and usually replaces the least-fit 

chromosome in the chromosome population. GAs often give more robust results than search algorithms 

based on hill-climbing, because of their use of recombination. They have found many applications since 

their introduction in 1975 by John Holland. 

The original GA which is represented in the R  (R Core Team, 2015) package SamplingStrata (Barcaroli, 

2014), is an elitist generational GA in which the atomic strata L  are considered to be elements of a set (or 

genes) for a standard crossover strategy. In each iteration the best solutions (the elite) are carried over to the 

next generation. Each gene represents a variable in the problem. We refer to this as a classical GA because 

a classical problem representation and genetic operators are used, as described below. 

Dividing atomic strata into disjoint groups is an example of a grouping problem, related to cutting, 

packing and partitioning problems. The motivation for our work is that classical GAs are known to perform 



Survey Methodology, December 2019 515 
 

 
Statistics Canada, Catalogue No. 12-001-X 

poorly on grouping problems. The reason is that the chromosomal representation of a grouping contains a 

great deal of symmetry (or redundancy): permuting the group names yields an equivalent grouping, so each 

grouping has multiple representations. Symmetry has a damaging effect on GAs because recombining 

similar parent groupings might yield a very different offspring grouping, violating the basic GA principle 

that parents should tend to produce offspring with similar fitness. In extreme cases, a classical GA might 

perform even worse than a completely random search. We provide two examples to illustrate the problem. 

To illustrate the problem with symmetry in our first example the parents represent the same grouping in 

different ways. Note that to increase readability, letters A - F are used as alleles instead of integers in the 

presentation here. Consider the following two chromosomes:  

 
 groups represented 

chromosome A B C D E F 
ABCDEF  1   2   3   4   5   6  

FEDCBA  6   5   4   3   2   1  

 
which both represent the grouping             1 , 2 , 3 , 4 , 5 , 6 .  Now suppose we apply single-point 

crossover to obtain two new offspring chromosomes from these parents. Arbitrarily choosing the center of 

the chromosomes as the crossover point, we obtain offspring:  

 
 groups represented 

chromosome A B C D E F 
ABCCBA  1, 6   2, 5   3, 4        

FEDDEF        3, 4   2, 5   1, 6  

 
which both represent the completely unrelated grouping       1, 6 , 2, 5 , 3, 4 :  no groups at all are passed 

from the parents to the offspring. Hence the offspring and parent fitnesses can be completely unrelated to 

each other, which reduces the GA to near-random search. As another example, consider the following two 

classical chromosomes:  

 
 groups represented 

chromosome A B C D E F 
AECFEC  1     3, 6     2, 5   4  

DFFDAA  5, 6       1, 4     2, 3  

 
which in turn represent the different groupings         1 , 3, 6 , 2, 5 , 4  and       5, 6 , 1, 4 , 2, 3 .  Using 

the same crossover strategy we obtain offspring:  
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   groups represented 

chromosome A B C D E F 
AECDAA  1, 5, 6     3   4   2    

DFFFEC      6   1   5   2, 3, 4  

 
representing the groupings         1, 5, 6 , 3 , 4 , 2  and         6 , 1 , 5 , 2, 3, 4 .  Note that these offspring 

have very little in common with their parents, as the only preserved groups are  1  and  4 .  

 
2.2  Grouping genetic algorithms 
 

The symmetry problem can be tackled by designing more complex genetic representations and operators 

(Galinier and Hao, 1999) or by clustering techniques (Pelikan and Goldberg, 2000). The risk of clustering 

is that genetic diversity may be lost if the clusters are too tight, leading to search stagnation (Prügel-Bennett, 

2004). Instead we follow the former approach by designing a GGA (Falkenauer, 1998), which have been 

shown to perform far better than classical GAs on grouping problems. 

GGAs are designed specifically to solve grouping problems and have found many applications, including 

WiFi network deployment (Agustín-Blas, Salcedo-Sanz, Vidales, Urueta and Portilla-Figueras, 2011), 

wireless network design (Brown and Vroblefski, 2004), steel plate cutting (Hung, Sumichrast and Brown, 

2003), production plant layout (De Lit, Falkenauer and Delchambre, 2000) and social network analysis 

(James, Brown and Ragsdale, 2010). They may use the same heuristics as other GAs (parent selection, 

offspring replacement, etc) but they use different genetic encoding and operators: that is, how they map a 

problem to chromosomes and how they perform recombination and mutation. We shall illustrate these 

differences on the above examples. 

GGAs represent a grouping as an ordered list of subsets, omitting empty sets. The parents in the second 

example of Section 2.1 might be represented in this way:  

              1 , 3, 6 , 2, 5 , 4 5, 6 , 1, 4 , 2, 3 .   

GGA mutation is simple: an item is moved from one group to another. However, the GGA recombination 

operator is more complicated. Choose a crossing section in each parent, for example    1 , 3, 6  from the 
st1  parent and  1, 4  from the nd2  parent. Then inject the st1  crossing section into the nd2  parent at a 

random point, and vice-versa: 

                    1 , 3, 6 , 1, 4 , 2, 5 , 4 5, 6 , 1, 4 , 1 , 3, 6 , 2, 3 .   

Next remove any repeated objects that were already in the receiving parent:  

                , 3, 6 , 1, 4 , 2, 5 , 5 , 4 , 1 , 3, 6 , 2 .    

Finally remove any empty sets:  

                3, 6 , 1, 4 , 2, 5 5 , 4 , 1 , 3, 6 , 2 .   
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These are the offspring. Clearly, both offspring have much in common with both parents, as 5 of the 7 parent 

groups survive in the offspring:  1 ,  4 ,  1, 4 ,  2, 5  and  3, 6 .  In the first example of Section 2.1 it is 

easily verified that both offspring represent the same grouping as the parents, as one would expect. This 

property of the GGA injection-based recombination makes it much more likely that offspring have similar 

fitness to parents, which in turn helps the GGA to iteratively improve the chromosome population. 

It might be noticed that the GGA problem representation still contains symmetry: any grouping still has 

multiple representations, obtained by permuting the subsets in the ordered list. But the genetic operators are 

almost independent of this ordering so it is almost irrelevant. The only effect of the ordering is to limit the 

set of possible injections: in the second example of Section 2.1 we cannot inject a non-existent crossing 

section for example such as    1 , 4  from parent 1 because those two groups are not adjacent. This limit 

is removed by an additional genetic operator called inversion which selects a section of the chromosome 

and reverses it. For example  

                    1 , 2 , 3, 6 , 4 , 5 1 , 2 , 5 , 4 , 3, 6 .   

This does not change the grouping represented by the chromosome, but reordering the groups in the 

chromosome makes all injections possible. 

Injection, mutation and inversion are the common operators used in GGAs, but there is no canonical 

algorithm. Instead GGAs tend to be tailored for specific applications, and in principle any GA can be adapted 

to grouping problems by using grouping operators. In Section 2.3 we design a GGA for our problem. 

 
2.2.1  Note on implementation 
 

For the sake of clarity the descriptions in Section 2.2 omit implementation details, for example the fact 

that GGA chromosomes are usually implemented in two parts (or sometimes more). The first part uses a 

classical representation as above, while the second part lists the nonempty groups as a permutation. Injection 

occurs on the second parts of parent chromosomes and some renaming of groups is necessary. 

Typically we decide in advance the number of iterations which we wish to run the algorithm for. This 

should be enough to give the GGA a chance to converge on the optimum solution after the mutation and 

inversion probabilities have been applied. If, however, the optimum solution is known beforehand the 

algorithm can be set to stop at this point. 

The number of iterations is usually decided with experience of using the GGA on similar target and 

auxiliary variables for similar datasets, or with the existing dataset and target and auxiliary variables. It may 

require a number of experiments using the GGA (or GA) before the number of iterations needed to reach 

convergence can be estimated. In fact there is a possibility that either the GGA or GA would appear to have 

reached convergence after a set number of iterations, but instead have become trapped in a local minimum. 

It may be useful to increase the number of iterations and try alternative mutation probabilities in order to be 

certain that it has converged on a global minimum. 
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This implies a number of trial runs before finally deciding the parameters under which to run the 

algorithms. Therefore the fact the GGA has been shown to attain convergence quicker than the GA is likely 

to compound the improvement in total processing time. In the experiments described below we keep the 

number of iterations small as we want to demonstrate the ability of the GGA to converge on a solution 

within that number of iterations. 

We use either the mutation settings specified in the examples provided by (Ballin and Barcaroli, 2013) 

or the default mutation settings in (Barcaroli, 2014). We apply grouping genetic operators and inversion to 

the GA designed by (Ballin and Barcaroli, 2013): it is the grouping genetic operators that make it a GGA. 

Thus we compare the performance between the different GA and GGA genetic operators rather than 

experiment with parameters such as varying the number of iterations, chromosome population size, mutation 

probability, or elitism rate. 

The mutation probability can be selected in advance by the user. Typically, the probability of mutation 

should be such that it increases the chance of the GGA leaving a local minimum, but not disrupt the natural 

evolution of chromosomes from one generation to the next. On the other hand we have fixed the inversion 

probability at 0.01, because this is enough to maintain diversity. 

The size of the chromosome population can be decided by trial and error. It is advisable to consider the 

evaluation time of each chromosome when setting the size: if there are too many chromosomes in the set, it 

might take an extra long time to move from one iteration to the next, and we found that the bethel.r algorithm 

(i.e., the Bethel-Chromy evaluation algorithm in (Barcaroli, 2014)) takes several seconds to evaluate even 

one chromosome for the larger datasets we used in this paper (we discuss this further in Section 4). 

For further details on the implementation of GGAs (e.g., elitism rate) we refer the reader to papers such 

as (Falkenauer, 1998). 

 
2.3  Application to the joint stratification and sample allocation problem 
 

As mentioned above our GGA is based on the GA described in (Ballin and Barcaroli, 2013) and 

represented in R  in the SamplingStrata package (Barcaroli, 2014), but with grouping operators and 

chromosomes instead of the classical versions. This change is the only novelty of our algorithm (except for 

the optimisation described in Section 4) but its effect on performance is large. We inserted the GGA into a 

modified version of the function called rbga.r from the genalg R package (Willighagen, 2005). It is designed 

to work with the other functions in SamplingStrata, and is applied to the joint stratification and optimum 

sample size problem. The GGA is summarised in Figure 2.1. 

Following the problem statement in (Ballin and Barcaroli, 2013) we summarise the cost function as 

follows:  

  1 0
=1

, , = ,
H

H h h
h

C n n C C n    
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where 0C  is the fixed cost and hC  is the average cost of interviewing one unit in stratum h  and hn  is the 

number of units, or sample, allocated to stratum .h  In our analysis 0C  is set to 0, and hC  is set to 1. The 

expectation of the estimator of the th“ ”g  population total is:  

    ,
=1

ˆ = = 1, , ,
H

g h h g
h

E T N Y g G    

where ,h gY  is the mean of the G  different target variables Y  in each stratum .h  The variance of the 

estimator is given by:  

    
2
,2

=1

ˆVAR = 1 = 1, , .
H

h gh
g h

h h h

Sn
T N g G

N n


 

 
   (2.1) 

The upper limit of variance or precision gU  is expressed as a coefficient of variation CV  for each ˆ :gT  

    
 

ˆVAR
ˆCV = .

ˆ
g

g g

g

T
T U

E T
  (2.2) 

The problem can be summarised as follows:  

 

 
=1

min

ˆCV .

H

h
h

g g

n n

T U






  

 
Grouping Genetic Algorithm (GGA) 
 
  Step 1: Initialization 

  (a) Randomly generate a chromosome population of size  .PN
 

  Step 2: Selection part 1 

  (a) Rank chromosomes based on sample size.

  (b) Save best  E  chromosomes for the next generation.
 

  Step 3: Inversion 

  With probability 0.01 invert groups in the  PN chromosomes.
   
  Step 4: Selection part 2 

  For each of the remaining  PN E  chromosomes in the new generation:

  (a) Draw parents 1 and 2 from the aforementioned  PN chromosomes (higher ranked chromosomes have a 
higher probability of being selected). 

  (b) Perform crossover as explained in Section 2.2.

  (c) Remove empty groups. 

  (d) Renumber groups. 
   
  Step 5: Mutation 

  Mutate integers in  PN E  chromosomes at a selected probability.
   
  Step 6: if #iterations<maximum 

  (optional: and sample size    desired value) go to step 2.
 

Figure 2.1  Pseudocode for our GGA. 
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3  Comparing the genetic algorithms 
 

We now run a number of comparisons between the original GA and our GGA using publicly available 

datasets. Unless otherwise stated, for all the cases presented below, we adopt the following parameter setting 

for both genetic algorithms, where 20,PN  0.05,gU   the elitism rate is 0.2, and the mutation 

probability is 0.05. 
 

3.1  A comparison for the iris dataset 
 

(Ballin and Barcaroli, 2013) use the iris dataset (Anderson, 1935; Fisher, 1936; R Core Team, 2015) to 

demonstrate that the GA they propose can find the optimum stratification i.e., the stratification or grouping 

of atomic strata which supplies the minimum sample size. The iris dataset is small and is widely available. 

It has 150 observations for 5 variables Sepal Length, Sepal Width, Petal Length, Petal Width and Species. 

Species is a categorical variable which has three levels, setosa, versicolor and virginica, each of which 

have 50 observations. The remaining four variables are continuous measurements for length and width in 

centimetres. (Ballin and Barcaroli, 2013) select Petal Length and Petal Width as variables of interest, i.e., 

target variables. They select Sepal Length and Species as two auxiliary variables. 

They convert Sepal Length to a categorical variable using a k-means algorithm (Hartigan and Wong, 

1979) to define three clusters (i.e., 4.3 to less than 5.5, 5.5 to less than 6.5, 6.5 to 7.9). The cross product of 

the categorical version of Sepal Length with Species creates 9 atomic strata. However, one atomic stratum 

is empty because there are no corresponding values in Petal Length and Petal Width. Therefore there are 8 

usable atomic strata for this example. 

 
Table 3.1 
Reproduction of table of atomic strata for estimating the minimum sample size for the target variables of iris 
dataset as found in (Ballin and Barcaroli, 2013), page 379 
 

Stratum N M1 M2 S1 S2 X1 X2 DOMAIN
[4.3; 5.5] (1)*setosa  45 1.466667 0.244444 0.17127 0.106574 [4.3; 5.5] (1) setosa  1  
[4.3; 5.5] (1)*versicolor  6 3.583333 1.166667 0.491313 0.205481 [4.3; 5.5] (1) versicolor  1  
[4.3; 5.5] (1)*virginica  1 4.5 1.7 0 0 [4.3; 5.5] (1) virginica  1  
[5.5; 6.5] (2)*setosa  5 1.42 0.26 0.172047 0.08 [5.5; 6.5] (2) setosa  1  
[5.5; 6.5] (2)*versicolor  35 4.268571 1.32 0.367051 0.189435 [5.5; 6.5] (2) versicolor  1  
[5.5; 6.5] (2)*virginica  23 5.230435 1.947826 0.318194 0.28873 [5.5; 6.5] (2) virginica  1  
[6.5; 7.9] (3)*versicolor  9 4.677778 1.455556 0.193091 0.106574 [6.5; 7.9] (3) versicolor  1  
[6.5; 7.9] (3)*virginica  26 5.876923 2.107692 0.494825 0.228579 [6.5; 7.9] (3) virginica  1  

 
The initial atomic strata are reproduced in Table 3.1 where gM  refers to the means for the corresponding 

gY  values in each atomic stratum ;kl gS  refers to the corresponding stratum population standard deviations. 

There are 4,140 possible partitionings of the 8 atomic strata. Consequently, it is possible to test within a 

reasonable amount of time the sample size for the entire search space using the bethel.r function. This has 

already been done (Ballin and Barcaroli, 2013) and the minimum sample size is known to be 11. 
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This test can be used to determine whether the new GA correctly finds the minimum sample size without 

exploring the entire search space. We use 10pN   in this case. For this test the bethel.r function will search 

for the minimum sample size, in integers rather than real numbers. The chromosomes will then be ranked 

by sample size in ascending order. Accordingly the elite chromosomes are taken into the next iteration and 

the remaining chromosomes are generated using the recombination method for each algorithm. 

We will compare the number of chromosomes generated to find the optimal stratification in the two 

algorithms as well as the number of iterations. Our anticipation is that the GGA should be more efficient, 

and thus typically find the optimal solution in fewer iterations than the GA. 

The maximum number of iterations is set to 200, because using (Ballin and Barcaroli, 2013) as a guide 

we anticipate that both algorithms will find the correct solution in fewer iterations than this. Thus we have 

added a piece of code to both algorithms such that they stop when the optimal sample size, 11,n   has been 

reached and supply the number of iterations taken to reach that point. This approach is different to that of 

(Ballin and Barcaroli, 2013) who report the number of times in 10 experiments the GA finds the correct 

solution for a given number of iterations ranging incrementally from 25 to 200. However, we feel this 

approach would better demonstrate that the GGA can find the correct solution in less iterations even on the 

small iris dataset experiment. 

 
Table 3.2 
Iris dataset experiment results for GA and GGA 
 

 (a) GA (b) GGA 
Number of Experiment Iterations Chromosomes Experiment Iterations Chromosomes

 1 14 228 1 11 180
 2 8 132 2 7 116
 3 17 276 3 6 100
 4 40 644 4 22 356
 5 31 500 5 9 148
 6 13 212 6 11 180
 7 15 244 7 8 132
 8 9 148 8 7 116
 9 15 244 9 9 148
 10 15 244 10 11 180
 11 14 228 11 3 52
 12 8 132 12 9 148
 13 17 276 13 27 436
 14 40 644 14 12 196
 15 31 500 15 16 260
 16 13 212 16 6 100
 17 15 244 17 20 324
 18 9 148 18 6 100
 19 15 244 19 7 116
 20 15 244 20 6 100
 21 16 260 21 11 180
 22 67 1,076 22 7 116
 23 19 308 23 8 132
 24 9 148 24 5 84
 25 11 180 25 7 116
 26 20 324 26 5 84
 27 32 516 27 6 100
 28 10 164 28 6 100
 29 37 596 29 9 148
 30 9 148 30 6 100
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Table 3.2 provides the number of iterations (and chromosomes generated) taken to find 11n   over 30 

experiments for both GAs. 

 
 

 

 

 

 

 

 

 
 

 

Figure 3.1 Boxplot distribution of number of Chromomomes generated to find 11n   for GA and GGA after 
30 experiments. 

 
Figure 3.1 provides the distribution of the number of chromosomes generated to find the optimal solution 

for the GA and the GGA. The boxplots indicate that the GGA typically needs to generate fewer 

chromosomes to find the optimum solution. 

 
Table 3.3 
Example stratifications for the GA and GGA on the iris dataset for 11n   
 

    Y1 Y2 

  Stratum N Mean SD Mean SD Sample Size 

GA  1 50 1.462 0.1685 0.246 0.1026 2 

  2 50 4.26 0.4562 1.326 0.1911 3 

  3 1 4.5 0 1.7 0 1 

  4 23 5.2304 0.3112 1.9478 0.2824 3 

  5 26 5.8769 0.4852 2.1077 0.2241 2 

Total   150     11 

GGA  1 23 5.2304 0.3112 1.9478 0.2824 3 

  2 50 1.462 0.1685 0.246 0.1026 2 

  3 26 5.8769 0.4852 2.1077 0.2241 2 

  4 51 4.2647 0.4529 1.3333 0.1962 4 

Total   150     11 
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Table 3.3 provides example stratifications for the GA and GGA that both provide the optimal sample 

size necessary to meet precision constraints. (Ballin and Barcaroli, 2013) indicate that a number of 

partitionings from the total of 4,140 possible partitionings provide the minimum sample size. These range 

in size from 3 to 5 strata. It is seen that the GGA results in fewer, less fragmented design strata. The same 

tendency can be observed in the latter cases. 

 
3.2  Swiss municipality dataset 
 

The swissminucipalities dataset provided by (Barcaroli, 2014) refers to the Swiss municipalities in 2003. 

Each municipality belongs to one of seven regions which are at the NUTS-2 level, i.e., equivalent to 

provinces. Each region contains a number of cantons, which are administrative subdivisions. There are 26 

cantons in Switzerland. The data, which was sourced from the Swiss Federal Statistical Office and is 

included in the sampling and SamplingStrata packages, contains 2,896 observations (each observation refers 

to a Swiss municipality in 2003). They comprise 22 variables, details of which can be examined in 

(Barcaroli, 2014). 

The target estimates are the totals of the population by age class in each Swiss region. In this case, the 

G  target variables will be: 

Y1: number of men and women aged between 0 and 19,  

Y2: number of men and women aged between 20 and 39,  

Y3: number of men and women aged between 40 and 64,  

Y4: number of men and women aged 65 and over.  

 
We consider 6 auxiliary variables, formed using the same k-means clustering method as the iris dataset 

example: 

X1: classes of total population in the municipality. 18 categories, 

X2: classes of wood area in the municipality. 3 categories, 

X3: classes of area under cultivation in the municipality. 3 categories, 

X4: classes of mountain pasture area in the municipality. 3 categories, 

X5: classes of area with buildings in the municipality. 3 categories, 

X6: classes of industrial area in the municipality. 3 categories. 

 
There are 7 regions, which we treat as population domains of design to distinguish them from the design 

strata, replicating the experiment outlined in (Barcaroli, 2014). The number of non-empty atomic strata is 

641 in the population. We set the minimum population size of stratum to be 2, and the maximum number 

of iterations to be 400. The results for Sample Size and Strata after 30 experiments each with 400 iterations 

are summarised in Figure 3.2 below. 
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Figure 3.2 Scatterplot of Results for Strata v Sample size for GA and GGA after 30 experiments. 

 
Figure 3.2 clearly shows that the GGA returns a smaller sample size to the GA for these settings. The 

median for the GGA, 246, is 25% lower than that for the GA, 328. 

 
3.3  2015 American Community Survey Public Use Microdata 
 

The United States has been conducting a decennial census since 1790. In the th20  century censuses were 

split into long and short form versions. A subset of the population was required to answer the longer version 

of the census, with the remainder answering the shorter version. After the 2000 census the longer 

questionnaire became the annual American Community Survey (ACS) (US Census Bureau, 2013). The 2015 

ACS Public Use Microdata Sample (PUMS) file (US Census Bureau, 2016) is a sample of actual responses 

to the ACS representing 1% of the US population. The PUMS file contains 1,496,678 records each of which 

represents a unique housing unit or group quarters. There are 235 variables. The full data dictionary is 

available in (US Census Bureau, 2016). We selected the following to be target variables: 
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1. household income (past 12 months),  

2. property value,  

3. selected monthly owner costs,  

4. fire/hazard/flood insurance (yearly amount), 
 

and the following auxiliary variables: 

1. units in structure,  

2. tenure,  

3. work experience of householder and spouse,  

4. work status of householder or spouse in family households,  

5. house heating fuel,  

6. when structure first built.  
 

The PUMS data for which all the values are present contains 619,747 records. We use the 51 states 

(based on census definitions) as domains. 

In the convergence plots of Figure 3.3, the black line represents the best or lowest sample size for the 

chromosome population in each iteration, whereas the red line represents the mean sample size for the 

chromosome population in each iteration. 

 
 
 

 

 

 

 

 

 

 
 

Figure 3.3 Convergence plots for Sample Size after the 1st experiment for GA and GGA. Note the different 
scales on the vertical axes. 

 
The GA appears to be reducing the sample size steadily but does not appear to have reached a local 

minimum after 400 iterations. The GGA appears to have reached a local or global minimum very quickly. 
 

3.4  Kaggle Data Science for Good challenge Kiva Loans data 
 

The online crowdfunding platform kiva.org provided a dataset of loans issued to people living in poor 

and financially excluded circumstances around the world over a two year period for a Kaggle Data Science 

for Good challenge. The dataset has 671,205 unique records. We selected these target variables: 
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1. term in months,  

2. lender count,  

3. loan amount,  
 

and the following auxiliary variables: 

1. sector,  

2. currency,  

3. activity,  

4. region,  

5. partner id, 
 

to create atomic strata. For these variables we removed any records with missing values. We then proceeded 

to remove any countries with less than 10 records from the sampling frame. This resulted in a sampling 

frame with 614,361 records. The variable country-code defines the 73 design domains in this experiment. 

 
Table 3.4 
Sample size and strata for the Kiva Loans data from the GA and the GGA after 100 iterations 
 

GA GGA Reduction 
Sample size Strata Sample size Strata Sample size strata

78,018 43,030 11,963 1,793 84.67% 95.83% 

 
Table 3.4 shows an 84.67% reduction in sample size and a 95.83% reduction in the number of strata after 

100 iterations. Figure 3.4 shows that for the same starting chromosome population size for Domain 1 of the 

Kiva Loans dataset, the GGA attained a good sample size in less than 100 iterations, but after 10,000 

iterations the GA had not converged and the sample size was still much higher than the GGA.  

 

 

 

 

 

 

 

 

 

 
Figure 3.4 Convergence plots for Sample Size for the 1st Domain for GA (10,000 iterations) and GGA (100 

iterations) in the Kiva Loans dataset experiment. Note the different scales on the vertical and 
horizontal axes. 
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3.5  UN Commodity Trade Statistics data 
 

Kaggle also hosts a copy of the UN Statistical Division Commodity Trade Statistics data. Trade records 

are available from 1962. We took a subset of data for the year 2011 and removed records with missing 

observations. This resulted in a data set with 351,057 records. We selected the following target variable: 

1. trade_usd  
 

which refers to the value of trade in USD (US dollars), and the following auxiliary variables: 

1. commodity,  

2. flow,  

3. category.  

 

The variable commodity is a categorical description of the type of commodity, e.g., Horses, live except 

pure-bred breeding. The variable flow describes whether the commodity was an import, export, re-import 

or re-export. The variable category describes the category of commodity, e.g., silk or fertilisers. The 171 

categories of country or area were selected as domains. 

 
Table 3.5 
Sample size and strata for the UN Commodity Trade Statistics data from the GA and the GGA after 100 
iterations 
 

GA GGA Reduction 
Sample size Strata Sample size Strata Sample size strata

288,638 191,000 84,181 16,555 70.84% 91.33% 

 
3.6  2000 US census data 
 

The Integrated Public Use Microdata Series extract is a 5% sample of the 2000 US census data (Ruggles, 

Genadek, Goeken, Grover and Sobek, 2017). The file contains 6,184,483 records. The US Census Data will 

be very similar to the ACS data as the latter is an annual version of the former. But for this experiment we 

selected different target and auxiliary variable combinations. The single target variable in this test is usually 

a key focus of household surveys: 

1. total household income.  
 

We used the following information as auxiliary variables (note these are variables which are likely 

available in administrative data): 

1. annual property insurance cost,  

2. annual home heating fuel cost,  

3. annual electricity cost,  

4. house value.  
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The house value variable (VALUEH) reports the midpoint of house value intervals (e.g., 5,000 is the 

midpoint of the interval of less than 10,000), so we have treated it as a categorical variable. As with the 

2015 ACS PUMS dataset we have taken a subset for which all values are present. This has resulted in a 

subset with 627,611 records. The domain for this experiment was Census region and division.  

 
Table 3.6 
Sample size and strata for the 2000 US census data by Census region and division from the GA and the GGA 
after 100 iterations 
 

 Sampling frame GA solution GGA solution 

Division Sampling Units Atomic Strata Sample sizes Strata Sample sizes Strata 

New England  116,045 87,084 81,012 52,628 376 58 

Middle Atlantic  183,543 138,470 130,862 86,002 416 75 

East North Central  65,480 58,055 53,075 35,794 327 42 

West North Central  31,408 29,413 26,525 18,248 324 38 

South Atlantic  97,189 83,357 76,716 51,457 440 49 

East South Central  21,631 20,429 18,256 12,500 451 62 

West South Central  22,582 20,919 18,750 12,730 407 39 

Mountain  26,765 25,041 22,161 14,791 351 30 

Pacific  62,968 54,864 50,136 33,653 358 49 

Total  627,611 517,632 477,493 317,803 3,446 442 

 
The results show a sample size of 3,446 for the GGA and a sample size of 477,493 for the GA after 100 

iterations. 

 
4  An improved Bethel implementation 
 

Our GGA was proposed and developed so that it would work with the rest of the functions in 

SamplingStrata. Therefore the rest of the functions in the package remained unchanged. This includes the 

bethel.r function which evaluates the fitness of chromosomes in every iteration and is computationally 

expensive. For instance, for the PUMS dataset the experiment took approximately 30 days for either GA or 

GGA with 100 iterations. 

We searched for performance bottlenecks in bethel.r using the R lineprof package. Our analysis of results 

suggested that the function within bethel.r called chromy appears to take the bulk of computational time. A 

further examination reveals that chromy contains a while loop with a default setting of 200 iterations. 

Furthermore bethel.r itself can be run on each chromosome in any chromosome population on a dataset of 

any functional size (which we have the computation power to process) for any number of iterations. Bigger 

datasets will take longer to process. We expected that performance would be improved by converting the 

bethel.r algorithm into C++ then integrating that into R using the Rcpp package (Eddelbuettel, 2013). 
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Table 4.1 
Performance comparison for the above datasets using the R and Rcpp versions of the Bethel-Chromy algorithm 
 

Dataset  Records Domains Atomic Strata Bethel s BethelRcpp s  Speed-up Factor

iris  150 1 8 2,684.77 143.13 18.76

swissmunicipalities  2,896 7 641 99,916 10,749.51 9.29

American Community Survey 2015  619,747 51 123,007 565,278,500 47,858,200 11.81

Kiva Loans Data  614,361 73 84,897 826,297,710 82,894,480 9.97

UN Commodity Trade Data 2011  351,057 171 350,895 139,749,810 87,555,870 1.6

US Census Data 2000  627,611 9 517,632 2,686,771 1,303,667 2.06

 
Table 4.1 shows the median time taken to run the Bethel algorithm one hundred times for the datasets 

we used to conduct our analysis. Our results confirm that the C++ version of Bethel is faster than the R 

version. The speed up could make a practical difference in the number of iterations that can be run in 

SamplingStrata due to the processing times required for bethel.r. However, performance will vary according 

to the size and complexity of the problem. The speed up is achieved because C++ enables communication 

at a lower level with the computer than R. However, it is also due to the complexity of the analysis conducted 

in each for loop as well as the fact that larger data will restrict the available memory. It should also be noted 

that the C++ version of Bethel was compared with the R version as two stand alone functions. The 

performance of the C++ version of Bethel within the GGA is not compared with that of the R version in the 

GA. This would be part of a larger project to create a C++ version of the SamplingStrata package and 

integrating it into R. 

 
5  Conclusion and further work 
 

We created a GGA as an alternative to the existing SamplingStrata GA in R. We then compared the two 

algorithms using a number of datasets. The GGA compares favourably with the GA at finding the correct 

solution and meeting constraints on smaller datasets, but significantly outperforms the GA on larger datasets 

where the number of iterations was restricted. This is useful for datasets where the number of iterations has 

to be constrained owing to computational burden. We have also reported faster processing times by 

integrating the bethel.r function with C++ using the Rcpp package. 

This work can be developed in several ways. Alternative evaluation techniques to speed up the algorithm 

could be considered. Further research could also be undertaken into other machine learning techniques for 

solving this problem. 

The GGA could be applied to other problems which tackle more general sampling designs with 

modifications required only for the algorithm evaluating the fitness of chromosomes (i.e., the 

Bethel-Chromy algorithm). For example instead of searching for a stratified simple random sample to meet 

precision constraints based on population totals or means, the GGA could consider stratified probability 

proportional to size sampling with an evaluation algorithm that uses more general estimators (e.g., 

regression or ratio estimators) or more general parameters (e.g., a correlation coefficient). 
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The evaluation algorithm might also be modified to look at scenarios in which the population variances 

are not known. In these cases, data from previous censuses, administrative records, or proxy surveys can be 

used to estimate the population variance. However, estimation of the population variance in a large number 

of atomic strata requires more careful research. 

Finally, the groupings of atomic strata by the GGA can be difficult to interpret. For instance, an ordinal 

auxiliary variable taking values 1 to 4 may be unnaturally separated, where the atomic strata corresponding 

to values 1 and 3 are grouped in one design stratum and those with values 2 and 4 are grouped in another 

design stratum. It might be interesting to explore less-than-optimal sample sizes for stratifications that are 

easier to interpret. For instance, one may impose constraints on the admissible groupings. This would require 

research into the formulation of appropriate admissibility constraints and their effective implementation in 

the GGA. 
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