
Survey Methodology

Catalogue no. 12-001-X
ISSN 1492-0921

by Mervyn O’Luing, Steven Prestwich and S. Armagan Tarim

A grouping genetic algorithm for joint
stratification and sample allocation designs

Release date: December 17, 2019

Published by authority of the Minister responsible for Statistics Canada

© Her Majesty the Queen in Right of Canada as represented by the Minister of Industry, 2019

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website,
www.statcan.gc.ca.

You can also contact us by

Email at STATCAN.infostats-infostats.STATCAN@canada.ca

Telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following numbers:

•• Statistical Information Service	 1-800-263-1136
•• National telecommunications device for the hearing impaired	 1-800-363-7629
•• Fax line	 1-514-283-9350

Depository Services Program

•• Inquiries line	 1-800-635-7943
•• Fax line	 1-800-565-7757

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt,
reliable and courteous manner. To this end, Statistics Canada
has developed standards of service that its employees observe.
To obtain a copy of these service standards, please contact
Statistics Canada toll-free at 1-800-263-1136. The service
standards are also published on www.statcan.gc.ca under
“Contact us” > “Standards of service to the public.”

Note of appreciation
Canada owes the success of its statistical system to a
long‑standing partnership between Statistics Canada, the
citizens of Canada, its businesses, governments and other
institutions. Accurate and timely statistical information
could not be produced without their continued co‑operation
and goodwill.

https://www.statcan.gc.ca/eng/reference/licence
https://www150.statcan.gc.ca/n1/pub/12-001-x/2019003/article/00007-eng.htm
https://www.statcan.gc.ca
mailto:STATCAN.infostats-infostats.STATCAN%40canada.ca?subject=
https://www.statcan.gc.ca
https://www.statcan.gc.ca/eng/about/service/standards

Survey Methodology, December 2019 513
Vol. 45, No. 3, pp. 513-531
Statistics Canada, Catalogue No. 12-001-X

1. Mervyn O’Luing and Steven Prestwich, Insight Centre for Data Analytics, Department of Computer Science, University College Cork, Ireland.

E-mail: mervyn.oluing@insight-centre.org and steven.prestwich@insight-centre.org; S. Armagan Tarim, Cork University Business School,
University College Cork, Ireland. E-mail: armagan.tarim@ucc.ie.

A grouping genetic algorithm for joint stratification and
sample allocation designs

Mervyn O’Luing, Steven Prestwich and S. Armagan Tarim1

Abstract

Finding the optimal stratification and sample size in univariate and multivariate sample design is hard when the
population frame is large. There are alternative ways of modelling and solving this problem, and one of the most
natural uses genetic algorithms (GA) combined with the Bethel-Chromy evaluation algorithm. The GA iteratively
searches for the minimum sample size necessary to meet precision constraints in partitionings of atomic strata
created by the Cartesian product of auxiliary variables. We point out a drawback with classical GAs when applied
to the grouping problem, and propose a new GA approach using “grouping” genetic operators instead of
traditional operators. Experiments show a significant improvement in solution quality for similar computational
effort.

Key Words: Grouping genetic algorithm; Optimal stratification; Sample allocation; R software.

1 Introduction

In this paper we address the optimization problem of jointly determining stratification and sample

allocation for univariate and mulitivariate scenarios. To serve this purpose, we refer to (Ballin and Barcaroli,

2013). In principle the optimal stratification (i.e., that which yields the smallest sample size) can be found

by testing all possible partitionings of atomic strata, but the number of possible partitionings grows

exponentially with the number of atomic strata.

An efficient search algorithm is necessary to avoid evaluating each possible partitioning. Genetic

algorithms (GAs) often converge quickly to optimal or near optimal solutions, and are particularly good at

navigating rugged search spaces containing many local minima. The Bethel-Chromy algorithm combines

similar algorithms from (Bethel, 1985, 1989) and (Chromy, 1987) and is suitable for univariate and

mulitivariate cases. It uses lagrangian multipliers to find the minimum sample size that meets precision

constraints for a given stratification. (Ballin and Barcaroli, 2013) combine a GA with this algorithm to

search for the minimum sample size. It is used to evaluate each partitioning created by the GA. A full

description of the methodology and problem statement is found in (Ballin and Barcaroli, 2013). However,

they use a classical GA which is known to be unsuitable for partitioning problems.

In this paper we propose to apply genetic operators to the GA that are better suited to this application. It

is an example of the class of evolutionary algorithms called Grouping Genetic Algorithms (GGAs). The GA

has been updated following this work (Barcaroli, 2019). Section 2 motivates the work and introduces GGAs.

Section 2.3 describes our GGA for the problem. Section 3 compares the original GA with our GGA on

publicly-available test data. Section 4 describes a version of our GGA with enhanced performance, using a

fast C++ implementation of the bethel.r function which we integrated into R using the Rcpp package.

Section 5 concludes the paper.

514 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

2 Classical vs grouping genetic algorithms

In this section we discuss “classical” and “grouping” GAs, and explain why the latter are more

appropriate for our problem.

2.1 Classical genetic algorithms

GAs are a nature-inspired class of optimisation algorithms, modelled on the ability of organisms to solve

the complex problem of adaptation to life on Earth. The variables of an optimisation problem are called

genes and their values alleles. A candidate solution is a list of alleles called a chromosome. A set of

chromosomes is usually called a population, so to avoid confusion with the target population we shall use

chromosome population when referring to GAs. The objective function (which is maximised by convention)

is called the chromosome’s fitness. The search for fit chromosomes (solutions with high objective) uses two

genetic operators: small random changes called mutation, equivalent to small local moves in a hill-climbing

algorithm; and large changes called crossover in which the genes of two parent chromosomes are

recombined. One well-known recombination operator is single-point crossover: choose two parent

chromosomes with alleles

 1 1, , , , ,N Na a b b 

select a random integer i (the crossover point) such that 1 < ,i N and generate two new offspring

chromosomes

 1 1 1 1, , , , , , , , , , .i i N i i Na a b b b b a a    

These might be further subjected to random mutation, in which a few alleles are changed, before placing

them back into the chromosome population. There are a variety of methods for selecting parents and

replacing existing chromosomes. In generational GAs the entire chromosome population is replaced by

offspring, and parents are often selected randomly but with a bias toward fitter chromosomes; while in

steady-state GAs only one offspring is generated in each GA iteration, and usually replaces the least-fit

chromosome in the chromosome population. GAs often give more robust results than search algorithms

based on hill-climbing, because of their use of recombination. They have found many applications since

their introduction in 1975 by John Holland.

The original GA which is represented in the R (R Core Team, 2015) package SamplingStrata (Barcaroli,

2014), is an elitist generational GA in which the atomic strata L are considered to be elements of a set (or

genes) for a standard crossover strategy. In each iteration the best solutions (the elite) are carried over to the

next generation. Each gene represents a variable in the problem. We refer to this as a classical GA because

a classical problem representation and genetic operators are used, as described below.

Dividing atomic strata into disjoint groups is an example of a grouping problem, related to cutting,

packing and partitioning problems. The motivation for our work is that classical GAs are known to perform

Survey Methodology, December 2019 515

Statistics Canada, Catalogue No. 12-001-X

poorly on grouping problems. The reason is that the chromosomal representation of a grouping contains a

great deal of symmetry (or redundancy): permuting the group names yields an equivalent grouping, so each

grouping has multiple representations. Symmetry has a damaging effect on GAs because recombining

similar parent groupings might yield a very different offspring grouping, violating the basic GA principle

that parents should tend to produce offspring with similar fitness. In extreme cases, a classical GA might

perform even worse than a completely random search. We provide two examples to illustrate the problem.

To illustrate the problem with symmetry in our first example the parents represent the same grouping in

different ways. Note that to increase readability, letters A - F are used as alleles instead of integers in the

presentation here. Consider the following two chromosomes:

 groups represented

chromosome A B C D E F
ABCDEF  1  2  3  4  5  6

FEDCBA  6  5  4  3  2  1

which both represent the grouping             1 , 2 , 3 , 4 , 5 , 6 . Now suppose we apply single-point

crossover to obtain two new offspring chromosomes from these parents. Arbitrarily choosing the center of

the chromosomes as the crossover point, we obtain offspring:

 groups represented

chromosome A B C D E F
ABCCBA  1, 6  2, 5  3, 4   

FEDDEF     3, 4  2, 5  1, 6

which both represent the completely unrelated grouping       1, 6 , 2, 5 , 3, 4 : no groups at all are passed

from the parents to the offspring. Hence the offspring and parent fitnesses can be completely unrelated to

each other, which reduces the GA to near-random search. As another example, consider the following two

classical chromosomes:

 groups represented

chromosome A B C D E F
AECFEC  1   3, 6   2, 5  4

DFFDAA  5, 6    1, 4   2, 3

which in turn represent the different groupings         1 , 3, 6 , 2, 5 , 4 and       5, 6 , 1, 4 , 2, 3 . Using

the same crossover strategy we obtain offspring:

516 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

 groups represented

chromosome A B C D E F
AECDAA  1, 5, 6   3  4  2 

DFFFEC    6  1  5  2, 3, 4

representing the groupings         1, 5, 6 , 3 , 4 , 2 and         6 , 1 , 5 , 2, 3, 4 . Note that these offspring

have very little in common with their parents, as the only preserved groups are  1 and  4 .

2.2 Grouping genetic algorithms

The symmetry problem can be tackled by designing more complex genetic representations and operators

(Galinier and Hao, 1999) or by clustering techniques (Pelikan and Goldberg, 2000). The risk of clustering

is that genetic diversity may be lost if the clusters are too tight, leading to search stagnation (Prügel-Bennett,

2004). Instead we follow the former approach by designing a GGA (Falkenauer, 1998), which have been

shown to perform far better than classical GAs on grouping problems.

GGAs are designed specifically to solve grouping problems and have found many applications, including

WiFi network deployment (Agustín-Blas, Salcedo-Sanz, Vidales, Urueta and Portilla-Figueras, 2011),

wireless network design (Brown and Vroblefski, 2004), steel plate cutting (Hung, Sumichrast and Brown,

2003), production plant layout (De Lit, Falkenauer and Delchambre, 2000) and social network analysis

(James, Brown and Ragsdale, 2010). They may use the same heuristics as other GAs (parent selection,

offspring replacement, etc) but they use different genetic encoding and operators: that is, how they map a

problem to chromosomes and how they perform recombination and mutation. We shall illustrate these

differences on the above examples.

GGAs represent a grouping as an ordered list of subsets, omitting empty sets. The parents in the second

example of Section 2.1 might be represented in this way:

              1 , 3, 6 , 2, 5 , 4 5, 6 , 1, 4 , 2, 3 .

GGA mutation is simple: an item is moved from one group to another. However, the GGA recombination

operator is more complicated. Choose a crossing section in each parent, for example    1 , 3, 6 from the
st1 parent and  1, 4 from the nd2 parent. Then inject the st1 crossing section into the nd2 parent at a

random point, and vice-versa:

                    1 , 3, 6 , 1, 4 , 2, 5 , 4 5, 6 , 1, 4 , 1 , 3, 6 , 2, 3 .

Next remove any repeated objects that were already in the receiving parent:

                , 3, 6 , 1, 4 , 2, 5 , 5 , 4 , 1 , 3, 6 , 2 . 

Finally remove any empty sets:

                3, 6 , 1, 4 , 2, 5 5 , 4 , 1 , 3, 6 , 2 .

Survey Methodology, December 2019 517

Statistics Canada, Catalogue No. 12-001-X

These are the offspring. Clearly, both offspring have much in common with both parents, as 5 of the 7 parent

groups survive in the offspring:  1 ,  4 ,  1, 4 ,  2, 5 and  3, 6 . In the first example of Section 2.1 it is

easily verified that both offspring represent the same grouping as the parents, as one would expect. This

property of the GGA injection-based recombination makes it much more likely that offspring have similar

fitness to parents, which in turn helps the GGA to iteratively improve the chromosome population.

It might be noticed that the GGA problem representation still contains symmetry: any grouping still has

multiple representations, obtained by permuting the subsets in the ordered list. But the genetic operators are

almost independent of this ordering so it is almost irrelevant. The only effect of the ordering is to limit the

set of possible injections: in the second example of Section 2.1 we cannot inject a non-existent crossing

section for example such as    1 , 4 from parent 1 because those two groups are not adjacent. This limit

is removed by an additional genetic operator called inversion which selects a section of the chromosome

and reverses it. For example

                    1 , 2 , 3, 6 , 4 , 5 1 , 2 , 5 , 4 , 3, 6 .

This does not change the grouping represented by the chromosome, but reordering the groups in the

chromosome makes all injections possible.

Injection, mutation and inversion are the common operators used in GGAs, but there is no canonical

algorithm. Instead GGAs tend to be tailored for specific applications, and in principle any GA can be adapted

to grouping problems by using grouping operators. In Section 2.3 we design a GGA for our problem.

2.2.1 Note on implementation

For the sake of clarity the descriptions in Section 2.2 omit implementation details, for example the fact

that GGA chromosomes are usually implemented in two parts (or sometimes more). The first part uses a

classical representation as above, while the second part lists the nonempty groups as a permutation. Injection

occurs on the second parts of parent chromosomes and some renaming of groups is necessary.

Typically we decide in advance the number of iterations which we wish to run the algorithm for. This

should be enough to give the GGA a chance to converge on the optimum solution after the mutation and

inversion probabilities have been applied. If, however, the optimum solution is known beforehand the

algorithm can be set to stop at this point.

The number of iterations is usually decided with experience of using the GGA on similar target and

auxiliary variables for similar datasets, or with the existing dataset and target and auxiliary variables. It may

require a number of experiments using the GGA (or GA) before the number of iterations needed to reach

convergence can be estimated. In fact there is a possibility that either the GGA or GA would appear to have

reached convergence after a set number of iterations, but instead have become trapped in a local minimum.

It may be useful to increase the number of iterations and try alternative mutation probabilities in order to be

certain that it has converged on a global minimum.

518 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

This implies a number of trial runs before finally deciding the parameters under which to run the

algorithms. Therefore the fact the GGA has been shown to attain convergence quicker than the GA is likely

to compound the improvement in total processing time. In the experiments described below we keep the

number of iterations small as we want to demonstrate the ability of the GGA to converge on a solution

within that number of iterations.

We use either the mutation settings specified in the examples provided by (Ballin and Barcaroli, 2013)

or the default mutation settings in (Barcaroli, 2014). We apply grouping genetic operators and inversion to

the GA designed by (Ballin and Barcaroli, 2013): it is the grouping genetic operators that make it a GGA.

Thus we compare the performance between the different GA and GGA genetic operators rather than

experiment with parameters such as varying the number of iterations, chromosome population size, mutation

probability, or elitism rate.

The mutation probability can be selected in advance by the user. Typically, the probability of mutation

should be such that it increases the chance of the GGA leaving a local minimum, but not disrupt the natural

evolution of chromosomes from one generation to the next. On the other hand we have fixed the inversion

probability at 0.01, because this is enough to maintain diversity.

The size of the chromosome population can be decided by trial and error. It is advisable to consider the

evaluation time of each chromosome when setting the size: if there are too many chromosomes in the set, it

might take an extra long time to move from one iteration to the next, and we found that the bethel.r algorithm

(i.e., the Bethel-Chromy evaluation algorithm in (Barcaroli, 2014)) takes several seconds to evaluate even

one chromosome for the larger datasets we used in this paper (we discuss this further in Section 4).

For further details on the implementation of GGAs (e.g., elitism rate) we refer the reader to papers such

as (Falkenauer, 1998).

2.3 Application to the joint stratification and sample allocation problem

As mentioned above our GGA is based on the GA described in (Ballin and Barcaroli, 2013) and

represented in R in the SamplingStrata package (Barcaroli, 2014), but with grouping operators and

chromosomes instead of the classical versions. This change is the only novelty of our algorithm (except for

the optimisation described in Section 4) but its effect on performance is large. We inserted the GGA into a

modified version of the function called rbga.r from the genalg R package (Willighagen, 2005). It is designed

to work with the other functions in SamplingStrata, and is applied to the joint stratification and optimum

sample size problem. The GGA is summarised in Figure 2.1.

Following the problem statement in (Ballin and Barcaroli, 2013) we summarise the cost function as

follows:

  1 0
=1

, , = ,
H

H h h
h

C n n C C n 

Survey Methodology, December 2019 519

Statistics Canada, Catalogue No. 12-001-X

where 0C is the fixed cost and hC is the average cost of interviewing one unit in stratum h and hn is the

number of units, or sample, allocated to stratum .h In our analysis 0C is set to 0, and hC is set to 1. The

expectation of the estimator of the th“ ”g population total is:

    ,
=1

ˆ = = 1, , ,
H

g h h g
h

E T N Y g G 

where ,h gY is the mean of the G different target variables Y in each stratum .h The variance of the

estimator is given by:

    
2
,2

=1

ˆVAR = 1 = 1, , .
H

h gh
g h

h h h

Sn
T N g G

N n


 

 
  (2.1)

The upper limit of variance or precision gU is expressed as a coefficient of variation CV for each ˆ :gT

    
 

ˆVAR
ˆCV = .

ˆ
g

g g

g

T
T U

E T
 (2.2)

The problem can be summarised as follows:

 
=1

min

ˆCV .

H

h
h

g g

n n

T U







Grouping Genetic Algorithm (GGA)

 Step 1: Initialization

 (a) Randomly generate a chromosome population of size .PN

 Step 2: Selection part 1

 (a) Rank chromosomes based on sample size.

 (b) Save best E chromosomes for the next generation.

 Step 3: Inversion

 With probability 0.01 invert groups in the PN chromosomes.

 Step 4: Selection part 2

 For each of the remaining PN E chromosomes in the new generation:

 (a) Draw parents 1 and 2 from the aforementioned PN chromosomes (higher ranked chromosomes have a
higher probability of being selected).

 (b) Perform crossover as explained in Section 2.2.

 (c) Remove empty groups.

 (d) Renumber groups.

 Step 5: Mutation

 Mutate integers in PN E chromosomes at a selected probability.

 Step 6: if #iterations<maximum

 (optional: and sample size  desired value) go to step 2.

Figure 2.1 Pseudocode for our GGA.

520 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

3 Comparing the genetic algorithms

We now run a number of comparisons between the original GA and our GGA using publicly available

datasets. Unless otherwise stated, for all the cases presented below, we adopt the following parameter setting

for both genetic algorithms, where 20,PN  0.05,gU  the elitism rate is 0.2, and the mutation

probability is 0.05.

3.1 A comparison for the iris dataset

(Ballin and Barcaroli, 2013) use the iris dataset (Anderson, 1935; Fisher, 1936; R Core Team, 2015) to

demonstrate that the GA they propose can find the optimum stratification i.e., the stratification or grouping

of atomic strata which supplies the minimum sample size. The iris dataset is small and is widely available.

It has 150 observations for 5 variables Sepal Length, Sepal Width, Petal Length, Petal Width and Species.

Species is a categorical variable which has three levels, setosa, versicolor and virginica, each of which

have 50 observations. The remaining four variables are continuous measurements for length and width in

centimetres. (Ballin and Barcaroli, 2013) select Petal Length and Petal Width as variables of interest, i.e.,

target variables. They select Sepal Length and Species as two auxiliary variables.

They convert Sepal Length to a categorical variable using a k-means algorithm (Hartigan and Wong,

1979) to define three clusters (i.e., 4.3 to less than 5.5, 5.5 to less than 6.5, 6.5 to 7.9). The cross product of

the categorical version of Sepal Length with Species creates 9 atomic strata. However, one atomic stratum

is empty because there are no corresponding values in Petal Length and Petal Width. Therefore there are 8

usable atomic strata for this example.

Table 3.1
Reproduction of table of atomic strata for estimating the minimum sample size for the target variables of iris
dataset as found in (Ballin and Barcaroli, 2013), page 379

Stratum N M1 M2 S1 S2 X1 X2 DOMAIN
[4.3; 5.5] (1)*setosa 45 1.466667 0.244444 0.17127 0.106574 [4.3; 5.5] (1) setosa 1
[4.3; 5.5] (1)*versicolor 6 3.583333 1.166667 0.491313 0.205481 [4.3; 5.5] (1) versicolor 1
[4.3; 5.5] (1)*virginica 1 4.5 1.7 0 0 [4.3; 5.5] (1) virginica 1
[5.5; 6.5] (2)*setosa 5 1.42 0.26 0.172047 0.08 [5.5; 6.5] (2) setosa 1
[5.5; 6.5] (2)*versicolor 35 4.268571 1.32 0.367051 0.189435 [5.5; 6.5] (2) versicolor 1
[5.5; 6.5] (2)*virginica 23 5.230435 1.947826 0.318194 0.28873 [5.5; 6.5] (2) virginica 1
[6.5; 7.9] (3)*versicolor 9 4.677778 1.455556 0.193091 0.106574 [6.5; 7.9] (3) versicolor 1
[6.5; 7.9] (3)*virginica 26 5.876923 2.107692 0.494825 0.228579 [6.5; 7.9] (3) virginica 1

The initial atomic strata are reproduced in Table 3.1 where gM refers to the means for the corresponding

gY values in each atomic stratum ;kl gS refers to the corresponding stratum population standard deviations.

There are 4,140 possible partitionings of the 8 atomic strata. Consequently, it is possible to test within a

reasonable amount of time the sample size for the entire search space using the bethel.r function. This has

already been done (Ballin and Barcaroli, 2013) and the minimum sample size is known to be 11.

Survey Methodology, December 2019 521

Statistics Canada, Catalogue No. 12-001-X

This test can be used to determine whether the new GA correctly finds the minimum sample size without

exploring the entire search space. We use 10pN  in this case. For this test the bethel.r function will search

for the minimum sample size, in integers rather than real numbers. The chromosomes will then be ranked

by sample size in ascending order. Accordingly the elite chromosomes are taken into the next iteration and

the remaining chromosomes are generated using the recombination method for each algorithm.

We will compare the number of chromosomes generated to find the optimal stratification in the two

algorithms as well as the number of iterations. Our anticipation is that the GGA should be more efficient,

and thus typically find the optimal solution in fewer iterations than the GA.

The maximum number of iterations is set to 200, because using (Ballin and Barcaroli, 2013) as a guide

we anticipate that both algorithms will find the correct solution in fewer iterations than this. Thus we have

added a piece of code to both algorithms such that they stop when the optimal sample size, 11,n  has been

reached and supply the number of iterations taken to reach that point. This approach is different to that of

(Ballin and Barcaroli, 2013) who report the number of times in 10 experiments the GA finds the correct

solution for a given number of iterations ranging incrementally from 25 to 200. However, we feel this

approach would better demonstrate that the GGA can find the correct solution in less iterations even on the

small iris dataset experiment.

Table 3.2
Iris dataset experiment results for GA and GGA

 (a) GA (b) GGA
Number of Experiment Iterations Chromosomes Experiment Iterations Chromosomes

 1 14 228 1 11 180
 2 8 132 2 7 116
 3 17 276 3 6 100
 4 40 644 4 22 356
 5 31 500 5 9 148
 6 13 212 6 11 180
 7 15 244 7 8 132
 8 9 148 8 7 116
 9 15 244 9 9 148
 10 15 244 10 11 180
 11 14 228 11 3 52
 12 8 132 12 9 148
 13 17 276 13 27 436
 14 40 644 14 12 196
 15 31 500 15 16 260
 16 13 212 16 6 100
 17 15 244 17 20 324
 18 9 148 18 6 100
 19 15 244 19 7 116
 20 15 244 20 6 100
 21 16 260 21 11 180
 22 67 1,076 22 7 116
 23 19 308 23 8 132
 24 9 148 24 5 84
 25 11 180 25 7 116
 26 20 324 26 5 84
 27 32 516 27 6 100
 28 10 164 28 6 100
 29 37 596 29 9 148
 30 9 148 30 6 100

522 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

Table 3.2 provides the number of iterations (and chromosomes generated) taken to find 11n  over 30

experiments for both GAs.

Figure 3.1 Boxplot distribution of number of Chromomomes generated to find 11n  for GA and GGA after
30 experiments.

Figure 3.1 provides the distribution of the number of chromosomes generated to find the optimal solution

for the GA and the GGA. The boxplots indicate that the GGA typically needs to generate fewer

chromosomes to find the optimum solution.

Table 3.3
Example stratifications for the GA and GGA on the iris dataset for 11n 

 Y1 Y2

 Stratum N Mean SD Mean SD Sample Size

GA 1 50 1.462 0.1685 0.246 0.1026 2

 2 50 4.26 0.4562 1.326 0.1911 3

 3 1 4.5 0 1.7 0 1

 4 23 5.2304 0.3112 1.9478 0.2824 3

 5 26 5.8769 0.4852 2.1077 0.2241 2

Total 150 11

GGA 1 23 5.2304 0.3112 1.9478 0.2824 3

 2 50 1.462 0.1685 0.246 0.1026 2

 3 26 5.8769 0.4852 2.1077 0.2241 2

 4 51 4.2647 0.4529 1.3333 0.1962 4

Total 150 11

 GA GGA

 C

h
ro

m
os

om
es

 2
00

60

0

1,

00
0

Survey Methodology, December 2019 523

Statistics Canada, Catalogue No. 12-001-X

Table 3.3 provides example stratifications for the GA and GGA that both provide the optimal sample

size necessary to meet precision constraints. (Ballin and Barcaroli, 2013) indicate that a number of

partitionings from the total of 4,140 possible partitionings provide the minimum sample size. These range

in size from 3 to 5 strata. It is seen that the GGA results in fewer, less fragmented design strata. The same

tendency can be observed in the latter cases.

3.2 Swiss municipality dataset

The swissminucipalities dataset provided by (Barcaroli, 2014) refers to the Swiss municipalities in 2003.

Each municipality belongs to one of seven regions which are at the NUTS-2 level, i.e., equivalent to

provinces. Each region contains a number of cantons, which are administrative subdivisions. There are 26

cantons in Switzerland. The data, which was sourced from the Swiss Federal Statistical Office and is

included in the sampling and SamplingStrata packages, contains 2,896 observations (each observation refers

to a Swiss municipality in 2003). They comprise 22 variables, details of which can be examined in

(Barcaroli, 2014).

The target estimates are the totals of the population by age class in each Swiss region. In this case, the

G target variables will be:

Y1: number of men and women aged between 0 and 19,

Y2: number of men and women aged between 20 and 39,

Y3: number of men and women aged between 40 and 64,

Y4: number of men and women aged 65 and over.

We consider 6 auxiliary variables, formed using the same k-means clustering method as the iris dataset

example:

X1: classes of total population in the municipality. 18 categories,

X2: classes of wood area in the municipality. 3 categories,

X3: classes of area under cultivation in the municipality. 3 categories,

X4: classes of mountain pasture area in the municipality. 3 categories,

X5: classes of area with buildings in the municipality. 3 categories,

X6: classes of industrial area in the municipality. 3 categories.

There are 7 regions, which we treat as population domains of design to distinguish them from the design

strata, replicating the experiment outlined in (Barcaroli, 2014). The number of non-empty atomic strata is

641 in the population. We set the minimum population size of stratum to be 2, and the maximum number

of iterations to be 400. The results for Sample Size and Strata after 30 experiments each with 400 iterations

are summarised in Figure 3.2 below.

524 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

Figure 3.2 Scatterplot of Results for Strata v Sample size for GA and GGA after 30 experiments.

Figure 3.2 clearly shows that the GGA returns a smaller sample size to the GA for these settings. The

median for the GGA, 246, is 25% lower than that for the GA, 328.

3.3 2015 American Community Survey Public Use Microdata

The United States has been conducting a decennial census since 1790. In the th20 century censuses were

split into long and short form versions. A subset of the population was required to answer the longer version

of the census, with the remainder answering the shorter version. After the 2000 census the longer

questionnaire became the annual American Community Survey (ACS) (US Census Bureau, 2013). The 2015

ACS Public Use Microdata Sample (PUMS) file (US Census Bureau, 2016) is a sample of actual responses

to the ACS representing 1% of the US population. The PUMS file contains 1,496,678 records each of which

represents a unique housing unit or group quarters. There are 235 variables. The full data dictionary is

available in (US Census Bureau, 2016). We selected the following to be target variables:

 250 275 300 325

Sample Sizes for each experiment

N
o.

 o
f

St
ra

ta

Group
 GA

 GGA

180

160

140

120

100

Survey Methodology, December 2019 525

Statistics Canada, Catalogue No. 12-001-X

1. household income (past 12 months),

2. property value,

3. selected monthly owner costs,

4. fire/hazard/flood insurance (yearly amount),

and the following auxiliary variables:

1. units in structure,

2. tenure,

3. work experience of householder and spouse,

4. work status of householder or spouse in family households,

5. house heating fuel,

6. when structure first built.

The PUMS data for which all the values are present contains 619,747 records. We use the 51 states

(based on census definitions) as domains.

In the convergence plots of Figure 3.3, the black line represents the best or lowest sample size for the

chromosome population in each iteration, whereas the red line represents the mean sample size for the

chromosome population in each iteration.

Figure 3.3 Convergence plots for Sample Size after the 1st experiment for GA and GGA. Note the different
scales on the vertical axes.

The GA appears to be reducing the sample size steadily but does not appear to have reached a local

minimum after 400 iterations. The GGA appears to have reached a local or global minimum very quickly.

3.4 Kaggle Data Science for Good challenge Kiva Loans data

The online crowdfunding platform kiva.org provided a dataset of loans issued to people living in poor

and financially excluded circumstances around the world over a two year period for a Kaggle Data Science

for Good challenge. The dataset has 671,205 unique records. We selected these target variables:

B
es

t
(b

la
ck

 lo
w

er
 li

n
e)

 a
n

d
 m

ea
n

(r

ed
 u

p
p

er
 li

n
e)

 e
va

lu
at

io
n

 v
al

u
e

 1
,7

00

1,

90
0

 2

,1
00

 2

,3
00

S
am

p
le

 S
iz

e

 0

 1

,0
00

 2
,0

00
 3

,0
00

 4
,0

00

 0 100 200 300 400 0 100 200 300 400
 Iteration (Generation) Iterations

 (a) GA (b) GGA

 Domain # 1 – Sample cost 1642 Domain # 1 – Sample cost 424

S
am

p
le

 S
iz

e

 0

 1

,0
00

 2
,0

00
 3

,0
00

 4
,0

00

526 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

1. term in months,

2. lender count,

3. loan amount,

and the following auxiliary variables:

1. sector,

2. currency,

3. activity,

4. region,

5. partner id,

to create atomic strata. For these variables we removed any records with missing values. We then proceeded

to remove any countries with less than 10 records from the sampling frame. This resulted in a sampling

frame with 614,361 records. The variable country-code defines the 73 design domains in this experiment.

Table 3.4
Sample size and strata for the Kiva Loans data from the GA and the GGA after 100 iterations

GA GGA Reduction
Sample size Strata Sample size Strata Sample size strata

78,018 43,030 11,963 1,793 84.67% 95.83%

Table 3.4 shows an 84.67% reduction in sample size and a 95.83% reduction in the number of strata after

100 iterations. Figure 3.4 shows that for the same starting chromosome population size for Domain 1 of the

Kiva Loans dataset, the GGA attained a good sample size in less than 100 iterations, but after 10,000

iterations the GA had not converged and the sample size was still much higher than the GGA.

Figure 3.4 Convergence plots for Sample Size for the 1st Domain for GA (10,000 iterations) and GGA (100

iterations) in the Kiva Loans dataset experiment. Note the different scales on the vertical and
horizontal axes.

 0 2,000 4,000 6,000 8,000 10,000 0 20 40 60 80 100
 Iteration (Generation) Iterations

 (a) GA (b) GGA

B
es

t
(b

la
ck

 lo
w

er
 li

n
e)

 a
n

d
 m

ea
n

(r

ed
 u

p
p

er
 li

n
e)

 e
va

lu
at

io
n

 v
al

u
e

1,
00

0

 1
,5

00

 2
,0

00

S
am

p
le

 S
iz

e

 0

 1

,0
00

 2
,0

00
 3

,0
00

 4
,0

00

 Domain # 1 – Sample cost 648 Domain # 1 – Sample cost 196

Survey Methodology, December 2019 527

Statistics Canada, Catalogue No. 12-001-X

3.5 UN Commodity Trade Statistics data

Kaggle also hosts a copy of the UN Statistical Division Commodity Trade Statistics data. Trade records

are available from 1962. We took a subset of data for the year 2011 and removed records with missing

observations. This resulted in a data set with 351,057 records. We selected the following target variable:

1. trade_usd

which refers to the value of trade in USD (US dollars), and the following auxiliary variables:

1. commodity,

2. flow,

3. category.

The variable commodity is a categorical description of the type of commodity, e.g., Horses, live except

pure-bred breeding. The variable flow describes whether the commodity was an import, export, re-import

or re-export. The variable category describes the category of commodity, e.g., silk or fertilisers. The 171

categories of country or area were selected as domains.

Table 3.5
Sample size and strata for the UN Commodity Trade Statistics data from the GA and the GGA after 100
iterations

GA GGA Reduction
Sample size Strata Sample size Strata Sample size strata

288,638 191,000 84,181 16,555 70.84% 91.33%

3.6 2000 US census data

The Integrated Public Use Microdata Series extract is a 5% sample of the 2000 US census data (Ruggles,

Genadek, Goeken, Grover and Sobek, 2017). The file contains 6,184,483 records. The US Census Data will

be very similar to the ACS data as the latter is an annual version of the former. But for this experiment we

selected different target and auxiliary variable combinations. The single target variable in this test is usually

a key focus of household surveys:

1. total household income.

We used the following information as auxiliary variables (note these are variables which are likely

available in administrative data):

1. annual property insurance cost,

2. annual home heating fuel cost,

3. annual electricity cost,

4. house value.

528 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

The house value variable (VALUEH) reports the midpoint of house value intervals (e.g., 5,000 is the

midpoint of the interval of less than 10,000), so we have treated it as a categorical variable. As with the

2015 ACS PUMS dataset we have taken a subset for which all values are present. This has resulted in a

subset with 627,611 records. The domain for this experiment was Census region and division.

Table 3.6
Sample size and strata for the 2000 US census data by Census region and division from the GA and the GGA
after 100 iterations

 Sampling frame GA solution GGA solution

Division Sampling Units Atomic Strata Sample sizes Strata Sample sizes Strata

New England 116,045 87,084 81,012 52,628 376 58

Middle Atlantic 183,543 138,470 130,862 86,002 416 75

East North Central 65,480 58,055 53,075 35,794 327 42

West North Central 31,408 29,413 26,525 18,248 324 38

South Atlantic 97,189 83,357 76,716 51,457 440 49

East South Central 21,631 20,429 18,256 12,500 451 62

West South Central 22,582 20,919 18,750 12,730 407 39

Mountain 26,765 25,041 22,161 14,791 351 30

Pacific 62,968 54,864 50,136 33,653 358 49

Total 627,611 517,632 477,493 317,803 3,446 442

The results show a sample size of 3,446 for the GGA and a sample size of 477,493 for the GA after 100

iterations.

4 An improved Bethel implementation

Our GGA was proposed and developed so that it would work with the rest of the functions in

SamplingStrata. Therefore the rest of the functions in the package remained unchanged. This includes the

bethel.r function which evaluates the fitness of chromosomes in every iteration and is computationally

expensive. For instance, for the PUMS dataset the experiment took approximately 30 days for either GA or

GGA with 100 iterations.

We searched for performance bottlenecks in bethel.r using the R lineprof package. Our analysis of results

suggested that the function within bethel.r called chromy appears to take the bulk of computational time. A

further examination reveals that chromy contains a while loop with a default setting of 200 iterations.

Furthermore bethel.r itself can be run on each chromosome in any chromosome population on a dataset of

any functional size (which we have the computation power to process) for any number of iterations. Bigger

datasets will take longer to process. We expected that performance would be improved by converting the

bethel.r algorithm into C++ then integrating that into R using the Rcpp package (Eddelbuettel, 2013).

Survey Methodology, December 2019 529

Statistics Canada, Catalogue No. 12-001-X

Table 4.1
Performance comparison for the above datasets using the R and Rcpp versions of the Bethel-Chromy algorithm

Dataset Records Domains Atomic Strata Bethel s BethelRcpp s Speed-up Factor

iris 150 1 8 2,684.77 143.13 18.76

swissmunicipalities 2,896 7 641 99,916 10,749.51 9.29

American Community Survey 2015 619,747 51 123,007 565,278,500 47,858,200 11.81

Kiva Loans Data 614,361 73 84,897 826,297,710 82,894,480 9.97

UN Commodity Trade Data 2011 351,057 171 350,895 139,749,810 87,555,870 1.6

US Census Data 2000 627,611 9 517,632 2,686,771 1,303,667 2.06

Table 4.1 shows the median time taken to run the Bethel algorithm one hundred times for the datasets

we used to conduct our analysis. Our results confirm that the C++ version of Bethel is faster than the R

version. The speed up could make a practical difference in the number of iterations that can be run in

SamplingStrata due to the processing times required for bethel.r. However, performance will vary according

to the size and complexity of the problem. The speed up is achieved because C++ enables communication

at a lower level with the computer than R. However, it is also due to the complexity of the analysis conducted

in each for loop as well as the fact that larger data will restrict the available memory. It should also be noted

that the C++ version of Bethel was compared with the R version as two stand alone functions. The

performance of the C++ version of Bethel within the GGA is not compared with that of the R version in the

GA. This would be part of a larger project to create a C++ version of the SamplingStrata package and

integrating it into R.

5 Conclusion and further work

We created a GGA as an alternative to the existing SamplingStrata GA in R. We then compared the two

algorithms using a number of datasets. The GGA compares favourably with the GA at finding the correct

solution and meeting constraints on smaller datasets, but significantly outperforms the GA on larger datasets

where the number of iterations was restricted. This is useful for datasets where the number of iterations has

to be constrained owing to computational burden. We have also reported faster processing times by

integrating the bethel.r function with C++ using the Rcpp package.

This work can be developed in several ways. Alternative evaluation techniques to speed up the algorithm

could be considered. Further research could also be undertaken into other machine learning techniques for

solving this problem.

The GGA could be applied to other problems which tackle more general sampling designs with

modifications required only for the algorithm evaluating the fitness of chromosomes (i.e., the

Bethel-Chromy algorithm). For example instead of searching for a stratified simple random sample to meet

precision constraints based on population totals or means, the GGA could consider stratified probability

proportional to size sampling with an evaluation algorithm that uses more general estimators (e.g.,

regression or ratio estimators) or more general parameters (e.g., a correlation coefficient).

530 O’Luing et al.: A grouping genetic algorithm for joint stratification and sample allocation designs

Statistics Canada, Catalogue No. 12-001-X

The evaluation algorithm might also be modified to look at scenarios in which the population variances

are not known. In these cases, data from previous censuses, administrative records, or proxy surveys can be

used to estimate the population variance. However, estimation of the population variance in a large number

of atomic strata requires more careful research.

Finally, the groupings of atomic strata by the GGA can be difficult to interpret. For instance, an ordinal

auxiliary variable taking values 1 to 4 may be unnaturally separated, where the atomic strata corresponding

to values 1 and 3 are grouped in one design stratum and those with values 2 and 4 are grouped in another

design stratum. It might be interesting to explore less-than-optimal sample sizes for stratifications that are

easier to interpret. For instance, one may impose constraints on the admissible groupings. This would require

research into the formulation of appropriate admissibility constraints and their effective implementation in

the GGA.

Acknowledgements

We wish to acknowledge Steven Riesz of the Economic Statistical Methods Division of the U.S. Census

Bureau and Brian J. McElroy of the Economic Reimbursable Survey Division of the U.S Census Bureau,

both of whom answered questions which were of assistance in choosing which U.S. Census Bureau data to

use. We would also like to thank Giulio Barcaroli and Marco Ballin, the co-authors of (Ballin and Barcaroli,

2013), for independently testing our GGA. Last but not least we are extremely grateful to the editorial staff

and reviewers of Survey Methodology for their constructive suggestions in the review process for this journal

submission, especially their suggestions for future work.

References

Agustín-Blas, L.E., Salcedo-Sanz, S., Vidales, P., Urueta, G. and Portilla-Figueras, J.A. (2011). Near
optimal citywide WiFi network deployment using a hybrid grouping genetic algorithm. Expert Systems
with Applications, 38(8), 9543-9556.

Anderson, E. (1935). The irises of the gaspe peninsula. Bulletin of the American Iris society, 59, 2-5.

Ballin, M., and Barcaroli, G. (2013). Joint determination of optimal stratification and sample allocation
using genetic algorithm. Survey Methodology, 39, 2, 369-393. Paper available at
https://www150.statcan.gc.ca/n1/en/pub/12-001-x/2013002/article/11884-eng.pdf.

Barcaroli, G. (2014). SamplingStrata: An R package for the optimization of stratified sampling. Journal of
Statistical Software, 61(4), 1-24.

Barcaroli, G. (2019). Optimization of sampling strata with the SamplingStrata package. https://cran.r-
project.org/web/packages/SamplingStrata/vignettes/SamplingStrata.html, accessed April 29, 2019.

Bethel, J.W. (1985). An optimum allocation algorithm for multivariate surveys. Proceedings of the Survey
Research Section, American Statistical Association, 209-212.
https://www.overleaf.com/project/5ae8997d310d9a2939f40335.

Survey Methodology, December 2019 531

Statistics Canada, Catalogue No. 12-001-X

Bethel, J. (1989). Sample allocation in multivariate surveys. Survey methodology, 15, 1, 47-57. Paper
available at https://www150.statcan.gc.ca/n1/en/pub/12-001-x/1989001/article/14578-eng.pdf.

Brown, E.C., and Vroblefski, M. (2004). A grouping genetic algorithm for the microcell sectorization
problem. Engineering Applications of Artificial Intelligence, 17(6), 589-598.

Chromy, J.R. (1987). Design optimization with multiple objectives. Proceedings of the Survey Research
Section, American Statistical Association.

De Lit, P., Falkenauer, E. and Delchambre, A. (2000). Grouping genetic algorithms: An efficient method to
solve the cell formation problem.

Eddelbuettel, E. (2013). Seamless R and C++ Integration with Rcpp, ISBN 978-1-4614-6867-7
10.1007/978-1-4614-6868-4.

Falkenauer, E. (1998). Genetic Algorithms and Grouping Problems. New York: John Wiley & Sons, Inc.

Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2),
179-188.

Galinier, P., and Hao, J.K. (1999). Hybrid evolutionary algorithms for graph coloring. Journal of
Combinatorial Optimization, 3(4), 379-397.

Hartigan, J.A., and Wong, M.A. (1979). Hybrid evolutionary algorithms for graph coloring.algorithm as
136: A k-means clustering algorithm. Journal of the Royal Statistical Society, Series C (Applied
Statistics), 28(1), 100-108.

Hung, C., Sumichrast, R.T. and Brown, E.C. (2003). CPGEA: A grouping genetic algorithm for material
cutting plan generation. Computers & Industrial Engineering, 44(4), 651-672.

James, T., Brown, E. and Ragsdale, C.T. (2010). Grouping genetic algorithm for the blockmodel problem.
IEEE Transactions on Evolutionary Computation, 14(1), 103-111.

Pelikan, M., and Goldberg, D.E. (2000). Genetic algorithms, clustering, and the breaking of symmetry.
Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature.

Prügel-Bennett, A. (2004). Symmetry breaking in population-based optimization. IEEE Transactions on
Evolutionary Computation, 8(1), 63-79.

R Core Team (2015). R A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org/.

Ruggles, S., Genadek, K., Goeken, R., Grover, J. and Sobek, M. (2017). Integrated public use microdata
series: Version 7.0 [dataset]. Minneapolis: University of minnesota.

U.S. Census Bureau (2013). American Community Survey Information Guide.
http://www.census.gov/content/dam/Census/programs-surveys/acs/about/ACS_Information_Guide.pdf,
accessed February 15, 2017.

U.S. Census Bureau (2016). 2015 ACS PUMS DATA DICTIONARY. http://www2.census.gov/programs-
surveys/acs/tech_docs/pums/data_dict/PUMSDataDict15.pdf, accessed February 15, 2017.

U.S. Census Bureau (2016). 2015 ACS Public Use Microdata Sample (PUMS). Washington, D.C.
https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t#.

Willighagen, E. (2005). Genalg: R based genetic algorithm. R Package Version 1.

