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“Optimal” calibration weights under unit  
nonresponse in survey sampling 

Per Gösta Andersson1 

Abstract 

High nonresponse is a very common problem in sample surveys today. In statistical terms we are worried about 
increased bias and variance of estimators for population quantities such as totals or means. Different methods 
have been suggested in order to compensate for this phenomenon. We can roughly divide them into imputation 
and calibration and it is the latter approach we will focus on here. A wide spectrum of possibilities is included in 
the class of calibration estimators. We explore linear calibration, where we suggest using a nonresponse version 
of the design-based optimal regression estimator. Comparisons are made between this estimator and a GREG 
type estimator. Distance measures play a very important part in the construction of calibration estimators. We 
show that an estimator of the average response propensity (probability) can be included in the “optimal” distance 
measure under nonresponse, which will help to reduce the bias of the resulting estimator. To illustrate empirically 
the theoretically derived results for the suggested estimators, a simulation study has been carried out. The 
population is called KYBOK and consists of clerical municipalities in Sweden, where the variables include 
financial as well as size measurements. The results are encouraging for the “optimal” estimator in combination 
with the estimated average response propensity, where the bias was reduced for most of the Poisson sampling 
cases in the study. 

 
Key Words: Unit nonresponse; Calibration weights; Poisson sampling. 

 
 

1  Introduction 
 

In a survey the response (nonresponse) mechanism for units is in reality unknown. To avoid defining a 

proper probability measure which might not be meaningful or realistic, one usually discusses the 

nonresponse situation in terms of a propensity for a unit to participate. To be able to take into account the 

possible nonresponse effect on estimators, it is however the practice to treat the propensities as probabilities 

to be estimated (e.g., propensity scores). This can be done for individual units, for groups of units or as an 

“average” over the whole response set. 

For example, in Haziza and Lesage (2016) two main approaches are discussed: calibration weighting 

with and without foregoing propensity score weighting, the former case involving model-based estimation. 

The authors warn against potential negative effects on the bias and variance for the resulting estimators 

when not taking into account the propensities. (These two options of weighting are referred to by the authors 

as two-step and one-step procedures, respectively not to be mistaken for the two- and single-step calibrations 

as defined by Särndal and Lundström (2005).) However, in the simulation study by Haziza and Lesage 

(2016) the sampling design plays no role, since there =n N  and the focus is solely on how the auxiliary 

information relates to the study variable and the nonresponse mechanism. 

In this paper we propose to use a nonresponse version of what in the full response case is called the 

(design-based) optimal regression estimator. The underlying distance measure is a quadratic form with a 

more complex structure (see Andersson and Thorburn (2015)) than the one leading to the GREG estimator 
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(see Deville and Särndal (1992)). As it turns out there is also room for refinement in terms of the average 

response propensity (probability) when constructing the distance measure under nonresponse, which leads 

to a modified “optimal” estimator. 

 
1.1  Outline of the paper 
 

Section 2 starts with an introduction to the calibration idea under full response before dealing with the 

nonresponse situation. Three estimators of a population total are mainly considered: the GREG related 

estimator and two versions of the “optimal” estimator. Some theoretical results for the resulting bias follows. 

Section 3 contains a simulation study where simple random sampling and Poisson sampling are used for 

illustration. The Poisson design enables us to construct and investigate a situation where the auxiliary 

information is involved in the design as well as in the nonresponse mechanism. We also illustrate the risks 

of using an incorrect model when estimating individual propensities. We end with concluding remarks in 

Section 4. 

 
1.2  Notation and setup 
 

We will start with a population U  of size N  from which we take a probability sample s  of size sn  

with inclusion probabilities 1 , , .N   Nonresponse means that we only observe the response set r  of 

size .rn  Our aim is to estimate the study variable total = .y kU
t y  We assume access to an auxiliary 

variable vector x  of dimension ,J  where either *=x x  and  *x k k U
 are known (the population level) or 

=x x o  and  x o
k k s

 are known (the sample level) or possibly a mixture of these cases:  *= , .x x x o    

 

2  Calibration estimation 
 
2.1  Calibration estimators under full response 
 

Starting with the full response situation  =r s  and following the procedure as established by Deville 

and Särndal (1992), the calibration estimator is defined as  

 cal
ˆ = ,y ks k

s

t w y   

where the sample dependent weights ksw  are chosen so that  

 = , (the calibration equation)x tks k x
s

w  (2.1) 

while also minimizing the quadratic distance measure  

    0 0 ,w w R w ws s s s
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where  = ,w s ks k sw     0 = 1 =w s k kk s k sd    and R  is diagonal. (Alternative distance measures are 

considered in both Deville and Särndal (1992) and Haziza and Lesage (2016).) 

In other words, given the constraint (2.1) the ksw  should be “as close as possible” to the design weights 

,kd  which is desirable since k ks
d y  is an unbiased estimator of .yt  

The resulting weights are  

    
1

1 1
0

ˆ= .x xw w R x XR X t ts s


      

It turns out that the model assisted homoskedastic GREG estimator ˆ
yrt  (Särndal, Swensson and Wretman 

(1992)) is a calibration estimator for which  

   1

0= ,R w I
ss n


  

where 
snI  is the unit diagonal matrix of size .sn  

Another calibration estimator is the optimal regression estimator opt
ˆ

yt  (see e.g., Rao (1994) and 

Montanari (1998)), for which  

 
1

,

= ,R kl k l

kl k l k l s

  
  





 


 
  

as shown by Andersson and Thorburn (2005). 

Asymptotically, this estimator has (in a design-based sense) minimum variance among linear regression 

type estimators. 

 
2.2  Calibration estimators under nonresponse 
 

In the nonresponse case, a possible calibration estimator is  

 ,kr k
r

w y   

where it should hold that  

 = ,x Xkr k
r

w  (2.2) 

where *= ,X x kU  if the auxiliary information is known up to the population level. Otherwise, 

= ,X x o
k ks

d  the unbiased estimator of .xt  (We can also combine the two types of information in the 

constraint .)X  

For a variety of cases weights fulfilling the requirement (2.2) are presented by e.g., Särndal and 

Lundström (2005). Using the direct approach, where all information is used in one single calibration, we 

get  
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1

= 1 .x x x X xkr k k k k k k k
r r

w d d d
             

   (2.3) 

The resulting estimator will henceforth be denoted cal
ˆ .yt  (Other approaches, including two-step procedures, 

are presented and investigated by e.g., Andersson and Särndal (2016).) 

An evident question to ask is: What is the underlying distance measure generating these weights? Särndal 

and Lundström (2005) do not comment on this particular issue, but according to Lundström and Särndal 

(1999), we should choose “ kw  ‘as close as possible’ to the ”,kd  which does not seem quite adequate under 

nonresponse. Going back to Lundström (1997) we will find that the corresponding distance measure is 

actually  

      1

0 0 0 ,w w w I w w
rr r r n r r

    

where  =w r kr k rw   and  0 = .w r k k rd   

If we have a random mechanism generating the response set r  from the sample s  with probabilities k  

of inclusion, we can view the nonresponse situation as a two-phase design and this is the assumption we 

will make in the following. Then we should minimize the distance between krw  and  1 .k kd   Using 

some modelling k  can be estimated by ˆ ,k  to be put to use for the distance minimization. But in this paper 

we will not go in the direction of model-based inference. In order to reduce the bias effect under nonresponse 

one could instead in the distance measure think of comparing krw  not with ,kd  but with , alt = ,k kd d c  

where c  is a constant larger than 1, aiming to compensate for the “average” nonresponse effect. 

However, Lundström (1997) shows that in many important cases, namely when one can find a vector μ  

for which = 1,μ x k
  for all ,k  the multiplicative increase in , altkd  implies the same resulting calibration 

weights .krw  This follows from the result that if = 1,μ x k
  for all ,k U  we can simplify the expression 

(2.3) of krw  as  

 
1

= .x x x Xkr k k k k k
r

w d d

  

    

Thus, we have an invariance property for the weights. The result holds also when the population is 

partitioned into groups and the initial weights are inflated with a constant within each group. Note that if 

we include a constant, e.g., “1”, as a first component of the auxiliary vector ,x k  we can simply let 

 = 1, 0, , 0μ    to achieve = 1.μ x k
  

With this as a background we propose to use alternative “optimal” weights resulting from the distance 

measure  

    
1

0 0

,

,w w w wkl k l
r r r r

kl k l k l r

  
  





  
 

  

leading to opt
ˆ .yt  ( kl  denotes the inclusion probability for the pair ( , )).k l  
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It is to be observed that as for the full response situation, there are cases for which the “optimal” weights 

are identical to (2.3), as e.g., under simple random sampling. 

Using quotation marks around optimal is deliberate, but under full response optimal has a very clear 

meaning. As mentioned earlier, the optimal regression estimator has asymptotically minimum variance 

among linear regression estimators. Adding nonresponse where the nonresponse mechanism is at least 

partially unknown, makes it difficult to define optimality criteria in a proper way. 

For this “optimal” measure it might be fruitful to replace kd  with , alt ,kd  where we include in , altkd  the 

reciprocal of an estimate of the average response probability = .U kU
N   One simple candidate is  

                                                                     ˆ = ,U r sn n   

thus yielding  , alt = .k k s rd d n n  Another natural choice is  

 ˆ = ,U k k
r s

d d    (2.4) 

since   =ks
E d N  and   = = ,k kr U

E d N    which lead to   .k k Ur s
E d d    The 

resulting modified estimator is denoted by optm
ˆ .yt  (Also observe that ( / ) ( / ) (1/ ) .r s k k kU U

E n n d d   

In the following simulation study we will focus on a sampling design where generally cal opt
ˆ ˆ ,y yt t  

namely Poisson sampling. The independence of drawings simplifies the “optimal” distance measure:  

  
 

 

22
2 =

1 1
k kr k

kr k
r rk k k

w d
w d

d d







     

and minimization yields  

    
1

= 1 1 1 .x x x X xkr k k k k k k k k k
r r

w d d d d d
               

    

For the modified “optimal” estimator kd  is replaced by  alt
ˆ= 1 ,k k Ud d   with ˆ

U  as in (2.4). 

 
2.2.1  Bias for calibration estimators under nonresponse 
 

We can write cal
ˆ

yt  as  

                                          cal ;
ˆˆ = ,B X xy k k U k k

r r

t d y d
  

    (2.5) 

where     1

;
ˆ = .B x x xU k k k k k kr r

d y d


    In order to arrive at an approximate expression for the bias 

of cal
ˆ

yt  and subsequently opt
ˆ

yt  and optm
ˆ ,yt  we follow the derivation in Särndal and Lundström (2005) and 

first note that cal
ˆ

yt  can be rewritten as  

                                           cal ; ; ;
ˆˆ = ,B X x B B X xy k k U k k U U k k

r r r

t d y d d  
         

       

where     1

; = .B x x xU k k k k k kU U
y  
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If we let cal 1 2
ˆ = ,y yt t A A   where  1 ;= B X xk k y U k kr r

A d y t d     and 2 =A  

   ; ;
ˆ ,B B X xU U k kr

d     it can further be shown that  

 1 ;= ,B x xo o o
k k k U k k k

r U s U

A d e e d  
   

       

where ;= B xk k U ke y   and   1

; = .B x x xo o o o
U k k k k k kU U

y  


   

Then  

      cal 1
ˆ = = 1 ,y y k k k k k

U U U

E t t E A e e e            

since it can be argued that ;B̂U   is a consistent estimator of ;BU   and therefore  2 0.E A   

The approximation for the bias of cal
ˆ

yt  is called the nearbias:  

    cal
ˆnearbias = 1 .y k k

U

t e    

The nearbias of cal
ˆ

yt  is zero if = 1,k  for all k U  and/or ;= ,B xk U ky   for all .k U  

Then, if we consider opt
ˆ ,yt  we have that  

                                         opt ;
ˆˆ = ,X x Cy k k k k U

r r

t d y d 
  

    (2.6) 

where  

                  

1

;
ˆ = .

x x x
C kl k l k l kl k l k l

U
k r l r k r l rkl k l kl k l

y


     
     



   

     
     

  
    

Since opt
ˆ

yt  can be written as (2.6), which is of the same form as for cal
ˆ

yt  in (2.5), we will again arrive at 

the nearbias expression  

    opt
ˆnearbias = 1 ,y k k

U

t e   (2.7) 

where ;= C xk k U ke y   and with kl  denoting the response probability for the pair  , :k l  

    
1

; = .
x x x

C k l k l
U kl kl k l kl kl k l

k U l U k U l Uk l k l

y
        

   



   

    
      

  
    

If we use the alternative weighting    , alt
ˆ= 1 = ,k k k k ks r

d d d d d     we get that  

 nearbias  optm , alt
ˆ = = 1 ,k k

y k k k k k k
r U U U UU U

t E d e e e e e    

 
 

          
       

where   1 = 0,k UU
   to be compared with (2.7), where    1 = 1 .k UU

N    

Unless = 1,μ x k
  for all ,k U  an equivalent expression can be obtained for cal

ˆ .yt  On the other hand, 

if the restriction = 1,μ x k
  for all k U  does hold, it can be shown (Särndal and Lundström (2005)) that  
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  cal
ˆnearbias = ,y k

U

t e   

which holds independently of the sampling design and which is a result completely in line with the 

aforementioned invariance property of the calibration weights. 

 
3  A simulation study 
 

Properties of the estimators were studied by means of a Monte Carlo simulation. We used an authentic 

population called KYBOK, which consists of = 832N  clerical municipalities in Sweden in 1992. (This 

population was also used for simulation purposes in Särndal and Lundström (2005) and Andersson and 

Särndal (2016).) 

The study variable ky  is “Expenditure on administration and maintenance” ( = 1,023,983).yt  The 

population is divided into four groups with respect to size, from the smallest to the largest. The group sizes 

are 1 = 218,N 2 = 272,N 3 = 290N  and 4 = 52.N  The moon vector is  1 4= , , ,x o o o
k k kx x   where 

= 1o
ikx  if the unit k  belongs to population group i  and otherwise 0, = 1, , 4.i   The quantitative star 

variable *
kx  is the square root of “Revenue advances”, which is highly positively correlated with .ky  

The sample size/expected sample size was 300 and we used the exponential response probability  

  *= 1 exp , ,k kc x k U      (3.1) 

where c  is chosen according to the desired average response probability; in this study varying between 0.60 

and 0.86 (the latter value being the chosen response probability in e.g., Särndal and Lundström (2005)). 

Two sampling designs have been considered separately: simple random sampling and Poisson sampling. In 

the latter case * .k kx   For each combination of design, sample size/expected sample size and average 

response probability, 10,000 samples were generated. For each such sample ,s  a response set r  was created 

by performing independent Bernoulli trials with probability k  of success, .k s  

The estimators of main interest are cal
ˆ ,yt opt

ˆ
yt  and optm

ˆ ,yt  but in this simulation study we will also include 

an example of parametric propensity modelling based on cal
ˆ .yt  A simple choice is the logistic (logit) model  

 
 
 

exp
= ,

1 exp

x B

x B
k




 (3.2) 

where we let  *= 1 .x x  For each sample with its observed nonresponse maximum likelihood estimation 

was used to obtain ˆ ,B  yielding estimates  ˆ .
k r




 To obtain cal logit
ˆ

yt  the design weights kd  are then replaced 

by  ˆ1k kd   before calibration. The logit model (3.2) is misspecified since the true response probability is 

determined by (3.1). 

An arbitrary estimator ˆ
yt  is assessed by the empirical (simulation estimated) bias  ˆ ,B  variance  V̂  

and mean squared error  MSE :  
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=1

1ˆ ˆ ˆ ˆ= =
K

y y yj y
j

B E t t t t
K

    

                                                              2

=1

1ˆ ˆˆ ˆ=
K

yj y
j

V t E t
K

   

                                                      2ˆ ˆMSE = ,B V   

where = 10,000.K  

Observe that expressions such as “the bias has increased” should be interpreted in the following as an 

increase of the bias in absolute value. 
 

3.1  Results 
 

As a benchmark for the study where auxiliary information is not used at the design stage, let us first 

consider the results for simple random sampling in Table 3.1. This is a case where cal opt
ˆ ˆ= .y yt t  (Actually, 

to get equality the “star” information is  * *= 1,x k kx
  for cal

ˆ .)yt  As will hold throughout this study the bias 

of cal logit
ˆ
yt  is considerably larger than the bias of cal

ˆ ,yt  which is a natural effect from the construction of 

cal logit
ˆ
yt  based on a misspecified nonresponse model. Furthermore, of these two estimators cal logit

ˆ
yt  has 

always the largest variance. 

Looking instead at the results in Table 3.2 for Poisson sampling, we can first observe that for cal
ˆ
yt  both 

the bias and the variance are larger than under simple random sampling. opt
ˆ ,yt  on the other hand, has highly 

reduced bias under Poisson sampling compared with simple random sampling, whereas there is a slight 

increase in the variance. Then, turning to the proposed modified estimator optm
ˆ
yt  we observe a further 

reduction in bias, except for = 0.86.U  Actually, the bias has a monotonic behaviour and changes sign 

from positive to negative for 0.64.U   However, compared with opt
ˆ
yt  the variance of optm

ˆ
yt  is increased 

due to the inclusion of ˆ
U  in (2.4), thus leading to a trade-off between the bias and the variance. We also 

note that of these two estimators optm
ˆ
yt  displays the largest MSE values, since the dominating part of the 

MSE is the variance for these low levels of bias. 
 

Table 3.1 
Empirical bias ˆ( ),B  variance ˆ( )V  and mean squared error (MSE)  for cal

ˆ
yt  (Cal), cal logit

ˆ
yt  (Cal logit) and opt

ˆ
yt  

(Opt) under simple random sampling ( = 300)n  with average response probabilities 0.86, 0.70, 0.65 and 0.60 
 

                                                       Simple random sampling (Cal = Opt) 

 4ˆ *10B   U  0.86 0.70 0.65 0.60 

Cal -2.44 -4.00 -4.47 -4.89 

Cal logit 4.81 19.4 26.4 35.5 

 8ˆ *10V   U  0.86 0.70 0.65 0.60 

Cal 8.40 9.59 10.2 11.3 

Cal logit 10.7 10.9 13.2 16.1 
  9MSE *10  U  0.86 0.70 0.65 0.60 

Cal 1.44 2.57 3.01 3.52 

Cal logit 3.38 38.9 71.9 127 
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Table 3.2 
Empirical bias ˆ( ),B  variance ˆ( )V  and mean squared error (MSE)  for cal

ˆ
yt  (Cal), cal logit

ˆ
yt  (Cal logit), opt

ˆ
yt  

(Opt) and optm
ˆ

yt  (Optm) under Poisson sampling ( ( ) = 300)E n  with average response probabilities 0.86, 0.70, 
0.65 and 0.60 
 

                                 Poisson sampling 

 4ˆ *10B   U    0.86   0.70   0.65   0.60  

Cal   -2.88   -4.71   -5.17   -5.69  

Cal logit   -12.1   -27.5   -32.9   -38.8  

Opt   -0.0732   -0.329   -0.516   -0.810  

Optm   0.690   0.274   0.0536   -0.277  

 9ˆ *10V   U    0.86   0.70   0.65   0.60  

Cal   4.46   5.25   5.56   5.81  

Cal logit   5.17   6.60   7.17   7.57 

Opt   1.39   1.63   1.75   1.84  

Optm   2.05   2.89   3.22   3.51  
  9MSE *10  U    0.86   0.70   0.65   0.60  

Cal   5.29   7.47   8.23   9.05 

Cal logit   19.8   82.2   115   127  

Opt   1.39   1.64   1.78   1.91  

Optm   2.10   2.90   3.22   3.52 

 

4  Concluding remarks 
 

The family of linear calibration techniques in survey sampling contains a variety of alternative 

weightings under full response, including GREG estimators and the optimal regression estimator. The 

nonresponse situation offers still more options and challenges and we have studied the “optimal” estimator 

while also taking into account average response propensities (probabilities). The approach has been design-

based since the modified “optimal” estimator can be motivated by asymptotic argumentation and we have 

furthermore not used any modelling for the response propensities. The results are encouraging, especially 

concerning reduction of the bias for the suggested estimator. Further work will include the construction of 

a variance estimator, which should be valid conditionally on the size of the response set. 
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