Estimation of level and change for unemployment using structural time series models
Section 4. Time series small area estimation

The initial monthly domain estimates for the separate waves, accompanied by variance and covariance estimates, are the input for the time series models. In the next step STM models are applied to smooth the initial estimates and correct for RGB. The estimated models are used to make predictions for provincial unemployment fractions, provincial unemployment trends, and month-to-month changes in the trends. In Subsection 4.1 the STMs are defined and subsequently expressed as state space models fitted in a frequentist framework. Subsection 4.2 explains how these STMs can be expressed as time series multilevel models fitted in an hierarchical Bayesian framework.

4.1  State space model

This section develops a structural time series model for the monthly data at provincial level for twelve provinces simultaneously to take advantage of temporal and cross-sectional sample information. Let Y ¯ ^ i t = ( Y ¯ ^ i t 1 , , Y ¯ ^ i t 5 ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaWgaaWcbaGaamyAaiaadshaaeqaaOGaaGypamaabmaabaGa bmywayaaryaajaWaaSbaaSqaaiaadMgacaWG0bGaaGymaaqabaGcca aISaGaaGjbVlablAciljaaiYcacaaMe8UabmywayaaryaajaWaaSba aSqaaiaadMgacaWG0bGaaGynaaqabaaakiaawIcacaGLPaaadaahaa Wcbeqaaiaadshaaaaaaa@4982@ denote the five-dimensional vector containing the survey regression estimates Y ¯ ^ i t p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaWgaaWcbaGaamyAaiaadshacaWGWbaabeaaaaa@3991@ defined by (3.1) in period t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@367D@ and domain i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai Olaaaa@3724@ This vector can be modeled with the folowing structural time series model (Pfeffermann, 1991; van den Brakel and Krieg, 2009, 2015):

Y ¯ ^ i t = ι 5 θ i t + λ i t + e i t , ( 4.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaWgaaWcbaGaamyAaiaadshaaeqaaOGaaGypaiabeM7aPnaa BaaaleaacaaI1aaabeaakiabeI7aXnaaBaaaleaacaWGPbGaamiDaa qabaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaamyAaiaadshaaeqaaOGa ey4kaSIaamyzamaaBaaaleaacaWGPbGaamiDaaqabaGccaaISaGaaG zbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaI XaGaaiykaaaa@547F@

where ι 5 = ( 1, 1, 1, 1, 1 ) t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH5oqAda WgaaWcbaGaaGynaaqabaGccaaI9aWaaeWaaeaacaaIXaGaaGilaiaa ysW7caaIXaGaaGilaiaaysW7caaIXaGaaGilaiaaysW7caaIXaGaaG ilaiaaysW7caaIXaaacaGLOaGaayzkaaWaaWbaaSqabeaacaWG0baa aOGaaiilaaaa@490B@ θ i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda WgaaWcbaGaamyAaiaadshaaeqaaaaa@394D@ a scalar denoting the true population parameter for period t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG0baaaa@367D@ in domain i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai ilaaaa@3722@ λ i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaamyAaiaadshaaeqaaaaa@394B@ a five-dimensional vector that models the RGB and e i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgacaWG0baabeaaaaa@3881@ a five-dimensional vector with sampling errors. The population parameter θ i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda WgaaWcbaGaamyAaiaadshaaeqaaaaa@394D@ in (4.1) is modeled as

θ i t = L i t + S i t + ϵ i t , ( 4.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda WgaaWcbaGaamyAaiaadshaaeqaaOGaaGypaiaadYeadaWgaaWcbaGa amyAaiaadshaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGPbGaam iDaaqabaGccqGHRaWktuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgi p5wzaGqbaiab=v=aYpaaBaaaleaacaWGPbGaamiDaaqabaGccaaISa GaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGinaiaac6ca caaIYaGaaiykaaaa@5BDB@

where L i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaS baaSqaaiaadMgacaWG0baabeaaaaa@3868@ denotes a stochastic trend model to capture low frequency variation (trend plus business cycle), S i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGtbWaaS baaSqaaiaadMgacaWG0baabeaaaaa@386F@ a stochastic seasonal component to model monthly fluctuations and ϵ i t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=v=aYpaaBaaaleaa caWGPbGaamiDaaqabaaaaa@4390@ a white noise for the unexplained variation in θ i t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda WgaaWcbaGaamyAaiaadshaaeqaaOGaaiOlaaaa@3A09@ For the stochastic trend component, the so-called smooth trend model is used, which is defined by the following set of equations:

L i t = L i t 1 + R i t 1 , R i t = R i t 1 + η R , i t , η R , i t ind N ( 0, σ R i 2 ) . ( 4.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaS baaSqaaiaadMgacaWG0baabeaakiaai2dacaWGmbWaaSbaaSqaaiaa dMgacaWG0bGaeyOeI0IaaGymaaqabaGccqGHRaWkcaWGsbWaaSbaaS qaaiaadMgacaWG0bGaeyOeI0IaaGymaaqabaGccaaISaGaaGjbVlaa ykW7caWGsbWaaSbaaSqaaiaadMgacaWG0baabeaakiaai2dacaWGsb WaaSbaaSqaaiaadMgacaWG0bGaeyOeI0IaaGymaaqabaGccqGHRaWk cqaH3oaAdaWgaaWcbaGaamOuaiaaiYcacaaMc8UaamyAaiaadshaae qaaOGaaGilaiaaysW7caaMc8Uaeq4TdG2aaSbaaSqaaiaadkfacaaI SaGaaGPaVlaadMgacaWG0baabeaakiaaysW7caaMc8+aaybyaeqale qabaGaaeyAaiaab6gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfaqc LbwacqWF8iIoaaGccaaMe8UaaGPaVpXvP5wqonvsaeHbmv3yPrwyGm uySXwANjxyWHwEaGGbaiab+5eaonaabmaabaGaaGimaiaaiYcacaaM e8Uaeq4Wdm3aa0baaSqaaiaadkfacaWGPbaabaGaaGOmaaaaaOGaay jkaiaawMcaaiaai6cacaaMf8UaaGzbVlaaywW7caaMf8Uaaiikaiaa isdacaGGUaGaaG4maiaacMcaaaa@8FFD@

For the stochastic seasonal component the trigonometric form is used, see Boonstra and van den Brakel (2016) for details. The white noise in (4.2) is defined as ϵ i t ind N ( 0, σ ϵ i 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=v=aYpaaBaaaleaa caWGPbGaamiDaaqabaGccaaMe8+aaybyaeqaleqabaGaaeyAaiaab6 gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacgaqcLbwacqGF8iIoaaGc caaMe8+exLMBb50ujbqehWuDJLgzHbYqHXgBPDMCHbhA5bachaGae0 Nta40aaeWaaeaacaaIWaGaaGilaiaaysW7cqaHdpWCdaqhaaWcbaGa e8x9di=aaSbaaWqaaiaadMgaaeqaaaWcbaGaaGOmaaaaaOGaayjkai aawMcaaiaac6caaaa@66AB@

The RGB between the series of the survey regression estimates, is modeled in (4.1) with λ i t = ( λ i t 1 , λ i t 2 , λ i t 3 , λ i t 4 , λ i t 5 ) t . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaamyAaiaadshaaeqaaOGaaGypamaabmaabaGaeq4UdW2a aSbaaSqaaiaadMgacaWG0bGaaGymaaqabaGccaaISaGaaGjbVlabeU 7aSnaaBaaaleaacaWGPbGaamiDaiaaikdaaeqaaOGaaGilaiaaysW7 cqaH7oaBdaWgaaWcbaGaamyAaiaadshacaaIZaaabeaakiaaiYcaca aMe8Uaeq4UdW2aaSbaaSqaaiaadMgacaWG0bGaaGinaaqabaGccaaI SaGaaGjbVlabeU7aSnaaBaaaleaacaWGPbGaamiDaiaaiwdaaeqaaa GccaGLOaGaayzkaaWaaWbaaSqabeaacaWG0baaaOGaaiOlaaaa@5D59@ The model is identified by taking λ i t 1 = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaamyAaiaadshacaaIXaaabeaakiaai2dacaaIWaGaaiOl aaaa@3C43@ This implies that the relative bias in the follow-up waves with respect to the first wave is estimated and it assumes that the survey regression estimates of the first wave are the most reliable approximations for θ i t , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH4oqCda WgaaWcbaGaamyAaiaadshaaeqaaOGaaiilaaaa@3A07@ see van den Brakel and Krieg (2009) for a motivation. The remaining components model the systematic difference between wave p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@3679@ with respect to the first wave and are modeled as random walks to allow for time dependent patterns in the RGB,

λ i t p = λ i t 1 ; p + η λ , i t p , η λ , i t p ind N ( 0, σ λ i 2 ) , p = 2, 3, 4, 5. ( 4.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaamyAaiaadshacaWGWbaabeaakiaai2dacqaH7oaBdaWg aaWcbaGaamyAaiaadshacqGHsislcaaIXaGaaG4oaiaadchaaeqaaO Gaey4kaSIaeq4TdG2aaSbaaSqaaiabeU7aSjaaiYcacaaMc8UaamyA aiaadshacaWGWbaabeaakiaaiYcacaaMe8UaaGjbVlabeE7aOnaaBa aaleaacqaH7oaBcaaISaGaaGPaVlaadMgacaWG0bGaamiCaaqabaGc caaMe8UaaGPaVpaawagabeWcbeqaaiaabMgacaqGUbGaaeizaaqaae bbfv3ySLgzGueE0jxyaGqbaKqzGfGae8hpIOdaaOGaaGjbVlaaykW7 tCvAUfKttLearyat1nwAKfgidfgBSL2zYfgCOLhaiyaacqGFobGtda qadaqaaiaaicdacaaISaGaaGjbVlabeo8aZnaaDaaaleaacqaH7oaB daWgaaadbaGaamyAaaqabaaaleaacaaIYaaaaaGccaGLOaGaayzkaa GaaGilaiaaysW7caaMe8UaamiCaiaai2dacaaIYaGaaGilaiaaysW7 caaIZaGaaGilaiaaysW7caaI0aGaaGilaiaaysW7caaI1aGaaGOlai aaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGa aGinaiaacMcaaaa@9864@

Finally, a time series model for the survey errors is developed. Let e i t = ( e i t 1 , e i t 2 , e i t 3 , e i t 4 , e i t 5 ) t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgacaWG0baabeaakiaai2dadaqadaqaaiaadwgadaWg aaWcbaGaamyAaiaadshacaaIXaaabeaakiaaiYcacaaMe8Uaamyzam aaBaaaleaacaWGPbGaamiDaiaaikdaaeqaaOGaaGilaiaaysW7caWG LbWaaSbaaSqaaiaadMgacaWG0bGaaG4maaqabaGccaaISaGaaGjbVl aadwgadaWgaaWcbaGaamyAaiaadshacaaI0aaabeaakiaaiYcacaaM e8UaamyzamaaBaaaleaacaWGPbGaamiDaiaaiwdaaeqaaaGccaGLOa GaayzkaaWaaWbaaSqabeaacaWG0baaaaaa@57E1@ denote the five-dimensional vector containing the survey errors of the five waves. The variance estimates of the survey regression estimates are used as prior information in the time series model to account for heteroscedasticity due to varying sample sizes over time using the following survey error model:

e i t p = v ( Y ¯ ^ i t p ) e ˜ i t p , ( 4.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbWaaS baaSqaaiaadMgacaWG0bGaamiCaaqabaGccaaI9aWaaOaaaeaacaWG 2bWaaeWaaeaaceWGzbGbaeHbaKaadaWgaaWcbaGaamyAaiaadshaca WGWbaabeaaaOGaayjkaiaawMcaaaWcbeaakiaaysW7ceWGLbGbaGaa daWgaaWcbaGaamyAaiaadshacaWGWbaabeaakiaaiYcacaaMf8UaaG zbVlaaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaiwdacaGG Paaaaa@52A2@

and v ( Y ¯ ^ i t p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaaceWGzbGbaeHbaKaadaWgaaWcbaGaamyAaiaadshacaWGWbaa beaaaOGaayjkaiaawMcaaaaa@3C1F@ defined by (3.2). Since the first wave is observed for the first time there is no autocorrelation with samples observed in the past. To model the autocorrelation between survey errors of the follow-up waves, appropriate AR models for e ˜ i t p , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGLbGbaG aadaWgaaWcbaGaamyAaiaadshacaWGWbaabeaakiaacYcaaaa@3A3F@ are derived by applying the Yule-Walker equations to the correlation coefficients

n i t 1 p 1 t 2 p 2 n i t 1 p 1 n i t 2 p 2 ρ ^ t 1 p 1 t 2 p 2 , ( 4.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcaaqaai aad6gadaWgaaWcbaGaamyAaiaadshadaWgaaadbaGaaGymaaqabaWc caWGWbWaaSbaaWqaaiaaigdaaeqaaSGaamiDamaaBaaameaacaaIYa aabeaaliaadchadaWgaaadbaGaaGOmaaqabaaaleqaaaGcbaWaaOaa aeaacaWGUbWaaSbaaSqaaiaadMgacaWG0bWaaSbaaWqaaiaaigdaae qaaSGaamiCamaaBaaameaacaaIXaaabeaaaSqabaGccaWGUbWaaSba aSqaaiaadMgacaWG0bWaaSbaaWqaaiaaikdaaeqaaSGaamiCamaaBa aameaacaaIYaaabeaaaSqabaaabeaaaaGccuaHbpGCgaqcamaaBaaa leaacaWG0bWaaSbaaWqaaiaaigdaaeqaaSGaamiCamaaBaaameaaca aIXaaabeaaliaadshadaWgaaadbaGaaGOmaaqabaWccaWGWbWaaSba aWqaaiaaikdaaeqaaaWcbeaakiaaiYcacaaMf8UaaGzbVlaaywW7ca aMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaiAdacaGGPaaaaa@60F1@

which are derived from the micro data as described in Section 3. Based on this analysis an AR(1) model is assumed for wave 2 through 5 where the autocorrelation coefficients depend on wave and month. These considerations result in the following model for the survey errors:

e ˜ i t 1 = ν i t 1 , ν i t 1 ind N ( 0, σ ν i 1 2 ) , e ˜ i t p = ϱ i t ( p 1 ) p e ˜ i ( t 3 ) ( p 1 ) + ν i t p , ν i t p ind N ( 0, σ ν i p 2 ) , p = 2, , 5, ( 4.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiqadwgagaacamaaBaaaleaacaWGPbGaamiDaiaaigdaaeqaaaGc baGaeyypa0JaeqyVd42aaSbaaSqaaiaadMgacaWG0bGaaGymaaqaba GccaaISaGaaGjbVlaaysW7cqaH9oGBdaWgaaWcbaGaamyAaiaadsha caaIXaaabeaakiaaysW7daGfGbqabSqabeaacaqGPbGaaeOBaiaabs gaaeaarqqr1ngBPrgifHhDYfgaiuaajugybiab=XJi6aaakiaaysW7 tCvAUfKttLearyat1nwAKfgidfgBSL2zYfgCOLhaiyaacqGFobGtda qadaqaaiaaicdacaaISaGaaGjbVlabeo8aZnaaDaaaleaacqaH9oGB daWgaaadbaGaamyAaiaaigdaaeqaaaWcbaGaaGOmaaaaaOGaayjkai aawMcaaiaaiYcaaeaaceWGLbGbaGaadaWgaaWcbaGaamyAaiaadsha caWGWbaabeaaaOqaaiabg2da9mrr1ngBPrwtHrhAXaqehuuDJXwAKb stHrhAG8KBLbachaGae0x8de=aaSbaaSqaaiaadMgacaWG0bWaaeWa aeaacaWGWbGaeyOeI0IaaGymaaGaayjkaiaawMcaaiaadchaaeqaaO GabmyzayaaiaWaaSbaaSqaaiaadMgadaqadaqaaiaadshacqGHsisl caaIZaaacaGLOaGaayzkaaWaaeWaaeaacaWGWbGaeyOeI0IaaGymaa GaayjkaiaawMcaaaqabaGccqGHRaWkcqaH9oGBdaWgaaWcbaGaamyA aiaadshacaWGWbaabeaakiaaiYcacaaMe8UaaGPaVlabe27aUnaaBa aaleaacaWGPbGaamiDaiaadchaaeqaaOGaaGjbVpaawagabeWcbeqa aiaabMgacaqGUbGaaeizaaqaaKqzGfGae8hpIOdaaOGaaGjbVlab+5 eaonaabmaabaGaaGimaiaaiYcacaaMe8Uaeq4Wdm3aa0baaSqaaiab e27aUnaaBaaameaacaWGPbGaamiCaaqabaaaleaacaaIYaaaaaGcca GLOaGaayzkaaGaaGilaiaaysW7caaMe8UaamiCaiaai2dacaaIYaGa aGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaaiwdacaaISaGaaGzbVl aaywW7caaMf8UaaGzbVlaacIcacaaI0aGaaiOlaiaaiEdacaGGPaaa aaaa@C737@

with ϱ i t ( p 1 ) p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaatuuDJXwAK1 uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGqbaiab=f=aXpaaBaaaleaa caWGPbGaamiDamaabmaabaGaamiCaiabgkHiTiaaigdaaiaawIcaca GLPaaacaWGWbaabeaaaaa@48A6@ the time-dependent partial autocorrelation coefficients between wave p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbaaaa@3679@ and p 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaey OeI0IaaGymaaaa@3821@ derived from (4.6). As a result, Var ( e i t 1 ) = v ( Y ¯ ^ i t 1 ) σ ν i 1 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae yyaiaabkhadaqadaqaaiaadwgadaWgaaWcbaGaamyAaiaadshacaaI XaaabeaaaOGaayjkaiaawMcaaiaai2dacaWG2bWaaeWaaeaaceWGzb GbaeHbaKaadaWgaaWcbaGaamyAaiaadshacaaIXaaabeaaaOGaayjk aiaawMcaaiabeo8aZnaaDaaaleaacqaH9oGBdaWgaaadbaGaamyAai aaigdaaeqaaaWcbaGaaGOmaaaakiaacYcaaaa@4BA8@ and Var ( e i t p ) = v ( Y ¯ ^ i t p ) σ ν i p 2 / ( 1 ϱ i t ( p 1 ) p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaqGwbGaae yyaiaabkhadaqadaqaaiaadwgadaWgaaWcbaGaamyAaiaadshacaWG WbaabeaaaOGaayjkaiaawMcaaiaai2dadaWcgaqaaiaadAhadaqada qaaiqadMfagaqegaqcamaaBaaaleaacaWGPbGaamiDaiaadchaaeqa aaGccaGLOaGaayzkaaGaeq4Wdm3aa0baaSqaaiabe27aUnaaBaaame aacaWGPbGaamiCaaqabaaaleaacaaIYaaaaaGcbaWaaeWaaeaacaaI XaGaeyOeI0Yefv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiu aacqWFXpq8daqhaaWcbaGaamyAaiaadshadaqadaqaaiaadchacqGH sislcaaIXaaacaGLOaGaayzkaaGaamiCaaqaaiaaikdaaaaakiaawI cacaGLPaaaaaaaaa@62D6@ for p = 2, , 5. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGWbGaaG ypaiaaikdacaaISaGaaGjbVlablAciljaaiYcacaaMe8UaaGynaiaa c6caaaa@3F15@ The variances σ ν i p 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaeqyVd42aaSbaaWqaaiaadMgacaWGWbaabeaaaSqaaiaa ikdaaaaaaa@3C03@ are scaling parameters with values close to one for the first wave and close to 1 T t = 1 T ( 1 ϱ i t ( p 1 ) p 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcbaWcba GaaGymaaqaaiaadsfaaaGcdaaeWaqabSqaaiaadshacaaI9aGaaGym aaqaaiaadsfaa0GaeyyeIuoakmaabmaabaGaaGymaiabgkHiTmrr1n gBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbacfaGae8x8de=aa0ba aSqaaiaadMgacaWG0bWaaeWaaeaacaWGWbGaeyOeI0IaaGymaaGaay jkaiaawMcaaiaadchaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@53B9@ for the other waves, where T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGubaaaa@365D@ denotes the length of the observed series.

Model (4.1) uses sample information observed in preceding periods within each domain to improve the precision of the survey regression estimator and accounts for RGB and serial correlation induced by the rotating panel design. To take advantage of sample information across domains, model (4.1) for the separate domains can be combined in one multivariate model:

( Y ¯ ^ 1 t Y ¯ ^ m A t ) = ( ι 5 θ 1 t ι 5 θ m A t ) + ( λ 1 t λ m A t ) + ( e 1 t e m A t ) , ( 4.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaau aabeqadeaaaeaaceWGzbGbaeHbaKaadaWgaaWcbaGaaGymaiaadsha aeqaaaGcbaGaeSO7I0eabaGabmywayaaryaajaWaaSbaaSqaaiaad2 gadaWgaaadbaGaamyqaaqabaWccaWG0baabeaaaaaakiaawIcacaGL PaaacaaI9aWaaeWaaeaafaqabeWabaaabaGaeqyUdK2aaSbaaSqaai aaiwdaaeqaaOGaeqiUde3aaSbaaSqaaiaaigdacaWG0baabeaaaOqa aiabl6UinbqaaiabeM7aPnaaBaaaleaacaaI1aaabeaakiabeI7aXn aaBaaaleaacaWGTbWaaSbaaWqaaiaadgeaaeqaaSGaamiDaaqabaaa aaGccaGLOaGaayzkaaGaey4kaSYaaeWaaeaafaqabeWabaaabaGaeq 4UdW2aaSbaaSqaaiaaigdacaWG0baabeaaaOqaaiabl6Uinbqaaiab eU7aSnaaBaaaleaacaWGTbWaaSbaaWqaaiaadgeaaeqaaSGaamiDaa qabaaaaaGccaGLOaGaayzkaaGaey4kaSYaaeWaaeaafaqabeWabaaa baGaamyzamaaBaaaleaacaaIXaGaamiDaaqabaaakeaacqWIUlstae aacaWGLbWaaSbaaSqaaiaad2gadaWgaaadbaGaamyqaaqabaWccaWG 0baabeaaaaaakiaawIcacaGLPaaacaaISaGaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaGinaiaac6cacaaI4aGaaiykaaaa@764B@

where m A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaaaa@3768@ denotes the number of domains, which is equal to twelve in this application. This multivariate setting allows to use sample information across domains by modeling the correlation between the disturbance terms of the different structural time series components (trend, seasonal, RGB) or by defining the hyperparameters or the state variables of these components equal over the domains. In this paper models with cross-sectional correlation between the slope disturbance terms of the trend (4.3) are considered, i.e.,

Cov ( η R , i t , η R , i t ) = { σ R i 2 if i = i and t = t ς R i i if i i and t = t 0 if t t . ( 4.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4qaiaab+ gacaqG2bWaaeWaaeaacqaH3oaAdaWgaaWcbaGaamOuaiaaiYcacaaM c8UaamyAaiaadshaaeqaaOGaaGilaiaaysW7cqaH3oaAdaWgaaWcba GaamOuaiaaiYcacaaMc8UaamyAamaaCaaameqabaWaaWbaaeqabaqc LXmacWaGyBOmGikaaaaaliaadshadaahaaadbeqaamaaCaaabeqaaK qzmdGamai2gkdiIcaaaaaaleqaaaGccaGLOaGaayzkaaGaaGypamaa ceaabaqbaeaabmWaaaqaaiabeo8aZnaaDaaaleaacaWGsbGaamyAaa qaaiaaikdaaaaakeaacaqGPbGaaeOzaaqaaiaadMgacaaI9aGaamyA amaaCaaaleqabaqcLbwacWaGyBOmGikaaOGaaGiiaiaaiccacaqGHb GaaeOBaiaabsgacaaIGaGaaGiiaiaadshacaaI9aGaamiDamaaCaaa leqabaqcLbwacWaGyBOmGikaaaGcbaGaeqOWdy1aaSbaaSqaaiaadk facaWGPbGaamyAamaaCaaameqabaWcdaahaaadbeqaaKqzmdGamai2 gkdiIcaaaaaaleqaaaGcbaGaaeyAaiaabAgaaeaacaWGPbGaeyiyIK RaamyAamaaCaaaleqabaqcLbwacWaGyBOmGikaaOGaaGiiaiaaicca caqGHbGaaeOBaiaabsgacaaIGaGaaGiiaiaadshacaaI9aGaamiDam aaCaaaleqabaqcLbwacWaGyBOmGikaaaGcbaGaaGimaaqaaiaabMga caqGMbaabaGaamiDaiabgcMi5kaadshadaahaaWcbeqaaKqzGfGama i2gkdiIcaaaaaakiaawUhaaiaai6cacaaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaisdacaGGUaGaaGyoaiaacMcaaaa@A0C5@

The most parsimonious covariance structure is a diagonal matrix where all the domains share the same variance component, i.e., σ R i 2 = σ R 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHdpWCda qhaaWcbaGaamOuaiaadMgaaeaacaaIYaaaaOGaaGypaiabeo8aZnaa DaaaleaacaWGsbaabaGaaGOmaaaaaaa@3E49@ for all i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3672@ and ς R i i = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHcpGvda WgaaWcbaGaamOuaiaadMgacaWGPbWaaWbaaWqabeaadaahaaqabeaa jugZaiadaITHYaIOaaaaaaWcbeaakiaai2dacaaIWaaaaa@4008@ for all i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3672@ and i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaW baaSqabeaajugybiadaITHYaIOaaGccaGGUaaaaa@3B0A@ These are so-called seemingly unrelated structural time series models and are a synthetic approach to use sample information across domains. A slightly more complex and realistic covariance structure is a diagonal matrix where each domain has a separate variance component, i.e., ς R i i = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHcpGvda WgaaWcbaGaamOuaiaadMgacaWGPbWaaWbaaWqabeaalmaaCaaameqa baqcLXmacWaGyBOmGikaaaaaaSqabaGccaaI9aGaaGimaaaa@401F@ for all i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbaaaa@3672@ and i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbWaaW baaSqabeaajugybiadaITHYaIOaaGccaGGUaaaaa@3B0A@ In this case the model only borrows strength over time and does not take advantage of cross-sectional information. The most complex covariance structure allows for a full covariance matrix. Strong correlation between the slope disturbances across the domains can result in cointegrated trends. This implies that q < m A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGXbGaaG ipaiaad2gadaWgaaWcbaGaamyqaaqabaaaaa@3924@ common trends are required to model the dynamics of the trends for the m A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaaaa@3768@ domains and allows the specification of so-called common trend models (Koopman, Harvey, Doornik and Shephard, 1999; Krieg and van den Brakel, 2012). Initial STM analyses showed that the seasonal and RGB component turned out to be time independent. It is therefore not sensible to model correlations between seasonal and RGB disturbance terms. Since the hyperparameters of the white noise population domain parameters tend to zero, it turned out to be better to remove this component completely from the model implying that modeling correlations between population noise is not considered. Correlations between survey errors for different domains is also not considered, since the domains are geographical regions from which samples are drawn independently.

As an alternative to a model with a full covariance matrix for the slope disturbances, a trend model is considered that has one common smooth trend model for all provinces plus m A 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaOGaeyOeI0IaaGymaaaa@391A@ trend components that describe the deviation of each domain from this overall trend. In this case (4.2) is given by

θ 1 t = L t + S 1 t + ϵ 1 t , θ i t = L t + L i t * + S i t + ϵ i t , i = 2, , m A . ( 4.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpu0dc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeaabiGaaa qaaiabeI7aXnaaBaaaleaacaaIXaGaamiDaaqabaaakeaacaaI9aGa amitamaaBaaaleaacaWG0baabeaakiabgUcaRiaadofadaWgaaWcba GaaGymaiaadshaaeqaaOGaey4kaSYefv3ySLgznfgDOfdaryqr1ngB PrginfgDObYtUvgaiuaacqWF1pG8daWgaaWcbaGaaGymaiaadshaae qaaOGaaGilaaqaaiabeI7aXnaaBaaaleaacaWGPbGaamiDaaqabaaa keaacaaI9aGaamitamaaBaaaleaacaWG0baabeaakiabgUcaRiaadY eadaqhaaWcbaGaamyAaiaadshaaeaacaGGQaaaaOGaey4kaSIaam4u amaaBaaaleaacaWGPbGaamiDaaqabaGccqGHRaWkcqWF1pG8daWgaa WcbaGaamyAaiaadshaaeqaaOGaaGilaiaaysW7caaMe8UaamyAaiaa i2dacaaIYaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaad2gada WgaaWcbaGaamyqaaqabaGccaaIUaGaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caGGOaGaaGinaiaac6cacaaIXaGaaGimaiaacMcaaaaaaa@7E2A@

Here L t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaS baaSqaaiaadshaaeqaaaaa@377A@ is the overal smooth trend component, defined by (4.3), and L i t * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaa0 baaSqaaiaadMgacaWG0baabaGaaiOkaaaaaaa@3917@ the deviation from the overall trend for the separate domains, defined as local levels

L i t * = L i t 1 * + η L , i t , η L , i t ind N ( 0, σ L i 2 ) , ( 4.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaa0 baaSqaaiaadMgacaWG0baabaGaaiOkaaaakiaai2dacaWGmbWaa0ba aSqaaiaadMgacaWG0bGaeyOeI0IaaGymaaqaaiaacQcaaaGccqGHRa WkcqaH3oaAdaWgaaWcbaGaamitaiaaiYcacaaMc8UaamyAaiaadsha aeqaaOGaaGilaiaaysW7caaMc8Uaeq4TdG2aaSbaaSqaaiaadYeaca aISaGaaGPaVlaadMgacaWG0baabeaakiaaysW7caaMc8+aaybyaeqa leqabaGaaeyAaiaab6gacaqGKbaabaqeeuuDJXwAKbsr4rNCHbacfa qcLbwacqWF8iIoaaGccaaMe8UaaGPaVpXvP5wqonvsaeHbmv3yPrwy GmuySXwANjxyWHwEaGGbaiab+5eaonaabmaabaGaaGimaiaaiYcaca aMe8Uaeq4Wdm3aa0baaSqaaiaadYeacaWGPbaabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaaiYcacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVl aacIcacaaI0aGaaiOlaiaaigdacaaIXaGaaiykaaaa@81EB@

or as smooth trends as in (4.3). These trend models implicitly allow for (positive) correlations between the trends of the different domains.

The parameters to be estimated with the time series modeling approach are the trend and the signal. The latter is defined as the trend plus the seasonal component. The time series approach is particularly suitable for estimating month-to-month changes. Seasonal patterns hamper a straightforward interpretation of month-to-month changes of direct estimates and smoothed signals. Therefore month-to-month changes are calculated for the trends only. Due to the strong positive correlation between the levels of consecutive periods, the standard errors of month-to-month changes in the level of the trends are much smaller than those of e.g., month-to-month changes of the direct estimates. The month-to-month change of the trend is defined as Δ i t ( 1 ) = L i t L i t 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarda WgaaWcbaGaamyAaiaadshaaeqaaOWaaeWaaeaacaaIXaaacaGLOaGa ayzkaaGaaGypaiaadYeadaWgaaWcbaGaamyAaiaadshaaeqaaOGaey OeI0IaamitamaaBaaaleaacaWGPbGaamiDaiabgkHiTiaaigdaaeqa aaaa@4479@ for models with separate trends for the domains or Δ i t ( 1 ) = L t L t 1 + L i t * L i t 1 * MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarda WgaaWcbaGaamyAaiaadshaaeqaaOWaaeWaaeaacaaIXaaacaGLOaGa ayzkaaGaaGypaiaadYeadaWgaaWcbaGaamiDaaqabaGccqGHsislca WGmbWaaSbaaSqaaiaadshacqGHsislcaaIXaaabeaakiabgUcaRiaa dYeadaqhaaWcbaGaamyAaiaadshaaeaacaGGQaaaaOGaeyOeI0Iaam itamaaDaaaleaacaWGPbGaamiDaiabgkHiTiaaigdaaeaacaGGQaaa aaaa@4D4E@ for models with an overall trend and m A 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaOGaeyOeI0IaaGymaaaa@391A@ trends for the deviation from the overall trend for the separate domains. This modeling approach is also useful to estimate year-to-year developments for trend defined as Δ i t ( 12 ) = L i t L i t 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarda WgaaWcbaGaamyAaiaadshaaeqaaOWaaeWaaeaacaaIXaGaaGOmaaGa ayjkaiaawMcaaiaai2dacaWGmbWaaSbaaSqaaiaadMgacaWG0baabe aakiabgkHiTiaadYeadaWgaaWcbaGaamyAaiaadshacqGHsislcaaI XaGaaGOmaaqabaaaaa@45F1@ or Δ i t ( 12 ) = L t L t 12 + L i t * L i t 12 * . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHuoarda WgaaWcbaGaamyAaiaadshaaeqaaOWaaeWaaeaacaaIXaGaaGOmaaGa ayjkaiaawMcaaiaai2dacaWGmbWaaSbaaSqaaiaadshaaeqaaOGaey OeI0IaamitamaaBaaaleaacaWG0bGaeyOeI0IaaGymaiaaikdaaeqa aOGaey4kaSIaamitamaaDaaaleaacaWGPbGaamiDaaqaaiaacQcaaa GccqGHsislcaWGmbWaa0baaSqaaiaadMgacaWG0bGaeyOeI0IaaGym aiaaikdaaeaacaGGQaaaaOGaaiOlaaaa@503E@ Year-to-year differences are also sensible for signals, since the main part of the seasonal component cancels out. These developments are defined equivalently to the year-to-year developments of the trend.

The aforementioned structural time series models are analyzed by putting them in the so-called state space form. Subsequently the Kalman filter is used to fit the models, where the unknown hyperparameters are replaced by their ML estimates. The analysis is conducted with software developed in OxMetrics in combination with the subroutines of SsfPack 3.0, (Doornik, 2009; Koopman, Shephard and Doornik, 1999, 2008). ML estimates for the hyperparameters are obtained using the numerical optimization procedure maxBFGS in OxMetrics. More details about the state space representation, initialization of the Kalman filter and software used to fit these models is included in Boonstra and van den Brakel (2016).

4.2  Time series multilevel model

For the description of the multilevel time series representation of the STMs, the initial estimates Y ¯ ^ i t p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaadaWgaaWcbaGaamyAaiaadshacaWGWbaabeaaaaa@3991@ are combined into a vector Y ¯ ^ = ( Y ¯ ^ 111 , Y ¯ ^ 112 , , Y ¯ ^ 115 , Y ¯ ^ 121 , ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaacaaI9aWaaeWaaeaaceWGzbGbaeHbaKaadaWgaaWcbaGaaGym aiaaigdacaaIXaaabeaakiaaiYcacaaMe8UabmywayaaryaajaWaaS baaSqaaiaaigdacaaIXaGaaGOmaaqabaGccaaISaGaaGjbVlablAci ljaaiYcacaaMe8UabmywayaaryaajaWaaSbaaSqaaiaaigdacaaIXa GaaGynaaqabaGccaaISaGaaGjbVlqadMfagaqegaqcamaaBaaaleaa caaIXaGaaGOmaiaaigdaaeqaaOGaaGilaiaaysW7cqWIMaYsaiaawI cacaGLPaaadaahaaWcbeqaaKqzGfGamai2gkdiIcaakiaacYcaaaa@58B8@ i.e., wave index runs faster than time index which runs faster than area index. The numbers of areas, periods and waves are denoted by m A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaOGaaiilaaaa@3822@ m T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadsfaaeqaaaaa@377B@ and m P , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadcfaaeqaaOGaaiilaaaa@3831@ respectively. The total length of Y ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaaaaa@3689@ is therefore m = m A m T m P = MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaaG ypaiaad2gadaWgaaWcbaGaamyqaaqabaGccaWGTbWaaSbaaSqaaiaa dsfaaeqaaOGaamyBamaaBaaaleaacaWGqbaabeaakiaai2dacaaMc8 oaaa@3F7B@ 12(areas)* 72(months)* 5(waves) = 4,320. Similarly, the variance estimates v ( Y ¯ ^ i t p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaae WaaeaaceWGzbGbaeHbaKaadaWgaaWcbaGaamyAaiaadshacaWGWbaa beaaaOGaayjkaiaawMcaaaaa@3C1F@ are put in the same order along the diagonal of a m × m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaey 41aqRaamyBaaaa@397F@ covariance matrix Φ . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHMoGrca GGUaaaaa@37B0@

The covariance matrix Φ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHMoGraa a@36FE@ is not diagonal because of the correlations induced by the panel design. It is a sparse band matrix, and the ordering of the vector Y ¯ ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaaaaa@3689@ is such that it achieves minimum possible bandwidth, which is advantageous from a computational point of view.

The multilevel models considered for modeling the vector of direct estimates Y ¯ ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaacaGGSaaaaa@3739@ take the general linear additive form

Y ¯ ^ = X β + α Z ( α ) v ( α ) + e , ( 4.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaaceWGzbGbae HbaKaacqGH9aqpcaWGybGaeqOSdiMaey4kaSYaaabuaeaacaWGAbWa aWbaaSqabeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakiaadA hadaahaaWcbeqaamaabmaabaGaeqySdegacaGLOaGaayzkaaaaaOGa ey4kaSIaamyzaiaacYcaaSqaaiabeg7aHbqab0GaeyyeIuoakiaayw W7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGym aiaaikdacaGGPaaaaa@55D4@

where X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGybaaaa@3661@ is a m × p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaey 41aqRaamiCaaaa@3982@ design matrix for the fixed effects β , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyca GGSaaaaa@37D5@ and the Z ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGAbWaaW baaSqabeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaaaaa@39B8@ are m × q ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaey 41aqRaamyCamaaCaaaleqabaWaaeWaaeaacqaHXoqyaiaawIcacaGL Paaaaaaaaa@3CD8@ design matrices for random effect vectors v ( α ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaW baaSqabeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaakiaac6ca aaa@3A90@ Here the sum over α MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyaa a@3723@ runs over several possible random effect terms at different levels, such as a national level smooth trend, provincial local level trends, white noise, etc. This is explained in more detail below. The sampling errors e = ( e 111 , e 112 , , e 115 , e 121 , ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbGaaG ypamaabmaabaGaamyzamaaBaaaleaacaaIXaGaaGymaiaaigdaaeqa aOGaaGilaiaaysW7caWGLbWaaSbaaSqaaiaaigdacaaIXaGaaGOmaa qabaGccaaISaGaaGjbVlablAciljaaiYcacaaMe8UaamyzamaaBaaa leaacaaIXaGaaGymaiaaiwdaaeqaaOGaaGilaiaaysW7caWGLbWaaS baaSqaaiaaigdacaaIYaGaaGymaaqabaGccaaISaGaaGjbVlablAci lbGaayjkaiaawMcaamaaCaaaleqabaGccWaGyBOmGikaaaaa@56B2@ are taken to be normally distributed as

e N ( 0 , Σ ) ( 4.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGLbqeeu uDJXwAKbsr4rNCHbacfaGae8hpIOZexLMBb50ujbqegWuDJLgzHbYq HXgBPDMCHbhA5bacgaGae4Nta40aaeWaaeaacaaIWaGaaiilaiaays W7cqqHJoWuaiaawIcacaGLPaaacaaMf8UaaGzbVlaaywW7caaMf8Ua aiikaiaaisdacaGGUaGaaGymaiaaiodacaGGPaaaaa@5736@

where Σ = i = 1 m A λ i Φ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHJoWuca aI9aGaeyyLIu8aa0baaSqaaiaadMgacaaI9aGaaGymaaqaaiaad2ga daWgaaqaaiaadgeaaeqaaaaakiabeU7aSnaaBaaaleaacaWGPbaabe aakiabfA6agnaaBaaaleaacaWGPbaabeaaaaa@43C3@ with Φ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHMoGrda WgaaWcbaGaamyAaaqabaaaaa@3818@ the covariance matrix for the initial estimates for province i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai ilaaaa@3722@ and λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaamyAaaqabaaaaa@3852@ a province-specific variance scale parameter to be estimated. As described in Section 3 the design variances in Φ = i Φ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqqHMoGrca aI9aGaeyyLIu8aaSbaaSqaaiaadMgaaeqaaOGaeuOPdy0aaSbaaSqa aiaadMgaaeqaaaaa@3D85@ are pooled over provinces and because of the discrete nature of the unemployment data they thereby lose some of their dependence on the unemployment level. It was found that incorporating the variance scale factors λ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH7oaBda WgaaWcbaGaamyAaaqabaaaaa@3852@ allows the model to rescale the estimated design variances to a level that better fits the data.

To describe the general model for each vector v ( α ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bWaaW baaSqabeaadaqadaqaaiabeg7aHbGaayjkaiaawMcaaaaaaaa@39D4@ of random effects, we suppress the superscript α . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyca GGUaaaaa@37D5@ Each vector v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2baaaa@367F@ has q = d l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGXbGaaG ypaiaadsgacaWGSbaaaa@391B@ components corresponding to d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbaaaa@366D@ effects allowed to vary over l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbaaaa@3675@ levels of a factor variable. In particular,

v N ( 0 , A V ) , ( 4.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2bqeeu uDJXwAKbsr4rNCHbacfaGae8hpIOZexLMBb50ujbqegWuDJLgzHbYq HXgBPDMCHbhA5bacgaGae4Nta40aaeWaaeaacaaIWaGaaiilaiaays W7caWGbbGaey4LIqSaamOvaaGaayjkaiaawMcaaiaacYcacaaMf8Ua aGzbVlaaywW7caaMf8UaaiikaiaaisdacaGGUaGaaGymaiaaisdaca GGPaaaaa@5A1E@

where V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbaaaa@365F@ and A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@364A@ are d × d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaey 41aqRaamizaaaa@396D@ and l × l MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbGaey 41aqRaamiBaaaa@397D@ covariance matrices, respectively. As in Section 4.1 the covariance matrix V MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbaaaa@365E@ is allowed to be parameterised in three different ways. Most generally, it is an unstructured, i.e., fully parameterised covariance matrix. More parsimonious forms are V = diag ( σ v ; 1 2 , , σ v ; d 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbGaaG ypaiaabsgacaqGPbGaaeyyaiaabEgadaqadaqaaiabeo8aZnaaDaaa leaacaWG2bGaaG4oaiaaigdaaeaacaaIYaaaaOGaaGilaiaaysW7cq WIMaYscaaISaGaaGjbVlabeo8aZnaaDaaaleaacaWG2bGaaG4oaiaa dsgaaeaacaaIYaaaaaGccaGLOaGaayzkaaaaaa@4C88@ or V = σ v 2 I d . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbGaaG ypaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaakiaadMeadaWg aaWcbaGaamizaaqabaGccaGGUaaaaa@3D76@ If d = 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaG ypaiaaigdaaaa@37EF@ the three parameterisations are equivalent. The covariance matrix A MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGbbaaaa@3649@ describes the covariance structure between the levels of the factor variable, and is assumed to be known. It is typically more convenient to use the precision matrix Q A = A 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadgeaaeqaaOGaaGypaiaadgeadaahaaWcbeqaaiabgkHi Tiaaigdaaaaaaa@3AB8@ as it is sparse for many common temporal and spatial correlation structures (Rue and Held, 2005).

4.2.1  Relations between state space and time series multilevel representations

A single smooth trend can be represented as a random intercept ( d = 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadsgacaaI9aGaaGymaaGaayjkaiaawMcaaaaa@3978@ varying over time ( l = m T ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aadYgacaaI9aGaamyBamaaBaaaleaacaWGubaabeaaaOGaayjkaiaa wMcaaiaacYcaaaa@3B76@ with temporal correlation determined by a m T × m T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadsfaaeqaaOGaey41aqRaamyBamaaBaaaleaacaWGubaa beaaaaa@3B93@ band sparse precision matrix Q A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadgeaaeqaaaaa@374C@ associated with a second order random walk (Rue and Held, 2005). In this case V = σ v 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbGaaG ypaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaaaaa@3ACD@ and the design matrix Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGAbaaaa@3663@ is the m × m T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbGaey 41aqRaamyBamaaBaaaleaacaWGubaabeaaaaa@3A84@ indicator matrix for month, i.e., the matrix with a single 1 in each row for the corresponding month and 0s elsewhere. The sparsity of both Q A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadgeaaeqaaaaa@374C@ and Z MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGAbaaaa@3663@ can be exploited in computations. The precision matrix for the smooth trend component has two singular vectors, ι m T = ( 1, 1, , 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH5oqAda WgaaWcbaGaamyBamaaBaaameaacaWGubaabeaaaSqabaGccaaI9aWa aeWaaeaacaaIXaGaaGilaiaaysW7caaIXaGaaGilaiaaysW7cqWIMa YscaaISaGaaGjbVlaaigdaaiaawIcacaGLPaaaaaa@45D8@ and ( 1, 2, , m T ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aaigdacaaISaGaaGjbVlaaikdacaaISaGaaGjbVlablAciljaaiYca caaMe8UaamyBamaaBaaaleaacaWGubaabeaaaOGaayjkaiaawMcaam aaCaaaleqabaGccWaGyBOmGikaaiaac6caaaa@4639@ This means that the corresponding specification (4.14) is completely uninformative about the overall level and linear trend. In order to prevent unidentifiability among various terms in the model, the overall level and trend can be removed from v MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWG2baaaa@367F@ by imposing the constraints R v = 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaam ODaiaai2dacaaIWaGaaiilaaaa@3987@ where R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbaaaa@365B@ is the 2 × m T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaaIYaGaey 41aqRaamyBamaaBaaaleaacaWGubaabeaaaaa@3A4E@ matrix with the two singular vectors as its rows. The overall level and trend are then included in the vector β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHYoGyaa a@3725@ of fixed effects. In the state space representation, this model is obtained by defining one trend model (4.3) for all domains, i.e., L i t = L t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGmbWaaS baaSqaaiaadMgacaWG0baabeaakiaai2dacaWGmbWaaSbaaSqaaiaa dshaaeqaaaaa@3B2F@ and R i t = R t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbWaaS baaSqaaiaadMgacaWG0baabeaakiaai2dacaWGsbWaaSbaaSqaaiaa dshaaeqaaaaa@3B3B@ for all i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGPbGaai Olaaaa@3724@ Defining the state variables for the trend equal over the domains is a very synthetic approach to use sample information from other domains and is based on assumptions that are not met in most cases.

A smooth trend for each province is obtained with d = m A , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaG ypaiaad2gadaWgaaWcbaGaamyqaaqabaGccaGGSaaaaa@39D2@ l = m T , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbGaaG ypaiaad2gadaWgaaWcbaGaamivaaqabaGccaGGSaaaaa@39ED@ and V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbaaaa@365F@ a m A × m A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaOGaey41aqRaamyBamaaBaaaleaacaWGbbaa beaaaaa@3B6D@ covariance matrix, either diagonal with a single variance parameter, diagonal with m A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaaaa@3768@ variance parameters, or unstructured, i.e., fully parametrised in terms of m A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGTbWaaS baaSqaaiaadgeaaeqaaaaa@3768@ variance parameters and m A ( m A 1 ) / 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaWcgaqaai aad2gadaWgaaWcbaGaamyqaaqabaGcdaqadaqaaiaad2gadaWgaaWc baGaamyqaaqabaGccqGHsislcaaIXaaacaGLOaGaayzkaaaabaGaaG Omaaaaaaa@3D63@ correlation parameters. The design matrix is I m A I m T ι m P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGjbWaaS baaSqaaiaad2gadaWgaaadbaGaamyqaaqabaaaleqaaOGaey4LIqSa amysamaaBaaaleaacaWGTbWaaSbaaWqaaiaadsfaaeqaaaWcbeaaki abgEPielabeM7aPnaaBaaaleaacaWGTbWaaSbaaWqaaiaadcfaaeqa aaWcbeaaaaa@436B@ in this case. In the state space representation, these models are obtained with trend model (4.3) and covariance structure (4.9).

An alternative trend model consists of a single global smooth trend (second order random walk) supplemented by a local level trend, i.e., an ordinary (first order) random walk, for each province. The latter can be modeled as discussed in the previous paragraph, but with precision matrix associated with a first order random walk. This trend model corresponds to the models (4.10) and (4.11) in the state space context. In contrast to the state space approach, it is not necessary to remove one of the provincial random walk trends from the model for identifiability. The reason is that in the multilevel approach constraints are imposed to ensure that the smooth overall trend as well as all provincial random walk trends sum to zero over time. The constrained components correspond to global and provincial intercepts, which are separately included in the model as fixed effects with one provincial fixed effect excluded.

Seasonal effects can be expressed in terms of correlated random effects (4.14) as well. The trigonometric seasonal is equivalent to the balanced dummy variable seasonal model (Proietti, 2000; Harvey, 2006), corresponding to first order random walks over time for each month, subject to a sum-to-zero constraint over the months. In this case d = 12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGKbGaaG ypaiaaigdacaaIYaaaaa@38AB@ (seasons), V = σ v 2 I 12 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGwbGaaG ypaiabeo8aZnaaDaaaleaacaWG2baabaGaaGOmaaaakiaadMeadaWg aaWcbaGaaGymaiaaikdaaeqaaOGaaiilaaaa@3E02@ and l = m T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGSbGaaG ypaiaad2gadaWgaaWcbaGaamivaaqabaaaaa@3933@ with Q A MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGrbWaaS baaSqaaiaadgeaaeqaaaaa@374C@ the precision matrix of a first order random walk. The sum-to-zero constraints over seasons at each time, together with the sum-to-zero constraints over time of each random walk can be imposed as R v = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaam ODaiaai2dacaaIWaaaaa@38D7@ with R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbaaaa@365B@ the ( m T + 12 ) × 12 m T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaai aad2gadaWgaaWcbaGaamivaaqabaGccqGHRaWkcaaIXaGaaGOmaaGa ayjkaiaawMcaaiabgEna0kaaigdacaaIYaGaamyBamaaBaaaleaaca WGubaabeaaaaa@40EC@ matrix

R = ( ι 12 I m T I 12 ι m T ) . ( 4.15 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGsbGaey ypa0ZaaeWaaeaafaqaaeGabaaabaqeduuDJXwAKbYu51MyVXgaiuaa cqWF5oqAdaqhaaWcbaGaaGymaiaaikdaaeaajugybiadaITHYaIOaa GccqGHxkcXcaaMe8UaaGPaVlaadMeadaWgaaWcbaGaamyBamaaBaaa meaacaWGubaabeaaaSqabaaakeaacaWGjbWaaSbaaSqaaiaaigdaca aIYaaabeaakiabgEPielaaysW7caaMc8Uae8xUdK2aa0baaSqaaiaa d2gadaWgaaadbaGaamivaaqabaaaleaajugybiadaITHYaIOaaaaaa GccaGLOaGaayzkaaGaaiOlaiaaywW7caaMf8UaaGzbVlaaywW7caaM f8UaaiikaiaaisdacaGGUaGaaGymaiaaiwdacaGGPaaaaa@691B@

Together with fixed effects for each season (again with a sum-to-zero constraint imposed) this random effect term is equivalent to the trigonometric seasonal. It can be extended to a seasonal for each province, with a separate variance parameter for each province.

To account for the RGB, the multilevel model includes fixed effects for waves 2 to 5. These effects can optionally be modeled dynamically by adding random walks over time for each wave. Another choice to be made is whether the fixed and random effects are crossed with province.

Further fixed effects can be included in the model, for example those associated with the auxiliary variables used in the survey regression estimates. Some fixed effect interactions, for example season  × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHxdaTaa a@379A@ province or wave  × MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqGHxdaTaa a@379A@ province might alternatively be modeled as random effects to reduce the risk of overfitting.

Finally, a white noise term can be added to the model, to account for unexplained variation by area and time in the signal.

Model (4.12) can be regarded as a generalization of the Fay-Herriot area-level model. The Fay-Herriot model only includes a single vector of uncorrelated random effects over the levels of a single factor variable (typically areas). The models used in this paper contain various combinations of uncorrelated and correlated random effects over areas and months. Earlier accounts of multilevel time series models extending the Fay-Herriot model are Rao and Yu (1994); Datta et al. (1999); You (2008). In Datta et al. (1999) and You (2008) time series models are used with independent area effects and first-order random walks over time for each area. In Rao and Yu (1994) a model is used with independent random area effects and a stationary autoregressive AR(1) instead of a random walk model over time. In You et al. (2003) the random walk model was found to fit the Canadian unemployment data slightly better than AR(1) models with autocorrelation parameter fixed at 0.5 or 0.75. We do not consider AR(1) models in this paper, and refer to Diallo (2014) for an approach that allows both stationary and non-stationary trends. Compared to the aforementioned references a novel feature of our model is that smooth trends are considered instead of or in addition to first-order random walks or autoregressive components. We also include independent area-by-time random effects as a white noise term accounting for unexplained variation at the aggregation level of interest.

4.2.2  Estimating time series multilevel models

A Bayesian approach is used to fit model (4.12)-(4.14). This means we need prior distributions for all (hyper)parameters in the model. The following priors are used:

The model is fit using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). The multilevel models considered belong to the class of additive latent Gaussian models with random effect terms being Gaussian Markov Random Fields (GMRFs), and we make use of the sparse matrix and block sampling techniques described in Rue and Held (2005) for efficiently fitting such models to the data. Moreover, the parametrization in terms of the aforementioned auxiliary parameters ξ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpiea0xc9LqFf0d c9qqFeFr0xbbG8FaYPYRWFb9fi0xXdbbf9Ve0db9WqpeeaY=brpue9 Fve9Fre8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaH+oaEaa a@3747@ (Gelman, Van Dyk, Huang and Boscardin, 2008), greatly improves the convergence of the Gibbs sampler used. See Boonstra and van den Brakel (2016) for more details on the Gibbs sampler used, including specifications of the full conditional distributions. The methods are implemented in R using the mcmcsae R-package (Boonstra, 2016).

For each model considered, the Gibbs sampler is run in three independent chains with randomly generated starting values. Each chain is run for 2,500 iterations. The first 500 draws are discarded as a “burn-in sample”. From the remaining 2,000 draws from each chain, we keep every fifth draw to save memory while reducing the effect of autocorrelation between successive draws. This leaves 3 * 400 = 1,200 draws to compute estimates and standard errors. It was found that the effective number of independent draws was near 1,200 for most model parameters, meaning that most autocorrelation was indeed removed by the thinning. The convergence of the MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the chains. The diagnostics suggest that all chains converge well within the burnin stage, and that the chains mix well, since all Gelman-Rubin factors are close to one. Also, the estimated Monte Carlo simulation errors (accounting for any remaining autocorrelation in the chains) are small compared to the posterior standard errors for all parameters, so that the number of retained draws is sufficient for our purposes.

The estimands of interest can be expressed as functions of the parameters, and applying these functions to the MCMC output for the parameters results in draws from the posteriors for these estimands. In this paper we summarize those draws in terms of their mean and standard deviation, serving as estimates and standard errors, respectively. All estimands considered can be expressed as linear predictors, i.e., as linear combinations of the model parameters. Estimates and standard errors for the following estimands are computed:


Date modified: