
Survey Methodology

Catalogue no. 12-001-X 
ISSN 1492-0921

by Harm Jan Boonstra and Jan A. van den Brakel

Estimation of level and change for  
unemployment using structural time  
series models

Release date: December 17, 2019



Published by authority of the Minister responsible for Statistics Canada

© Her Majesty the Queen in Right of Canada as represented by the Minister of Industry, 2019

All rights reserved. Use of this publication is governed by the Statistics Canada Open Licence Agreement.

An HTML version is also available.

Cette publication est aussi disponible en français.

How to obtain more information
For information about this product or the wide range of services and data available from Statistics Canada, visit our website, 
www.statcan.gc.ca. 
 
You can also contact us by 
 
Email at STATCAN.infostats-infostats.STATCAN@canada.ca 
 
Telephone, from Monday to Friday, 8:30 a.m. to 4:30 p.m., at the following numbers: 

•• Statistical Information Service	 1-800-263-1136
•• National telecommunications device for the hearing impaired	 1-800-363-7629
•• Fax line	 1-514-283-9350

 
Depository Services Program 

•• Inquiries line	 1-800-635-7943
•• Fax line	 1-800-565-7757

Standards of service to the public
Statistics Canada is committed to serving its clients in a prompt, 
reliable and courteous manner. To this end, Statistics Canada 
has developed standards of service that its employees observe.  
To obtain a copy of these service standards, please contact  
Statistics Canada toll-free at 1-800-263-1136. The service   
standards are also published on www.statcan.gc.ca under 
“Contact us” > “Standards of service to the public.”

Note of appreciation
Canada owes the success of its statistical system to a 
long‑standing partnership between Statistics Canada, the  
citizens of Canada, its businesses, governments and other 
institutions. Accurate and timely statistical information 
could not be produced without their continued co‑operation  
and goodwill.

https://www.statcan.gc.ca/eng/reference/licence
https://www150.statcan.gc.ca/n1/pub/12-001-x/2019003/article/00005-eng.htm
https://www.statcan.gc.ca
mailto:STATCAN.infostats-infostats.STATCAN%40canada.ca?subject=
https://www.statcan.gc.ca
https://www.statcan.gc.ca/eng/about/service/standards


Survey Methodology, December 2019 395 
Vol. 45, No. 3, pp. 395-425 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Harm Jan Boonstra, Statistics Netherlands, Department of Statistical Methods. E-mail: hjh.boonstra@cbs.nl; Jan A. van den Brakel, Statistics 

Netherlands, Department of Statistical Methods and Maastricht University, Department of Quantitative Economics. 

 

Estimation of level and change for unemployment using 
structural time series models 

Harm Jan Boonstra and Jan A. van den Brakel1 

Abstract 

Monthly estimates of provincial unemployment based on the Dutch Labour Force Survey (LFS) are obtained 
using time series models. The models account for rotation group bias and serial correlation due to the rotating 
panel design of the LFS. This paper compares two approaches of estimating structural time series models (STM). 
In the first approach STMs are expressed as state space models, fitted using a Kalman filter and smoother in a 
frequentist framework. As an alternative, these STMs are expressed as time series multilevel models in an 
hierarchical Bayesian framework, and estimated using a Gibbs sampler. Monthly unemployment estimates and 
standard errors based on these models are compared for the twelve provinces of the Netherlands. Pros and cons 
of the multilevel approach and state space approach are discussed. 

 

Multivariate STMs are appropriate to borrow strength over time and space. Modeling the full correlation matrix 
between time series components rapidly increases the numbers of hyperparameters to be estimated. Modeling 
common factors is one possibility to obtain more parsimonious models that still account for cross-sectional 
correlation. In this paper an even more parsimonious approach is proposed, where domains share one overall 
trend, and have their own independent trends for the domain-specific deviations from this overall trend. The time 
series modeling approach is particularly appropriate to estimate month-to-month change of unemployment. 

 
Key Words: Small area estimation; Structural time series models; Time series multilevel models; Unemployment 

estimation. 

 
 

1  Introduction 
 

Statistics Netherlands uses data from the Dutch Labour Force Survey (LFS) to estimate labour status at 

various aggregation levels. National estimates are produced monthly, provincial estimates quarterly, and 

municipal estimates annually. Traditionally monthly publications about the labour force were based on 

rolling quarterly figures compiled by means of direct generalized regression estimation (GREG), see e.g., 

Särndal, Swensson and Wretman (1992). The continuous nature of the LFS allows to borrow strength not 

only from other areas, but also over time. A structural time series model (STM) to estimate national monthly 

labour status for 6 gender by age classes is in use since 2010 (van den Brakel and Krieg, 2009, 2015). 

Until now, provincial estimates are produced quarterly using the GREG. In order to produce figures on 

a monthly basis, a model-based estimation strategy is necessary to overcome the problem of too small 

monthly provincial sample sizes. In this paper a model is proposed that combines a time series modeling 

approach to borrow strength over time with cross-sectional small area models to borrow strength over space 

with the purpose to produce reliable monthly estimates of provincial unemployment. As a consequence of 

the LFS panel design, the monthly GREG estimates are autocorrelated and estimates based on follow-up 

waves are biased relative to the first wave estimates. The latter phenomena is often referred to as rotation 

group bias (Bailar, 1975). Both features need to be accounted for in the model (Pfeffermann, 1991). Previous 

accounts of regional small area estimation of unemployment, where strength is borrowed over both time 
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and space, include Rao and Yu (1994); Datta, Lahiri, Maiti and Lu (1999); You, Rao and Gambino (2003); 

You (2008); Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006); van den Brakel and Krieg 

(2016), see also Rao and Molina (2015), Section 4.4 for an overview. 

In this paper, multivariate STMs for provincial monthly labour force data are developed as a form of 

small area estimation to borrow strength over time and space, to account for rotation group bias and serial 

correlation induced by the rotating panel design. In a STM, an observed series is decomposed in several 

unobserved components like a trend, a seasonal component, regression components, other cyclic 

components and a white noise term for remaining unexplained variation. These components are based on 

stochastic models, to allow them to vary over time. The classical way to fit STMs is to express them as a 

state space model and apply a Kalman filter and smoother to obtain optimal estimates for state variables and 

signals. The unknown hyperparameters of the models for the state variables are estimated by means of 

maximum likelihood (ML) (Harvey, Chapter 3). Alternatively, state space models can be fitted in a Bayesian 

framework using a particle filter (Andrieu, Poucet and Holenstein (2010); Durbin and Koopman (2012), 

Chapter 9). STMs can also be expressed as time series multilevel models and can be seen as an extension 

of the classical Fay-Herriot model (Fay and Herriot, 1979). Connections between structural time series 

models and multilevel models have been explored before from several points of view in Knorr-Held and 

Rue (2002); Chan and Jeliazkov (2009); McCausland, Miller and Pelletier (2011); Ruiz-Cárdenas, Krainski 

and Rue (2012); Piepho and Ogutu (2014); Bollineni-Balabay, van den Brakel, Palm and Boonstra (2016). 

In these papers the equivalence between state space model components and multilevel components is made 

more explicit. Multilevel models can both be fitted in a frequentist and hierarchical Bayesian framework, 

see Rao and Molina (2015), Section 8.3 and 10.9, respectively. 

This paper contributes to the small area estimation literature by comparing differences between STMs 

for rotating panel designs that are expressed as state space models and as time series multilevel models. 

State space models are fitted using a Kalman filter and smoother in a frequentist framework where 

hyperparameters are estimated with ML. In this case models are compared using AIC and BIC. Time series 

multilevel models are fitted in an hierarchical Bayesian framework, using a Gibbs sampler. Models with 

different combinations of fixed and random effects are compared based on the Deviance Information 

Criterion (DIC). The estimates based on multilevel and state space models and their standard errors are 

compared graphically and contrasted with the initial survey regression estimates. Modeling cross-sectional 

correlation in multivariate time series models rapidly increases the number of hyperparameters to be 

estimated. One way to obtain more parsimonious models is to use common factor models. In this paper an 

alternative approach to model correlations between time series components indirectly is proposed, based on 

a global common trend and local trends for the domain-specific deviations. 

The paper is structured as follows. In Section 2 the LFS data used in this study are described. Section 3 

describes how the survey regression estimator (Battese, Harter and Fuller, 1988) is used to compute initial 

estimates. These initial estimates are the input for the STM models, which are discussed in Section 4. In 

Section 5 the results based on several state space and multilevel models are compared, including estimates 
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for period-to-period change for monthly data. Section 6 contains a discussion of the results as well as some 

ideas on further work. Throughout the paper we refer to the technical report by Boonstra and van den Brakel 

(2016) for additional details and results. 

 
2  The Dutch Labour Force Survey 
 

The Dutch LFS is a household survey conducted according to a rotating panel design in which the 

respondents are interviewed five times at quarterly intervals. Each month a stratified two-stage sample of 

addresses is selected. All households residing on an address are included in the sample. In this study 72 

months of LFS data from 2003 to 2008 are used. During this period the sample design was self-weighted. 

The first wave of the panel consists of data collected by means of computer assisted personal interviewing 

(CAPI), whereas the four follow-up waves contain data collected by means of computer assisted telephone 

interviewing (CATI). 

The Netherlands is divided into twelve provinces which serve as the domains for which monthly 

unemployment figures are to be estimated. Monthly national sample sizes vary between 5 and 7 thousand 

persons in the first wave and between 3 and 5 thousand in the fifth wave. Provincial sample sizes are diverse, 

ranging from 31 to 1,949 persons for single wave monthly samples. 

LFS data are available at the level of units, i.e., persons. A wealth of auxiliary data from several 

registrations is also available at the unit level. Among these auxiliary variables is registered unemployment, 

a strong predictor for the unemployment variable of interest. These predictors are used to compute initial 

estimates, which are input to the time series models. 

The target variable considered in this study is the fraction of unemployed in a domain, and is defined as 

= ,it ijt itj i
Y y N

  with ijty  equal to one if person j  from province i  in period t  is unemployed and 

zero otherwise and itN  the population size in province i  and period .t  

 
3  Initial estimates 
 

Let ˆ
itpY  denote the initial estimate for itY  based on data from wave .p  The initial estimates used as input 

for the time series small area models are survey regression estimates (Woodruff, 1966; Battese et al., 1988; 

Särndal et al., 1992) 

  ˆ ˆ= ,itp itp tp it itpY y X x    (3.1) 

where ,itpy itpx  denote sample means, itX  is the vector of population means of the covariates ,x  and ˆ
tp  

are estimated regression coefficients. The coefficients are estimated separately for each period and each 

wave, but they are based on the national samples combining data from all areas. The survey regression 

estimator is an approximately design-unbiased estimator for the population parameters that, like the GREG 

estimator, uses auxiliary information to reduce nonresponse bias. See Boonstra and van den Brakel (2016) 

for more details on the model selected to compute the survey regression estimates. Even though the 
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regression coefficient estimates in (3.1) are not area-specific, the survey regression estimator is a direct 

domain estimator in the sense that it is primarily based on the data obtained in that particular domain and 

month, and therefore it has uncacceptably large standard errors due to the small monthly domain sample 

sizes. 

The initial estimates for the different waves give rise to systematic differences in unemployment 

estimates, generally termed rotation group bias (RGB) (Bailar, 1975). The initial estimates for 

unemployement for waves 2 to 5 are systematically smaller compared to the first wave. This RGB has many 

possible causes, including selection, mode and panel effects (van den Brakel and Krieg, 2009). See Boonstra 

and van den Brakel (2016) for details and graphical illustrations. 

The time series models also require variance estimates corresponding to the initial estimates. We use the 

following cross-sectionally smoothed estimates of the design variances of the survey regression estimates,  

       2 2

=1

1 1ˆ ˆ ˆ= 1 ,
Am

itp itp itp tp itp
iitp tp A

v Y n n
n n m

  
    with  

 
2 2

=1

1
ˆ ˆ= .

1

itpn

itp ijtp
jitp

e
n


   (3.2) 

Here Am  denotes the number of areas, itpn  is the number of respondents in area ,i  period t  and wave ,p  

=1
= ,Am

tp itpi
n n  and ˆijtpe  are residuals of the survey regression estimator. The within-area variances 2ˆ itp  

are pooled over the domains to obtain more stable variance approximations. The use of (3.2) can be further 

motivated as follows. Recall that the sample design is self-weighted. Calculating within-area variances 2ˆ itp  

therefore approximately accounts for the stratification, which is a slightly more detailed regional variable 

than province. The variance approximation also accounts for calibration and nonresponse correction, since 

the within-area variances are calculated over the residuals of the survey regression estimator. The variance 

approximation does not explicitly account for the clustering of persons within households. However, the 

intra-cluster correlation for unemployment is small. In addition, registered unemployment is used as a 

covariate in the survey regression estimator. Since this covariate explains a large part of the variation of 

unemployment, the intra-cluster correlation between the residuals is further reduced. 

The panel design induces several non-zero correlations among initial estimates for the same province 

and different time periods and waves. These correlations are due to partial overlap of the sets of sample 

units on which the estimates are based. Such correlations exist between estimates for the same province in 

months 1 2,t t  and based on waves 1 2,p p  whenever  2 1 2 1= 3 12.t t p p    The covariances between 

1 1

ˆ
it pY  and 

2 2

ˆ
it pY  are estimated as (see e.g., Kish (1965))  

      1 1 2 2

1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2

ˆ ˆ ˆ ˆˆ, = ,it p t p
it p it p t p t p it p it p

it p it p

n
v Y Y v Y v Y

n n
  (3.3) 

with  

  
 

1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2
=1 =1

1
ˆ ˆ ˆ= ,

it p t pA
nm

t p t p ijt p ijt p
i jt p t p A

e e
n m


     
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where 
1 1 2 2it p t pn  is the number of units in the overlap, i.e., the number of observations on the same units in 

area i  between period and wave combinations  1 1,t p  and  2 2, ,t p  and 
1 1 2 2 1 1 2 2=1

= .Am

t p t p it p t pi
n n  The 

estimated (auto)correlation coefficient 
1 1 2 2

ˆ t p t p  is computed as the correlation between the residuals of the 

linear regression models underlying the survey regression estimators at  1 1,t p  and  2 2, ,t p  based on the 

overlap of both samples over all areas. This way they are pooled over areas in the same way as are the 

variances 2ˆ .tp  Together, (3.2) and (3.3) estimate (an approximation of) the design-based covariance matrix 

for the initial survey regression estimates. See Boonstra and van den Brakel (2016) for more details. 

Time series model estimates for monthly provincial unemployment figures will be compared with direct 

estimates. The procedure for calculating monthly direct estimates is based on the approach that was used 

before 2010 to calculate official rolling quarterly figures for the labour force. Let .
ˆ

itY  denote the monthly 

direct estimate for provinces, which is calculated as the weighted mean over the five panel survey regression 

estimates where the weights are based on the variance estimates. To correct for RGB, these direct estimates 

are multiplied by a ratio, say ,itf  where the numerator is the mean of the survey regression estimates (3.1) 

for the first wave over the last three years and the denominator is the mean of monthly direct estimates .
ˆ

itY  

also over the last three years, i.e., . .
ˆ= .it it itY f Y  See Boonstra and van den Brakel (2016) for details on 

calculating .
ˆ

itY  and .itY  including a variance approximation. 

 
4  Time series small area estimation 
 

The initial monthly domain estimates for the separate waves, accompanied by variance and covariance 

estimates, are the input for the time series models. In the next step STM models are applied to smooth the 

initial estimates and correct for RGB. The estimated models are used to make predictions for provincial 

unemployment fractions, provincial unemployment trends, and month-to-month changes in the trends. In 

Subsection 4.1 the STMs are defined and subsequently expressed as state space models fitted in a frequentist 

framework. Subsection 4.2 explains how these STMs can be expressed as time series multilevel models 

fitted in an hierarchical Bayesian framework. 

 

4.1  State space model 
 

This section develops a structural time series model for the monthly data at provincial level for twelve 

provinces simultaneously to take advantage of temporal and cross-sectional sample information. Let 

 1 5
ˆ ˆ ˆ= , ,

t

it it itY Y Y  denote the five-dimensional vector containing the survey regression estimates ˆ
itpY  

defined by (3.1) in period t  and domain .i  This vector can be modeled with the folowing structural time 

series model (Pfeffermann, 1991; van den Brakel and Krieg, 2009, 2015): 

 5
ˆ = ,it it it itY e     (4.1) 

where  5 = 1, 1, 1, 1, 1 ,t it  a scalar denoting the true population parameter for period t  in domain ,i  

it  a five-dimensional vector that models the RGB and ite  a five-dimensional vector with sampling errors. 

The population parameter it  in (4.1) is modeled as  
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 = ,it it it itL S     (4.2) 

where itL  denotes a stochastic trend model to capture low frequency variation (trend plus business cycle), 

itS  a stochastic seasonal component to model monthly fluctuations and it  a white noise for the unexplained 

variation in .it  For the stochastic trend component, the so-called smooth trend model is used, which is 

defined by the following set of equations:  

  ind 2
1 1 1 , ,= , = , 0, .it it it it it R it R it RiL L R R R        N  (4.3) 

For the stochastic seasonal component the trigonometric form is used, see Boonstra and van den Brakel 

(2016) for details. The white noise in (4.2) is defined as  ind 20, .
iit    N  

The RGB between the series of the survey regression estimates, is modeled in (4.1) with 

 1 2 3 4 5= , , , , .t
it it it it it it       The model is identified by taking 1 = 0.it  This implies that the relative 

bias in the follow-up waves with respect to the first wave is estimated and it assumes that the survey 

regression estimates of the first wave are the most reliable approximations for ,it  see van den Brakel and 

Krieg (2009) for a motivation. The remaining components model the systematic difference between wave 

p  with respect to the first wave and are modeled as random walks to allow for time dependent patterns in 

the RGB,  

  ind 2
1; , ,= , 0, , = 2, 3, 4, 5.

iitp it p itp itp p         N  (4.4) 

Finally, a time series model for the survey errors is developed. Let  1 2 3 4 5= , , , , t
it it it it it ite e e e e e  denote 

the five-dimensional vector containing the survey errors of the five waves. The variance estimates of the 

survey regression estimates are used as prior information in the time series model to account for 

heteroscedasticity due to varying sample sizes over time using the following survey error model:  

  ˆ= ,itp itp itpe v Y e  (4.5) 

and  ˆ
itpv Y  defined by (3.2). Since the first wave is observed for the first time there is no autocorrelation 

with samples observed in the past. To model the autocorrelation between survey errors of the follow-up 

waves, appropriate AR models for ,itpe  are derived by applying the Yule-Walker equations to the correlation 

coefficients  

 1 1 2 2

1 1 2 2

1 1 2 2

ˆ ,it p t p

t p t p

it p it p

n

n n
  (4.6) 

which are derived from the micro data as described in Section 3. Based on this analysis an AR(1) model is 

assumed for wave 2 through 5 where the autocorrelation coefficients depend on wave and month. These 

considerations result in the following model for the survey errors:  

 
 

      
1

ind 2
1 1 1

ind 2
1 3 1

, 0, ,

, 0, , = 2, , 5,

i

ip

it it it

itp itp itpit p p i t p

e

e e p





  

    



 



 





N

N
 

(4.7)
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with  1it p p  the time-dependent partial autocorrelation coefficients between wave p  and 1p   derived 

from (4.6). As a result,     1

2
1 1

ˆVar = ,
iit ite v Y   and       2 2

1
ˆVar = 1

ipitp itp it p pe v Y     for =p  

2, , 5.  The variances 2
ip  are scaling parameters with values close to one for the first wave and close to 

  21
1=1

1
T

it p pT t    for the other waves, where T  denotes the length of the observed series. 

Model (4.1) uses sample information observed in preceding periods within each domain to improve the 

precision of the survey regression estimator and accounts for RGB and serial correlation induced by the 

rotating panel design. To take advantage of sample information across domains, model (4.1) for the separate 

domains can be combined in one multivariate model:  

 
1 5 1 1 1

5

ˆ

= ,

ˆ
A A A

A

t t t t

m t m t m t
m t

Y e

eY

  

  

                
             

     (4.8) 

where Am  denotes the number of domains, which is equal to twelve in this application. This multivariate 

setting allows to use sample information across domains by modeling the correlation between the 

disturbance terms of the different structural time series components (trend, seasonal, RGB) or by defining 

the hyperparameters or the state variables of these components equal over the domains. In this paper models 

with cross-sectional correlation between the slope disturbance terms of the trend (4.3) are considered, i.e.,  

  
2

,
,

if =   and  =

Cov , = if   and  = .

0 if

Ri

R it
R i t Rii

i i t t

i i t t

t t



  
  

  
  


 

 (4.9) 

The most parsimonious covariance structure is a diagonal matrix where all the domains share the same 

variance component, i.e., 2 2=Ri R   for all i  and = 0
Rii




 for all i  and .i   These are so-called seemingly 

unrelated structural time series models and are a synthetic approach to use sample information across 

domains. A slightly more complex and realistic covariance structure is a diagonal matrix where each domain 

has a separate variance component, i.e., = 0
Rii




 for all i  and .i   In this case the model only borrows 

strength over time and does not take advantage of cross-sectional information. The most complex covariance 

structure allows for a full covariance matrix. Strong correlation between the slope disturbances across the 

domains can result in cointegrated trends. This implies that < Aq m  common trends are required to model 

the dynamics of the trends for the Am  domains and allows the specification of so-called common trend 

models (Koopman, Harvey, Doornik and Shephard, 1999; Krieg and van den Brakel, 2012). Initial STM 

analyses showed that the seasonal and RGB component turned out to be time independent. It is therefore 

not sensible to model correlations between seasonal and RGB disturbance terms. Since the hyperparameters 

of the white noise population domain parameters tend to zero, it turned out to be better to remove this 

component completely from the model implying that modeling correlations between population noise is not 

considered. Correlations between survey errors for different domains is also not considered, since the 

domains are geographical regions from which samples are drawn independently. 
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As an alternative to a model with a full covariance matrix for the slope disturbances, a trend model is 

considered that has one common smooth trend model for all provinces plus 1Am   trend components that 

describe the deviation of each domain from this overall trend. In this case (4.2) is given by  

 
1 1 1

*

= ,

= , = 2, , .

t t t t

it t it it it A

L S

L L S i m





 

   




 

(4.10)
 

Here tL  is the overal smooth trend component, defined by (4.3), and *
itL  the deviation from the overall 

trend for the separate domains, defined as local levels  

  ind* * 2
1 , ,= , 0, ,it it L it L it LiL L      N  (4.11) 

or as smooth trends as in (4.3). These trend models implicitly allow for (positive) correlations between the 

trends of the different domains. 

The parameters to be estimated with the time series modeling approach are the trend and the signal. The 

latter is defined as the trend plus the seasonal component. The time series approach is particularly suitable 

for estimating month-to-month changes. Seasonal patterns hamper a straightforward interpretation of 

month-to-month changes of direct estimates and smoothed signals. Therefore month-to-month changes are 

calculated for the trends only. Due to the strong positive correlation between the levels of consecutive 

periods, the standard errors of month-to-month changes in the level of the trends are much smaller than 

those of e.g., month-to-month changes of the direct estimates. The month-to-month change of the trend is 

defined as   11 =it it itL L    for models with separate trends for the domains or  1 =it tL   
* *

1 1t it itL L L    for models with an overall trend and 1Am   trends for the deviation from the overall trend 

for the separate domains. This modeling approach is also useful to estimate year-to-year developments for 

trend defined as   1212 =it it itL L    or   * *
12 1212 = .it t t it itL L L L      Year-to-year differences are 

also sensible for signals, since the main part of the seasonal component cancels out. These developments 

are defined equivalently to the year-to-year developments of the trend. 

The aforementioned structural time series models are analyzed by putting them in the so-called state 

space form. Subsequently the Kalman filter is used to fit the models, where the unknown hyperparameters 

are replaced by their ML estimates. The analysis is conducted with software developed in OxMetrics in 

combination with the subroutines of SsfPack 3.0, (Doornik, 2009; Koopman, Shephard and Doornik, 1999, 

2008). ML estimates for the hyperparameters are obtained using the numerical optimization procedure 

maxBFGS in OxMetrics. More details about the state space representation, initialization of the Kalman filter 

and software used to fit these models is included in Boonstra and van den Brakel (2016). 

 
4.2  Time series multilevel model 
 

For the description of the multilevel time series representation of the STMs, the initial estimates ˆ
itpY  are 

combined into a vector  111 112 115 121
ˆ ˆ ˆ ˆ ˆ= , , , , , ,Y Y Y Y Y

   i.e., wave index runs faster than time index 
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which runs faster than area index. The numbers of areas, periods and waves are denoted by ,Am Tm  and 

,Pm  respectively. The total length of Ŷ  is therefore = =A T Pm m m m 12(areas) * 72(months) * 5(waves) = 

4,320. Similarly, the variance estimates  ˆ
itpv Y  are put in the same order along the diagonal of a m m  

covariance matrix .  

The covariance matrix   is not diagonal because of the correlations induced by the panel design. It is a 

sparse band matrix, and the ordering of the vector Ŷ  is such that it achieves minimum possible bandwidth, 

which is advantageous from a computational point of view. 

The multilevel models considered for modeling the vector of direct estimates ˆ ,Y  take the general linear 

additive form  

    ˆ ,Y X Z v e 


    (4.12) 

where X  is a m p  design matrix for the fixed effects ,  and the  Z   are  m q   design matrices for 

random effect vectors   .v   Here the sum over   runs over several possible random effect terms at different 

levels, such as a national level smooth trend, provincial local level trends, white noise, etc. This is explained 

in more detail below. The sampling errors  111 112 115 121= , , , , ,e e e e e    are taken to be normally 

distributed as 

  0,e N  (4.13) 

where =1= mA
i i i    with i  the covariance matrix for the initial estimates for province ,i  and i  a 

province-specific variance scale parameter to be estimated. As described in Section 3 the design variances 

in = i i    are pooled over provinces and because of the discrete nature of the unemployment data they 

thereby lose some of their dependence on the unemployment level. It was found that incorporating the 

variance scale factors i  allows the model to rescale the estimated design variances to a level that better fits 

the data. 

To describe the general model for each vector  v   of random effects, we suppress the superscript .  

Each vector v  has =q dl  components corresponding to d  effects allowed to vary over l  levels of a factor 

variable. In particular,  

  0, ,v A VN  (4.14) 

where V  and A  are d d  and l l  covariance matrices, respectively. As in Section 4.1 the covariance 

matrix V  is allowed to be parameterised in three different ways. Most generally, it is an unstructured, i.e., 

fully parameterised covariance matrix. More parsimonious forms are  2 2
;1 ;= diag , ,v v dV    or 

2= .v dV I  If = 1d  the three parameterisations are equivalent. The covariance matrix A  describes the 

covariance structure between the levels of the factor variable, and is assumed to be known. It is typically 

more convenient to use the precision matrix 1=AQ A  as it is sparse for many common temporal and spatial 

correlation structures (Rue and Held, 2005). 
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4.2.1  Relations between state space and time series multilevel representations 
 

A single smooth trend can be represented as a random intercept  = 1d  varying over time  = ,Tl m  

with temporal correlation determined by a T Tm m  band sparse precision matrix AQ  associated with a 

second order random walk (Rue and Held, 2005). In this case 2= vV   and the design matrix Z  is the 

Tm m  indicator matrix for month, i.e., the matrix with a single 1 in each row for the corresponding month 

and 0s elsewhere. The sparsity of both AQ  and Z  can be exploited in computations. The precision matrix 

for the smooth trend component has two singular vectors,  = 1, 1, , 1
Tm   and  1, 2, , .Tm   This 

means that the corresponding specification (4.14) is completely uninformative about the overall level and 

linear trend. In order to prevent unidentifiability among various terms in the model, the overall level and 

trend can be removed from v  by imposing the constraints = 0,Rv  where R  is the 2 Tm  matrix with the 

two singular vectors as its rows. The overall level and trend are then included in the vector   of fixed 

effects. In the state space representation, this model is obtained by defining one trend model (4.3) for all 

domains, i.e., =it tL L  and =it tR R  for all .i  Defining the state variables for the trend equal over the 

domains is a very synthetic approach to use sample information from other domains and is based on 

assumptions that are not met in most cases. 

A smooth trend for each province is obtained with = ,Ad m = ,Tl m  and V  a A Am m  covariance 

matrix, either diagonal with a single variance parameter, diagonal with Am  variance parameters, or 

unstructured, i.e., fully parametrised in terms of Am  variance parameters and  1 2A Am m   correlation 

parameters. The design matrix is 
A T Pm m mI I    in this case. In the state space representation, these 

models are obtained with trend model (4.3) and covariance structure (4.9). 

An alternative trend model consists of a single global smooth trend (second order random walk) 

supplemented by a local level trend, i.e., an ordinary (first order) random walk, for each province. The latter 

can be modeled as discussed in the previous paragraph, but with precision matrix associated with a first 

order random walk. This trend model corresponds to the models (4.10) and (4.11) in the state space context. 

In contrast to the state space approach, it is not necessary to remove one of the provincial random walk 

trends from the model for identifiability. The reason is that in the multilevel approach constraints are 

imposed to ensure that the smooth overall trend as well as all provincial random walk trends sum to zero 

over time. The constrained components correspond to global and provincial intercepts, which are separately 

included in the model as fixed effects with one provincial fixed effect excluded. 

Seasonal effects can be expressed in terms of correlated random effects (4.14) as well. The trigonometric 

seasonal is equivalent to the balanced dummy variable seasonal model (Proietti, 2000; Harvey, 2006), 

corresponding to first order random walks over time for each month, subject to a sum-to-zero constraint 

over the months. In this case = 12d  (seasons), 2
12= ,vV I  and = Tl m  with AQ  the precision matrix of a 

first order random walk. The sum-to-zero constraints over seasons at each time, together with the sum-to-

zero constraints over time of each random walk can be imposed as = 0Rv  with R  the  12 12T Tm m   

matrix 
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Together with fixed effects for each season (again with a sum-to-zero constraint imposed) this random effect 

term is equivalent to the trigonometric seasonal. It can be extended to a seasonal for each province, with a 

separate variance parameter for each province. 

To account for the RGB, the multilevel model includes fixed effects for waves 2 to 5. These effects can 

optionally be modeled dynamically by adding random walks over time for each wave. Another choice to be 

made is whether the fixed and random effects are crossed with province. 

Further fixed effects can be included in the model, for example those associated with the auxiliary 

variables used in the survey regression estimates. Some fixed effect interactions, for example season   

province or wave   province might alternatively be modeled as random effects to reduce the risk of 

overfitting. 

Finally, a white noise term can be added to the model, to account for unexplained variation by area and 

time in the signal. 

Model (4.12) can be regarded as a generalization of the Fay-Herriot area-level model. The Fay-Herriot 

model only includes a single vector of uncorrelated random effects over the levels of a single factor variable 

(typically areas). The models used in this paper contain various combinations of uncorrelated and correlated 

random effects over areas and months. Earlier accounts of multilevel time series models extending the Fay-

Herriot model are Rao and Yu (1994); Datta et al. (1999); You (2008). In Datta et al. (1999) and You (2008) 

time series models are used with independent area effects and first-order random walks over time for each 

area. In Rao and Yu (1994) a model is used with independent random area effects and a stationary 

autoregressive AR(1) instead of a random walk model over time. In You et al. (2003) the random walk 

model was found to fit the Canadian unemployment data slightly better than AR(1) models with 

autocorrelation parameter fixed at 0.5 or 0.75. We do not consider AR(1) models in this paper, and refer to 

Diallo (2014) for an approach that allows both stationary and non-stationary trends. Compared to the 

aforementioned references a novel feature of our model is that smooth trends are considered instead of or 

in addition to first-order random walks or autoregressive components. We also include independent area-

by-time random effects as a white noise term accounting for unexplained variation at the aggregation level 

of interest. 

 
4.2.2  Estimating time series multilevel models 
 

A Bayesian approach is used to fit model (4.12)-(4.14). This means we need prior distributions for all 

(hyper)parameters in the model. The following priors are used: 
 

•  The data-level variance parameters i  for = 1, , Ai m  are assigned inverse chi-squared priors 

with degrees of freedom and scale parameters equal to 1.  
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•  The fixed effects are assigned a normal prior with zero mean and fixed diagonal variance matrix 

with very large values (1e10).  

•  For a fully parameterized covariance matrix V  in (4.14) we use the scaled-inverse Wishart prior 

as proposed in O’Malley and Zaslavsky (2008) and recommended by Gelman and Hill (2007). 

Conditionally on a d -dimensional vector parameter ,  

                     Inv Wishart , diag diagV V v   Y  (4.16) 

where = 1d   is chosen, and = .dIY  The vector   is assigned a normal distribution 

 0, .dIN  

•  All other variance parameters appearing in a diagonal matrix V  in (4.14) are assigned, 

conditionally on an auxiliary parameter ,  inverse chi-squared priors with 1 degree of freedom 

and scale parameter 2 .  Each parameter   is assigned a  0, 1N  prior. Marginally, the 

standard deviation parameters have half-Cauchy priors. Gelman (2006) demonstrates that these 

priors are better default priors than the more common inverse chi-squared priors.  

 
The model is fit using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs sampler 

(Geman and Geman, 1984; Gelfand and Smith, 1990). The multilevel models considered belong to the class 

of additive latent Gaussian models with random effect terms being Gaussian Markov Random Fields 

(GMRFs), and we make use of the sparse matrix and block sampling techniques described in Rue and Held 

(2005) for efficiently fitting such models to the data. Moreover, the parametrization in terms of the 

aforementioned auxiliary parameters   (Gelman, Van Dyk, Huang and Boscardin, 2008), greatly improves 

the convergence of the Gibbs sampler used. See Boonstra and van den Brakel (2016) for more details on the 

Gibbs sampler used, including specifications of the full conditional distributions. The methods are 

implemented in R using the mcmcsae R-package (Boonstra, 2016). 

For each model considered, the Gibbs sampler is run in three independent chains with randomly 

generated starting values. Each chain is run for 2,500 iterations. The first 500 draws are discarded as a “burn-

in sample”. From the remaining 2,000 draws from each chain, we keep every fifth draw to save memory 

while reducing the effect of autocorrelation between successive draws. This leaves 3 * 400 = 1,200 draws 

to compute estimates and standard errors. It was found that the effective number of independent draws was 

near 1,200 for most model parameters, meaning that most autocorrelation was indeed removed by the 

thinning. The convergence of the MCMC simulation is assessed using trace and autocorrelation plots as 

well as the Gelman-Rubin potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the 

mixing of the chains. The diagnostics suggest that all chains converge well within the burnin stage, and that 

the chains mix well, since all Gelman-Rubin factors are close to one. Also, the estimated Monte Carlo 

simulation errors (accounting for any remaining autocorrelation in the chains) are small compared to the 

posterior standard errors for all parameters, so that the number of retained draws is sufficient for our 

purposes. 
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The estimands of interest can be expressed as functions of the parameters, and applying these functions 

to the MCMC output for the parameters results in draws from the posteriors for these estimands. In this 

paper we summarize those draws in terms of their mean and standard deviation, serving as estimates and 

standard errors, respectively. All estimands considered can be expressed as linear predictors, i.e., as linear 

combinations of the model parameters. Estimates and standard errors for the following estimands are 

computed: 
 

•  Signal: the vector it  including all fixed and random effects, except those associated with waves 

2 to 5. These correspond to the fitted values    X Z v 


    associated with each fifth row 

1, 6, 11,  of Ŷ  and the design matrices.  

•  Trend: prediction of the long-term trend. This is computed by only incorporating the trend 

components of each model in the linear predictor. For most models considered the trend 

corresponds to seasonally adjusted figures, i.e., predictions of the signal with all seasonal effects 

removed.  

•  Growth of trend: the differences between trends at two consecutive months.  

 

5  Results 
 

The results obtained with the state space and multilevel time series representations of the STMs are 

described in Subsections 5.1 and 5.2, respectively. First, two discrepancy measures are defined to evaluate 

and compare the different models. The first measure is the Mean Relative Bias (MRB), which summarizes 

the differences between model estimates and direct estimates averaged over time, as percentage of the latter. 

For a given model ,M  the MRB i  is defined as  

 
 .

.

ˆ
MRB 100%,

M
it itt

i

itt

Y

Y

 
 





  (5.1) 

where .itY  are the direct estimates by province and month incorporating the ratio RGB adjustment 

mentioned at the end of Section 3. This benchmark measure shows for each province how much the model-

based estimates deviate from the direct estimates. The discrepancies should not be too large as one may 

expect that the direct estimates averaged over time are close to the true average level of unemployment. The 

second discrepancy measure is the Relative Reduction of the Standard Errors (RRSE) and measures the 

percentages of reduction in estimated standard errors between model-based and direct estimates, i.e.,  

       . .

1 ˆRRSE 100% se se se ,M
i it it it

tT

Y Y
m

      (5.2) 

for a given model .M  Here the estimated standard errors for the direct estimates follow from a variance 

approximation for . ,itY  whereas the model-based standard errors are posterior standard deviations or follow 

from the Kalman filter/smoother. Posterior standard deviations, standard errors obtained via the Kalman 

filter and standard errors of the direct estimators come from different frameworks and are formally spoken 
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not comparable. They are used in (5.2) to quantify the reduction with respect to the direct estimator only but 

not intended as model selection criteria. 

 

5.1  Results state space models 
 

Ten different state space models are compared. Four different trend models are distinguished. The first 

trend component is a smooth trend model without correlations between the domains (4.3), abbreviated as 

T1. The second trend model, T2, is a smooth trend model (4.3) with a full correlation matrix for the slope 

disturbances (4.9). The third trend component, T3, is a common smooth trend model for all provinces with 

eleven local level trend models for the deviation of the domains from this overall trend ((4.10) in 

combination with (4.11)). The fourth trend model, T4, is a common smooth trend model for all provinces 

with eleven smooth trend models for the deviation of the domains from this overall trend ((4.10) in 

combination with (4.3)). In T3 and T4 the province Groningen is taken equal to the overall trend. The 

component for the RGB (4.4) can be domain specific (indicated by letter “R” in the model’s name) or chosen 

equal for all domains (no “R” in the model’s name). An alternative simplicfication is to assume that RGB 

for waves 2, 3, 4 and 5 are equal but domain specific (indicated by “R2”). In a similar way the seasonal 

component can be chosen domain specific (indicated by “S”) or taken equal for all domains. All models 

share the same component for the survey error, i.e., an AR(1) model with time varying autocorrelation 

coefficients for wave 2 through 5 to model the autocorrelation in the survey errors. The following state space 

models are compared: 
 

T1SR:  Smooth trend model and no correlation between slope disturbances; seasonal and RGB 

domain specific.  

T2SR:  Smooth trend model with a full correlation matrix for the slope disturbances; seasonal and 

RGB domain specific.  

T2S:  Smooth trend model with a full correlation matrix for the slope disturbances; seasonal 

domain specific, RGB equal over all domains.  

T2R:  Smooth trend model with a full correlation matrix for the slope disturbances; seasonal equal 

over all domains, RGB domain specific.  

T3SR:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal and RGB domain specific.  

T3R:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal equal over all domains, RGB domain specific.  

T3R2:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal equal over all domains, RGB is domain specific but assumed to 

be equal for the four follow-up waves.  

T3:  One common smooth trend model for all domains plus eleven local levels for deviations from 

the overall trend; seasonal and RGB equal over all domains.  

T4SR:  One common smooth trend model for all domains plus eleven smooth trend models for 

deviations from the overall trend; seasonal and RGB domain specific.  
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T4R:  One common smooth trend model for all domains plus eleven smooth trend models for 

deviations from the overall trend; seasonal equal over all domains, RGB domain specific.  
 

For all models, the ML estimates for the hyperparameters of the RGB and the seasonals tend to zero, 

which implies that these components are time invariant. Also the ML estimates for the variance components 

of the white noise of the population domain parameters tend to zero. This component is therefore removed 

from model (4.2). The ML estimates for the variance components of the survey errors in the first wave vary 

between 0.93 and 1.90. For the follow-up waves, the ML estimates vary between 0.86 and 1.80. The 

variances of the direct estimates are pooled over the domains (3.2), which might introduce some bias, e.g., 

underestimation of the variance in domains with high unemployment rates. Scaling the variances of the 

survey errors with the ML estimates for 2
ip  is neccessary to correct for this bias. The ML estimates for the 

hyperparameters for the trend components can be found in Boonstra and van den Brakel (2016). 

Models are compared using the log likelihoods. To account for differences in model complexity, Akaike 

Information Criteria (AIC) and Bayes Information Criteria (BIC) are used, see Durbin and Koopman (2012), 

Section 7.4. Results are summarized in Table 5.1. Parsimonious models where the seasonals or RGB are 

equal over the domains are preferred by the AIC or BIC criteria. Note, however, that the likelihoods are not 

completely comparable between models. To obtain comparable likelihoods, the first 24 months of the series 

are ignored in the computation of the likelihood for all models. Some of the likelihoods are nevertheless 

odd. For example the likelihood of T2SR is smaller than the likelihood of T2S, although T2SR contains 

more model parameters. This is probably the result of large and complex time series models in combination 

with relatively short time series, which gives rise to flat likelihood functions. Also from this point of view, 

sparse models that avoid over-fitting are still favorable, which is in line with the results of the AIC and BIC 

values in Table 5.1. 

 

Table 5.1 
AIC and BIC for the state space models 
 

Model   log likelihood   states   hyperparameters  AIC   BIC  
T1SR   9,813.82   204   24   -399.41   -390.52  
T2SR   9,862.86   204   35   -400.99   -391.68  
T2S   9,879.03   160   35   -403.50   -395.90  
T2R   9,859.97   83   35   -405.92   -401.32  
T3SR   9,855.35   193   24   -401.60  -393.14 
T3R   9,851.62   72   24   -406.48   -402.74  
T3R2   9,871.65 36 24 -408.82 -406.48 
T3   9,881.16   28   24  –409.55  -407.52  
T4SR   9,857.47   204   24  -401.23  -392.34  
T4R   9,853.65   83   24  -406.11  -401.94  

 
Modeling correlations between slope disturbances of the trend results in a significant model 

improvement. Model T1SR, e.g., is nested within T2SR and a likelihood ratio test clearly favours the latter. 

For model T2SR it follows that the dynamics of the trends for these 12 domains can be modeled with only 

2 underlying common trends, since the rank of the 12 12  covariance matrix equals two. As a result the 

full covariance matrix for the slope disturbances of the 12 domains is actually modeled with 23 instead of 
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78 hyperparameters. This shows that the correlations between the slope disturbances are very strong. 

Correlations indeed vary between 1.00 and 0.98. See Boonstra and van den Brakel (2016) for the ML 

estimates of the full covariance matrix. 

Table 5.2 shows the MRB, defined by (5.1). Models that assume that the RGB is equal over the domains, 

i.e., T2S and T3, have large relative biases for some of the domains. Large biases occur in the domains 

where unemployment is large (e.g., Groningen) or small (e.g., Utrecht) compared to the national average. 

A possible compromise between parsimony and bias is to assume that the RGB is equal for the four follow-

up waves but still domain specific (T3R2). For this model the bias is small, with the exception of Gelderland. 

 

Table 5.2 
Mean Relative Bias averaged (5.1) over time (%), per province for state space models 
 

  Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb 
T1SR  1.1 0.5 2.0 -0.2 0.1 3.4 0.1 0.6 1.7 -2.1 0.5 2.1 
T2SR  1.2 0.7 2.2 -0.1 0.2 3.5 0.2 0.6 1.7 -2.1 0.5 2.1 
T2S  -3.1 3.1 0.7 0.9 -4.4 2.8 2.4 0.8 0.5 1.7 1.8 1.5 
T2R  0.9 0.8 1.8 -0.2 -0.4 3.4 0.1 0.6 1.7 -1.6 0.6 2.2 
T3SR  0.8 0.6 2.0 -0.2 -0.3 3.5 0.3 0.5 1.7 -2.0 0.6 2.0 
T3R2  -0.1 1.3 2.1 -0.6 -0.8 3.6 0.9 0.6 1.5 -1.1 1.0 1.2 
T3R  0.5 0.7 1.8 -0.2 -0.8 3.5 0.3 0.5 1.6 -1.5 0.7 2.1 
T3  -4.0 2.5 0.1 0.9 -5.0 2.8 2.3 0.7 0.6 2.5 2.0 1.3 
T4SR  0.8 0.7 2.1 -0.2 -0.0 3.5 0.2 0.6 1.7 -1.9 0.5 2.1 
T4R  0.6 0.7 1.8 -0.2 -0.6 3.4 0.1 0.6 1.7 -1.3 0.7 2.1 

 
In Figure 5.1 the smoothed trends and standard errors of models T1SR, T2SR and T2S are compared. 

The month-to-month development of the trend and the standard errors for these three models are compared 

in Figure 5.2. The smoothed trends obtained with the common trend model are slightly more flexible 

compared to a model without correlation between the slope disturbances. This is clearly visible in the month-

to-month change of the trends. Modeling the correlation between slope disturbances clearly reduces the 

standard error of the trend and the month-to-month change of the trend. Assuming that the RGB is equal for 

all domains (model T2S) affects the level of the trend and further reduces the standard error, mainly since 

the number of state variables are reduced. The difference between the trend under T2SR and T2S is a level 

shift. This follows from the month-to-month changes of the trend under model T2SR and T2S, which are 

exactly equal. According to AIC and BIC the reduction of the number of state variables by assuming equal 

RGB for all domains is an improvement of the model. In this application, however, interest is focused on 

the model fit for the separate domains. Assuming that the RGB is equal over all domains is on average 

efficient for overall goodness of fit measures, like AIC and BIC, but not necessarily for all separate domains. 

The bias introduced in the trends of some of the domains by taking the RGB equal over the domains is 

undesirable. 

In Figure 5.3 the smoothed trends and standard errors of models T2SR, T3SR and T4SR are compared. 

The month-to-month developments of the trend and the standard errors can be found in Boonstra and 

van den Brakel (2016). The trends obtained with one overall smooth trend plus eleven trends for the domain 
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deviations of the overall trend resemble trends obtained with the common trend model. In this application 

the dynamics based on the two common trends of model T2SR are reasonably well approximated by the 

alternative trends of models T3SR and T4SR. This is an empirical finding that may not generalize to other 

situations, particularly when more common factors are required. The common trend model, however, has 

the smallest standard errors for the trend. Furthermore, the trends under the model with a local level for the 

domain deviations from the overall trend are in some domains more volatile compared to the other two 

models. This is most obvious in the month-to-month changes of the trend. It is a general feature for trend 

models with random levels to have more volatile trends, see Durbin and Koopman (2012), Chapter 3. The 

more flexible trend model of T3 also results in a higher standard error of the month-to-month changes. 

Assuming that the seasonals are equal for all domains is another way of reducing the number of state 

variables and avoid over-fitting of the data. This assumption does not affect the level of the trend since the 

MRB is small (see Table 5.2) and results in a significant improvement of the model according to AIC and 

BIC. Particularly if interest is focused on trend estimates, some bias in the seasonal patterns is acceptable 

and a model with a trend based on T2, or T4, with the seasonal component assumed equal over the domains, 

might be a good compromise between a model that accounts sufficiently for differences between domains 

and model parsimony to avoid over-fitting of the data. 

Model T3 is the most parsimonious model that is the best model according to AIC and BIC. Particularly 

the assumption of equal RGB results in biased trend estimates in some of the domains (see Table 5.2). See 

Boonstra and van den Brakel (2016) for a comparison of the trend and the month-to-month development of 

the trend of models T2R, T3 and T4R. Assuming that the seasonals are equal over the domains, results in a 

less pronounced seasonal pattern. See Boonstra and van den Brakel (2016) for a comparison of the signals 

for models T2SR and T2R. 

In Boonstra and van den Brakel (2016) results for year-to-year change of the trends under models T2R 

and T3R2 are included. Time series estimates for year-to-year change are very stable and precise and greatly 

improve the direct estimates for year-to-year change. 

Table 5.3 shows the RRSE, defined by (5.2), for the ten state space models. Recall that the RRSE 

quantifies the reduction with respect to the direct estimator and is not intended as a model selection criterion. 

Table 5.4 contains the averages of standard errors for signal, trend, and growth (month-to-month differences 

of trend). The average is taken over all months and provinces. Modeling the correlation between the trends 

explicitly (T2) or implicitly (T3 or T4) reduces the standard errors for the trend and signal significantly. The 

time series modeling approach is particularly appropriate to estimate month-to-month changes through the 

trend component. The precision of the month-to-month changes, however, strongly depends on the choice 

of the trend model. A local level trend model (T3) results in more volatile trends and has a clearly larger 

standard error for the month-to-month change. Parsimonious models where RGB or the seasonal 

components are assumed equal over the domains result in further strong standard error reductions at the cost 

of introducing bias in the trend or the seasonal patterns. 
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Figure 5.1 Comparison of direct estimates and smoothed trend estimates for three models (left) and their 
estimated standard errors (right). 
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Figure 5.2 Comparison of smoothed month-to-month developments (left) and their standard errors (right). 
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Figure 5.3 Comparison of direct estimates and smoothed trend estimates for three models (left) and their 
estimated standard errors (right). 
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Table 5.3 
Relative reductions in standard errors (5.2) of the signal estimates based on the state space models compared to 
those of the direct estimates (%), per province 
 

  Grn Frs Drn Ovr Flv Gld Utr N-H Z-H Zln N-B Lmb 
T1SR  36 36 38 42 43 44 47 47 45 50 47 43 
T2SR  43 42 43 48 49 49 53 53 50 54 53 48 
T2S  49 48 51 53 55 54 58 56 54 58 56 54 
T2R  64 63 62 65 66 63 68 68 63 73 67 64 
T3SR  45 41 45 48 42 51 49 50 48 53 49 50 
T3R  67 62 63 66 56 61 62 64 65 70 60 66 
T3R2  68 63 64 67 57 62 62 65 65 70 60 67 
T3  79 74 76 75 65 69 69 69 69 76 63 76 
T4SR  43 41 45 48 45 50 49 53 50 54 51 49 
T4R  65 63 64 65 62 62 63 68 63 73 63 65 

 
Table 5.4 
Means of standard errors over all months and provinces relative to the mean of the direct estimator’s standard 
errors (%) for the state space models 
 

  se(signal) se(trend) se(growth) 
direct  100   
T1SR  57 41 6 
T2SR  51 33 4 
T2S  46 23 4 
T2R  34 33 4 
T3SR  53 35 9 
T3R  36 35 9 
T3R2  36 34 9 
T3  28 26 9 
T4SR  52 34 4 
T4R  35 34 4 

 
5.2  Results multilevel models 
 

The ten models T1SR to T4R on pages 408-409 fitted as a state space model with the Kalman filter have 

also been fitted using the Bayesian multilevel approach using a Gibbs sampler. See Boonstra and 

van den Brakel (2016) for a detailed description of the fixed effect design matrices and random effect design 

and precision matrices corresponding to these models. The Bayesian approach accounts for uncertainty in 

the hyperparameters by considering their posterior distributions, implying that variance parameters do not 

actually become zero, as frequently happens for the ML estimates in the state space approach. For 

comparison purposes, however, effects absent from the state space model due to zero ML estimates have 

also been suppressed in the corresponding multilevel models. In addition to these ten models we consider 

one more model with extra terms including a dynamic RGB component as well as a white noise term. 

Differences between state space and multilevel estimates based on the ten models considered can arise 

because of 
 

• the different estimation methods, ML versus MCMC, 
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• the different modeling of survey errors. In the multilevel models the survey errors’ covariance 

matrix is taken to be =1= Am
i i i    with i  the covariance matrix of estimated design variances 

for the initial estimates for province ,i  and i  scaling factors, one for each province. In the state 

space models the survey errors are allowed to depend on more parameters though eventually an 

AR(1) model is used to approximate these dependencies, 

• the slightly different parameterizations of the trend components. For the trend in model T3, for 

example, the province of Groningen is singled out by the state space model used, because no local 

level component is added for that province.  

 
The estimates and, to a lesser extent, the standard errors based on the multilevel models are quite similar 

to the results obtained with the state space models. We show this only for the smoothed signals of model 

T2R in Figure 5.4, as the qualitative differences between state space and multilevel results are quite 

consistent over all models. More comparisons for signals, trends and month-to-month developments for 

models T2R and T3R2 can be found in Boonstra and van den Brakel (2016). 

The small differences between the state space and multilevel signal estimates are due to slightly more 

flexible trends in the estimated multilevel models. Larger differences can be seen in the standard errors of 

the signal: the multilevel models yield almost always larger standard errors for provinces with high 

unemployment levels (Flevoland and Zuid-Holland in the figure), whereas for provinces with smaller 

unemployment levels (e.g., Zeeland) the differences are somewhat less pronounced. 

The larger flexibility of the multilevel model trends is most likely due to the relatively large uncertainty 

about the variance parameters for the trend, which is accounted for in the Bayesian multilevel approach but 

ignored in the ML approach for the state space models. The posterior distributions for the trend variance 

parameters are also somewhat right-skewed. The posterior means for the standard deviations are always 

larger than the ML estimates for the corresponding hyperparameters of the state space models (compare 

Table 2 and Table 8 in Boonstra and van den Brakel (2016)). For the models with trend T2, i.e., with a fully 

parametrized covariance matrix over provinces, the multilevel models show positive correlations among the 

provinces, as do the state space ML estimates, but the latter are much more concentrated near 1, whereas 

the posterior means for correlations in the corresponding multilevel model T2SR are all between 0.45 

and 0.8. 

Table 5.5 contains values of the DIC model selection criterion (Spiegelhalter, Best, Carlin and 

van der Linde, 2002), the associated effective number of model parameters eff ,p  and the posterior mean of 

the log-likelihood. The parsimonious model T3 is selected as the most favourable model by the DIC 

criterion. So in this case the DIC criterion selects the same model as the AIC and BIC criteria do for the 

state space models. An advantage of DIC is that it uses an effective number of model parameters depending 

on the size of random effects, instead of just the number of model parameters used in AIC/BIC. That said, 

the numbers effp  are in line with the totals of the numbers of states and hyperparameters in Table 5.1 for 

the state space models. 
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Figure 5.4 Comparison between smoothed signals (left) and their standard errors (right) obtained using state 
space (STS) model T2R and the corresponding multilevel model. 
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Table 5.5 
DIC, effective number of model parameters and posterior mean of log likelihood 
 

  DIC effp  mean llh 

T1SR  -29,054 255 14,655 
T2SR  -29,076 235 14,656 
T2S  -29,129 196 14,662 
T2R  -29,164 118 14,641 
T3SR  -29,081 242 14,662 
T3R  -29,174 126 14,650 
T3R2  -29,217 94 14,655 
T3  -29,230 82 14,656 
T4SR  -29,084 228 14,656 
T4R  -29,170 109 14,640 

 
As was the case for the state space models, the parsimonious model T3 comes with larger average bias 

over time for the provinces Groningen and Flevoland, which have the highest rates of unemployment. Model 

T3R2 has much smaller average biases for Groningen and Flevoland and since its DIC value is not that 

much higher than for model T3, model T3R2 seems to be a good compromise between models T3 and T3R, 

being more parsimonious than T3R and respecting provincial differences better than model T3. 

Table 5.6 contains the average standard errors for signal, trend and month-to-month differences in the 

trend, in comparison to the average for the direct estimates. The average is taken over all months and 

provinces. The results are again similar to the results obtained with the state space models, see Table 5.4, 

although especially the standard errors of month-to-month changes are larger under the multilevel models. 

 
Table 5.6 
Means of standard errors over all months and provinces relative to the mean of the direct estimator’s standard 
errors (%) for the multilevel time series models 
 

  se(signal) se(trend) se(growth) 
direct  100   
T1SR  55 41 8 
T2SR  52 37 6 
T2S  49 33 7 
T2R  39 38 6 
T3SR  53 38 15 
T3R  39 38 15 
T3R2  39 38 15 
T3  34 32 15 
T4SR  51 36 6 
T4R  37 36 6 

 
Finally, a multilevel model based on model T3R2 but with additional random effects has been fitted to 

the data. This extended model includes a white noise term, the balanced dummy seasonal (equivalent to the 

trigonometric seasonal), and a dynamic RGB component. These components were seen to be absent or time 

independent in the state space approach due to zero ML hyperparameter estimates, and therefore were also 
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not included in the multilevel models considered so far. In addition, the extended multilevel model includes 

season by province random effects, as a compromise between fixed provincial seasonal effects and no such 

interaction effects at all. More details and figures comparing the estimation results from this extended model 

to those from multilevel models T3R2 and T3SR can be found in Boonstra and van den Brakel (2016). It 

was found that most additional random effects were small so that the estimates based on the extended model 

are quite close to the estimates based on model T3R2, and the estimated standard errors are only slightly 

larger than those for model T3R2. A DIC value of -29,260 was found, well below the DIC value for model 

T3R2. This improvement in DIC was seen to be almost entirely due to the dynamic RGB component. 

Apparently, modeling the RGB as time-dependent results in a better fit. This seems to be in line with the 

temporal variations in differences between first wave and follow-up wave survey regression estimates, 

visible from Figure 3 in Boonstra and van den Brakel (2016). 

 
6  Discussion 
 

A time series small area estimation model has been applied to a large amount of survey data, comprising 

6 years of Dutch LFS data, to estimate monthly unemployment fractions for 12 provinces over this period. 

Two different estimation approaches for structural time series models (STM) are applied and compared. 

The first one is a state space approach using a Kalman filter, where the unknown hyperparameters are 

replaced by their ML estimates. The second one is a Bayesian multilevel time series approach, using a Gibbs 

sampler. 

The time series models that do not account for cross-sectional correlations and borrow strength over time 

only, already show a major reduction of the standard errors compared to the direct estimates. A further small 

decrease of the standard errors is obtained by borrowing strength over space through cross-sectional 

correlations in the time series models. Another great advantage of the time series model approach concerns 

the estimation of change. Under the multilevel model estimates of change and their standard errors can be 

easily computed, especially when the model fit is in the form of an MCMC simulation. Under the state space 

approach, estimates of change follow directly from the Kalman filter recursion by keeping the required state 

variables from the past in the state vector. The desired estimate for change, including its standard error, 

follows from the contrast of the specific state variables. Month-to-month and year-to-year change of 

monthly data are very stable and precise, which is a consequence of the strong positive correlation between 

level estimates. However, the stability of the estimates of change strongly depends on the choice of the trend 

model. Local level models result in more volatile trend estimates and thus also more volatile estimates of 

change and naturally have a higher standard error compared to smooth trend models. 

In this paper different trend models are considered that model correlation between domains with the 

purpose to borrow strength over time and space. The most complex approach is to specify a full covariance 

matrix for the disturbance terms of the trend component. One way to construct parsimonious models is to 

take advantage of cointegration. In the case of strong correlation between domains the covariance matrix 



420 Boonstra and van den Brakel: Estimation of level and change for unemployment using structural time series models 
 

 
Statistics Canada, Catalogue No. 12-001-X 

will be of reduced rank, which means that the trends of the Am  domains are driven by less than Am  common 

trends. In this application two common trends are sufficient to model the dynamics of the twelve provinces, 

resulting in a strong reduction of the number of hyperparameters required to model the cross-sectional 

correlations between the domains. In order to further reduce the number of state and hyperparameters, 

alternative trend models are considered that implicitly account for cross-sectional correlations. Under this 

approach all domains share an overall trend. Each domain has a domain-specific trend to account for the 

deviation from the overall trend. This can be seen as a simplified form of a common trend model. In this 

application the alternative trend model results in comparable estimates for the trends and standard errors. 

So this approach might be a practical attractive alternative for common trend models. For example if the 

number of domains is large or the number of common factors is larger, then the proposed trend models are 

less complex compared to general common trend models. More research into the statistical properties of 

these alternative trend models is necessary for better understanding the implied covariance structures. 

Several differences between the time series multilevel models fitted in an hierarchical Bayesian 

framework and state space models fitted with the Kalman filter with a frequentist approach can be observed. 

Within the multilevel Bayesian framework different STMs are compared using DIC as a formal model 

selection criterion. Since the state space models are fitted in a frequentist framework, STMs are compared 

with AIC or BIC. An advantage of the DIC criterion used in the Bayesian multilevel approach is that it uses 

the effective number of degrees of freedom as a penalty for model complexity. This implies that the penalty 

for a random effect increases with the size of the variance components of this random factor and varies 

between zero if the variance component equals zero and the number of levels of this factor if the variance 

component tends to infinity. The penalty in AIC or BIC for a random component always equals one, 

regardless the size of its variance component and therefore does not account properly for model complexity. 

Note that for multilevel models fitted in a frequentist framework the so-called conditional AIC is proposed 

(Vaida and Blanchard, 2005) where the penalty for model complexity is also based on the effective degrees 

of freedom. In this case the penalty for a random effect increases as the size of its variance component 

increases in a similar way as with the DIC. For state space models fitted in a frequentist framework such 

model selection criteria seem less readily available. 

A difference between the multilevel models and state space models is that under the former model 

components are more often found to be time varying while under the state space approach most components, 

with the exception of the trend, are estimated as time invariant. This is a result of the method of model 

fitting. Under the frequentist approach applied to the state space models, ML estimates for many 

hyperparameters are on the border of the parameter space, i.e., zero for variance components and one for 

correlations between slope disturbance terms. Under the hierarchical Bayesian approach the entire 

distribution of the (co)variance parameters is simulated resulting in mean values for these hyperparameters 

that are never exactly on the border of the parameter space, e.g., always positive in the case of variance 

components. A consequence of this feature is that the variances of the trend hyperparameters are higher and 

that the covariances between the trend disturbances are smaller than one under the hierarchical Bayesian 
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approach. Another remarkable observation is that the DIC prefers models with time varying RGB and time 

varying seasonal components as well as a white noise term for the population parameter. This results in this 

application in models with a higher degree of complexity under the hierarchical Bayesian multilevel models 

compared to the state space models fitted in a frequentist approach. Differences in estimates for the trend 

and the signals are, however, small. 

An advantage of the hierarchical Bayesian approach is that the standard errors of the domain predictions 

account for the uncertainty about the hyperparameters. As a result the standard errors obtained under the 

hierarchical Bayesian approach of comparable models are slightly higher and less biased compared to the 

state space approach. For the state space approach several bootstrap methods are available to account for 

hyperparameter uncertainty (Pfeffermann and Tiller, 2005) but these methods significantly increase the 

computational cost. 

From a computational point of view there are some differences between the methods too. The Kalman 

filter approach applied to state space models can be used online, producing new filtered estimates by 

updating previous predictions when data for a new month arrives and is from that point of view 

computationally very efficient. The numerical optimization procedure for ML estimation of the 

hyperparameters, on the other hand, can be cumbersome for large multivariate models if the number of 

hyperparameters is large. The Gibbs sampler multilevel approach used here produces estimates for the 

whole time series at once. It must be re-estimated completely when data for a new month arrives. However, 

due to the use of sparse matrices and redundant parameterization the multilevel approach is quite 

competitive computationally, see also Knorr-Held and Rue (2002). An advantage of the simultaneous 

multilevel estimation is that constraints over time can easily be imposed. For example, imposing sum-to-

zero constraints over time allows to include local level provincial trends for all provinces in addition to a 

global smooth trend with no resulting identification issues. 

In this application there is a preference for the time series multilevel models in the hierarchical Bayesian 

framework. One reason is the relatively simple way the DIC criterion can be computed, which better 

accounts for model complexity than AIC or BIC. Also, the Gibbs sampler under the Bayesian approach is 

better suited to fit complex multivariate STMs with large numbers of hyperparameters. In addition, the 

standard errors for the domain predictions obtained under the multilevel models account for the uncertainty 

about the hyperparameters, also in a straightforward way. 

The time series estimates are quite smooth, and a more thorough model evaluation is necessary to find 

out whether that is appropriate or whether the time series model underfits the unemployment data or is open 

to improvement in other ways. There are many ways in which the time series SAE model may be extended 

to further improve the estimates and standard errors. For example, it may be an improvement to use a 

logarithmic link function in the model formulation as in You (2008). Effects would then be multiplicative 

instead of additive. Another possible improvement would come from a more extensive modeling of the 

sampling variances (You and Chapman, 2006; You, 2008; Gómez-Rubio, Best, Richardson, Li and Clarke, 

2010). The models can also be improved by including additional auxiliary information at the province by 
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month level, for instance registered unemployment. In Datta et al. (1999) similar effects associated with 

unemployment insurance are modeled as varying over areas, although not over time. 
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