On a new estimator for the variance of the ratio estimator with small sample corrections
Section 3. A simulation study

3.1  Set-up and main results

In this section we apply the above results to eleven populations. Populations 1-5 are taken from Cochran (1977, pages 152, 182, 203, 325), populations 6 and 7 from Sukhatme (1954, pages 183-184), population 8 from Kish (1995, page 42) and populations 9-11 are taken from Koop (1968). The population sizes vary between 10 and 49. The correlation coefficients between y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG5baaaa@3715@ and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ vary between 0.32 and 0.98, while the coefficients of variation of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ vary between 0.14 and 1.19. For further details, see Table 3.1.

We considered simple random samples without replacement of sizes n = 4 ,   6 , , 14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaiaacYcacaGGGcGaaGjbVlaaiAdacaGG SaGaaGjbVlabgAci8kaacYcacaaMe8UaaGymaiaaisdaaaa@4572@ from these populations (excluding cases where n N ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyyzImRaamOtaiaacMcacaGGUaaaaa@3C04@ For each population, we simulated all ( N n ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaafaqabeGabaaabaWdbiaad6eaa8aabaWdbiaad6ga aaaacaGLOaGaayzkaaaaaa@3AB3@ possible samples of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbaaaa@380C@ provided that this number is not larger than one million. When ( N n ) > 10 6 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaafaqabeGabaaabaWdbiaad6eaa8aabaWdbiaad6ga aaaacaGLOaGaayzkaaGaeyOpa4JaaGymaiaaicdapaWaaWbaaSqabe aapeGaaGOnaaaak8aacaGGSaaaaa@3F05@ we restricted ourselves to drawing one million random samples of size n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbaaaa@380C@ from the population. From these simulated samples, we computed (an accurate estimate of) the true mean square error of Y ¯ ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaaaa@3A02@ for a given population and a given sample size, to be used as a benchmark.

For each sample, we calculated the standard variance estimator for Y ¯ ^ R , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaOGaaiilaaaa@3ABC@ say var ^ ( Y ¯ ^ R ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaabAhacaqGHbGaaeOCaaWdaiaawkWaaiaaykW7caGG OaWaaecaaeaapeGabmywa8aagaqeaaGaayPadaWaaSbaaSqaa8qaca WGsbaapaqabaGccaGGPaWdbiaacYcaaaa@4163@ based on (1.2) with S e 2   MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaDaaaleaapeGaamyzaaWdaeaapeGaaGOmaaaakiaa cckaaaa@3B30@ replaced by s e ^ 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aOWdaiaac6caaaa@3AFD@ This estimator is also the standard estimator of the mean square error of Y ¯ ^ R , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaOGaaiilaaaa@3ABC@ say MSE ^ 0 ( Y ¯ ^ R ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcapeGa aiilaaaa@420E@ with an error of order 1 / n 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiaaigdaaeaacaWGUbWdamaaCaaaleqabaWdbiaaikda aaaaaOGaaiOlaaaa@3AA1@ Furthermore, we calculated the new estimators MSE ^ 1 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGymaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@414F@ and MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@4150@ for the mean square error of Y ¯ ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaaaa@3A02@ from (2.11) and (2.14). It is expected that these estimators are more accurate than the standard estimator, as they have an error of order 1 / n 3 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiaaigdaaeaacaWGUbWdamaaCaaaleqabaWdbiaaioda aaaaaOGaaiOlaaaa@3AA2@


Table 3.1
Key features of the eleven populations used in the simulation study
Table summary
This table displays the results of Key features of the eleven populations used in the simulation study Source and (équation) (appearing as column headers).
Source N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFobaaaa@3A21@ Y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qaceWFzbWdayaaraaaaa@3A53@ X ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qaceWFybWdayaaraaaaa@3A52@ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFsbaaaa@3A25@ S e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFtbWdamaaDaaaleaapeGaa8xzaaWdaeaapeGaaGOmaaaa aaa@3C33@ C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFdbWdamaaBaaaleaapeGaa8hEaaWdaeqaaaaa@3B69@ ρ xy MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFbpWdamaaBaaaleaapeGaa8hEaiaa=Lhaa8aabeaaaaa@3CE4@ ρ xe MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFbpWdamaaBaaaleaapeGaa8hEaiaa=vgaa8aabeaaaaa@3CD0@ ρ ge MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFbpWdamaaBaaaleaapeGaa83zaiaa=vgaa8aabeaaaaa@3CBF@
1 Cochran, page 152 49 128 103 1.24 621 1.01 0.98 -0.34 0.02
2 Cochran, page 182 34 2.91 8.37 0.35 5.72 1.03 0.72 -0.24 0.56
3 Cochran, page 182 34 2.59 4.92 0.53 4.81 1.02 0.73 -0.14 0.38
4 Cochran, page 203 10 54.3 56.9 0.95 6.71 0.17 0.97 0.38 -0.01
5 Cochran, page 325 10 101 58.8 1.72 150 0.14 0.65 -0.29 -0.29
6 Sukhatme, pages 183-184 34 201 218 0.92 3,304 0.77 0.93 -0.23 0.93
7 Sukhatme, pages 183-184 34 218 765 0.29 8,735 0.62 0.83 0.05 0.44
8 Kish, page 42 20 12.8 21.8 0.59 17.8 1.19 0.97 0.23 0.75
9 Koop, population 1 20 4.40 6.30 0.70 0.41 0.67 0.98 -0.06 0.50
10 Koop, population 2 20 4.50 51.2 0.09 4.87 0.44 0.42 -0.50 -0.85
11 Koop, population 3 20 15.6 30.0 0.52 36.3 0.40 0.32 -0.88 0.11

To compare the accuracy of these three estimators, we evaluated their relative bias with respect to the benchmark value for the true mean square error of Y ¯ ^ R : MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaOGaaGjcVlaacQdaaaa@3B59@

RB k = E { MSE ^ k ( Y ¯ ^ R ) } MSE ( Y ¯ ^ R ) MSE ( Y ¯ ^ R ) × 100 % ,           k { 0 , 1 , 2 } . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGsbGaaeOqa8aadaWgaaWcbaWdbiaadUgaa8aabeaak8qacqGH 9aqpdaWcaaWdaeaapeGaamyramaacmaapaqaamaaHaaabaWdbiaab2 eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaapeGaam4AaaWdaeqa aOWaaeWaaeaadaqiaaqaa8qaceWGzbWdayaaraaacaGLcmaadaWgaa WcbaWdbiaadkfaa8aabeaaaOGaayjkaiaawMcaaaWdbiaawUhacaGL 9baacqGHsislcaqGnbGaae4uaiaabweadaqadaWdaeaadaqiaaqaa8 qaceWGzbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaa aOWdbiaawIcacaGLPaaaa8aabaWdbiaab2eacaqGtbGaaeyramaabm aapaqaamaaHaaabaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaa peGaamOuaaWdaeqaaaGcpeGaayjkaiaawMcaaaaacqGHxdaTcaaIXa GaaGimaiaaicdacaGGLaGaaiilaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaam4AaiabgIGiopaacmGabaGaaGimaiaacYcacaaMe8UaaG ymaiaacYcacaaMe8UaaGOmaaGaay5Eaiaaw2haaiaac6caaaa@6D18@

The mean square error MSE ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweacaaMc8+daiaacIcadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacM caaaa@3E7B@ consists of bias 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGIbGaaeyAaiaabggacaqGZbWdamaaCaaaleqabaWdbiaaikda aaGcpaGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWdayaaraaacaGLcm aadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@40CA@ and var ( Y ¯ ^ R ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqG2bGaaeyyaiaabkhacaaMc8+daiaacIcadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacM capeGaaiOlaaaa@3FA1@ For all populations in this study we found that, in spite of the small sample sizes, the bias of Y ¯ ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaaaa@3900@ as an estimator for Y ¯ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGzbWdayaaraaaaa@371C@ was more or less negligible. In fact, the largest relative bias of Y ¯ ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaaaa@3900@ always occurred for n = 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaaaa@38CE@ and varied between -4% and +4%. In other words, in this study the true and estimated mean square errors were dominated by their variance components.

Table 3.2 gives the results. Firstly, it is seen that the standard estimator MSE ^ 0 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404C@ usually underestimates the true mean square error. The negative bias of this estimator can be very large (up to more than -60% for population 8). Secondly, it is striking that for the three populations in Koop’s paper (populations 9-11), MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404E@ always estimates the true MSE of Y ¯ ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaaaa@3900@ with a relative bias of less than 5%. For the other populations, the relative bias is always less than 7% except for populations 1, 6 and 8 with n = 4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaaaa@38CE@ and n = 6. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGOnaiaac6caaaa@3982@ For n 10 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyyzImRaaGymaiaaicdacaGGSaaaaa@3AF5@ MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404E@ is always more accurate than MSE ^ 0 ( Y ¯ ^ R ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcapeGa aiilaaaa@410C@ and in fact this is also true for most cases with n < 10. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyipaWJaaGymaiaaicdacaGGUaaaaa@3A35@ For n 8 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyyzImRaaGioaiaacYcaaaa@3A42@ MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404E@ nearly always performs better than MSE ^ 1 ( Y ¯ ^ R ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGymaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcapeGa aiilaaaa@410D@ which shows that correcting for the bias in s e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aaaa@3930@ is useful. Furthermore, it can be seen from Table 3.2 that, in general, MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404E@ suffers much less from a negative bias than MSE ^ 0 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404C@ while MSE ^ 1 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGymaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404D@ suffers from a positive bias.


Table 3.2
Relative bias RB k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaqGsbGaaeOqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@39F6@ for the three estimators of MSE( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweacaaMc8Uaaeika8aadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaak8qaca qGPaaaaa@3F85@
Table summary
This table displays the results of Relative bias RB k MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaqGsbGaaeOqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@39F6@ for the three estimators of MSE( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweacaaMc8Uaaeika8aadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaak8qaca qGPaaaaa@3F85@ . The information is grouped by population (appearing as row headers), estimator, n=4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ , n=6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ , n=8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ , n=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ , n=12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ and n=14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ (appearing as column headers).
population estimator n=4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ n=6 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ n=8 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ n=10 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ n=12 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@ n=14 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFUbGaeyypa0JaaGinaaaa@3C05@
1 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -48.2% -35.6% -27.1% -21.6% -17.2% -14.2%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 27.4% 15.8% 10.9% 7.7% 6.3% 5.1%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -30.9% -11.7% -5.6% -3.5% -2.1% -1.4%
2 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -34.9% -27.7% -22.3% -18.7% -16.1% -13.6%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 32.6% 10.1% 3.3% 0.5% -0.9% -0.9%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 2.8% 3.4% 1.7% 0.4% -0.5% -0.5%
3 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -37.2% -28.4% -22.4% -17.9% -14.4% -11.6%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 26.1% 7.7% 2.6% 1.0% 0.6% 0.7%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -2.8% -0.6% -1.3% -1.3% -1.1% -0.6%
4 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -1.0% -0.4% -0.1% This is an empty cell This is an empty cell This is an empty cell
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 1.4% 0.5% 0.2% This is an empty cell This is an empty cell This is an empty cell
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 0.7% 0.3% 0.1% This is an empty cell This is an empty cell This is an empty cell
5 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 0.4% 0.7% 0.8% This is an empty cell This is an empty cell This is an empty cell
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 2.0% 1.0% 0.5% This is an empty cell This is an empty cell This is an empty cell
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 0.8% 0.4% 0.2% This is an empty cell This is an empty cell This is an empty cell
6 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -19.2% -17.3% -15.8% -14.7% -14.1% -13.5%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 21.1% 0.8% -5.4% -7.4% -7.9% -7.8%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 20.6% 10.2% 4.9% 2.3% 0.7% -0.3%
7 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -17.8% -12.0% -8.7% -6.7% -5.3% -4.3%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 4.9% 0.3% -0.1% 0.0% 0.0% 0.0%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 0.0% -0.6% -0.5% -0.3% -0.3% -0.2%
8 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -62.3% -45.8% -34.9% -28.0% -23.4% -20.3%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -11.1% -8.2% -6.5% -5.7% -5.3% -4.8%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -34.4% -13.3% -6.4% -4.0% -3.3% -3.2%
9 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -20.1% -13.2% -9.7% -7.6% -6.2% -5.2%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 7.4% 1.0% -0.5% -0.8% -0.8% -0.7%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 0.4% 0.1% -0.2% -0.3% -0.4% -0.4%
10 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -8.9% -2.0% 0.9% 2.5% 3.5% 4.2%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 21.1% 15.4% 10.9% 7.7% 5.4% 3.7%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 0.9% 2.1% 2.0% 1.7% 1.4% 1.1%
11 MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -17.5% -10.1% -6.5% -4.4% -3.0% -2.1%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 3.4% 3.0% 2.3% 1.7% 1.2% 0.8%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -4.3% -1.2% -0.3% 0.0% 0.0% 0.1%
mean MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -24.2% -17.4% -13.3% -13.0% -10.7% -8.9%
MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ 12.4% 4.3% 1.7% 0.5% -0.1% -0.4%
MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D80@ -4.2% -1.0% -0.5% -0.6% -0.6% -0.6%

3.2  Discussion of two specific results

Referring back to Table 3.1, it may be noted that both populations 1 and 8, where the largest relative negative errors occur for MSE ^ 2 ( Y ¯ ^ R ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcapeGa aiilaaaa@410E@ involve a strong correlation ρ x y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacaWG4bGaamyEaaWdaeqaaaaa@3A2C@ in combination with a relatively large value of C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaaaa@3836@ in comparison to the other populations in our study ( ρ x y 0 .97 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGOaGaeqyWdi3damaaBaaaleaapeGaamiEaiaadMhaa8aabeaa k8qacqGHLjYScaqGWaGaaeOlaiaabMdacaqG3aaaaa@3F92@ and C x 1 .01 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabgwMiZkaa bgdacaqGUaGaaeimaiaabgdacaGGPaGaaiOlaaaa@3E41@ It is therefore interesting to examine the effect of these quantities on the accuracy of the estimated mean square error more closely.

Firstly, suppose that the following transformation is applied to the values of x , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4bGaaiilaaaa@37C4@ e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbaaaa@3701@ and y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG5baaaa@3715@ in a given population:

x : = x , e : = a e , y : = R x + e , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG4bGbauaacaGG6aGaeyypa0JaamiEaiaacYcacaaMf8Uabmyz ayaafaGaaiOoaiabg2da9iaadggacaWGLbGaaiilaiaaywW7ceWG5b GbauaacaGG6aGaeyypa0JaamOuaiaadIhacqGHRaWkceWGLbGbauaa caGGSaaaaa@4A10@

with a 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbGaeyiyIKRaaGimaiaac6caaaa@3A30@ Under this transformation, the ratio of the two variables does not change ( R = Y ¯ / X ¯ = R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGOaGabmOuayaafaGaeyypa0ZaaSGbaeaaceWGzbWdayaaraWd bmaaCaaaleqabaqcLbwacWaGyBOmGikaaaGcbaGabmiwa8aagaqea8 qadaahaaWcbeqaaKqzGfGamai2gkdiIcaaaaGccqGH9aqpcaWGsbGa aiykaaaa@4541@ but their correlation coefficient does ( ρ x y ρ x y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaGGOaGaeqyWdi3damaaBaaaleaapeGabmiEayaafaGabmyEayaa faaapaqabaGcpeGaeyiyIKRaeqyWdi3damaaBaaaleaapeGaamiEai aadMhaa8aabeaaaaa@40E6@ unless a = 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGHbGaeyypa0JaaGymaiaacMcacaGGUaaaaa@3A1D@ It is obvious that C x = C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGabmiEayaafaaapaqabaGcpeGaeyyp a0Jaam4qa8aadaWgaaWcbaWdbiaadIhaa8aabeaaaaa@3B81@ and S e 2 = a 2 S e 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaDaaaleaapeGabmyzayaafaaapaqaa8qacaaIYaaa aOGaeyypa0Jaamyya8aadaahaaWcbeqaa8qacaaIYaaaaOGaam4ua8 aadaqhaaWcbaWdbiaadwgaa8aabaWdbiaaikdaaaGcpaGaaiOlaaaa @3FC8@ Now using expressions (1.2), (2.8), (2.11) and (2.14), it is not difficult to see that E { MSE ^ k ( Y ¯ ^ R ) } = a 2 E { MSE ^ k ( Y ¯ ^ R ) } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbGaai4Ea8aadaqiaaqaa8qacaqGnbGaae4uaiaabweaa8aa caGLcmaadaWgaaWcbaWdbiaadUgaa8aabeaakiaaykW7caGGOaWaae caaeaapeGabmywa8aagaqeaaGaayPadaWaa0baaSqaaiaadkfaaeaa jugybiadaITHYaIOaaGccaGGPaWdbiaac2hacqGH9aqpcaWGHbWdam aaCaaaleqabaWdbiaaikdaaaGccaWGfbGaai4Ea8aadaqiaaqaa8qa caqGnbGaae4uaiaabweaa8aacaGLcmaadaWgaaWcbaWdbiaadUgaa8 aabeaakiaaykW7caGGOaWaaecaaeaapeGabmywa8aagaqeaaGaayPa daWaaSbaaSqaa8qacaWGsbaapaqabaGccaGGPaWdbiaac2haaaa@576E@ for all k { 0 , 1 , 2 } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGRbGaeyicI48aaiWaa8aabaWdbiaaicdacaGGSaGaaGjbVlaa igdacaGGSaGaaGjbVlaaikdaaiaawUhacaGL9baacaGGUaaaaa@4238@ Moreover, it can be seen from (2.1) that the error in R ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGsbWdayaajaaaaa@370D@ is linear in e ¯ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGLbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaaaa@386B@ and hence it follows that the identity MSE ( Y ¯ ^ R ) = a 2 MSE ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweacaaMc8Uaaeika8aadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaqhaaWcbaGaamOuaaqaaKqzGfGamai2gk diIcaak8qacaqGPaGaeyypa0Jaamyya8aadaahaaWcbeqaa8qacaaI YaaaaOGaaeytaiaabofacaqGfbGaaGPaVlaabIcapaWaaecaaeaape Gabmywa8aagaqeaaGaayPadaWaaSbaaSqaa8qacaWGsbaapaqabaGc peGaaeykaaaa@4D8A@ holds exactly. Thus, it is seen that this transformation has no effect on the relative bias RB k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGsbGaaeOqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@38FB@ of any of the mean square error estimators in this study. This suggests that this bias is not affected by a change in the correlation ρ x y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacaWG4bGaamyEaaWdaeqaaaaa@3A2C@ when other features of the population remain constant. In particular, this suggests that the large values of ρ x y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qacaWG4bGaamyEaaWdaeqaaaaa@3A2C@ in populations 1 and 8 alone do not explain the lack of accuracy of MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404E@ in these populations.

Secondly, consider the following alternative transformation:

x : = X ¯ + b ( x X ¯ ) , e : = b e , y : = Y ¯ + b ( y Y ¯ ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG4bGbayaacaGG6aGaeyypa0Jabmiwa8aagaqea8qacqGHRaWk caWGIbWaaeWaa8aabaWdbiaadIhacqGHsislceWGybWdayaaraaape GaayjkaiaawMcaaiaacYcacaaMf8UabmyzayaagaGaaiOoaiabg2da 9iaadkgacaWGLbGaaiilaiaaywW7ceWG5bGbayaacaGG6aGaeyypa0 Jabmywa8aagaqea8qacqGHRaWkcaWGIbWaaeWaa8aabaWdbiaadMha cqGHsislceWGzbWdayaaraaapeGaayjkaiaawMcaaiaacYcaaaa@5474@

with 0 < b 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaaIWaGaeyipaWJaamOyaiabgsMiJkaaigdacaGGUaaaaa@3BDE@ In this case, it can be shown that R = R , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGsbGbayaacqGH9aqpcaWGsbGaaiilaaaa@3988@ ρ x y = ρ x y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCpaWaaSbaaSqaa8qaceWG4bGbayaaceWG5bGbayaaa8aa beaak8qacqGH9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWG4bGaamyEaa Wdaeqaaaaa@3F7B@ and C x = b C x C x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGabmiEayaagaaapaqabaGcpeGaeyyp a0JaamOyaiaadoeapaWaaSbaaSqaa8qacaWG4baapaqabaGcpeGaey izImQaam4qa8aadaWgaaWcbaWdbiaadIhaa8aabeaakiaac6caaaa@4113@ Thus, this transformation can be used to reduce the coefficient of variation of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ in a given population, while holding the ratio and correlation of y MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG5baaaa@3715@ and x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ fixed.

We have applied this transformation to populations 1 and 8 for n = 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaiaacYcaaaa@397E@ with b = 1 .0 ,     0 .9 ,   , 0 .2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGIbGaeyypa0Jaaeymaiaab6cacaqGWaGaaiilaiaacckacaaM e8UaaiiOaiaabcdacaqGUaGaaeyoaiaacYcacaaMe8UaaiiOaiabgA ci8kaacYcacaaMe8Uaaeimaiaab6cacaqGYaGaaeOlaaaa@4AB7@ Table 3.3 shows the resulting relative bias of MSE ^ k ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaam4AaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaqhaaWcbaGaamOuaaqaaKqzGfGamai2gkdiIkaa ygW7cWaGyBOmGikaaOGaaiykaaaa@487D@ for the transformed populations, obtained by simulating all ( 49 4 ) = 211,876 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaafaqabeGabaaabaWdbiaaisdacaaI5aaapaqaa8qa caaI0aaaaaGaayjkaiaawMcaaiabg2da9iaabkdacaqGXaGaaeymai aabYcacaqG4aGaae4naiaabAdaaaa@412C@ and ( 20 4 ) = 4,845 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaqadaWdaeaafaqabeGabaaabaWdbiaaikdacaaIWaaapaqaa8qa caaI0aaaaaGaayjkaiaawMcaaiabg2da9iaabsdacaqGSaGaaeioai aabsdacaqG1aaaaa@3FB7@ possible samples, respectively. It is seen that all three estimators for the mean square error tend to become less biased as the coefficient of variation of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ is reduced. In particular, MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaqhaaWcbaGaamOuaaqaaKqzGfGamai2gkdiIkaa ygW7cWaGyBOmGikaaOGaaiykaaaa@4849@ becomes reasonably accurate (considering that n = 4 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaiaacMcaaaa@397B@ once the coefficient of variation of x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWG4baaaa@3714@ drops below 0.8 for population 1 and below 1 for population 8.

This suggests that the value of C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaOGaaGjcVlabgkHi Taaa@3ABE@  which is known in practice  MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaaiiaajugybabaaaaaaaaapeGaa83e Gaaa@3ECD@ is an important factor for the (negative) bias of our proposed estimator MSE ^ 2 ( Y ¯ ^ R ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcapeGa aiOlaaaa@4110@ Assuming that the set of natural populations in this simulation study contains sufficient variation to represent most populations that will be encountered in practice, we may tentatively conclude that even for n = 4 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaiaacYcaaaa@397E@ MSE ^ 2 ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOGaaGPaVlaacIcadaqiaaqaa8qaceWGzbWday aaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaakiaacMcaaaa@404E@ is an accurate estimator of the mean square error of the ratio estimator without a large negative bias when C x < 0 .8 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabgYda8iaa bcdacaqGUaGaaeioaiaac6caaaa@3C25@ For C x 0 .8 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiabgwMiZkaa bcdacaqGUaGaaeioaiaacYcaaaa@3CE5@ this need not be the case.


Table 3.3
Relative bias RB k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaqGsbGaaeOqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@39F7@ for transformed versions of populations 1 and 8, with n=4 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaWGUbGaeyypa0JaaGinaaaa@39CA@
Table summary
This table displays the results of Relative bias RB k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqipu0Je9sqqrpepC0xbbL8F4rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaaeaaaaaaaaa8 qacaqGsbGaaeOqa8aadaWgaaWcbaWdbiaadUgaa8aabeaaaaa@39F7@ for transformed versions of populations 1 and 8. The information is grouped by b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFIbaaaa@3A35@ (appearing as row headers), Population 1, Population 8, C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFdbWdamaaBaaaleaapeGab8hEa8aagaGbaaqabaaaaa@3B76@ and relative bias (appearing as column headers).
b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFIbaaaa@3A35@ Population 1 Population 8
C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFdbWdamaaBaaaleaapeGab8hEa8aagaGbaaqabaaaaa@3B76@ relative bias C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaacbmaeaaaaaa aaa8qacaWFdbWdamaaBaaaleaapeGab8hEa8aagaGbaaqabaaaaa@3B76@ relative bias
MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaecaaeaaqa aaaaaaaaWdbiaah2eacaWHtbGaaCyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D9C@ MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaecaaeaaqa aaaaaaaaWdbiaah2eacaWHtbGaaCyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D9C@ MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaecaaeaaqa aaaaaaaaWdbiaah2eacaWHtbGaaCyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D9C@ MSE ^ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaecaaeaaqa aaaaaaaaWdbiaah2eacaWHtbGaaCyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D9C@ MSE ^ 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaecaaeaaqa aaaaaaaaWdbiaah2eacaWHtbGaaCyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D9C@ MSE ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqk0Jf9crFfpeea0xh9v8qiW7rqqrFD0xh9LqFj0xb9Gq pe0hXxe9vqai=hGCQ8k8xqFbc9v8qqqr=lb9qqpm0dbbG8Fq0dfr=x fr=xebpdbeqabeWacmGabiqabeqabmqabeabbaGcbaWaaecaaeaaqa aaaaaaaaWdbiaah2eacaWHtbGaaCyraaWdaiaawkWaamaaBaaaleaa peGaaGimaaWdaeqaaaaa@3D9C@
1.0 1.01 -48.2% 27.4% -30.9% 1.19 -62.3% -11.1% -34.4%
0.9 0.91 -39.1% 32.0% -16.5% 1.07 -48.4% 7.6% -12.9%
0.8 0.81 -31.0% 31.8% -6.2% 0.95 -38.3% 14.2% -0.7%
0.7 0.71 -24.0% 28.5% 0.3% 0.83 -30.0% 15.0% 5.9%
0.6 0.61 -17.8% 23.4% 3.6% 0.72 -23.1% 12.5% 8.4%
0.5 0.51 -12.5% 17.6% 4.6% 0.60 -17.2% 8.6% 8.0%
0.4 0.40 -8.2% 11.9% 4.1% 0.48 -12.3% 4.2% 6.0%
0.3 0.30 -4.7% 6.8% 2.8% 0.36 -8.1% 0.4% 3.5%
0.2 0.20 -2.1% 3.0% 1.4% 0.24 -4.7% -1.9% 1.2%

Date modified: