On a new estimator for the variance of the ratio estimator with small sample corrections
Section 2. A new variance estimator

Noting that R ^ R = e ¯ s / x ¯ s , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGsbWdayaajaWdbiabgkHiTiaadkfacqGH9aqpdaWcgaqaaiqa dwgapaGbaebadaWgaaWcbaWdbiaadohaa8aabeaaaOWdbeaaceWG4b WdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaaaOGaaiilaaaa@3F8C@ where e ¯ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGLbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaaaa@386B@ is the sample mean of e i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGLbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaiilaaaa@3903@ and using the second-order Taylor series expansion

1 x ¯ s = 1 X ¯ 1 X ¯ 2 ( x ¯ s X ¯ ) + 1 X ¯ 3 ( x ¯ s X ¯ ) 2 + O p ( 1 n 1 . 5 ) , MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcaaWdaeaapeGaaGymaaWdaeaapeGabmiEa8aagaqeamaaBaaa leaapeGaam4CaaWdaeqaaaaak8qacqGH9aqpdaWcaaWdaeaapeGaaG ymaaWdaeaapeGabmiwa8aagaqeaaaapeGaeyOeI0YaaSaaa8aabaWd biaaigdaa8aabaWdbiqadIfapaGbaebadaahaaWcbeqaa8qacaaIYa aaaaaakmaabmaapaqaa8qaceWG4bWdayaaraWaaSbaaSqaa8qacaWG ZbaapaqabaGcpeGaeyOeI0Iabmiwa8aagaqeaaWdbiaawIcacaGLPa aacqGHRaWkdaWcaaWdaeaapeGaaGymaaWdaeaapeGabmiwa8aagaqe amaaCaaaleqabaWdbiaaiodaaaaaaOWaaeWaa8aabaWdbiqadIhapa GbaebadaWgaaWcbaWdbiaadohaa8aabeaak8qacqGHsislceWGybWd ayaaraaapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaO Gaey4kaSIaam4ta8aadaWgaaWcbaWdbiaadchaa8aabeaak8qadaqa daWdaeaapeWaaSaaa8aabaWdbiaaigdaa8aabaWdbiaad6gapaWaaW baaSqabeaapeGaaGymaiaacYcacaaI1aaaaaaaaOGaayjkaiaawMca aiaacYcaaaa@5C0C@

it is seen that the third-order Taylor series expansion of R ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGsbWdayaajaWdbiabgkHiTiaadkfaaaa@38E1@ is

R ^ R = e ¯ s X ¯ 1 X ¯ 2 ( x ¯ s X ¯ ) e ¯ s + 1 X ¯ 3 ( x ¯ s X ¯ ) 2 e ¯ s + O p ( 1 n 2 ) . ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGsbWdayaajaWdbiabgkHiTiaadkfacqGH9aqpdaWcaaWdaeaa peGabmyza8aagaqeamaaBaaaleaapeGaam4CaaWdaeqaaaGcbaWdbi qadIfapaGbaebaaaWdbiabgkHiTmaalaaapaqaa8qacaaIXaaapaqa a8qaceWGybWdayaaraWaaWbaaSqabeaapeGaaGOmaaaaaaGcdaqada WdaeaapeGabmiEa8aagaqeamaaBaaaleaapeGaam4CaaWdaeqaaOWd biabgkHiTiqadIfapaGbaebaa8qacaGLOaGaayzkaaGabmyza8aaga qeamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiabgUcaRmaalaaapaqa a8qacaaIXaaapaqaa8qaceWGybWdayaaraWaaWbaaSqabeaapeGaaG 4maaaaaaGcdaqadaWdaeaapeGabmiEa8aagaqeamaaBaaaleaapeGa am4CaaWdaeqaaOWdbiabgkHiTiqadIfapaGbaebaa8qacaGLOaGaay zkaaWdamaaCaaaleqabaWdbiaaikdaaaGcceWGLbWdayaaraWaaSba aSqaa8qacaWGZbaapaqabaGcpeGaey4kaSIaam4ta8aadaWgaaWcba Wdbiaadchaa8aabeaak8qadaqadaWdaeaapeWaaSaaa8aabaWdbiaa igdaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGaaGOmaaaaaaaaki aawIcacaGLPaaacaGGUaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIca caaIYaGaaiOlaiaaigdacaGGPaaaaa@6A0A@

Hence, using Y ¯ ^ R = X ¯ R ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaOWdbiabg2da9iqadIfapaGbaebapeGabmOua8aagaqca8 qacaGGSaaaaa@3CEA@ we obtain

var ( Y ¯ ^ R ) = var ( e ¯ s ) + 1 X ¯ 2 var { ( x ¯ s X ¯ ) e ¯ s } 2 X ¯ cov { e ¯ s ,   ( x ¯ s X ¯ ) e ¯ s } + 2 X ¯ 2 cov { e ¯ s , ( x ¯ s X ¯ ) 2 e ¯ s } + O ( 1 n 3 ) . ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeGacaaabaGaaeODaiaabggacaqGYbWaaeWaa8aabaWaaeca aeaapeGabmywa8aagaqeaaGaayPadaWaaSbaaSqaa8qacaWGsbaapa qabaaak8qacaGLOaGaayzkaaaabaGaeyypa0JaaeODaiaabggacaqG YbWaaeWaa8aabaWdbiqadwgapaGbaebadaWgaaWcbaWdbiaadohaa8 aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkdaWcaaWdaeaapeGaaGym aaWdaeaapeGabmiwa8aagaqeamaaCaaaleqabaWdbiaaikdaaaaaaO GaaeODaiaabggacaqGYbWaaiWaa8aabaWdbmaabmaapaqaa8qaceWG 4bWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaeyOeI0Iabm iwa8aagaqeaaWdbiaawIcacaGLPaaaceWGLbWdayaaraWaaSbaaSqa a8qacaWGZbaapaqabaaak8qacaGL7bGaayzFaaGaeyOeI0YaaSaaa8 aabaWdbiaaikdaa8aabaWdbiqadIfapaGbaebaaaWdbiaabogacaqG VbGaaeODamaacmaapaqaa8qaceWGLbWdayaaraWaaSbaaSqaa8qaca WGZbaapaqabaGcpeGaaiilaiaacckacaaMe8+aaeWaa8aabaWdbiqa dIhapaGbaebadaWgaaWcbaWdbiaadohaa8aabeaak8qacqGHsislce WGybWdayaaraaapeGaayjkaiaawMcaaiqadwgapaGbaebadaWgaaWc baWdbiaadohaa8aabeaaaOWdbiaawUhacaGL9baaaeaaaeaacaaMe8 Uaey4kaSYaaSaaa8aabaWdbiaaikdaa8aabaWdbiqadIfapaGbaeba daahaaWcbeqaa8qacaaIYaaaaaaakiaabogacaqGVbGaaeODamaacm aapaqaa8qaceWGLbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaGc peGaaiilaiaaysW7daqadaWdaeaapeGabmiEa8aagaqeamaaBaaale aapeGaam4CaaWdaeqaaOWdbiabgkHiTiqadIfapaGbaebaa8qacaGL OaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcceWGLbWdayaara WaaSbaaSqaa8qacaWGZbaapaqabaaak8qacaGL7bGaayzFaaGaey4k aSIaam4tamaabmaapaqaa8qadaWcaaWdaeaapeGaaGymaaWdaeaape GaamOBa8aadaahaaWcbeqaa8qacaaIZaaaaaaaaOGaayjkaiaawMca aiaac6cacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaaywW7caaMf8 UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaIYaGaaiykaaaaaaa@9F65@

In (2.2) we omitted one variance and one covariance because the underlying fifth and sixth moments are of order 1 / n 3 ; MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiaaigdaaeaacaWGUbWdamaaCaaaleqabaWdbiaaioda aaaaaOGaaGzaVlaacUdaaaa@3B37@ see David and Sukhatme (1974). All (co)variances in (2.2) can be evaluated by using the following results on product moments of four arbitrary sample means, say x ¯ s a , x ¯ s b , x ¯ s c MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG4bWdayaaraWaaSbaaSqaa8qacaWGZbGaamyyaaWdaeqaaOWd biaacYcacaaMe8UabmiEa8aagaqeamaaBaaaleaapeGaam4Caiaadk gaa8aabeaak8qacaGGSaGaaGjbVlqadIhapaGbaebadaWgaaWcbaWd biaadohacaWGJbaapaqabaaaaa@44AF@ and x ¯ s d , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWG4bWdayaaraWaaSbaaSqaa8qacaWGZbGaamizaaWdaeqaaOGa aiilaaaa@3A21@

E ( x ¯ s a x ¯ s b x ¯ s c ) = ( 1 f ) ( 1 2 f ) S a b c / n 2 + O ( n 3 ) ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWaaeWaa8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaa dohacaWGHbaapaqabaGcpeGabmiEa8aagaqeamaaBaaaleaapeGaam 4Caiaadkgaa8aabeaak8qaceWG4bWdayaaraWaaSbaaSqaa8qacaWG ZbGaam4yaaWdaeqaaaGcpeGaayjkaiaawMcaaiabg2da9maalyaaba WaaeWaa8aabaWdbiaaigdacqGHsislcaWGMbaacaGLOaGaayzkaaWa aeWaa8aabaWdbiaaigdacqGHsislcaaIYaGaamOzaaGaayjkaiaawM caaiaadofapaWaaSbaaSqaa8qacaWGHbGaamOyaiaadogaa8aabeaa aOWdbeaacaWGUbWdamaaCaaaleqabaWdbiaaikdaaaGccqGHRaWkca WGpbWaaeWaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGaeyOeI0Ia aG4maaaaaOGaayjkaiaawMcaaaaacaaMf8UaaGzbVlaaywW7caaMf8 UaaiikaiaaikdacaGGUaGaaG4maiaacMcaaaa@6321@

E ( x ¯ s a x ¯ s b x ¯ s c x ¯ s d ) = γ ( S a b S c d + S a c S b d + S a d S b c ) + O ( n 3 ) ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWaaeWaa8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaa dohacaWGHbaapaqabaGcpeGabmiEa8aagaqeamaaBaaaleaapeGaam 4Caiaadkgaa8aabeaak8qaceWG4bWdayaaraWaaSbaaSqaa8qacaWG ZbGaam4yaaWdaeqaaOWdbiqadIhapaGbaebadaWgaaWcbaWdbiaado hacaWGKbaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaeq4SdC2a aeWaa8aabaWdbiaadofapaWaaSbaaSqaa8qacaWGHbGaamOyaaWdae qaaOWdbiaadofapaWaaSbaaSqaa8qacaWGJbGaamizaaWdaeqaaOWd biabgUcaRiaadofapaWaaSbaaSqaa8qacaWGHbGaam4yaaWdaeqaaO WdbiaadofapaWaaSbaaSqaa8qacaWGIbGaamizaaWdaeqaaOWdbiab gUcaRiaadofapaWaaSbaaSqaa8qacaWGHbGaamizaaWdaeqaaOWdbi aadofapaWaaSbaaSqaa8qacaWGIbGaam4yaaWdaeqaaaGcpeGaayjk aiaawMcaaiabgUcaRiaad+eadaqadaWdaeaapeGaamOBa8aadaahaa Wcbeqaa8qacqGHsislcaaIZaaaaaGccaGLOaGaayzkaaGaaGzbVlaa ywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaisdacaGGPaaaaa@6EF3@

cov ( x ¯ s a x ¯ s b , x ¯ s c x ¯ s d ) = γ ( S a c S b d + S a d S b c ) + O ( n 3 ) ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGJbGaae4BaiaabAhadaqadaWdaeaapeGabmiEa8aagaqeamaa BaaaleaapeGaam4Caiaadggaa8aabeaak8qaceWG4bWdayaaraWaaS baaSqaa8qacaWGZbGaamOyaaWdaeqaaOWdbiaacYcacaaMe8UabmiE a8aagaqeamaaBaaaleaapeGaam4Caiaadogaa8aabeaak8qaceWG4b WdayaaraWaaSbaaSqaa8qacaWGZbGaamizaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9iabeo7aNnaabmaapaqaa8qacaWGtbWdamaaBa aaleaapeGaamyyaiaadogaa8aabeaak8qacaWGtbWdamaaBaaaleaa peGaamOyaiaadsgaa8aabeaak8qacqGHRaWkcaWGtbWdamaaBaaale aapeGaamyyaiaadsgaa8aabeaak8qacaWGtbWdamaaBaaaleaapeGa amOyaiaadogaa8aabeaaaOWdbiaawIcacaGLPaaacqGHRaWkcaWGpb WaaeWaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGaeyOeI0IaaG4m aaaaaOGaayjkaiaawMcaaiaaywW7caaMf8UaaGzbVlaaywW7caGGOa GaaGOmaiaac6cacaaI1aGaaiykaaaa@6C20@

E ( x ¯ s a 2 x ¯ s b 2 ) = γ ( S a a S b b + 2 S a b 2 ) + O ( n 3 ) , ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWaaeWaa8aabaWdbiqadIhapaGbaebadaqhaaWcbaWdbiaa dohacaWGHbaapaqaa8qacaaIYaaaaOGabmiEa8aagaqeamaaDaaale aapeGaam4Caiaadkgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaa cqGH9aqpcqaHZoWzdaqadaqaaiaadofapaWaaSbaaSqaa8qacaWGHb GaamyyaaWdaeqaaOWdbiaadofapaWaaSbaaSqaa8qacaWGIbGaamOy aaWdaeqaaOWdbiabgUcaRiaaikdacaWGtbWdamaaDaaaleaapeGaam yyaiaadkgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHRaWk caWGpbWaaeWaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGaeyOeI0 IaaG4maaaaaOGaayjkaiaawMcaaiaacYcacaaMf8UaaGzbVlaaywW7 caaMf8UaaiikaiaaikdacaGGUaGaaGOnaiaacMcaaaa@616D@

where γ = ( 1 f ) 2 / n 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHZoWzcqGH9aqpdaWcgaqaamaabmaapaqaa8qacaaIXaGaeyOe I0IaamOzaaGaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaa GcbaGaamOBa8aadaahaaWcbeqaa8qacaaIYaaaaaaakiaaygW7paGa aiilaaaa@4275@ S a b = i = 1 N x i a x i b / ( N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaBaaaleaapeGaamyyaiaadkgaa8aabeaak8qacqGH 9aqpdaWcgaqaamaaqadabaGaamiEa8aadaWgaaWcbaWdbiaadMgaca WGHbaapaqabaGcpeGaamiEa8aadaWgaaWcbaWdbiaadMgacaWGIbaa paqabaaapeqaaiaadMgacqGH9aqpcaaIXaaabaGaamOtaaqdcqGHri s5aaGcbaWaaeWaa8aabaWdbiaad6eacqGHsislcaaIXaaacaGLOaGa ayzkaaaaaaaa@4A73@ and S a b c = i = 1 N x i a x i b x i c / ( N 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaBaaaleaapeGaamyyaiaadkgacaWGJbaapaqabaGc peGaeyypa0ZaaSGbaeaadaaeWaqaaiaadIhapaWaaSbaaSqaa8qaca WGPbGaamyyaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGPbGa amOyaaWdaeqaaOWdbiaadIhapaWaaSbaaSqaa8qacaWGPbGaam4yaa WdaeqaaaWdbeaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaa0Gaeyye IuoaaOqaamaabmaapaqaa8qacaWGobGaeyOeI0IaaGymaaGaayjkai aawMcaaaaacaGGUaaaaa@4F54@ Without loss of generality, it is assumed for expediency that the population means are zero, that is, X ¯ a = X ¯ b = X ¯ c = X ¯ d = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGybWdayaaraWaaSbaaSqaa8qacaWGHbaapaqabaGcpeGaeyyp a0Jabmiwa8aagaqeamaaBaaaleaapeGaamOyaaWdaeqaaOWdbiabg2 da9iqadIfapaGbaebadaWgaaWcbaWdbiaadogaa8aabeaak8qacqGH 9aqpceWGybWdayaaraWaaSbaaSqaa8qacaWGKbaapaqabaGcpeGaey ypa0JaaGimaiaac6caaaa@44DD@ Formulas (2.3) and (2.4) follow from Theorems 1 and 2 of Nath (1968) while (2.5) and (2.6) follow from (2.4). From (2.2)-(2.6) it follows that

var ( Y ¯ ^ R ) = 1 f n S e 2 + ( 1 f n X ¯ ) 2 ( S x 2 S e 2 + S x e 2 ) 2 n 2 X ¯ ( 1 f ) ( 1 2 f ) S x e e + 2 ( 1 f n X ¯ ) 2 ( S x 2 S e 2 + 2 S x e 2 ) + O ( n 3 ) = 1 f n S e 2 { 1 + 3 ( 1 f n X ¯ 2 ) S x 2 } + 5 ( 1 f n X ¯ ) 2 S x e 2 2 ( 1 f ) ( 1 2 f ) n 2 X ¯ S x e e + O ( n 3 ) , ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=ipC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeWacaaabaGaaeODaiaabggacaqGYbWaaeWaa8aabaWaaeca aeaapeGabmywa8aagaqeaaGaayPadaWaaSbaaSqaa8qacaWGsbaapa qabaaak8qacaGLOaGaayzkaaaabaGaeyypa0ZaaSaaa8aabaWdbiaa igdacqGHsislcaWGMbaapaqaa8qacaWGUbaaaiaadofapaWaa0baaS qaa8qacaWGLbaapaqaa8qacaaIYaaaaOGaey4kaSYaaeWaa8aabaWd bmaalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaaWdaeaapeGaamOBai qadIfapaGbaebaaaaapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIYaaaaOWaaeWaa8aabaWdbiaadofapaWaa0baaSqaa8qacaWG4b aapaqaa8qacaaIYaaaaOGaam4ua8aadaqhaaWcbaWdbiaadwgaa8aa baWdbiaaikdaaaGccqGHRaWkcaWGtbWdamaaDaaaleaapeGaamiEai aadwgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHsisldaWc aaWdaeaapeGaaGOmaaWdaeaapeGaamOBa8aadaahaaWcbeqaa8qaca aIYaaaaOGabmiwa8aagaqeaaaapeWaaeWaaeaacaaIXaGaeyOeI0Ia amOzaaGaayjkaiaawMcaamaabmaabaGaaGymaiabgkHiTiaaikdaca WGMbaacaGLOaGaayzkaaGaam4uamaaBaaaleaacaWG4bGaamyzaiaa dwgaaeqaaaGcbaaabaGaaGjbVlabgUcaRiaaikdadaqadaWdaeaape WaaSaaa8aabaWdbiaaigdacqGHsislcaWGMbaapaqaa8qacaWGUbGa bmiwa8aagaqeaaaaa8qacaGLOaGaayzkaaWdamaaCaaaleqabaWdbi aaikdaaaGcdaqadaWdaeaapeGaam4ua8aadaqhaaWcbaWdbiaadIha a8aabaWdbiaaikdaaaGccaWGtbWdamaaDaaaleaapeGaamyzaaWdae aapeGaaGOmaaaakiabgUcaRiaaikdacaWGtbWdamaaDaaaleaapeGa amiEaiaadwgaa8aabaWdbiaaikdaaaaakiaawIcacaGLPaaacqGHRa WkcaWGpbWaaeWaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGaeyOe I0IaaG4maaaaaOGaayjkaiaawMcaaaqaaaqaaiabg2da9maalaaapa qaa8qacaaIXaGaeyOeI0IaamOzaaWdaeaapeGaamOBaaaacaWGtbWd amaaDaaaleaapeGaamyzaaWdaeaapeGaaGOmaaaakmaacmaapaqaa8 qacaaIXaGaey4kaSIaaG4mamaabmaapaqaa8qadaWcaaWdaeaapeGa aGymaiabgkHiTiaadAgaa8aabaWdbiaad6gaceWGybWdayaaraWaaW baaSqabeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaacaWGtbWdamaa DaaaleaapeGaamiEaaWdaeaapeGaaGOmaaaaaOGaay5Eaiaaw2haai abgUcaRiaaiwdadaqadaWdaeaapeWaaSaaa8aabaWdbiaaigdacqGH sislcaWGMbaapaqaa8qacaWGUbGabmiwa8aagaqeaaaaa8qacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGccaWGtbWdamaaDaaa leaapeGaamiEaiaadwgaa8aabaWdbiaaikdaaaGccqGHsislcaaIYa WaaSaaa8aabaWdbmaabmaapaqaa8qacaaIXaGaeyOeI0IaamOzaaGa ayjkaiaawMcaamaabmaapaqaa8qacaaIXaGaeyOeI0IaaGOmaiaadA gaaiaawIcacaGLPaaaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGa aGOmaaaakiqadIfapaGbaebaaaWdbiaadofadaWgaaWcbaGaamiEai aadwgacaWGLbaabeaakiabgUcaRiaad+eadaqadaWdaeaapeGaamOB a8aadaahaaWcbeqaa8qacqGHsislcaaIZaaaaaGccaGLOaGaayzkaa GaaiilaiaaywW7caGGOaGaaGOmaiaac6cacaaI3aGaaiykaaaaaaa@CD0F@

where

S x 2 = 1 N 1 i = 1 N ( x i X ¯ ) 2 , S x e = 1 N 1 i = 1 N ( x i X ¯ ) e i S x e e = S g e = 1 N 1 i = 1 N e i 2 ( x i X ¯ ) , g i = ( x i X ¯ ) e i . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqr=ipC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeGacaaabaGaam4ua8aadaqhaaWcbaWdbiaadIhaa8aabaWd biaaikdaaaaakeaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaape GaamOtaiabgkHiTiaaigdaaaWaaybCaeqal8aabaWdbiaadMgacqGH 9aqpcaaIXaaapaqaa8qacaWGobaan8aabaWdbiabggHiLdaakmaabm aapaqaa8qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiab gkHiTiqadIfapaGbaebaa8qacaGLOaGaayzkaaWdamaaCaaaleqaba WdbiaaikdaaaGcpaGaaGzaVlaacYcacaaMe8UaaGPaV=qacaWGtbWa aSbaaSqaaiaadIhacaWGLbaabeaakiabg2da9maalaaapaqaa8qaca aIXaaapaqaa8qacaWGobGaeyOeI0IaaGymaaaadaGfWbqabSWdaeaa peGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6eaa0WdaeaapeGaey yeIuoaaOWaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaa paqabaGcpeGaeyOeI0Iabmiwa8aagaqeaaWdbiaawIcacaGLPaaaca WGLbWdamaaBaaaleaapeGaamyAaaWdaeqaaaGcpeqaaiaadofadaWg aaWcbaGaamiEaiaadwgacaWGLbaabeaaaOqaaiabg2da9iaadofapa WaaSbaaSqaa8qacaWGNbGaamyzaaWdaeqaaOWdbiabg2da9maalaaa paqaa8qacaaIXaaapaqaa8qacaWGobGaeyOeI0IaaGymaaaadaaeWb qaaiaadwgapaWaa0baaSqaa8qacaWGPbaapaqaa8qacaaIYaaaaOWa aeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qacaWGPbaapaqabaGcpe GaeyOeI0Iabmiwa8aagaqeaaWdbiaawIcacaGLPaaaaSqaaiaadMga cqGH9aqpcaaIXaaabaGaamOtaaqdcqGHris5aOGaaiilaiaaysW7ca aMc8Uaam4za8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqp daqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabeaak8 qacqGHsislceWGybWdayaaraaapeGaayjkaiaawMcaaiaadwgapaWa aSbaaSqaa8qacaWGPbaapaqabaGccaGGUaaaaaaa@9206@

Similar formulas in terms of cumulants are derived by Tin (1965) using some results from Kendall and Stuart (1958). Unfortunately, the numerous cumulants in Tin’s formulas give little insight into the structure of var ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqG2bGaaeyyaiaabkhacaaMc8Uaaeika8aadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaak8qaca qGPaaaaa@3EEC@ and, consequently, small sample corrections for the variance estimator require somewhat tedious calculations. In contrast, from (2.7) it is seen that for sufficiently large n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbaaaa@370A@ approximation (1.2) leads to an underestimate unless S x e e ( = S g e ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWaaSbaaSqaaiaadIhacaWGLbGaamyzaaqabaGccaGGOaWd aiabg2da9iaadofadaWgaaWcbaGaam4zaiaadwgaaeqaaOWdbiaacM caaaa@3F58@ is very positive. In addition, Tin also discusses three alternative estimators for a ratio but small sample corrections when estimating the various variances are ignored by him.

It follows from (2.1) and (2.3) that

bias ( Y ¯ ^ R ) = 1 f n X ¯ S x e + O ( 1 n 2 ) ; ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGIbGaaeyAaiaabggacaqGZbWaaeWaa8aabaWaaecaaeaapeGa bmywa8aagaqeaaGaayPadaWaaSbaaSqaa8qacaWGsbaapaqabaaak8 qacaGLOaGaayzkaaGaeyypa0JaeyOeI0YaaSaaa8aabaWdbiaaigda cqGHsislcaWGMbaapaqaa8qacaWGUbGabmiwa8aagaqeaaaapeGaam 4uamaaBaaaleaacaWG4bGaamyzaaqabaGccqGHRaWkcaWGpbWaaeWa a8aabaWdbmaalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbWdamaaCa aaleqabaWdbiaaikdaaaaaaaGccaGLOaGaayzkaaGaai4oaiaaywW7 caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGioai aacMcaaaa@5AB6@

also see Cochran (1977, page 161). Subsequently, using S x e e = S g e , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWaaSbaaSqaaiaadIhacaWGLbGaamyzaaqabaGccqGH9aqp caWGtbWdamaaBaaaleaapeGaam4zaiaadwgaa8aabeaakiaacYcaaa a@3EBE@ it follows from (2.7) and (2.8) that the mean square error of Y ¯ ^ R MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiqadMfapaGbaebaaiaawkWaamaaBaaaleaapeGaamOu aaWdaeqaaaaa@3900@ is

MSE ( Y ¯ ^ R ) = 1 f n S e 2 { 1 + 3 ( 1 f n X ¯ 2 ) S x 2 } + 6 ( 1 f n X ¯ ) 2 S x e 2 2 ( 1 f ) ( 1 2 f ) n 2 X ¯ S g e + O ( n 3 ) . ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweadaqadaWdaeaadaqiaaqaa8qaceWGzbWd ayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaaaOWdbiaawI cacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaiabgkHiTiaadAga a8aabaWdbiaad6gaaaGaam4ua8aadaqhaaWcbaWdbiaadwgaa8aaba WdbiaaikdaaaGcdaGadaWdaeaapeGaaGymaiabgUcaRiaaiodadaqa daWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHsislcaWGMbaapaqaa8 qacaWGUbGabmiwa8aagaqeamaaCaaaleqabaWdbiaaikdaaaaaaaGc caGLOaGaayzkaaGaam4ua8aadaqhaaWcbaWdbiaadIhaa8aabaWdbi aaikdaaaaakiaawUhacaGL9baacqGHRaWkcaaI2aWaaeWaa8aabaWd bmaalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaaWdaeaapeGaamOBai qadIfapaGbaebaaaaapeGaayjkaiaawMcaa8aadaahaaWcbeqaa8qa caaIYaaaaOGaam4ua8aadaqhaaWcbaWdbiaadIhacaWGLbaapaqaa8 qacaaIYaaaaOGaeyOeI0IaaGOmamaalaaapaqaa8qadaqadaWdaeaa peGaaGymaiabgkHiTiaadAgaaiaawIcacaGLPaaadaqadaWdaeaape GaaGymaiabgkHiTiaaikdacaWGMbaacaGLOaGaayzkaaaapaqaa8qa caWGUbWdamaaCaaaleqabaWdbiaaikdaaaGcceWGybWdayaaraaaa8 qacaWGtbWaaSbaaSqaaiaadEgacaWGLbaabeaakiabgUcaRiaad+ea daqadaWdaeaapeGaamOBa8aadaahaaWcbeqaa8qacqGHsislcaaIZa aaaaGccaGLOaGaayzkaaGaaiOlaiaaywW7caGGOaGaaGOmaiaac6ca caaI5aGaaiykaaaa@7EA4@

When the variation coefficient C x ( S x / X ¯ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbmaabmaapaqa a8qacqGHHjIUdaWcgaqaaiaadofapaWaaSbaaSqaa8qacaWG4baapa qabaaak8qabaGabmiwa8aagaqeaaaaa8qacaGLOaGaayzkaaaaaa@3F34@ is known, it is useful to write (2.9) as

MSE ( Y ¯ ^ R ) = 1 f n S e 2 { 1 + 3 ( 1 f n ) C x 2 ( 1 + 2 ρ x e 2 ) 2 ( 1 2 f ) n C x ρ g e S g / ( S x S e ) } , ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweadaqadaWdaeaadaqiaaqaa8qaceWGzbWd ayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaaaOWdbiaawI cacaGLPaaacqGH9aqpdaWcaaWdaeaapeGaaGymaiabgkHiTiaadAga a8aabaWdbiaad6gaaaGaam4ua8aadaqhaaWcbaWdbiaadwgaa8aaba WdbiaaikdaaaGcdaGadaWdaeaapeGaaGymaiabgUcaRiaaiodadaqa daWdaeaapeWaaSaaa8aabaWdbiaaigdacqGHsislcaWGMbaapaqaa8 qacaWGUbaaaaGaayjkaiaawMcaaiaadoeapaWaa0baaSqaa8qacaWG 4baapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHRaWkca aIYaGaeqyWdi3damaaDaaaleaapeGaamiEaiaadwgaa8aabaWdbiaa ikdaaaaakiaawIcacaGLPaaacqGHsislcaaIYaWaaSaaa8aabaWdbm aabmaapaqaa8qacaaIXaGaeyOeI0IaaGOmaiaadAgaaiaawIcacaGL Paaaa8aabaWdbiaad6gaaaGaam4qamaaBaaaleaacaWG4baabeaaki abeg8aYnaaBaaaleaacaWGNbGaamyzaaqabaGcdaWcgaqaaiaadofa paWaaSbaaSqaa8qacaWGNbaapaqabaaak8qabaWaaeWaaeaacaWGtb WdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiaadofapaWaaSbaaSqa a8qacaWGLbaapaqabaaak8qacaGLOaGaayzkaaaaaaGaay5Eaiaaw2 haaiaacYcacaaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaI WaGaaiykaaaa@78F7@

where ρ x e = S x e / S x S e , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCdaWgaaWcbaGaamiEaiaadwgaaeqaaOGaeyypa0ZaaSGb aeaacaWGtbWdamaaBaaaleaapeGaamiEaiaadwgaa8aabeaaaOWdbe aacaWGtbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbiaadofapaWa aSbaaSqaa8qacaWGLbaapaqabaaaaOWdbiaaygW7caGGSaaaaa@44FC@ ρ g e = S g e / S g S e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacqaHbpGCdaWgaaWcbaGaam4zaiaadwgaaeqaaOGaeyypa0ZaaSGb aeaacaWGtbWdamaaBaaaleaapeGaam4zaiaadwgaa8aabeaaaOWdbe aacaWGtbWdamaaBaaaleaapeGaam4zaaWdaeqaaOWdbiaadofapaWa aSbaaSqaa8qacaWGLbaapaqabaaaaaaa@4275@ and S g 2 = 1 N 1 i = 1 N ( g i G ¯ ) 2 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaDaaaleaapeGaam4zaaWdaeaapeGaaGOmaaaakiab g2da9maaleaaleaacaaIXaaabaGaamOtaiabgkHiTiaaigdaaaGcda aeWaqaamaabmaabaGaam4za8aadaWgaaWcbaWdbiaadMgaa8aabeaa k8qacqGHsislceWGhbWdayaaraaapeGaayjkaiaawMcaaaWcbaGaam yAaiabg2da9iaaigdaaeaacaWGobaaniabggHiLdGcdaahaaWcbeqa aiaaikdaaaGccaGGUaaaaa@4A68@ In practice, MSE ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweacaaMc8Uaaeika8aadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaak8qaca qGPaaaaa@3E89@ in (2.10) can be estimated by

MSE ^ 1 ( Y ¯ ^ R ) = 1 f n s e ^ 2 { 1 + 3 ( 1 f n ) C x 2 ( 1 + 2 ρ ^ x e ^ 2 ) 2 ( 1 2 f ) n C x ρ ^ g ^ e ^ s g ^ / ( s x s e ^ ) } , ( 2.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGymaaWdaeqaaOWdbmaabmaapaqaamaaHaaabaWdbiqadMfapa GbaebaaiaawkWaamaaBaaaleaapeGaamOuaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaa WdaeaapeGaamOBaaaacaWGZbWdamaaDaaaleaapeGabmyza8aagaqc aaqaa8qacaaIYaaaaOWaaiWaa8aabaWdbiaaigdacqGHRaWkcaaIZa WaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaaWd aeaapeGaamOBaaaaaiaawIcacaGLPaaacaWGdbWdamaaDaaaleaape GaamiEaaWdaeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaey4k aSIaaGOmaiqbeg8aY9aagaqcamaaDaaaleaapeGaamiEaiqadwgapa GbaKaaaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTiaaikda daWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaaIYaGaam OzaaGaayjkaiaawMcaaaWdaeaapeGaamOBaaaacaWGdbWaaSbaaSqa aiaadIhaaeqaaOGafqyWdi3dayaajaWdbmaaBaaaleaaceWGNbWday aajaWdbiqadwgapaGbaKaaa8qabeaakmaalyaabaGaam4Ca8aadaWg aaWcbaWdbiqadEgapaGbaKaaaeqaaaGcpeqaamaabmaabaGaam4Ca8 aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacaWGZbWdamaaBaaaleaa peGabmyza8aagaqcaaqabaaak8qacaGLOaGaayzkaaaaaaGaay5Eai aaw2haaiaacYcacaaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigda caaIXaGaaiykaaaa@7C46@

where ρ ^ x e ^ = s x e ^ / s x s e ^ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaHbpGCpaGbaKaapeWaaSbaaSqaaiaadIhaceWGLbWdayaajaaa peqabaGccqGH9aqpdaWcgaqaaiaadohapaWaaSbaaSqaa8qacaWG4b Gabmyza8aagaqcaaqabaaak8qabaGaam4Ca8aadaWgaaWcbaWdbiaa dIhaa8aabeaak8qacaWGZbWdamaaBaaaleaapeGabmyza8aagaqcaa qabaaaaOWdbiaaygW7paGaaiilaaaa@45E9@ ρ ^ g ^ e ^ = s g ^ e ^ / s g ^ s e ^ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaHbpGCpaGbaKaapeWaaSbaaSqaaiqadEgapaGbaKaapeGabmyz a8aagaqcaaWdbeqaaOGaeyypa0ZaaSGbaeaacaWGZbWdamaaBaaale aapeGabm4za8aagaqca8qaceWGLbWdayaajaaabeaaaOWdbeaacaWG ZbWdamaaBaaaleaapeGabm4za8aagaqcaaqabaGcpeGaam4Ca8aada WgaaWcbaWdbiqadwgapaGbaKaaaeqaaaaaaaa@43C1@ and

s g ^ 2 = 1 n 1 i = 1 n ( g ^ i g ^ ¯ s ) 2 [ note: g ^ i = ( x i x ¯ s ) e ^ i ] s x e ^ = 1 n 1 i = 1 n ( x i x ¯ s ) e ^ i , s g ^ e ^ = s x e ^ e ^ = 1 n 1 i = 1 n ( x i x ¯ s ) e ^ i 2 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeGacaaabaGaam4Ca8aadaqhaaWcbaWdbiqadEgapaGbaKaa aeaapeGaaGOmaaaaaOqaaiabg2da9maalaaapaqaa8qacaaIXaaapa qaa8qacaWGUbGaeyOeI0IaaGymaaaadaGfWbqabSWdaeaapeGaamyA aiabg2da9iaaigdaa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaO WaaeWaa8aabaWdbiqadEgapaGbaKaadaWgaaWcbaWdbiaadMgaa8aa beaak8qacqGHsislpaWaa0aaaeaapeGabm4za8aagaqcaaaadaWgaa WcbaWdbiaadohaa8aabeaaaOWdbiaawIcacaGLPaaapaWaaWbaaSqa beaapeGaaGOmaaaak8aacaaMf8+aamWaaeaacaqGUbGaae4Baiaabs hacaqGLbGaaGjcVlaacQdacaaMe8+dbiqadEgapaGbaKaadaWgaaWc baWdbiaadMgaa8aabeaak8qacqGH9aqpdaqadaWdaeaapeGaamiEa8 aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacqGHsislceWG4bWdayaa raWaaSbaaSqaa8qacaWGZbaapaqabaaak8qacaGLOaGaayzkaaGabm yza8aagaqcamaaBaaaleaapeGaamyAaaWdaeqaaaGccaGLBbGaayzx aaaapeqaaiaadohadaWgaaWcbaGaamiEaiqadwgapaGbaKaaa8qabe aaaOqaaiabg2da9maalaaapaqaa8qacaaIXaaapaqaa8qacaWGUbGa eyOeI0IaaGymaaaadaGfWbqabSWdaeaapeGaamyAaiabg2da9iaaig daa8aabaWdbiaad6gaa0WdaeaapeGaeyyeIuoaaOWaaeWaaeaacaWG 4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiqadIhapa GbaebadaWgaaWcbaWdbiaadohaa8aabeaaaOWdbiaawIcacaGLPaaa ceWGLbWdayaajaWaaSbaaSqaa8qacaWGPbaapaqabaGccaGGSaGaaG jbVlaaykW7peGaam4CamaaBaaaleaaceWGNbWdayaajaWdbiqadwga paGbaKaaa8qabeaakiabg2da9iaadohadaWgaaWcbaGaamiEaiqadw gapaGbaKaapeGabmyza8aagaqcaaWdbeqaaOGaeyypa0ZaaSaaa8aa baWdbiaaigdaa8aabaWdbiaad6gacqGHsislcaaIXaaaamaawahabe Wcpaqaa8qacaWGPbGaeyypa0JaaGymaaWdaeaapeGaamOBaaqdpaqa a8qacqGHris5aaGcdaqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacqGHsislceWG4bWdayaaraWaaSbaaSqaa8qa caWGZbaapaqabaaak8qacaGLOaGaayzkaaGabmyza8aagaqcamaaDa aaleaapeGaamyAaaWdaeaapeGaaGOmaaaak8aacaGGUaaaaaaa@A022@

However, the estimator in (2.11) does not take into account the bias of s e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aaaa@3930@ defined above.

In order to examine the bias of s e ^ 2 = i = 1 n e ^ i 2 / ( n 1 ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aOGaeyypa0ZaaSGbaeaadaaeWaqaaiqadwgapaGbaKaadaqhaaWcba WdbiaadMgaa8aabaWdbiaaikdaaaaabaGaamyAaiabg2da9iaaigda aeaacaWGUbaaniabggHiLdaakeaadaqadaqaaiaad6gacqGHsislca aIXaaacaGLOaGaayzkaaaaaiaacYcaaaa@47DC@ we use some additional symbols

s x 2 = 1 n 1 i = 1 n ( x i x ¯ s ) 2 , s e 2 = 1 n 1 i = 1 n ( e i e ¯ s ) 2 s x e = 1 n 1 i = 1 n ( x i x ¯ s ) e i , q i = ( x i X ¯ ) 2 ( i = 1 , , N ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeGacaaabaGaam4Ca8aadaqhaaWcbaWdbiaadIhaa8aabaWd biaaikdaaaaakeaacqGH9aqpdaWcaaWdaeaapeGaaGymaaWdaeaape GaamOBaiabgkHiTiaaigdaaaWaaybCaeqal8aabaWdbiaadMgacqGH 9aqpcaaIXaaapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakmaabm aapaqaa8qacaWG4bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiab gkHiTiqadIhapaGbaebadaWgaaWcbaWdbiaadohaa8aabeaaaOWdbi aawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaak8aacaaMb8+d biaacYcacaaMe8UaaGPaVlaadohapaWaa0baaSqaa8qacaWGLbaapa qaa8qacaaIYaaaaOGaeyypa0ZaaSaaa8aabaWdbiaaigdaa8aabaWd biaad6gacqGHsislcaaIXaaaamaawahabeWcpaqaa8qacaWGPbGaey ypa0JaaGymaaWdaeaapeGaamOBaaqdpaqaa8qacqGHris5aaGcdaqa daWdaeaapeGaamyza8aadaWgaaWcbaWdbiaadMgaa8aabeaak8qacq GHsislceWGLbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaak8qa caGLOaGaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaaakeaacaWGZb WaaSbaaSqaaiaadIhacaWGLbaabeaaaOqaaiabg2da9maalaaapaqa a8qacaaIXaaapaqaa8qacaWGUbGaeyOeI0IaaGymaaaadaGfWbqabS WdaeaapeGaamyAaiabg2da9iaaigdaa8aabaWdbiaad6gaa0Wdaeaa peGaeyyeIuoaaOWaaeWaa8aabaWdbiaadIhapaWaaSbaaSqaa8qaca WGPbaapaqabaGcpeGaeyOeI0IabmiEa8aagaqeamaaBaaaleaapeGa am4CaaWdaeqaaaGcpeGaayjkaiaawMcaaiaadwgapaWaaSbaaSqaa8 qacaWGPbaapaqabaGccaGGSaGaaGjbVlaaykW7peGaamyCa8aadaWg aaWcbaWdbiaadMgaa8aabeaak8qacqGH9aqpdaqadaqaaiaadIhapa WaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyOeI0Iabmiwa8aagaqe aaWdbiaawIcacaGLPaaapaWaaWbaaSqabeaapeGaaGOmaaaakmaabm aapaqaa8qacaWGPbGaeyypa0JaaGymaiaacYcacaaMe8UaeSOjGSKa aiilaiaaysW7caWGobaacaGLOaGaayzkaaGaaiOlaaaaaaa@9A1D@

Now we can write E ( s e ^ 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGfbWaaeWaa8aabaWdbiaadohapaWaa0baaSqaa8qaceWGLbWd ayaajaaabaWdbiaaikdaaaaakiaawIcacaGLPaaaaaa@3BAC@ as

E ( s e ^ 2 ) = E 1 n 1 i = 1 n { y i   y ¯ s   R ( x i   x ¯ s ) ( R ^ R ) ( x i   x ¯ s ) } 2 = E ( s e 2 ) + E { ( R ^ R ) 2 s x 2 } 2 E { ( R ^ R ) s x e } = S e 2 + E { ( R ^ R ) 2 q ¯ s } 2 E { ( R ^ R ) g ¯ s } + O ( n 2 ) , ( 2.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeWacaaabaGaamyramaabmaabaGaam4Ca8aadaqhaaWcbaWd biqadwgapaGbaKaaaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaqaai abg2da9iaadweadaWcaaWdaeaapeGaaGymaaWdaeaapeGaamOBaiab gkHiTiaaigdaaaWaaybCaeqal8aabaWdbiaadMgacqGH9aqpcaaIXa aapaqaa8qacaWGUbaan8aabaWdbiabggHiLdaakmaacmaapaqaa8qa caWG5bWdamaaBaaaleaapeGaamyAaaWdaeqaaOWdbiabgkHiTiaabc kaceWG5bWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaeyOe I0IaaeiOaiaadkfadaqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbi aadMgaa8aabeaak8qacqGHsislcaqGGcGabmiEa8aagaqeamaaBaaa leaapeGaam4CaaWdaeqaaaGcpeGaayjkaiaawMcaaiabgkHiTmaabm aapaqaa8qaceWGsbWdayaajaWdbiabgkHiTiaadkfaaiaawIcacaGL PaaadaqadaWdaeaapeGaamiEa8aadaWgaaWcbaWdbiaadMgaa8aabe aak8qacqGHsislcaqGGcGabmiEa8aagaqeamaaBaaaleaapeGaam4C aaWdaeqaaaGcpeGaayjkaiaawMcaaaGaay5Eaiaaw2haa8aadaahaa Wcbeqaa8qacaaIYaaaaaGcbaaabaGaeyypa0JaamyramaabmaabaGa am4Ca8aadaqhaaWcbaWdbiaadwgaa8aabaWdbiaaikdaaaaakiaawI cacaGLPaaacqGHRaWkcaWGfbWaaiWaceaadaqadaWdaeaapeGabmOu a8aagaqca8qacqGHsislcaWGsbaacaGLOaGaayzkaaWdamaaCaaale qabaWdbiaaikdaaaGccaWGZbWdamaaDaaaleaapeGaamiEaaWdaeaa peGaaGOmaaaaaOGaay5Eaiaaw2haaiabgkHiTiaaikdacaWGfbWaai Waa8aabaWdbmaabmaapaqaa8qaceWGsbWdayaajaWdbiabgkHiTiaa dkfaaiaawIcacaGLPaaacaWGZbWaaSbaaSqaaiaadIhacaWGLbaabe aaaOGaay5Eaiaaw2haaaqaaaqaaiabg2da9iaadofapaWaa0baaSqa a8qacaWGLbaapaqaa8qacaaIYaaaaOGaey4kaSIaamyramaacmGaba WaaeWaa8aabaWdbiqadkfapaGbaKaapeGaeyOeI0IaamOuaaGaayjk aiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaOGabmyCa8aagaqeam aaBaaaleaapeGaam4CaaWdaeqaaaGcpeGaay5Eaiaaw2haaiabgkHi TiaaikdacaWGfbWaaiWaa8aabaWdbmaabmaapaqaa8qaceWGsbWday aajaWdbiabgkHiTiaadkfaaiaawIcacaGLPaaaceWGNbWdayaaraWa aSbaaSqaa8qacaWGZbaapaqabaaak8qacaGL7bGaayzFaaGaey4kaS Iaam4tamaabmaapaqaa8qacaWGUbWdamaaCaaaleqabaWdbiabgkHi TiaaikdaaaaakiaawIcacaGLPaaacaGGSaGaaGzbVlaaywW7caaMf8 UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaIYaGaaiykaaaaaaa@B75F@

where q ¯ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGXbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaaaa@3877@ and g ¯ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGNbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaaaa@386D@ are sample means of q i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGXbWdamaaBaaaleaapeGaamyAaaWdaeqaaaaa@3855@ and g i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGNbWdamaaBaaaleaapeGaamyAaaWdaeqaaOGaaiilaaaa@3905@ respectively. In (2.12) we used

s x 2 = { q ¯ s ( x ¯ s X ¯ ) 2 } ( 1 + 1 n 1 ) , s x e = { g ¯ s ( x ¯ s X ¯ ) e ¯ s } ( 1 + 1 n 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGaamiEaaWdaeaapeGaaGOmaaaakiab g2da9maacmaapaqaa8qaceWGXbWdayaaraWaaSbaaSqaa8qacaWGZb aapaqabaGcpeGaeyOeI0YaaeWaa8aabaWdbiqadIhapaGbaebadaWg aaWcbaWdbiaadohaa8aabeaak8qacqGHsislceWGybWdayaaraaape GaayjkaiaawMcaa8aadaahaaWcbeqaa8qacaaIYaaaaaGccaGL7bGa ayzFaaWaaeWaa8aabaWdbiaaigdacqGHRaWkdaWcaaWdaeaapeGaaG ymaaWdaeaapeGaamOBaiabgkHiTiaaigdaaaaacaGLOaGaayzkaaGa aiilaiaaysW7caaMc8Uaam4CamaaBaaaleaacaWG4bGaamyzaaqaba GccqGH9aqpdaGadiqaaiqadEgapaGbaebadaWgaaWcbaWdbiaadoha a8aabeaak8qacqGHsisldaqadaWdaeaapeGabmiEa8aagaqeamaaBa aaleaapeGaam4CaaWdaeqaaOWdbiabgkHiTiqadIfapaGbaebaa8qa caGLOaGaayzkaaGabmyza8aagaqeamaaBaaaleaapeGaam4CaaWdae qaaaGcpeGaay5Eaiaaw2haamaabmaapaqaa8qacaaIXaGaey4kaSYa aSaaa8aabaWdbiaaigdaa8aabaWdbiaad6gacqGHsislcaaIXaaaaa GaayjkaiaawMcaaaaa@6B12@

and hence, using (2.1), (2.3) and (2.4), we get

E { ( R ^ R ) 2 ( q ¯ s s x 2 ) } = E { e ¯ s 2 ( x ¯ s X ¯ ) 2 / X ¯ 2 } { 1 + o ( 1 ) } = O ( n 2 ) E { ( R ^ R ) ( g ¯ s s x e } = E { e ¯ s ( x ¯ s X ¯ ) e ¯ s / X ¯ } { 1 + o ( 1 ) } = O ( n 2 ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeGacaaabaGaamyramaacmGabaWaaeWaa8aabaWdbiqadkfa paGbaKaapeGaeyOeI0IaamOuaaGaayjkaiaawMcaa8aadaahaaWcbe qaa8qacaaIYaaaaOWaaeWaa8aabaWdbiqadghapaGbaebadaWgaaWc baWdbiaadohaa8aabeaak8qacqGHsislcaWGZbWdamaaDaaaleaape GaamiEaaWdaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5Eaiaa w2haaaqaaiabg2da9iaadweadaGadaWdaeaapeWaaSGbaeaaceWGLb WdayaaraWaa0baaSqaa8qacaWGZbaapaqaa8qacaaIYaaaaOWaaeWa a8aabaWdbiqadIhapaGbaebadaWgaaWcbaWdbiaadohaa8aabeaak8 qacqGHsislceWGybWdayaaraaapeGaayjkaiaawMcaa8aadaahaaWc beqaa8qacaaIYaaaaaGcbaGabmiwa8aagaqeamaaCaaaleqabaWdbi aaikdaaaaaaaGccaGL7bGaayzFaaWaaiWaa8aabaWdbiaaigdacqGH RaWkcaWGVbWaaeWaa8aabaWdbiaaigdaaiaawIcacaGLPaaaaiaawU hacaGL9baacqGH9aqpcaWGpbWaaeWaa8aabaWdbiaad6gapaWaaWba aSqabeaapeGaeyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaaqaaiaayk W7caaMi8UaaGPaVlaadweadaGadaWdaeaapeWaaeWaa8aabaWdbiqa dkfapaGbaKaapeGaeyOeI0IaamOuaaGaayjkaiaawMcaaiaacIcace WGNbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaGcpeGaeyOeI0Ia am4CamaaBaaaleaacaWG4bGaamyzaaqabaaakiaawUhacaGL9baaae aacqGH9aqpcaWGfbWaaiWaceaadaWcgaqaaiqadwgapaGbaebadaWg aaWcbaWdbiaadohaa8aabeaak8qadaqadaWdaeaapeGabmiEa8aaga qeamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiabgkHiTiqadIfapaGb aebaa8qacaGLOaGaayzkaaGabmyza8aagaqeamaaBaaaleaapeGaam 4CaaWdaeqaaaGcpeqaaiqadIfapaGbaebaaaaapeGaay5Eaiaaw2ha amaacmaapaqaa8qacaaIXaGaey4kaSIaam4Bamaabmaapaqaa8qaca aIXaaacaGLOaGaayzkaaaacaGL7bGaayzFaaGaeyypa0Jaam4tamaa bmaapaqaa8qacaWGUbWdamaaCaaaleqabaWdbiabgkHiTiaaikdaaa aakiaawIcacaGLPaaacaGGUaaaaaaa@9725@

From (2.1) and (2.12) it is seen that

bias ( s e ^ 2 ) = E { ( R ^ R ) 2 ( q ¯ s Q ¯ + Q ¯ ) } 2 E { ( R ^ R ) ( g ¯ s G ¯ + G ¯ ) } + O ( n 2 ) = 1 f n X ¯ 2 S e 2 Q ¯ 2 E [ { e ¯ s X ¯ 1 X ¯ 2 ( x ¯ s X ¯ ) e ¯ s } ( g ¯ s G ¯ + G ¯ ) ] + O ( n 2 ) = 1 f n X ¯ 2 S e 2 S x 2 2 1 f n ( S g e X ¯ S x e 2 X ¯ 2 ) + O ( n 2 ) , ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qafaqaaeWacaaabaGaaeOyaiaabMgacaqGHbGaae4Camaabmaapaqa a8qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYa aaaaGccaGLOaGaayzkaaaabaGaeyypa0Jaamyramaacmaapaqaa8qa daqadaWdaeaapeGabmOua8aagaqca8qacqGHsislcaWGsbaacaGLOa GaayzkaaWdamaaCaaaleqabaWdbiaaikdaaaGcdaqadaWdaeaapeGa bmyCa8aagaqeamaaBaaaleaapeGaam4CaaWdaeqaaOWdbiabgkHiTi qadgfapaGbaebapeGaey4kaSIabmyua8aagaqeaaWdbiaawIcacaGL PaaaaiaawUhacaGL9baacqGHsislcaaIYaGaamyramaacmaapaqaa8 qadaqadaWdaeaapeGabmOua8aagaqca8qacqGHsislcaWGsbaacaGL OaGaayzkaaWaaeWaa8aabaWdbiqadEgapaGbaebadaWgaaWcbaWdbi aadohaa8aabeaak8qacqGHsislceWGhbWdayaaraWdbiabgUcaRiqa dEeapaGbaebaa8qacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey4kaS Iaam4tamaabmaapaqaa8qacaWGUbWdamaaCaaaleqabaWdbiabgkHi TiaaikdaaaaakiaawIcacaGLPaaaaeaaaeaacqGH9aqpdaWcaaWdae aapeGaaGymaiabgkHiTiaadAgaa8aabaWdbiaad6gaceWGybWdayaa raWaaWbaaSqabeaapeGaaGOmaaaaaaGccaWGtbWdamaaDaaaleaape GaamyzaaWdaeaapeGaaGOmaaaakiqadgfapaGbaebapeGaeyOeI0Ia aGOmaiaadweadaWadaWdaeaapeWaaiWaa8aabaWdbmaalaaapaqaa8 qaceWGLbWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaaakeaapeGa bmiwa8aagaqeaaaapeGaeyOeI0YaaSaaa8aabaWdbiaaigdaa8aaba WdbiqadIfapaGbaebadaahaaWcbeqaa8qacaaIYaaaaaaakmaabmaa paqaa8qaceWG4bWdayaaraWaaSbaaSqaa8qacaWGZbaapaqabaGcpe GaeyOeI0Iabmiwa8aagaqeaaWdbiaawIcacaGLPaaaceWGLbWdayaa raWaaSbaaSqaa8qacaWGZbaapaqabaaak8qacaGL7bGaayzFaaWaae Waa8aabaWdbiqadEgapaGbaebadaWgaaWcbaWdbiaadohaa8aabeaa k8qacqGHsislceWGhbWdayaaraWdbiabgUcaRiqadEeapaGbaebaa8 qacaGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSIaam4tamaabmaa paqaa8qacaWGUbWdamaaCaaaleqabaWdbiabgkHiTiaaikdaaaaaki aawIcacaGLPaaaaeaaaeaacqGH9aqpdaWcaaWdaeaapeGaaGymaiab gkHiTiaadAgaa8aabaWdbiaad6gaceWGybWdayaaraWaaWbaaSqabe aapeGaaGOmaaaaaaGccaWGtbWdamaaDaaaleaapeGaamyzaaWdaeaa peGaaGOmaaaakiaadofapaWaa0baaSqaa8qacaWG4baapaqaa8qaca aIYaaaaOGaeyOeI0IaaGOmamaalaaapaqaa8qacaaIXaGaeyOeI0Ia amOzaaWdaeaapeGaamOBaaaadaqadaWdaeaapeWaaSaaa8aabaWdbi aadofadaWgaaWcbaGaam4zaiaadwgaaeqaaaGcpaqaa8qaceWGybWd ayaaraaaa8qacqGHsisldaWcaaWdaeaapeGaam4ua8aadaqhaaWcba WdbiaadIhacaWGLbaapaqaa8qacaaIYaaaaaGcpaqaa8qaceWGybWd ayaaraWaaWbaaSqabeaapeGaaGOmaaaaaaaakiaawIcacaGLPaaacq GHRaWkcaWGpbWaaeWaa8aabaWdbiaad6gapaWaaWbaaSqabeaapeGa eyOeI0IaaGOmaaaaaOGaayjkaiaawMcaaiaacYcacaaMf8UaaGzbVl aaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGa aGymaiaaiodacaGGPaaaaaaa@CD8F@

where we used Q ¯ = S x 2 ( 1 N 1 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGrbWdayaaraWdbiabg2da9iaadofapaWaa0baaSqaa8qacaWG 4baapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaaigdacqGHsislca WGobWdamaaCaaaleqabaWdbiabgkHiTiaaigdaaaaakiaawIcacaGL Paaaaaa@4151@ and G ¯ = S x e ( 1 N 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGhbWdayaaraWdbiabg2da9iaadofadaWgaaWcbaGaamiEaiaa dwgaaeqaaOWaaeWaa8aabaWdbiaaigdacqGHsislcaWGobWdamaaCa aaleqabaWdbiabgkHiTiaaigdaaaaakiaawIcacaGLPaaacaGGUaaa aa@41E8@ Note that it follows from (2.13) that for sufficiently large n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGUbGaaiilaaaa@37BA@ the quantity s e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aaaa@3930@ leads to an overestimate of S e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWdamaaDaaaleaapeGaamyzaaWdaeaapeGaaGOmaaaaaaa@3900@ unless S g e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGtbWaaSbaaSqaaiaadEgacaWGLbaabeaaaaa@38F1@ is very positive. To our best knowledge, formula (2.13) is not mentioned elsewhere in the literature.

Based on (2.13), an alternative estimator of MSE ( Y ¯ ^ R ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaqGnbGaae4uaiaabweacaaMc8Uaaeika8aadaqiaaqaa8qaceWG zbWdayaaraaacaGLcmaadaWgaaWcbaWdbiaadkfaa8aabeaak8qaca qGPaaaaa@3E89@ that takes the bias of s e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aaaa@3930@ into account is

MSE ^ 2 ( Y ¯ ^ R ) = 1 f n S ^ e 2 { 1 + 3 ( 1 f n ) C x 2 ( 1 + 2 ρ ^ x e ^ 2 ) 2 ( 1 2 f ) n C x ρ ^ g ^ e ^ s g ^ / ( s x s e ^ ) } , ( 2.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaecaaeaaqa aaaaaaaaWdbiaab2eacaqGtbGaaeyraaWdaiaawkWaamaaBaaaleaa peGaaGOmaaWdaeqaaOWdbmaabmaapaqaamaaHaaabaWdbiqadMfapa GbaebaaiaawkWaamaaBaaaleaapeGaamOuaaWdaeqaaaGcpeGaayjk aiaawMcaaiabg2da9maalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaa WdaeaapeGaamOBaaaaceWGtbWdayaajaWaa0baaSqaa8qacaWGLbaa paqaa8qacaaIYaaaaOWaaiWaa8aabaWdbiaaigdacqGHRaWkcaaIZa WaaeWaa8aabaWdbmaalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaaWd aeaapeGaamOBaaaaaiaawIcacaGLPaaacaWGdbWdamaaDaaaleaape GaamiEaaWdaeaapeGaaGOmaaaakmaabmaapaqaa8qacaaIXaGaey4k aSIaaGOmaiqbeg8aY9aagaqcamaaDaaaleaapeGaamiEaiqadwgapa GbaKaaaeaapeGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTiaaikda daWcaaWdaeaapeWaaeWaa8aabaWdbiaaigdacqGHsislcaaIYaGaam OzaaGaayjkaiaawMcaaaWdaeaapeGaamOBaaaadaWcgaqaaiaadoea daWgaaWcbaGaamiEaaqabaGccuaHbpGCpaGbaKaapeWaaSbaaSqaai qadEgapaGbaKaapeGabmyza8aagaqcaaWdbeqaaOGaam4Ca8aadaWg aaWcbaWdbiqadEgapaGbaKaaaeqaaaGcpeqaamaabmaabaGaam4Ca8 aadaWgaaWcbaWdbiaadIhaa8aabeaak8qacaWGZbWdamaaBaaaleaa peGabmyza8aagaqcaaqabaaak8qacaGLOaGaayzkaaaaaaGaay5Eai aaw2haaiaacYcacaaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaisda caGGPaaaaa@7A9C@

where S ^ e 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGtbWdayaajaWaa0baaSqaa8qacaWGLbaapaqaa8qacaaIYaaa aaaa@3910@ is adjusted for the relative bias of s e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGabmyza8aagaqcaaqaa8qacaaIYaaa aaaa@3930@ that follows from (2.13). That is,

S ^ e 2 = s e ^ 2 [ 1 1 f n C x 2 ( 1 + 2 ρ ^ x e ^ 2 ) + 2 1 f n C x ρ ^ g ^ e ^ s g ^ s x s e ^ ] . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qaceWGtbWdayaajaWaa0baaSqaa8qacaWGLbaapaqaa8qacaaIYaaa aOGaeyypa0Jaam4Ca8aadaqhaaWcbaWdbiqadwgapaGbaKaaaeaape GaaGOmaaaakmaadmaapaqaa8qacaaIXaGaeyOeI0YaaSaaa8aabaWd biaaigdacqGHsislcaWGMbaapaqaa8qacaWGUbaaaiaadoeapaWaa0 baaSqaa8qacaWG4baapaqaa8qacaaIYaaaaOWaaeWaa8aabaWdbiaa igdacqGHRaWkcaaIYaGafqyWdi3dayaajaWaa0baaSqaa8qacaWG4b Gabmyza8aagaqcaaqaa8qacaaIYaaaaaGccaGLOaGaayzkaaGaey4k aSIaaGOmamaalaaapaqaa8qacaaIXaGaeyOeI0IaamOzaaWdaeaape GaamOBaaaacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaOWdbmaa laaapaqaa8qacuaHbpGCpaGbaKaapeWaaSbaaSqaaiqadEgapaGbaK aapeGabmyza8aagaqcaaWdbeqaaOGaam4Ca8aadaWgaaWcbaWdbiqa dEgapaGbaKaaaeqaaaGcbaWdbiaadohapaWaaSbaaSqaa8qacaWG4b aapaqabaGcpeGaam4Ca8aadaWgaaWcbaWdbiqadwgapaGbaKaaaeqa aaaaaOWdbiaawUfacaGLDbaacaGGUaaaaa@64DA@

Note that we used here S x e 2 / X ¯ 2 S e 2 = ρ x e 2 C x 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiaadofapaWaa0baaSqaa8qacaWG4bGaamyzaaWdaeaa peGaaGOmaaaaaOqaaiqadIfapaGbaebadaahaaWcbeqaa8qacaaIYa aaaOGaam4ua8aadaqhaaWcbaWdbiaadwgaa8aabaWdbiaaikdaaaaa aOGaeyypa0JaeqyWdi3damaaDaaaleaapeGaamiEaiaadwgaa8aaba WdbiaaikdaaaGccaWGdbWdamaaDaaaleaapeGaamiEaaWdaeaapeGa aGOmaaaaaaa@47E1@ and S g e / X ¯ S e 2 = ρ g e S g C x / S e S x . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiaadofadaWgaaWcbaGaam4zaiaadwgaaeqaaaGcbaGa bmiwa8aagaqea8qacaWGtbWdamaaDaaaleaapeGaamyzaaWdaeaape GaaGOmaaaaaaGccqGH9aqpdaWcgaqaaiabeg8aY9aadaWgaaWcbaWd biaadEgacaWGLbaapaqabaGcpeGaam4ua8aadaWgaaWcbaWdbiaadE gaa8aabeaak8qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaaGc peqaaiaadofapaWaaSbaaSqaa8qacaWGLbaapaqabaGcpeGaam4ua8 aadaWgaaWcbaWdbiaadIhaa8aabeaaaaGccaGGUaaaaa@4BD0@ Finally, it should be noted that the other estimators ρ ^ x e ^ 2 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacuaHbpGCpaGbaKaadaqhaaWcbaWdbiaadIhaceWGLbWdayaajaaa baWdbiaaikdaaaaaaa@3B05@ and ρ ^ g ^ e ^ s g ^ / ( s x s e ^ ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiqbeg8aY9aagaqca8qadaWgaaWcbaGabm4za8aagaqc a8qaceWGLbWdayaajaaapeqabaGccaWGZbWdamaaBaaaleaapeGabm 4za8aagaqcaaqabaaak8qabaWaaeWaaeaacaWGZbWdamaaBaaaleaa peGaamiEaaWdaeqaaOWdbiaadohapaWaaSbaaSqaa8qaceWGLbWday aajaaabeaaaOWdbiaawIcacaGLPaaaaaaaaa@4346@ in (2.11) are also biased. However, it is less straightforward to derive that kind of bias. It is hoped that by taking all (co)variances from the sample, including s x 2 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGZbWdamaaDaaaleaapeGaamiEaaWdaeaapeGaaGOmaaaak8aa caGGSaaaaa@39FC@ their bias is modest. In addition, in the simulations of Section 3, we found that replacing C x MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qacaWGdbWdamaaBaaaleaapeGaamiEaaWdaeqaaaaa@3836@ by s x / x ¯ s MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrpgpC0xc9LqFf0xc9 qqpeuf0xe9q8qiYRWFGCk9vi=dbbf9v8Gq0db9qqpm0dXdHqpq0=vr 0=vr0=edbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 qadaWcgaqaaiaadohapaWaaSbaaSqaa8qacaWG4baapaqabaaak8qa baGabmiEa8aagaqeamaaBaaaleaapeGaam4CaaWdaeqaaaaaaaa@3AFD@ did not improve the results.


Date modified: