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Robust variance estimators for generalized regression 
estimators in cluster samples 

Timothy L. Kennel and Richard Valliant1 

Abstract 

Standard linearization estimators of the variance of the general regression estimator are often too small, leading 
to confidence intervals that do not cover at the desired rate. Hat matrix adjustments can be used in two-stage 
sampling that help remedy this problem. We present theory for several new variance estimators and compare 
them to standard estimators in a series of simulations. The proposed estimators correct negative biases and 
improve confidence interval coverage rates in a variety of situations that mirror ones that are met in practice. 

 
Key Words: Jackknife variance estimator; Hat matrix adjustment; Leverage adjustment; Superpopulation model; Two-

stage sample; Sandwich variance estimator. 

 
 

1  Introduction 
 

Generalized regression (GREG) estimation is a common technique used to calibrate estimates, reduce 

sampling errors, and correct for nonsampling errors. Official surveys of households often use generalized 

regression to calibrate sample-based estimates to population controls, assure consistent estimates of 

demographic characteristics across surveys, and reduce nonresponse and undercoverage errors. GREG 

estimation is also frequently used because it draws strength from auxiliary data, resulting in smaller 

sampling errors than other design-based estimators. 

Popular techniques used to estimate the sampling errors of calibrated estimators from complex samples 

either require extensive computational resources or tend to underestimate the true sampling errors, 

especially with small to moderate sample sizes. Two popular techniques used to estimate the sampling 

variance of GREG estimators are linearization and replication. Linearization estimators (Särndal, Swensson 

and Wretman, 1989) may not converge to the true sampling error fast enough to produce accurate results in 

small to moderate samples. Särndal, Swensson and Wretman (1992, page 176) remark that “For complex 

statistics such as an estimator of a population variance, covariance, or correlation coefficient, fairly large 

samples may be required before the bias is negligible.” On the other hand, alternative replication techniques 

such as the jackknife and the bootstrap that generally produce larger variance estimates can be 

computationally demanding. 

Leverage-adjusted sandwich estimators provide an alternative approach to estimating design-based 

sampling errors that also have model-based justifications. Royall and Cumberland (1978) applied this 

approach to develop estimators of the prediction variance of estimators of finite population totals. From a 

model-based framework, Long and Ervin (2000) and MacKinnon and White (1985) demonstrated how the 

sandwich estimator could be used for variance estimation for estimators of regression parameters even when 
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the variance component of the working model was misspecified. Valliant (2002) took this approach to 

estimate the design-based variance of GREG estimators under one stage of sampling. This paper extends 

Valliant’s work to clustered sample designs. 

In Section 2, we introduce the GREG estimator and present several alternative variance estimators for 

it. All derivations are contained in the Appendix. In Section 3, we show how the new variance estimators 

perform in several simulations. In Section 4, we summarize our findings with a conclusion. 

 
2  Theoretical results 
 

Suppose that the population has = 1, 2, ,i M  clusters. In cluster i  there are iN  elements so that 

there are 
=1

=
M

ii
N N  elements in the population. The universe of clusters is denoted as U  and the 

universe of elements in cluster i  is .iU  An analysis variable iky  is associated with element k  in cluster .i  

The population total of y  is 
=1 =1

= .iM N

Uy iki k
t y   Each population element also has a p -vector of auxiliary 

variables, ,x ik  that can be used in estimation. A two-stage sample is selected without replacement at the 

first and second stages. The selection probability of cluster i  is ,i  and k i  is the conditional selection 

probability of element k  in cluster .i  The overall selection probability of element ik  is = .ik i k i    

Denote the set of sample clusters by s  and the set of sample elements within cluster i  by .is  The number 

of sample clusters is m  while the number of sample elements selected from sample cluster i  is .in  The 

total sample size of elements is = .ii s
n n

  

As a working model, suppose that ,YU  the N -vector of analysis variables, follows the following linear 

model:  

 
 

 

=

cov =

Y Xβ

Y Ψ

U

U

E



 
(2.1)

 

where the subscript   denotes expectation with respect to a model;  1 2= , , ,X X X X M     is the N p  

matrix of auxiliaries with X i  being the iN p  matrix of auxiliaries for the iN  elements in cluster ;i  and 

β  is a parameter vector of length .p  Elements within clusters are assumed to be correlated while elements 

in different clusters are independent under the model. Thus, the covariance matrix Ψ  is an N N  block 

diagonal matrix with diagonal matrices  = .Ψ
i ii ik N N   A key feature of the variance estimators we 

propose is that the particular form of ik  does not have to be known to construct variance estimators. The 

proposed variance estimators will be consistent regardless of the form of .Ψ  

Särndal et al. (1992, Chapter 8) discuss three different GREG estimators that can be used in clustered 

samples. These three estimators depend on the available data. We consider their case B which occurs when 

unit-level data are available for the complete sample and control totals are available for the population. In 

this case, the GREG estimator is  

 
 

1

ˆ ˆˆ ˆ=

=

B t t

g Π y

gr
y y Ux x

s

t t  



 


 

(2.2)
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where y s  is the n -vector of ’sy  for the sample elements, ˆ
yt   is the  -estimator of the total of the ’s,y  

tUx  is the p -vector of population totals of the ’s,x t̂ x  is the  -estimator of ,tUx  and (if Ψ  is known) 
1 1 1ˆ =B A X Ψ Π ys s s

    with 1 1= ,A X Ψ Π Xs s s
  X s  the matrix of sample auxiliaries, and  = diagΠ ik  

 , ;ii s k s  Ψ s  is the part of Ψ  associated with the sample elements; and =g 1n    

  1 1ˆt t A X ΨUx x s s
 


  where 1n  is a vector of n  1’s. 

The component of the g -weight for sample cluster i  is   1 1ˆ=g 1 t t A X Ψ
ii n Ux x si si

  
   with 

1= , ,X x x
isi i in    being the ip n  matrix of auxiliaries for sample elements in sample cluster ,i Ψ si  

is the i in n  part of Ψ i  for sample elements in sample cluster ,i  and 1
in  is a vector of in  1’s. Since Ψ  

is generally unknown, a surrogate value Q  may be used for 1;Ψ s
 Q I  is a common choice. Below, we 

assume that a general Q  is used in the GREG rather than 1.Ψ s
  

 

2.1  Current variance estimators 
 

Särndal et al. (1992, Result 8.9.1) present an estimator of the design variance of ˆ ,gr
yt  which involves 

joint selection probabilities of clusters and elements within clusters. In the case of Poisson sampling at both 

stages, their estimator is  

 
     2

2 2
, 22

11 1
ˆ=

i

k ii g
g e i ik ik

i s i s k si i k i

t g e



    


    (2.3) 

where ,
ˆ = ,

i

g
e i ik ik k is

t g e  ikg  is the thk  component of the g i  vector, and ˆ= .x Bik ik ike y    This 

estimator is computationally simpler than the general form that uses joint selection probabilities and may 

perform reasonably well for ps  designs where the variance of estimators can be approximated by formulas 

that assume independence between selections. 

An estimator that is appropriate if the first-stage sample is selected with replacement is  

   2
1 1=

1wr i
i s

m
e e

m





   (2.4) 

with 1 =
i

i ik ikk s
e e 

  and 1
1 1= .ii s

e m e
  The jackknife linearization estimator is (Yung and Rao, 

1996) 

    2
2 2

1
=JL i

i s

m
e e

m





  (2.5) 

where 2 =
i

i ik ik ikk s
e g e 

  and 1
2 2= ii s

e m e
  with ikg  being the thk  component of the g i  vector. 

The jackknife is another popular variance estimation technique. Krewski and Rao (1981) present several 

asymptotically equivalent ways of writing the jackknife. The following form of the jackknife estimator is a 

convenient starting point for the calculations that follow:  

        2

Jack

1
ˆ ˆ= gr gr

y i y
i s

m
t t

m
 




  (2.6) 

where  ˆ gr
y it  is the value of the GREG estimator after removing cluster i  and  ˆ gr

yt   is the average of all  ˆ gr
y it  

estimates. Using (2.6) can be computationally demanding because m  different estimates of  
ˆ gr

y it  must be 
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computed. The estimators, Jack , ,wr  and JL  are all design-consistent under the conditions in Krewski and 

Rao (1981) and Yung and Rao (1996). One of their key conditions is that clusters be selected with 

replacement. This assumption simplifies theoretical calculations but is only a convenience since the 

theoretical results have been shown in many empirical studies to be good predictors of estimator 

performance in without-replacement designs as long as the first-stage sampling fraction is small. 
 

2.2  New variance estimators 
 

We use the model-based framework to construct new variance estimators. First, we derive the model-

based variance of ˆ .gr
yt  Assume that model (2.1) holds and that sampling is ignorable in the sense that the 

probability of a unit’s being in the sample given YU  and X  depends only on X  (e.g., see discussion in 

Valliant, Dorfman and Royall, 2000, Section 2.6.2 and the additional references therein). Then, we construct 

estimators of the model variance, using hat-matrix adjustments to account for heterogeneity in the data. We 

evaluate the design-based properties of the new variance estimators in a simulation. 

To calculate the model variance of ˆ ,gr
yt  define y i  as the population vector of analysis variables for 

cluster ,i  and y si  as the vector for sample elements. As shown in Appendix A.2, under model (2.1) the 

model-based variance of ˆ gr
yt  is  

 
   1 1 1

1 2 3

ˆvar = 2 cov ,

= 2

g Π Ψ Π g g Π y y 1 1 Ψ1
i

gr
y Uy i i si i i i i si i N N N

i s i s

t t

L L L

 
  

 
    

 

   

  

where  var = ,y Ψsi si  the part of Ψ  associated with elements in ,is  and 1
iN  and 1N  are vectors of iN  

and N  1’s. 

The model-based error variance of ˆ gr
yt  requires knowledge of Ψ  for the full population. Without some 

strong assumptions that link the sample and nonsample covariance structures, components of Ψ  associated 

with the nonsample cannot be estimated from the sample. However, as shown in Appendix A.2, under some 

reasonable conditions the orders of the terms are  2
1 =L O M m  and  2 3= =L L O M  so that 1L  

dominates the variance as the number of sample and population clusters increase. Thus,  

   1 1ˆav = g Π Ψ Π ggr
y Uy i i si i i

i s

t t
 


    (2.7) 

where av   denotes asymptotic model variance under the assumptions in Appendix A.1. A robust estimator 

of the right-hand side of (2.7) can be formed even when Ψ si  is unknown. On the other hand, if the number 

of population clusters increases at the same rate as sample clusters, (i.e., =f m M  converges to a non-

zero constant), then 1,L 2 ,L  and 3L  may all contribute importantly to the asymptotic variance. In this paper, 

we will only consider estimation of 1.L  

Unless the true variance matrix of y s  is known, Ψ i  must be estimated. In Appendix A.3 we show that 

in large samples  var e Ψi i   where ˆ=e y yi si si  with ˆˆ =y X Bsi si  and X si  being the in p  matrix 

of auxiliaries for sample elements in sample cluster .i  Substituting e ei i
  for Ψ si  in (2.7) yields the 

sandwich estimator  
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 1 1= .g Π e e Π gR i i i i i i
i s

  


    (2.8) 

Based on results in Appendix A.3, R  is approximately unbiased for  ˆav gr
y Uyt t   in large samples. This 

sandwich estimator is also closely related to the design-based, ultimate cluster estimator for a sample design 

in which clusters are selected with replacement, which is, in turn, similar to both g  and JL  in with 

replacement sampling. Consequently, R  has both desirable design-based and model-based properties. 

In small to moderate-sized samples, R  will be model-biased and will often underestimate the true 

variance. A hat-matrix adjustment can be made as a correction. As shown in Appendix A.3,  

                    
; ,

E = var =e e e I H Ψ I H H Ψ H
i ii i i n ii si n ii ij sj ij

j i i j s
 

 
   

   (2.9) 

where 1 1=H X A X Q Πij si sj j j
   , = 1, ,i j m  with Q j  and Π j  being the j jn n  parts of Q  and Π  

associated with sample cluster .j  As in (Li and Valliant, 2009; Valliant, 2002), the H ij  can be collected into a 

survey weighted hat matrix:  

 

1 1

11 1 1
1 1 1 1 1

11 1 1
1 1 1

=

= .

H X A X QΠ

X A X Q Π X A X Q Π

X A X Q Π X A X Q Π

s s

s s s sm m m

sm s sm sm m m

 

  

  

 
 
 
 
 
  



  





 

 

 
(2.10)

 

Based on the assumptions in Appendix A.1,  1= ,H O m  from which we conclude that  var .e Ψi si   

The diagonal submatrices H ii  are matrix analogs to leverages in single-stage sampling. In ordinary least 

squares regression, the vector of predicted values can be written as OLSˆ =y H y  with OLS =H  

  1 .X X X XT T  Leverages are diagonals of the hat matrix, OLS ,H  and can be used to correct for a small 

sample bias in   22 ˆ=i i ie y y  as an estimator of  var .iy  We use the H ii  in an analogous way below. 

To adjust for the fact that e ei i
  is model-biased for small to moderate samples, we make leverage-like 

adjustments to .e ei i
  If Q I  and the sample is self-weighting (i.e., =Π Ic  for some 0 < < 1),c  then 

   var =e I H Ψ
ii n ii si   (see Appendix A.3). Solving for Ψ si  and substituting into (2.8) gives the 

variance estimator:  

                                              1
1 1= g Π I H e e Π g

iD i i n ii i i i i
i s




 



    (2.11) 

which, in this special case, is also approximately unbiased since  1= .H ii O m  One undesirable feature 

of D  is that it can be negative or can have negative contributions from some clusters if =Di  

  1
1 1 < 0.g Π I H e e Π g

ii i n ii i i i i


    For such clusters, replacing Di  with 1 1= g Π e e Π gRi i i i i i i     will 

assure a positive variance estimator. This adjustment is used in the simulation in Section 3. 

In Appendices A.4 and A.5, we show that the jackknife variance estimator can be written exactly as  
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           2
2

Jack

1
= 2i i i i

i s i s i s

m
D D D D F F

m


  

           (2.12) 

where  

          

   

 
   

   

 

1
1

1 1

1
1 1

1
1 1

1
=

=

ˆ= ; =

ˆ= ; =

= .

g Π I H e

1 X 1 Π X B R

1 Π I H H y y

R A X Q Π I H e

i

i

i

i

i i i

i i i n ii i

i N U n i si i i
i s

i n i n ii ii si si ii
i s

i si i i n ii i

F G G K K
n

D

K m K m K

G G m G




 




 




 

  



 

 















  

This form of Jack  results in a significant reduction in computations since only one GREG estimate is 

needed, rather than m  estimates. (Of course, recomputing the GREG for every jackknife replicate may still 

be advantageous if an elaborate nonresponse adjustment affects the size of the true variance.) 

In large samples Jack  can be approximated by  

                                             2

1

1
=J i

i s

m
D D

m





  (2.13) 

or by  

                
   

2
2

1 1
1 1

1
=

1
= .g Π I H e e I H Π g

i i

J i
i s

i i n ii i i n ii i i
i s

m
D

m

m

m




 
 






 



  

 

(2.14)

 

The estimators, 1J  and 2J  are clustered versions of the single-stage approximations to the jackknife in 

Valliant (2002, equations (3.5), (3.6)). 

As sketched in Appendix A.6, Jack , ,JL 1 ,J 2 ,J ,D  and R  are all asymptotically equivalent as 

.m    Since Jack  and JL  are design-consistent, the alternative estimators above can be expected to 

perform well over repeated samples when the size of the first-stage sample is large, and when model (2.1) 

is approximately correct. One caveat is that the sampling fraction of clusters must be small so that estimators 

made from a without-replacement, first-stage sample will perform as if the sample had been selected with-

replacement. 

None of these sandwich-like estimators includes finite population correction factors. Thus, they may 

tend to overestimate the sampling variance when a large proportion of the sample clusters is selected. To 

account for this, we can further adjust all of the variance estimators in an ad hoc fashion by multiplying the 

variance estimators by a finite population correction factor, denoted ,pcf  as developed by Kott (1988). This 

results in the following adjusted estimators:  
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 

   

 

   

* 1 1

1
* 1 1

2
* 2
Jack

2
*

1

1 1
* 1 1

2

=

=

= 2
1

=
1

= .

g Π e e Π g

g Π I H e e Π g

g Π I H e e I H Π g
i i

R pc i i i i i i
i s

D pc i i n ii i i i ii
i s

pc i i i i
i s i s i s

J pc i
i s

J pc i i n ii i i n ii i i
i s

f

f

m
f D D D D F F

m

m
f D D

m

f











 




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

  



 
 





       




 





  





 

 

 

  

When a simple random sample is selected in the first stage, = 1 .pcf m M  According to Kott (1988), an 

appropriate correction when the first stage is selected with varying probabilities is 2
=1

= 1
M

pc ii
f m p   

where ip  is the single draw probability for cluster ,i  i.e., the probability that cluster i  would be selected 

in a sample of size 1. 
 

3  Simulation 
 

We performed a series of simulation studies to test the performance of the new variance estimators in 

different populations. In each simulated sample, we computed the quantities listed in Table 3.1. To evaluate 

the variance estimators, we calculated the average of the variance estimates, compared those averages to the 

empirical mean square error, and computed coverage probabilities of confidence intervals based on the 

different variance estimates. Table 3.2 summarizes the sample designs for the 18 simulation studies. The 

column called Label gives the headings used in later tables. The sample designs are used in three populations 

described below. 
 

Table 3.1 
Statistics of interest for clustered GREG variance simulation 
 

Statistic Description 
ˆ

yt   Estimated total from the Horvitz-Thompson Estimator 
ˆ gr

yt  Estimated total from the GREG 

E  Empirical variance 

g  Design-based variance estimator that assumes Poisson sampling at both stages from Särndal et al. (1992) in (2.3) 

wr  With-replacement variance estimator in (2.4) 

JL  Jackknife linearization variance estimator from Yung and Rao (1996) in (2.5) 

R  Sandwich estimator in (2.8) 

D  First hat-matrix adjusted sandwich estimator in (2.11) 

Jack  Jackknife variance estimator in (2.6) 

1J  First approximation to the jackknife variance estimator in (2.13) 

2J  Second approximation to the jackknife variance estimator in (2.14) 
*
R  Sandwich estimator with a finite population adjustment 
*
D  First hat-matrix adjusted sandwich estimator with a finite population correction 

*
Jack  Jackknife variance estimator with a finite population correction 
*

1J  First approximation to jackknife with a finite population correction 
*

2J  Second approximation to jackknife with a finite population adjustment 
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3.1  Data 
 

We conducted simulations on three populations to assess the design-based performance of the variance 

estimators under a variety of situations. In the first population, we investigated the performance of the 

variance estimators when the first-stage sampling fraction was large and the sample size was moderate. The 

focus of the second simulation study was on the performance of the variance estimators under a relatively 

messy dataset and a small first-stage sample size. The final simulation study shows the performance of the 

variance estimators in large samples. 
 

Table 3.2 
Simulation designs for three populations 
 

 Label Population First stage sample m Second stage sample No. of samples

1 srs fixed Third Grade srswor 25 = 5in  1,000

2 srs fixed Third Grade srswor 50 = 5in  1,000

3 srs epsem Third Grade srswor 25 675
2,427=if  1,000

4 srs epsem Third Grade srswor 50 675
2,427=if  1,000

5 pps epsem Third Grade ppswor 25 = 5in  1,000

6 pps epsem Third Grade ppswor 50 = 5in  1,000

7 srs fixed ACS srswor 3 = 9in  5,000

8 srs fixed ACS srswor 15 = 9in  5,000

9 srs epsem ACS srswor 3 30,430
194,329=if  5,000

10 srs epsem ACS srswor 15 30,430
194,329=if  5,000

11 pps epsem ACS ppswor 3 = 9in  5,000

12 pps epsem ACS ppswor 15 = 9in  5,000

13 srs fixed Simulated srswor 300 = 2in  1,000

14 srs fixed Simulated srswor 1,500 = 2in  100

15 srs epsem Simulated srswor 300 60,000
195,164=if  1,000

16 srs epsem Simulated srswor 1,500 60,000
195,164=if  100

17 pps epsem Simulated ppswor 300 = 3in  1,000

18 pps epsem Simulated ppswor 1,500 = 3in  100

 
3.1.1  Third grade population 
 

The first simulation study used the Third Grade population from Appendix B.6 of Valliant et al. (2000). 

This dataset contained the mathematics achievement scores for 2,427 third graders in 135 schools. The 

relatively small number of schools in this population and the fairly constant number of students in each 

school made it ideal for studying samples with large sampling fractions. 

We used GREG to estimate the average mathematics achievement score for third graders. Altogether, 

we selected 1,000 samples in each of six sample designs listed in Table 3.2. In the first sample design, we 

selected 1,000 simple random samples without replacement (srswor) of 25 schools. Within each sampled 

school, we selected exactly five students via srswor. Because the number of students in each school varied 
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from school to school, this sample design resulted in different unconditional probabilities of selection, but 

a fixed sample size of 125 students. The second sample design was similar to the first, except we selected 

50 schools. Selecting 50 of the 135 schools resulted in a large first-stage sampling fraction of 0.37, 

necessitating a finite population correction factor. Both the samples of =m 25 and 50 might be considered 

to be of “moderate” size. 

In the third sample design, we selected 1,000 simple random samples of 25 schools without replacement. 

Within each sampled school, we selected students at a constant rate of 675
2,427 ,  yielding 1,000 samples with 

random sizes centered around 125 students. The result of this design was that each student had the same 

unconditional probability of selection. The fourth sample design was similar to the third, except we selected 

50 schools. The sample sizes were also random under this design, with an average of 250 students. Since 

the third and fourth sample designs resulted in every unit getting the same chance of selection, these sample 

designs are labeled srs epsem (equal probability selection mechanism) in subsequent tables. 

In the fifth design, we selected 1,000 samples of 25 schools with probabilities proportional to the number 

of students in each school. Within each sampled school, we selected exactly five students, yielding 1,000 

samples with exactly 125 students each. The sixth sample design was similar to the fifth, except we selected 

50 schools. We selected 1,000 samples of size 250 students using this design. The fifth and sixth designs 

are epsem. Like the second and fourth sample designs, this sample design also had a large sampling fraction 

and warranted the need for a finite population correction factor to adjust the variance estimators. 

From each sample, we estimated the average achievement scores for the finite population using a GREG 

estimator and assuming that the number of students in the population was known. The assisting model was 

meant to replicate the clustered linear regression model in Section 9.6 of Valliant et al. (2000). The eleven 

explanatory variables used to model each student’s math achievement score were: an intercept, sex (male 

or female), ethnicity (White/Asian, Black, Native American/Other, or Hispanic), language spoken at home 

is the same as the test (Always, Sometimes/Never), type of community (Outskirts of a town or city, 

Village/City), and school enrollment. The total mathematics achievement estimated with the GREG 

estimator was divided by the number of students in the population, 2,427, to get the average achievement 

score. The average achievement score for the population was 477.7. For the full population, the R-squared 

for the student-level linear model was 0.9735, indicating a very strong linear relationship. 

 
3.1.2  American Community Survey population 
 

The second simulation study used Census 2000 Summary File 3 data and American Community Survey 

(ACS) 2005 - 2009 Summary File data. The goal was to estimate the total number of housing units in the 

U.S. state of Alabama as reported in the ACS Summary File. Block group counts from Census 2000 were 

used as covariates in the assisting model. 

To create the population, first all block group data were extracted from the ACS Summary File and the 

Census 2000 Summary File 3. Then, the two files were merged at the block group level. Block groups with 

1,000 or more housing units in Census 2000 were removed because such large block groups had different 

characteristics than the majority of blocks. In many sampling designs such large units would be placed in a 

separate, certainty stratum and not contribute to the variance of estimates. Also, block groups with extreme 
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growth in the total number of housing units were also removed. Specifically block groups that had gained 

more than 10 units over twice the 2000 census count were removed. 

Clusters were defined as counties and block groups were treated as units. Treating block group as a unit 

is motivated by the common task of selecting a sample of blocks, listing them, and then using the listings to 

estimate the total number of housing units in the finite population. 

Clusters with fewer than 10 block groups or more than 120 block groups in them were removed from 

the frame of clusters. Overall, there were 61 clusters (counties) containing a total of 2,051 block groups and 

1,109,499 housing units in the edited dataset. Altogether, six counties and 1,278 block groups containing 

1,030,471 housing units were removed from the Alabama file. 

Figure 3.1 shows two scatterplots. The first plot shows the total number of housing units in the block 

group as reported on the ACS summary file as a function of the 2000 Census housing unit count. Each point 

represents one of the 2,051 block groups in the finite population. The diagonal line is a nonparametric 

smoother, indicating a strong relationship between the two variables. The plot also shows some evidence of 

heteroscedasticity because the points appear to fan out as the 2000 census count increases. The second plot 

shows the residuals obtained by regressing the 2000 census housing unit count on the ACS housing unit 

count using ordinary least squares (OLS) plotted versus the ACS housing unit count. As the number of 

housing units reported on the ACS file increases, the model predictions appear to seriously underestimate 

the true number of housing units. This suggests some degree of nonlinearity in the mean function. In 

addition, there is noticeable heteroscedasticity in variance. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1  Scatter plot and residual plot for ACS population. Gray lines are nonparametric smoothers. 
 

As in the first simulation study, we tested six different sample designs. We selected 5,000 samples in 

each of six different selection mechanisms listed in Table 3.2. In the first sample design, we selected 5,000 

simple random samples of 3 clusters without replacement. In large national surveys, it is not uncommon to 
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select a small number of primary sampling units in each stratum. In this case, we treat Alabama as if it were 

a single design stratum and its 61 counties as clusters. Three counties within that stratum were sampled. 

Within each cluster, we selected nine block groups using srswor. The second design was similar with 15 

clusters and 9 block groups per cluster. The first two sample designs resulted in highly variable weights. 

The other designs (rows 9-12) were parallel to those in rows 3-6 for the Third Grade population. The sample 

sizes of =m 3 and 15 are small so that theoretical, large sample properties are less likely to hold. 

From each sample, we estimated the total number of housing units in the finite population using a GREG 

estimator. The assisting model included an intercept and the Census 2000 count of housing units; the 

heteroscedasticity noted above was not accounted for in the GREG. For the full population, the R-squared 

was 0.819, again indicating a strong linear relationship. 
 

3.1.3  Simulated population 
 

A population was created with a large number of clusters to assess the asymptotic characteristics of the 

variance estimators. Generated using a classic linear model, a total of 30,000 clusters were created, each 

with a random number of units. The number of units in each cluster was determined by adding three to a 

uniform random integer between 0 and 7. This created clusters ranging in size from 3 to 10 units. Altogether, 

the population contained 195,164 units within 30,000 clusters. For each unit, a positive covariate was 

created as  1,000 exp 0, 1kx N  where  0, 1N  is a normal random variate with mean of 0 and standard 

deviation of 1. A random response was created such that  21,000 2 , kx
k ky N x . Figure 3.2 shows 

scatter plots of the relationship between kx  and ky  for the finite population.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2  Scatter plot and residual for simulated population. Gray lines are nonparametric smoothers. 

 
We selected samples using the six different probability selection mechanisms listed in rows 13-18 of 

Table 3.2. The types of sample designs are parallel to those used for the Third Grade and ACS populations. 
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In designs 14, 16, and 18, we selected 100 simple random samples of 1,500 clusters without replacement. 

We only selected 100 samples due to the excessive amount of computer time it took to select and process 

each sample. The sample sizes of =m 300 and 1,500 are large so that theoretical, large sample properties 

should hold. 

From each sample, we estimated the total of the response using a GREG estimator. The true finite 

population total was 839,149,969. The assisting model included an intercept and x  with .Q I  For the 

full population, the R-squared was 0.953, indicating a very strong linear relationship. Figure 3.2 shows a 

scatter plot of the population as well as a residual plot based on an OLS regression of kx  on ky  for the full 

population. There is clear evidence of heteroscedasticity of errors. 

 
3.2  Results 
 

We explored the bias, variability, and confidence interval coverage of the new and existing variance 

estimators. We only show tables for some of the simulations to conserve space. Table 3.3 shows the means 

of the  -estimator and the GREG estimator as well as the ratios of the average values of the variance 

estimators to the empirical mse’s for all populations and sample size combinations across all simulations. 

Both the  -estimator and the GREG estimator are approximately unbiased; however, the GREG estimator 

is much more efficient. 

 
Table 3.3 
Simulation Results for estimates for means and variance estimators for three populations and six sample designs 
in each population. Values in rows for variance estimators are ratios of mean estimated variance to empirical 
mse of the GREG. See Table 3.1 for descriptions of the variance estimators 
 

Estimator                srs fixed                srs epsem                pps epsem 

                                             Third Grade Population 

 m  25 m  50 m  25 m  50 m  25 m  50

Average ˆ
yt N  477.23 477.11 476.29 476.85 477.31 477.75

mse ˆ
yt N  663.12 264.75 2,013.90 981.54 142.93 53.17

Average ˆ g
yt N  474.27 476.37 476.95 477.24 477.50 477.85

mse ˆ g
yt N  218.96 66.66 114.08 50.10 121.57 41.32

 ˆmse g
g yt  0.76 0.87 0.73 0.82 0.66 0.91

 ˆmse g
wr yt  0.75 1.11 0.79 1.06 0.73 1.19

 ˆmse g
JL yt  0.88 1.16 0.85 1.10 0.78 1.24

 ˆmse g
R yt  0.87 1.15 0.82 1.08 0.74 1.22

 ˆmse g
D yt  1.26 1.32 1.09 1.25 0.95 1.36

 2
ˆmse g

J yt  2.22 1.54 1.50 1.46 1.23 1.54

 Jack
ˆmse g

yt  2.03 1.49 1.44 1.43 1.19 1.51

 1
ˆmse g

J yt  2.22 1.55 1.56 1.49 1.28 1.57

 * ˆmse g
R yt  0.71 0.73 0.67 0.68 0.60 0.74

 * ˆmse g
D yt  1.02 0.83 0.88 0.79 0.76 0.83

 *
2

ˆmse g
J yt  1.81 0.97 1.22 0.92 0.99 0.93

 *
Jack

ˆmse g
yt  1.66 0.94 1.17 0.90 0.95 0.92

 *
1

ˆmse g
J yt  1.81 0.98 1.27 0.94 1.03 0.95
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Table 3.3 (continued) 
Simulation Results for estimates for means and variance estimators for three populations and six sample designs 
in each population. Values in rows for variance estimators are ratios of mean estimated variance to empirical 
mse of the GREG. See Table 3.1 for descriptions of the variance estimators 
 

Estimator                srs fixed                srs epsem                pps epsem 

                                             ACS Population (numbers in thousands) 

 m  3 m  15 m  3 m  15 m  3 m  15

Average ˆ
yt N  1,119.13 1,108.23 1,112.89 1,113.89 1,111.48 1,109.02

mse ˆ
yt N  181,329.24 27,650.01 201,618.77 32,926.98 15,991.69 2,619.32

Average ˆ g
yt N  1,081.68 1,103.34 1,104.45 1,108.45 1,106.36 1,108.46

mse ˆ g
yt N  11,220.86 921.82 2,111.84 408.19 1,874.39 352.65

 ˆmse g
g yt  2.70 0.90 0.44 0.83 0.53 0.92

 ˆmse g
wr yt  1.17 0.98 0.68 1.03 0.87 1.14

 ˆmse g
JL yt  2.18 0.91 0.65 0.99 0.79 1.11

 ˆmse g
R yt  2.80 1.00 0.43 0.92 0.53 1.03

 ˆmse g
D yt  6.09 1.32 0.84 1.08 0.89 1.15

 2
ˆmse g

J yt  17,191.52 1.85 2.36 1.27 1.64 1.29

 Jack
ˆmse g

yt  4,678.25 1.47 1.37 1.19 1.05 1.21

 1
ˆmse g

J yt  17,190.86 1.72 3.07 1.36 2.35 1.38

 * ˆmse g
R yt  2.66 0.76 0.41 0.70 0.49 0.68

 * ˆmse g
D yt  5.79 0.99 0.80 0.82 0.83 0.76

 *
2

ˆmse g
J yt  16,346.03 1.40 2.25 0.96 1.52 0.85

 *
Jack

ˆmse g
yt  4,448.17 1.11 1.30 0.90 0.97 0.80

 *
1

ˆmse g
J yt  16,345.41 1.30 2.92 1.03 2.19 0.91

                                  Simulated Population (numbers in millions) 

 m  300 m  1,500 m  300 m  1,500 m  300 m  1,500

Average ˆ
yt N  838.91 838.71 838.13 843.13 838.74 839.06

mse ˆ
yt N  1,588.43 250.20 2,303.19 563.77 1,218.73 253.13

Average ˆ g
yt N  838.57 839.10 838.81 840.01 839.39 839.08

mse ˆ g
yt N  156.29 23.07 117.18 19.63 105.64 25.24

 ˆmse g
g yt  0.91 1.11 0.91 1.13 1.01 0.89

 ˆmse g
wr yt  0.94 1.13 0.91 1.17 1.01 0.90

 ˆmse g
JL yt  0.91 1.13 0.92 1.15 1.02 0.90

 ˆmse g
R yt  0.91 1.13 0.92 1.14 1.02 0.90

 ˆmse g
D yt  1.03 1.15 0.96 1.16 1.07 0.91

 2
ˆmse g

J yt  1.50 1.17 1.03 1.18 1.13 0.93

 Jack
ˆmse g

yt  1.48 1.17 1.03 1.18 1.12 0.93

 1
ˆmse g

J yt  1.50 1.17 1.03 1.18 1.13 0.93

 * ˆmse g
R yt  0.90 1.07 0.91 1.09 1.01 0.85

 * ˆmse g
D yt  1.02 1.09 0.96 1.11 1.05 0.86

 *
2

ˆmse g
J yt  1.48 1.11 1.02 1.12 1.12 0.88

 *
Jack

ˆmse g
yt  1.47 1.11 1.01 1.12 1.11 0.88

 *
1

ˆmse g
J yt  1.48 1.11 1.02 1.13 1.12 0.88
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The performance of the variance estimators depends on the sample design and the population. Some of 

the estimates in Table 3.3 from the ACS population with the simple random sample of 3 clusters and 9 units 

in each cluster stand out as being extremely poor. The inverses of the probabilities of selection vary quite a 

bit for this sample design. The variability of these weights, coupled with some extreme observations in the 

population, causes instability for some of the variance estimators. Namely, 2 ,J Jack , 1 ,J *
2 ,J *

Jack , *
1J  

are extreme overestimates on average. All six of these estimators contain explicit or implicit hat matrix 

adjustments which can be quite large and seriously inflate the variance estimators when coupled with large 

sampling weights. On the other hand, ,D  which also has a hat matrix adjustment, performs reasonably well 

for all populations and sample sizes. Noteworthy is the result that D  is much less of an overestimate for 

the mse in the combination (ACS, srs fixed, =m 3, =in 9) whereas other hat-matrix adjusted estimators 

were extreme overestimates. The estimators, ,g ,wr  and to a lesser extent, R  and ,JL  tend to be 

underestimates at the smaller sample sizes in the Third Grade and ACS populations and for all sample 

designs in those populations, but the problem diminishes for the larger sample sizes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Boxplots of ratios of standard error estimates to the empirical standard errors for 1,000 SRS 
samples from Third Grade population. Vertical reference lines at 1. 

 
The boxplots in Figure 3.3 show the variability of the estimators more clearly for srs’s of size =m 25 

and 50 from the Third Grade population. The boxplots depict the estimated standard errors (SEs) as a 

fraction of the empirical SE for the samples in each simulation. A ratio of 1 means that the estimated variance 

was equal to the empirical variance. Some samples yield large SE estimates, even though the majority of 

samples are much closer to the empirical variance. The degree of overestimation and the incidence of 

extreme values decreases substantially with the larger sample size as is evident by comparing the figures. 

The hat-matrix adjusted estimators also tend to somewhat overestimate the true variance, as evinced by the 
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boxes that are shifted above the reference lines drawn at 1. This can be an advantage for confidence interval 

coverage. 

Table 3.4 shows the six-number summaries of the ratios of the SE estimates, ,v  to the square root of 

the empirical variance, ,Ev  for the Third Grade population for four of the sample designs. As indicated 

by the median value of the ratios for 2 ,J Jack , 1 ,J *
2 ,J *

Jack ,  and *
1 ,J  they are generally centered near 

the empirical SEs, but can have extremely large values in some samples that affect their averages. (The 

problem of outlying values is even more severe in the ACS population; details are not shown here.) The 

estimators that are least affected by extremes are ,g ,wr ,JL ,R ,D * ,R  and * .D  However, the 

estimators that incorporate fpc’s often are underestimates except in the case of srs and =m 25. 

 
Table 3.4 
Six-number summaries for alternative standard error estimators for Third Grade population in four sample 
designs. Ev  is empirical variance across simulated samples. See Table 3.1 for descriptions of the variance 
estimators 
 

 v  Distribution of Ev    

  Min  1st Qu.  Median  Mean  3rd Qu.  Max 

srs m  25  g    0.46  0.71  0.82  0.86  0.96  3.59 

wr    0.48  0.73  0.84  0.87  0.97  1.71 

JL    0.48  0.75  0.88  0.92  1.03  3.75 

R    0.47  0.74  0.87  0.92  1.02  3.85 

D    0.53  0.84  1.00  1.08  1.20  6.84 

2J    0.59  0.96  1.16  1.31  1.43 14.47 

Jack    0.57  0.93  1.13  1.26  1.38 13.69 

1J    0.59  0.97  1.17  1.32  1.44 14.48 
*
R    0.42  0.67  0.79  0.83  0.92  3.48 
*
D    0.48  0.76  0.90  0.97  1.08  6.17 
*

2J    0.53  0.87  1.05  1.18  1.29 13.06 
*
Jack   0.52  0.84  1.02  1.14  1.25 12.35 
*

1J    0.54  0.88  1.06  1.19  1.30 13.07 

srs m  50  g    0.62  0.84  0.92  0.94  1.01  1.64 

wr    0.67  0.95  1.04  1.06  1.15  1.73 

JL    0.68  0.96  1.06  1.08  1.18  1.94 

R    0.68  0.96  1.06  1.07  1.17  1.95 

D    0.71  1.01  1.13  1.15  1.26  2.20 

2J    0.75  1.08  1.20  1.24  1.35  2.88 

Jack    0.74  1.06  1.18  1.22  1.33  2.79 

1J    0.75  1.09  1.21  1.24  1.36  2.86 
*
R    0.54  0.76  0.84  0.85  0.93  1.55 
*
D    0.56  0.80  0.89  0.91  1.00  1.75 
*

2J    0.59  0.86  0.95  0.98  1.07  2.29 
*
Jack   0.58  0.84  0.94  0.97  1.06  2.22 
*

1J    0.60  0.86  0.96  0.99  1.08  2.27 
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Table 3.4 (continued) 
Six-number summaries for alternative standard error estimators for Third Grade population in four sample 
designs. Ev  is empirical variance across simulated samples. See Table 3.1 for descriptions of the variance 
estimators 
 

 v  Distribution of Ev    

  Min  1st Qu.  Median  Mean  3rd Qu.  Max 

pps m  25  g    0.48  0.71  0.79  0.80  0.88  1.33 

wr    0.51  0.76  0.84  0.84  0.92  1.30 

JL    0.50  0.76  0.86  0.87  0.96  1.46 

R    0.49  0.75  0.84  0.85  0.94  1.43 

D    0.53  0.83  0.94  0.96  1.06  1.66 

2J    0.59  0.94  1.06  1.09  1.21  2.15 

Jack    0.57  0.92  1.04  1.07  1.18  2.10 

1J    0.60  0.96  1.08  1.11  1.23  2.19 
*
R    0.43  0.67  0.76  0.76  0.84  1.30 
*
D    0.47  0.75  0.84  0.86  0.95  1.51 
*

2J    0.52  0.84  0.95  0.98  1.08  1.90 
*
Jack   0.51  0.82  0.93  0.96  1.06  1.86 
*

1J    0.53  0.86  0.97  1.00  1.10  1.93 

pps m  50  g    0.72  0.88  0.95  0.95  1.01  1.28 

wr    0.78  1.00  1.09  1.09  1.16  1.47 

JL    0.81  1.01  1.11  1.11  1.19  1.52 

R    0.80  1.00  1.09  1.09  1.18  1.50 

D    0.84  1.06  1.15  1.16  1.25  1.64 

2J    0.88  1.11  1.22  1.23  1.33  1.83 

Jack    0.88  1.10  1.21  1.22  1.31  1.81 

1J    0.89  1.13  1.23  1.24  1.34  1.85 
*
R    0.62  0.78  0.85  0.85  0.92  1.16 
*
D    0.65  0.82  0.90  0.90  0.97  1.28 
*

2J    0.68  0.87  0.95  0.96  1.03  1.43 
*
Jack   0.67  0.86  0.94  0.95  1.02  1.42 
*

1J    0.69  0.88  0.96  0.97  1.04  1.44 

 
Lastly, Table 3.5 shows the 95% confidence interval coverage for all of the estimators based on t -

distributions. That is, we computed, 0.975, 1 0.975, 1
ˆ ˆ,gr gr

y m y mt t t t       where 0.975, 1mt   is the 97.5th 

percentile from a t -distribution with 1m   degrees of freedom. We then noted how often the true value 

fell below, above, and inside this range. In addition to the new and old estimators, Table 3.5 also shows the 

confidence interval coverage attained when the empirical variance, ,E  was used to form the confidence 

intervals. Ideally, the population total should be within the estimated 95% confidence interval for 95% of 

the samples. The true total should be below the 95% confidence bounds for 2.5% of the samples and above 

the confidence bounds for the same percentage of samples. 
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The jackknife-based estimators, * ,D *
Jack ,  and 2 ,J  cover at higher rates than the other variance 

estimators because they are larger. In small samples, jackknife-based estimators cover above the nominal 

level. The traditional variance estimators, ,g ,wr  and JL  under-covered in a number of cases, although 

their coverage was almost always higher than 90%. Note that g  is generally an improvement over R  due 

to the hat-matrix adjustment that makes D  larger. 

The variance estimators that incorporate hat matrix adjustments ( ,D 2 ,J Jack ,  and * )R  generally 

increase CI coverage rates compared to the other choices. This advantage was especially noticeable for the 

ACS population where, for example, wr  covers in less than 90% of samples in the combinations, *
Jack( ,

=m 3), (srs epsem, =m 3), and (srs epsem, =m 15). Although, in principal, an fpc would seem useful in 

some of the population and sample size combinations, CIs based on the variance estimators with fpc’s cover 

at lower rates than their counterparts without the fpc’s. For example, in ACS (srs epsem, =m 15) the 

coverage rates for * ,R * ,D *
2 ,J *

Jack ,  and *
1J  range from 86.1 to 90.6% while the rates for the versions 

without fpc’s range from 90.2 to 93.4%. 
 

Table 3.5 
Coverage of 95% confidence intervals for population totals based on t-distributions and alternative variance 
estimators. See Table 3.1 for descriptions of the variance estimators 
 

Variance  
est.  

Third Grade  ACS  Simulation  Third Grade  ACS  Simulation  
Lower Middle Upper Lower Middle Upper Lower MiddleUpper LowerMiddleUpper LowerMiddle Upper LowerMiddle Upper

srs m  25 srs m  3  srs m  300 srs m  50  srs m  15 srs 1,500m   

E     2.9    95.6    1.5    0.7    99.3    0    2.7   95.0   2.3   3.4   95.1   1.5   3.3   95.8    1.0    1.0    96.0   3.0 

g     7.4    90.7    1.9    2.4    97.3    0.4   4.3   93.5   2.2   5.9   92.8   1.3   6.6   92.3    1.0    1.0    95.0   4.0 

wr     7.0    90.5    2.5    9.2    88.8    2.0   3.9   92.8   3.3   4.1   95.0   0.9   7.5   91.0    1.5    1.0    96.0   3.0 

JL     5.5    93.2    1.3    6.5    92.1    1.4   4.4   93.4   2.2   3.3   96.1   0.6   7.2   91.4    1.4    1.0    95.0   4.0 

R     5.9    92.7    1.4    3.1    96.3    0.6   4.3   93.5   2.2   3.4   96.0   0.6   6.5   92.5    1.0    1.0    95.0   4.0 

D     3.8    95.4    0.8    1.6    98.0    0.4   3.7   94.2   2.1   2.4   97.1   0.5   5.1   94.3    0.6    1.0    95.0   4.0 

2J     1.7    98.0    0.3    0.6    99.3    0.1   3.6   94.4   2.0   2.0   97.7   0.3   3.9   95.7    0.4    1.0    95.0   4.0 

Jack     2.1    97.6    0.3    3.2    95.9    0.8   3.6   94.4   2.0   2.0   97.7   0.3   5.6   93.7    0.7    1.0    95.0   4.0 

1J     1.6    98.1    0.3    1.6    98.0    0.3   3.6   94.4   2.0   2.0   97.7   0.3   4.5   95.0    0.5    1.0    95.0   4.0 
*
R     8.6    89.4    2.0    3.4    96.0    0.7   4.4   93.4   2.2   7.8   89.8   2.4   9.5   88.5    2.0    1.0    95.0   4.0 
*
D     5.5    93.3    1.2    1.6    98.0    0.4   3.8   94.1   2.1   6.4   92.2   1.4   7.5   91.1    1.4    1.0    95.0   4.0 
*

2J     2.9    96.6    0.5    0.6    99.3    0.1   3.6   94.4   2.0   5.2   93.8   1    5.8   93.3    0.8    1.0    95.0   4.0 
*
Jack    3.7    95.7    0.6    3.4    95.7    0.9   3.6   94.4   2.0   5.5   93.4   1.1   7.9   90.6    1.6    1.0    95.0   4.0 
*

1J     2.7    96.9    0.4    1.7    97.9    0.4   3.6   94.4   2.0   5.0   93.9   1.1   6.6   92.3    1.1    1.0    95.0   4.0 

 srs epsem m  25 srs epsem m  3 srs epsem m  300 srs epsem m  50 srs epsem m  15  srs epsem 1,500m 

E     1.7    96.2    2.1    0.0    99.9    0.1   2.4   94.7   2.9   2.3   95.5   2.2   1.1   97.1    1.8    3.0    94.0   3.0 

g     5.6    91.2    3.2    6.5    91.5    2.0   2.6   94.1   3.3   5.1   92.2   2.7   8.3   90.4    1.3    3.0    96.0   1.0 

wr     5.8    91.2    3.0    9.6    87.2    3.2   3.1   93.3   3.6   3.4   95.1   1.5   9.3   89.7    1.1    3.0    95.0   2.0 

JL     5.1    92.4    2.5    6.5    91.2    2.3   2.6   94.1   3.3   2.8   96.0   1.2   8.2   90.9    0.9    3.0    96.0   1.0 

R     5.2    92.3    2.5    8.4    88.3    3.3   2.6   94.1   3.3   2.9   95.7   1.4   8.8   90.2    1.0    3.0    96.0   1.0 

D     3.7    94.3    2.0    5.5    92.8    1.7   2.5   94.3   3.2   2.3   96.9   0.8   7.8   91.6    0.7    3.0    96.0   1.0 

2J     1.9    97.3    0.8    2.6    96.7    0.7   2.3   94.9   2.8   2.0   97.9   0.1   6.9   92.6    0.5    3.0    96.0   1.0 

Jack     2.2    96.8    1.0    4.7    94.0    1.3   2.3   94.9   2.8   2.1   97.8   0.1   7.3   92.1    0.6    3.0    96.0   1.0 

1J     1.8    97.5    0.7    2.5    96.9    0.6   2.3   94.9   2.8   2.0   97.9   0.1   6.2   93.4    0.4    3.0    96.0   1.0 
*
R     6.6    89.5    3.9    8.9    87.8    3.4   2.7   93.9   3.4   7.7   88.7   3.6   11.7   86.1    2.2    3.0    96.0   1.0 
*
D     5.1    92.5    2.4    5.7    92.4    1.9   2.5   94.3   3.2   6.0   91.6   2.4   10.6   88.0    1.5    3.0    96.0   1.0 
*

2J     3.4    94.9    1.7    2.8    96.5    0.7   2.3   94.9   2.8   4.6   93.7   1.7   9.2   89.7    1.1    3.0    96.0   1.0 
*
Jack    3.5    94.8    1.7    4.9    93.7    1.4   2.3   94.9   2.8   4.7   93.3   2    9.9   89.0    1.2    3.0    96.0   1.0 
*

1J     3.0    95.4    1.6    2.6    96.8    0.6   2.3   94.9   2.8   4.6   93.7   1.7   8.6   90.6    0.8    3.0    96.0   1.0 
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Table 3.5 (continued) 
Coverage of 95% confidence intervals for population totals based on t-distributions and alternative variance 
estimators. See Table 3.1 for descriptions of the variance estimators 
 

Variance  
est.  

Third Grade  ACS  Simulation  Third Grade  ACS  Simulation  
Lower Middle Upper Lower Middle Upper Lower MiddleUpper LowerMiddleUpper LowerMiddle Upper LowerMiddleUpper

pps m  25 pps m  3 pps m  300 pps m  50 pps m  9 pps m  1,500 

E     1.7    95.9    2.4    0    100.0   0.0   2.9   94.2   2.9   2.3   95.3   2.4   0.7   98.0    1.3    2.0    95.0   3.0 

g     6.2    90.0    3.8    4.7    94.3    1.0   2.9   93.9   3.2   3.1   94.1   2.8   5.1   94.4    0.5    2.0    92.0   6.0 

wr     5.1    91.1    3.8    5.6    92.8    1.5   3.1   93.6   3.3   2.0   97.0   1.0   5.3   94.3    0.4    3.0    92.0   5.0 

JL     4.9    92.0    3.1    4.9    93.5    1.5   2.9   94.0   3.1   1.9   96.9   1.2   4.9   94.7    0.3    2.0    92.0   6.0 

R     5.3    91.5    3.2    7.2    90.5    2.3   2.9   93.9   3.2   2.0   96.8   1.2   5.6   94.1    0.4    2.0    92.0   6.0 

D     3.8    94.1    2.1    4.4    94.4    1.1   2.7   94.7   2.6   1.7   97.4   0.9   4.8   94.9    0.3    2.0    92.0   6.0 

2J     2.7    96.1    1.2    2.6    97.0    0.4   2.6   95.0   2.4   1.6   97.9   0.5   4.3   95.5    0.2    2.0    92.0   6.0 

Jack     2.8    95.8    1.4    4.2    94.9    0.9   2.6   95.0   2.4   1.6   97.9   0.5   4.7   95.1    0.2    2.0    92.0   6.0 

1J     2.2    96.7    1.1    2.1    97.5    0.4   2.6   95.0   2.4   1.5   98.0   0.5   3.9   96.0    0.1    2.0    92.0   6.0 
*
R     7.4    87.8    4.8    7.6    90.0    2.4   2.9   93.9   3.2   5.0   90.6   4.4   8.9   89.8    1.3    2.0    92.0   6.0 
*
D     5.3    91.6    3.1    4.7    94.0    1.3   2.7   94.5   2.8   4.1   92.2   3.7   8.1   90.9    1.0    2.0    92.0   6.0 
*

2J     3.6    94.3    2.1    2.8    96.8    0.4   2.6   95.0   2.4   3.0   94.1   2.9   7.2   92.0    0.7    2.0    92.0   6.0 
*
Jack    4.0    93.7    2.3    4.5    94.5    1.0   2.6   95.0   2.4   3.1   94.0   2.9   7.9   91.1    1.0    2.0    92.0   6.0 
*

1J     3.5    94.6    1.9    2.2    97.4    0.4   2.6   95.0   2.4   2.9   94.4   2.7   6.8   92.6    0.6    2.0    92.0   6.0 

 
One feature of D  and *

D  is that both the cluster-specific contributions, ,D i  and *
, ,D i  as well as the 

overall variance estimates can be negative. In the simulations, the adjustment described after (2.11) was 

used to avoid negative contributions. Negative estimates were more common when the second stage sample 

sizes were small and the weights were quite variable. For example, for the ACS population, almost 28% of 

the simple random samples of 3 clusters and =im 9 resulted in at least one negative variance contribution 

for a cluster. More commonly, about 10% of the samples contained at least one negative variance estimate 

for a cluster. In the Third Grade population, 16% to 27% of the samples had at least one negative value of 

.Di  In the simulated population with large sample sizes, Di  was negative in less than 5% of the samples. 

With the ad hoc correction of setting i iiI H  to ,iI D  is one of the most attractive variance estimators 

because it tends to slightly overestimate the empirical variance, has some of the best confidence interval 

coverage, and has reasonable variability compared to other variance estimators. 

 
4  Conclusion 
 

Leverage adjustments to standard variance estimators have been shown to reduce bias and improve 

confidence interval coverage based on general regression estimators in single-stage samples. This paper 

extends those results to two-stage samples by presenting new adjustments based on hat matrices. Our theory 

provides the justification for the adjustments and illustrates that some of the proposed estimators are related 

to the delete-a-cluster jackknife that is a common procedure in survey estimation. 

To test the theory, we conducted a series of simulation studies on three populations designed to assess 

performance in a variety of situations. In a school population a large sampling fraction of first-stage units 

was used. In a second population, based on American Community Survey data, the effects of small sample 
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sizes were tested. In a third simulated population, we examined large sample performance. Both simple 

random sampling and probability proportional to size sampling of clusters were used. 

The relationships of the variance estimators were similar across all sample designs. The with-

replacement variance estimator, ,wr  which is the default choice in survey software packages, the jackknife 

linearization estimator, ,JL  and the design-based variance estimator, ,g  that assumes Poisson sampling 

at each stage as a computational convenience, are often negatively biased leading to confidence intervals 

that cover at less than the desired rate. Some of the jackknife-related estimators ‒ Jack , 1 ,J  and 2J ‒ which 

explicitly or implicitly include hat-matrix adjustments, are prone to producing large, outlying values when 

the first-stage sample is small. This is especially true when the first-stage is selected by srs but is less so in 

pps sampling when an efficient measure of size is used. 

The variance estimators proposed here, particularly ,D  provide alternatives to estimating the variance 

of GREG estimators in complex samples. At the expense of somewhat inflating the variability of the 

variance estimator, the hat-matrix adjusted sandwich estimators, denoted here by ,Dv 1 ,Jv  and 2 ,Jv  give 

confidence interval coverage that is closer to the nominal value in small to moderate samples. Depending 

on the sample design and population characteristics, hat-matrix adjusted estimators can produce less biased 

variance estimates and better inferences when compared to the standard methods. 
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Appendix  
 

Theoretical results 
 

A.1  Assumptions 
 

The assumptions used to obtain asymptotic results are listed below. The number of population and 

sample clusters approach infinity; however, the number of population clusters increases at a faster rate than 

the number of sample clusters. Certain population quantities are assumed to be bounded. 

 

A.1.1 0m M   as m    and .M    
 

A.1.2 All iN  and in  are bounded. 
 

A.1.3  =ik O m M  for all .ik  
 

A.1.4 All elements of ,X ,Ψ  and Q  are bounded.   
 

A.1.5 The sample design is such that    ˆ 0, ,t t V
d

m
x UxM N    where V  is a p p  positive 

definite matrix, i.e.,    ˆ = .t tx Ux pO M m   
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Since  =Π m
MO  elementwise and 1 1=A X Q Π Xs s

   can be written as the sum of n  terms and in  is 

bounded while ,m    = .A O M  By definition   1ˆ= .g 1 t t A X Q
ii n Ux x i i

 


   The second term 

in ig  is  1 2 ;pO m  consequently g i  converges to a vector of 1’s. Using  =A O M  along with 

assumptions A.1.3 and A.1.4, H ij  is  1O m  elementwise. 
 

A.2  Model variance of GREG 
 

Let y si  be the vector of all sample elements in cluster i  and y i  be the vector of all elements in cluster 

.i  The variance of the GREG, with respect to the working model (2.1) is:  

      

  1

1 1 1

ˆvar = var

= 2cov , .

g Π y 1 y

g Π Ψ Π g g Π y 1 y 1 Ψ1

i

i

gr
y y i i si N i

i s i U

i i si i i i i si N i N N
i s i s i U

t t 





 

  

  

  
 

  
 

 

  



  

  

Since 
 

=1 y 1 y 1 yi i i i i ii U i s i U s   
      and elements in different clusters are uncorrelated, 

we have,  

   
   1 1 1

1 2 3

ˆvar = 2 cov ,

= 2 .

g Π Ψ Π g g Π y y 1 1 Ψ1
i

gr
y y i i si i i i i si i N N N

i s i s

t t

L L L

 
  

 
    

 

   

  

Since  1 1=A O M   and g i  and Ψ si  are bounded, we have  2
1 = .L O M m  Because Ψ si  is bounded, 

   cov , = 1y ysi i O  and  2 = .L O M 3L  is the sum of N  terms. Since the iN  are bounded, 

 3 = .L O M  Thus, 1L  is the dominant term of the prediction variance. 
 

A.3  Proof that  var e Ψi si   
 

In this section in order to simplify the notation, we omit the subscript s  on ,y si ˆ ,y si  and .Ψ si  The 

residual can be written in terms of a hat matrix as follows.   

                                          
; ,

ˆ=

=

e y y

I H y H y
i

i i i

n ii i ij j
j i i j s 



     

where I
in  is the i in n  identity matrix. The model variance of e i  is then  

 

   

       

   

var = var

= var var

= .

e I H y H y

I H y I H H y H

I H Ψ I H H Ψ H

i

i i

i i

i n ii i ij j
j i

n ii i n ii ij j ij
j i

n ii i n ii ij j ij
j i

 

 







    

  

  













 

(A.1)

 

As noted above,  1= .H ii O m  Thus,    1var = .e Ψi i O m
  

To justify ,D  note that the second term of (A.1) can be written as 

 = .H Ψ H H Ψ H H Ψ Hij j ij ij j ij ii i ii
j i j s 

      
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The sum over the full cluster sample is  

                                 1 1 1 1= .H Ψ H X A X Q Π Ψ Π Q X A Xij j ij i j j j j j j j i
j s j s

   

 


 
 

      

In the special case of 1=Q Ψj j
  and =Π I

ii nc  for some constant  0, 1c   (i.e., the sample is self-

weighting), we have   

                                 2 1 1 1= ,H Ψ H X A X Ψ X A Xij j ij i j j j i
j s j s

c    

 


 
 

      

along with 1 1=H X A X Ψii i i ic    and 1 1= .A XΨ Xc    Using these simplifications, =H Ψ Hij j ijj s   

.H Ψii i  Substituting this result in (A.1) and simplifying gives  

                                        
     

 

var =

= .

e I H Ψ I H H Ψ H

I H Ψ

i i

i

i n ii i n ii ij j ij
j i

n ii i




  






 
(A.2)

 

This is the basis for the adjustment of R  to obtain .D  
 

A.4  Proof that  
ˆ ˆB = B R ii   for cluster samples 

 

In this section, we omit the subscript s  on ,X s ,y s ,X si ,y si   ,X s i  and  y s i  to simplify the notation. 

The subscript  i  denotes removal of the thi  cluster from the full sample matrix or vector. For example, 

 B̂ i  is an estimate of B  based on all sample clusters except cluster i  and is  

                                                   
1ˆ =B X W X X W yi i i i i i i

    

where      
1= .W Q Πi i i

  Using Lemma 9.5.1 in Valliant et al. (2000), we have  

                                               
1

1 1 1ˆ = .B A A X W I H X A X W y
ii i n ii ii i i i


       

Since       =X W y X Wy X W yi i ii i i     and 1ˆ = ,B A X Wy   we have  

                                

   

   

     
 

 

1

1
1 1

1 1
1 1

1
1

1
1

ˆ =

ˆ ˆ=

ˆ= .

B A X Wy X W y

A X W I H X A X Wy X W y

B A X W I H I H y A X W I H y

A X W I H H y

B A X W I H e

i

i i i

i

i

i i ii

i i n ii i i i i

i i n ii n ii i i i n ii i

i i n ii ii i

i i n ii i




 

 
 









  

    

 

 

 

 

 





  

That is,  
ˆ ˆ= .B B R ii   

 

A.5  Jackknife variance estimator of clustered GREG in terms of leverages 
 

We now simplify the delete-a-cluster Jackknife variance estimator of the clustered GREG. As in 

Sections A.3 and A.4, we omit the subscript s  on various terms to simplify the notation. The estimated total 

after removing the thi  cluster is defined as  
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 

     

 
         


 

     
 




  




  

 
1

1
1

.
1 1 1

Π y
1 X 1 Π X Rin i i

N U n i i

m
K

m m m


  

  


 

  

Adding and subtracting   1
1

1 1 Π I H e
i i

m
n i n ii im




   and doing a substantial amount of simplification leads 

to  

            1
1

1
ˆ ˆ= .

1 1 1 1
g Π I H e

i

gr gr
y i i n ii i i iy i

m m m
t t G K

m m m m


   

   
   

Taking the difference between the delete-one estimates and the average of those estimates gives  

                    
         

     

1
ˆ ˆ =

1 1 1

1
= .

1 1

gr gr
i i iy i y

i i i

m m
t t D D G G K K

m m m

m m
D D G G K K

m m m

      
  

          

  

Letting    1=i i iF G G m K K    leads to the formula for Jack  in equation (2.12). Next, since 

 1=H ii O m  and ˆˆ = ,y X Bi i  

                                

   

1 1 1 1

1
=

1 1 ˆ ˆˆ ˆ

= .

1 Π y 1 Π y 1 Π X B 1 Π X B

0

i i i i

i i i

n i i n i i n i i n i i
i s i s

F G G K K
m

m
m m

   

 

  

             
       

Thus,  = 1 ,iF o  and Jack  in (2.6) and (2.12) is asymptotically equivalent to 1J  in (2.13). 

Finally, to justify 2J  in (2.14), we write 1J  in the computational form  

                                                 
2

2
1

1
=

1
g e g eJ i i i i i i

i s i s

m
U U

m m


 

       
    (A.3) 

where   1
1= .Π I H

ii i n iiU


   Note that the model variance of iD  is  

                                      
   

 

var = var

= var .

g e

g e g

i i i i

i i i i i

D U

U U

 





 
  

Because  =iU O M m  and the sum in  var ii s
D  contains =n mn  terms, the variance of 

g ei i ii s
U

   is  2 .O M m  Next, scaling 1J  to be appropriate for a mean, the first term in the brackets 
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in (A.3) is  2 2 1= .ii s
N D O m 

  Since the second term in brackets has model expectation 0 and variance 

that is  1 ,O m  it converges in probability to 0, and 2J  is asymptotically equivalent to 1.J  
 

A.6 Asymptotic equivalence of variance estimators 
 

In this appendix we sketch arguments for why several variance estimators are asymptotically equivalent. 

Using design-based arguments, Yung and Rao (1996, Appendix) showed that the jackknife linearization 

estimator, JL , for the GREG is asymptotically equivalent to the design-consistent estimator, Jack ,  in 

stratified multistage designs with a large number of strata and a bounded number of sample clusters selected 

from each stratum. Using regularity conditions in Rao and Shao (1985), that result can be extended to cover 

designs in which either (i) the number of strata is large and the number of clusters per stratum is bounded 

or (ii) the number of strata is limited and the number of sample clusters per stratum is large, as is the case 

in this article. 

The jackknife linearization estimator in Section 2 can be expanded as  

 
2

2 2 1 1 2 1 1= .g Π e e Π g g Π eJL i i i i i i i i i
i s i s

N N N m m      

 

  
      (A.4) 

The first term in (A.4) equals .Rv  Because, under some reasonable assumptions, g i  and e i  are bounded, 

and  1 =Π i O M m  by assumptions A.1.2 and A.1.3, the first term in (A.4) is  1 .O m  The second term 

is also  1 ,O m  but the model expectation of 1 1
2 =e g Π ei i ii s

m 
   is zero as long as (2.1) holds. Since 

2e  is a mean, its model-variance will approach 0 as .m    Thus, the second term in (A.4) will converge 

in probability to 0 and .JL R   

In Section A.5 it was shown that Jack  and 1J  are asymptotically equivalent. Under A.1.1-A.1.4, 

 1= .H ii O m  Consequently, 2J  and D  are approximately the same as R  as .m    Thus, 

Jack JL   by extension of Yung and Rao (1996), both of which are design-consistent. Further, JL  is 

asymptotically equivalent to 1 ,J 2 ,J ,D  and .R  As a result, the alternative variance estimators 

considered here all have both model-based and design-based justifications. 
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