Multiple imputation of missing values in household data with structural zeros
Section 2. Review of the NDPMPM model

Hu et al. (2018) present the NDPMPM model including motivation for how it can preserve associations across variables and account for structural zeros. Here, we summarize the model without detailed motivations, referring the reader to Hu et al. (2018) for more information. We begin with notation needed to understand the model and the Gibbs sampler, assuming complete data. The presentation closely follows that in Hu et al. (2018).

2.1  Notation and model specification

Suppose the data contain n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325D@ households. Each household i = 1, , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBaaaa@3A75@ contains n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaa aa@3377@ individuals, so that there are i = 1 n n i = N MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaaeWaqabSqaaiaadMgacaaI9aGaaG ymaaqaaiaad6gaa0GaeyyeIuoakiaaykW7caWGUbWaaSbaaSqaaiaa dMgaaeqaaOGaaGypaiaad6eaaaa@3C16@ individuals in the data. Let X i k { 1, , d k } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybWaaSbaaSqaaiaadMgacaWGRb aabeaakiabgIGiopaacmaabaGaaGymaiaaiYcacaaMe8UaeSOjGSKa aGilaiaaysW7caWGKbWaaSbaaSqaaiaadUgaaeqaaaGccaGL7bGaay zFaaaaaa@4082@ be the value of categorical variable k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@325A@ for household i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiilaaaa@3308@ which is assumed to be identical for all n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaa aa@3377@ individuals in household i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiilaaaa@3308@ where k = p + 1, , p + q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaadchacqGHRaWkca aIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadchacqGHRaWk caWGXbGaaiOlaaaa@3EDA@ Let X i j k { 1, , d k } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccqGHiiIZdaGadaqaaiaaigdacaaISaGaaGjbVlab lAciljaaiYcacaaMe8UaamizamaaBaaaleaacaWGRbaabeaaaOGaay 5Eaiaaw2haaaaa@4171@ be the value of categorical variable k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@325A@ for person j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbaaaa@3259@ in household i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiilaaaa@3308@ where j = 1, , n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBamaaBaaaleaacaWGPbaabeaa aaa@3B90@ and k = 1, , p . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamiCaiaac6caaaa@3B2B@ Let X i = ( X i ( p + 1 ) , , X i ( p + q ) , X i 11 , , X i n i p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaO GaaGypamaabmaabaGaamiwamaaBaaaleaacaWGPbWaaeWaaeaacaWG WbGaey4kaSIaaGymaaGaayjkaiaawMcaaaqabaGccaaISaGaaGjbVl ablAciljaaiYcacaaMe8UaamiwamaaBaaaleaacaWGPbWaaeWaaeaa caWGWbGaey4kaSIaamyCaaGaayjkaiaawMcaaaqabaGccaaISaGaaG jbVlaadIfadaWgaaWcbaGaamyAaiaaigdacaaIXaaabeaakiaaiYca caaMe8UaeSOjGSKaaGilaiaaysW7caWGybWaaSbaaSqaaiaadMgaca WGUbWaaSbaaWqaaiaadMgaaeqaaSGaamiCaaqabaaakiaawIcacaGL Paaaaaa@584B@ include all household-level and individual-level variables for the n i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaa aa@3377@ individuals in household i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiOlaaaa@330A@

Let H MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Tqiibaa@3BEC@ be the set of all household sizes that are possible in the population. For all h H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFlecscaGGSaaaaa@3F0D@ let C h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dnaaBaaaleaacaWGObaabeaaaaa@3DC7@ represent the set of all combinations of individual-level and household-level variables for households of size h MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@3256@ , including impossible combinations; that is, C h = k = p + 1 p + q { 1, , d k } j = 1 h k = 1 p { 1, , d k } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dnaaBaaaleaacaWGObaabeaakiaai2da daqeWaqabSqaaiaadUgacaaI9aGaamiCaiabgUcaRiaaigdaaeaaca WGWbGaey4kaSIaamyCaaqdcqGHpis1aOWaaiWaaeaacaaIXaGaaGil aiaaysW7cqWIMaYscaaISaGaaGjbVlaadsgadaWgaaWcbaGaam4Aaa qabaaakiaawUhacaGL9baadaqeWaqabSqaaiaadQgacaaI9aGaaGym aaqaaiaadIgaa0Gaey4dIunakmaaradabeWcbaGaam4Aaiaai2daca aIXaaabaGaamiCaaqdcqGHpis1aOWaaiWaaeaacaaIXaGaaGilaiaa ysW7cqWIMaYscaaISaGaaGjbVlaadsgadaWgaaWcbaGaam4Aaaqaba aakiaawUhacaGL9baacaGGUaaaaa@685F@ Let S h C h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tnaaBaaaleaacaWGObaabeaakiabgkOi mlab=jq8dnaaBaaaleaacaWGObaabeaaaaa@42C1@ represent the set of impossible combinations, i.e., those that are structural zeros, for households of size h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaaiOlaaaa@3309@ These include combinations of variables within any individual, e.g., a three year old person cannot be a spouse, or across individuals in the same household, e.g., a person cannot be older than his biological parents. Let C = h H C h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djaai2dadaWeqaqabSqaaiaadIgacqGH iiIZcqWFlecsaeqaniablQIivbGccaaMc8Uae8NaXp0aaSbaaSqaai aadIgaaeqaaaaa@46BD@ and S = h H S h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tjaai2dadaWeqaqabSqaaiaadIgacqGH iiIZcqWFlecsaeqaniablQIivbGccaaMc8Uae8NeXp1aaSbaaSqaai aadIgaaeqaaOGaaiOlaaaa@47B9@

Although the NDPMPM model we use restricts the support of X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3365@ to C S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djabgkHiTiab=jr8tjaacYcaaaa@4026@ it is helpful for understanding the model to begin with no restrictions on the support of X i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaO GaaiOlaaaa@3421@ Each household i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@3258@ belongs to one of F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ classes representing latent household types. For i = 1, , n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBaiaacYcaaaa@3B25@ let G i { 1, , F } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48aaiWaaeaacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGa aGjbVlaadAeaaiaawUhacaGL9baaaaa@3E3D@ indicate the household class for household i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiOlaaaa@330A@ Let π g = Pr ( G i = g ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaam4zaaqaba GccaaI9aGaciiuaiaackhadaqadaqaaiaadEeadaWgaaWcbaGaamyA aaqabaGccaaI9aGaam4zaaGaayjkaiaawMcaaaaa@3C08@ be the probability that household i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@3258@ belongs to class g . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaiOlaaaa@3308@ Within any class, all household-level variables follow independent, multinomial distributions. For any k { p + 1, , p + q } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaeyicI48aaiWaaeaacaWGWb Gaey4kaSIaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWG WbGaey4kaSIaamyCaaGaay5Eaiaaw2haaaaa@4116@ and any c { 1, , d k } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGJbGaeyicI48aaiWaaeaacaaIXa GaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadsgadaWgaaWcbaGa am4AaaqabaaakiaawUhacaGL9baacaGGSaaaaa@3F29@ let λ g c ( k ) = Pr ( X i k = c | G i = g ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBdaqhaaWcbaGaam4zaiaado gaaeaadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaGccaaI9aGaciiu aiaackhadaqadaqaamaaeiaabaGaamiwamaaBaaaleaacaWGPbGaam 4AaaqabaGccaaI9aGaam4yaiaaykW7aiaawIa7aiaaykW7caWGhbWa aSbaaSqaaiaadMgaaeqaaOGaaGypaiaadEgaaiaawIcacaGLPaaaaa a@48AD@ for any class g , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaiilaaaa@3306@ where λ g c ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBdaqhaaWcbaGaam4zaiaado gaaeaadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaaaaa@3798@ is the same value for every household in class g . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaiOlaaaa@3308@ Let π = { π 1 , , π F } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCcaaI9aWaaiWaaeaacqaHap aCdaWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlablAciljaacYca caaMe8UaeqiWda3aaSbaaSqaaiaadAeaaeqaaaGccaGL7bGaayzFaa Gaaiilaaaa@41DD@ and λ = { λ g c ( k ) : c = 1, , d k ; k = p + 1, , p + q ; g = 1, , F } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBcaaI9aWaaiWaaeaacqaH7o aBdaqhaaWcbaGaam4zaiaadogaaeaadaqadaqaaiaadUgaaiaawIca caGLPaaaaaGccaaMi8UaaGOoaiaaysW7caaMc8Uaam4yaiaai2daca aIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadsgadaWgaaWc baGaam4AaaqabaGccaaI7aGaaGjbVlaaykW7caWGRbGaaGypaiaadc hacqGHRaWkcaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaa dchacqGHRaWkcaWGXbGaaG4oaiaaysW7caaMc8Uaam4zaiaai2daca aIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadAeaaiaawUha caGL9baacaGGUaaaaa@69E7@

Within each household class, each individual belongs to one of S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbaaaa@3242@ individual-level latent classes. For i = 1, , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBaaaa@3A75@ and j = 1, , n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBamaaBaaaleaacaWGPbaabeaa kiaacYcaaaa@3C4A@ let M i j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaadMgacaWGQb aabeaaaaa@3445@ represent the individual-level latent class of individual j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbaaaa@3259@ in household i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaiOlaaaa@330A@ Let ω g m = Pr ( M i j = m | G i = g ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHjpWDdaWgaaWcbaGaam4zaiaad2 gaaeqaaOGaaGypaiGaccfacaGGYbWaaeWaaeaacaWGnbWaaSbaaSqa aiaadMgacaWGQbaabeaakiaai2dadaabcaqaaiaad2gacaaMc8oaca GLiWoacaaMc8Uaam4ramaaBaaaleaacaWGPbaabeaakiaai2dacaWG NbaacaGLOaGaayzkaaaaaa@4654@ be the probability that individual j MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbaaaa@3259@ in household i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbaaaa@3258@ belongs to individual-level class m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbaaaa@325C@ nested within household-level class g . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaiOlaaaa@3308@ Within any individual-level class, all individual-level variables follow independent, multinomial distributions. For any k { 1, , p } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaeyicI48aaiWaaeaacaaIXa GaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadchaaiaawUhacaGL 9baaaaa@3D67@ and any c { 1, , d k } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGJbGaeyicI48aaiWaaeaacaaIXa GaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadsgadaWgaaWcbaGa am4AaaqabaaakiaawUhacaGL9baacaGGSaaaaa@3F29@ let ϕ g m c ( k ) = Pr ( X i j k = c | ( G i , M i j ) = ( g , m ) ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHvpGzdaqhaaWcbaGaam4zaiaad2 gacaWGJbaabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaOGaaGyp aiGaccfacaGGYbWaaeWaaeaacaWGybWaaSbaaSqaaiaadMgacaWGQb Gaam4AaaqabaGccaaI9aWaaqGaaeaacaWGJbGaaGPaVdGaayjcSdGa aGPaVpaabmaabaGaam4ramaaBaaaleaacaWGPbaabeaakiaaiYcaca aMe8UaamytamaaBaaaleaacaWGPbGaamOAaaqabaaakiaawIcacaGL PaaacaaI9aWaaeWaaeaacaWGNbGaaGilaiaaysW7caWGTbaacaGLOa GaayzkaaaacaGLOaGaayzkaaaaaa@5611@ for the class pair ( g , m ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadEgacaaISaGaaGjbVl aad2gaaiaawIcacaGLPaaacaGGSaaaaa@37C4@ where ϕ g m c ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHvpGzdaqhaaWcbaGaam4zaiaad2 gacaWGJbaabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaaaa@389E@ is the same value for every individual in the class pair ( g , m ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadEgacaaISaGaaGjbVl aad2gaaiaawIcacaGLPaaacaGGUaaaaa@37C6@ Let ω = { ω g m : g = 1, , F ; m = 1, , S } , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHjpWDcaaI9aWaaiWaaeaacqaHjp WDdaWgaaWcbaGaam4zaiaad2gaaeqaaOGaaGjcVlaaiQdacaaMe8Ua aGPaVlaadEgacaaI9aGaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilai aaysW7caWGgbGaaG4oaiaaysW7caaMc8UaamyBaiaai2dacaaIXaGa aGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadofaaiaawUhacaGL9b aacaGGSaaaaa@55DF@ and ϕ = { ϕ g m c ( k ) : c = 1, , d k ; k = 1, , p ; m = 1, , S ; g = 1, , F } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHvpGzcaaI9aWaaiWaaeaacqaHvp GzdaqhaaWcbaGaam4zaiaad2gacaWGJbaabaWaaeWaaeaacaWGRbaa caGLOaGaayzkaaaaaOGaaGzaVlaaiQdacaaMe8UaaGPaVlaadogaca aI9aGaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGKbWa aSbaaSqaaiaadUgaaeqaaOGaaG4oaiaaysW7caaMc8Uaam4Aaiaai2 dacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadchacaaI 7aGaaGjbVlaaykW7caWGTbGaaGypaiaaigdacaaISaGaaGjbVlablA ciljaaiYcacaaMe8Uaam4uaiaaiUdacaaMe8UaaGPaVlaadEgacaaI 9aGaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGgbaaca GL7bGaayzFaaGaaiOlaaaa@741C@

For purposes of the Gibbs sampler in Section 2.2, it is useful to distinguish values of X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3365@ that satisfy all the structural zero constraints from those that do not. Let the superscript 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatCvAUfKttLearyasPDgAGq1B3vMCGq vz4rhaiqaacqWFCaYKcaaIXaGae8xhGqjaaa@3CD4@ indicate that a random variable has support only on C S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djabgkHiTiab=jr8tHqaaiaa+5caaaa@402D@ For example, X i 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaa0baaSqaaiaadMgaaeaaca aIXaaaaaaa@3421@ represents data for a household with values restricted only on C S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djabgkHiTiab=jr8tHqaaiaa+Xcaaaa@402B@ i.e., not an impossible household, whereas X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3365@ represents data for a household with any values in C . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dHqaaiaa+5caaaa@3D65@ Let X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGymaaaaaaa@3DC0@ be the observed data comprising n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325D@ households, that is, a realization of ( X 1 1 , , X n 1 ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaahIfadaqhaaWcbaGaaG ymaaqaaiaaigdaaaGccaaISaGaaGjbVlablAciljaaiYcacaaMe8Ua aCiwamaaDaaaleaacaWGUbaabaGaaGymaaaaaOGaayjkaiaawMcaai aac6caaaa@3EA1@ The kernel of the NDPMPM, Pr ( X 1 | θ ) , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGGqbGaaiOCamaabmaabaWaaqGaae aatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=Dr8 ynaaCaaaleqabaGaaGymaaaakiaaykW7aiaawIa7aiaaykW7cqaH4o qCaiaawIcacaGLPaaacaGGSaaaaa@4831@ is

L ( X 1 | θ ) = i = 1 n h H 1 { n i = h } 1 { X i 1 S h } [ g = 1 F π g k = p + 1 p + q λ g X i k 1 ( k ) j = 1 h m = 1 S ω g m k = 1 p ϕ g m X i j k 1 ( k ) ] , ( 2.1 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGmbGaaGikamrr1ngBPrwtHrhAXa qeguuDJXwAKbstHrhAG8KBLbaceaGae83fXJ1aaWbaaSqabeaacaaI XaaaaOGaaGiFaiabeI7aXjaaiMcacaaI9aWaaebCaeqaleaacaWGPb GaaGypaiaaigdaaeaacaWGUbaaniabg+GivdGcdaaeqbqabSqaaiaa dIgacqGHiiIZcqWFlecsaeqaniabggHiLdGccaaMc8Uae8xmaeZaai WaaeaacaWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaGypaiaadIgaaiaa wUhacaGL9baacqWFXaqmdaGadaqaaiaahIfadaqhaaWcbaGaamyAaa qaaiaaigdaaaGccqGHjiYZcqWFse=udaWgaaWcbaGaamiAaaqabaaa kiaawUhacaGL9baadaWadaqaamaaqahabeWcbaGaam4zaiaai2daca aIXaaabaGaamOraaqdcqGHris5aOGaaGPaVlabec8aWnaaBaaaleaa caWGNbaabeaakmaarahabeWcbaGaam4Aaiaai2dacaWGWbGaey4kaS IaaGymaaqaaiaadchacqGHRaWkcaWGXbaaniabg+GivdGccaaMc8Ua eq4UdW2aa0baaSqaaiaadEgacaWGybWaa0baaWqaaiaadMgacaWGRb aabaGaaGymaaaaaSqaamaabmaabaGaam4AaaGaayjkaiaawMcaaaaa kmaarahabeWcbaGaamOAaiaai2dacaaIXaaabaGaamiAaaqdcqGHpi s1aOWaaabCaeqaleaacaWGTbGaaGypaiaaigdaaeaacaWGtbaaniab ggHiLdGccaaMc8UaeqyYdC3aaSbaaSqaaiaadEgacaWGTbaabeaakm aarahabeWcbaGaam4Aaiaai2dacaaIXaaabaGaamiCaaqdcqGHpis1 aOGaaGPaVlabew9aMnaaDaaaleaacaWGNbGaamyBaiaadIfadaqhaa adbaGaamyAaiaadQgacaWGRbaabaGaaGymaaaaaSqaamaabmaabaGa am4AaaGaayjkaiaawMcaaaaaaOGaay5waiaaw2faaiaaiYcacaaMf8 UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaGGPaaaaa@AB57@

where θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCaaa@3320@ includes all the parameters, and 1 { . } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=fdaXmaacmaabaGaaGOlaaGaay5Eaiaaw2ha aaaa@3EC3@ equals one when the condition inside the { } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaGadaqaaiaayIW7aiaawUhacaGL9b aaaaa@352C@ is true and equals zero otherwise.

For all h H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFlecsieaacaGFSaaaaa@3F12@ let n 1 h = i = 1 n 1 { n i = h } MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdacaWGOb aabeaakiaai2dadaaeWaqabSqaaiaadMgacaaI9aGaaGymaaqaaiaa d6gaa0GaeyyeIuoakiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=fdaXmaacmaabaGaamOBamaaBaaaleaacaWG Pbaabeaakiaai2dacaWGObaacaGL7bGaayzFaaaaaa@4C69@ be the number of households of size h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@3257@ in X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGymaaaaaaa@3DC0@ and π 0 h ( θ ) = Pr ( X i S h | θ ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaaGimaiaadI gaaeqaaOWaaeWaaeaacqaH4oqCaiaawIcacaGLPaaacaaI9aGaciiu aiaackhadaqadaqaamaaeiaabaGaaCiwamaaBaaaleaacaWGPbaabe aakiabgIGioprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8KBLbac eaGae8NeXp1aaSbaaSqaaiaadIgaaeqaaOGaaGPaVdGaayjcSdGaaG PaVlabeI7aXbGaayjkaiaawMcaaiaac6caaaa@5383@ As stated in Hu et al. (2018), the normalizing constant in the likelihood in (2.1) is h H ( 1 π 0 h ( θ ) ) n 1 h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqeqaqabSqaaiaadIgacqGHiiIZtu uDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=Tqiibqa b0Gaey4dIunakmaabmaabaGaaGymaiabgkHiTiabec8aWnaaBaaale aacaaIWaGaamiAaaqabaGcdaqadaqaaiabeI7aXbGaayjkaiaawMca aaGaayjkaiaawMcaamaaCaaaleqabaGaamOBamaaBaaabaGaaGymai aadIgaaeqaaaaakiaaygW7caGGUaaaaa@4F73@ Therefore, the posterior distribution is

Pr ( θ | X 1 , T ( S ) ) Pr ( X 1 | θ ) Pr ( θ ) = 1 h H ( 1 π 0 h ( θ ) ) n 1 h L ( X 1 | θ ) Pr ( θ ) ( 2.2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaaciGGqbGaaiOCamaabmaabaWaaqGaae aacqaH4oqCcaaMc8oacaGLiWoacaaMc8+efv3ySLgznfgDOfdaryqr 1ngBPrginfgDObYtUvgaiqaacqWFxepwdaahaaWcbeqaaiaaigdaaa GccaaMb8UaaGilaiaaysW7caWGubWaaeWaaeaacqWFse=uaiaawIca caGLPaaaaiaawIcacaGLPaaacqGHDisTciGGqbGaaiOCamaabmaaba WaaqGaaeaacqWFxepwdaahaaWcbeqaaiaaigdaaaGccaaMc8oacaGL iWoacaaMc8UaeqiUdehacaGLOaGaayzkaaGaciiuaiaackhadaqada qaaiabeI7aXbGaayjkaiaawMcaaiaai2dadaWcaaqaaiaaigdaaeaa daqeqaqaamaabmaabaGaaGymaiabgkHiTiabec8aWnaaBaaaleaaca aIWaGaamiAaaqabaGcdaqadaqaaiabeI7aXbGaayjkaiaawMcaaaGa ayjkaiaawMcaamaaCaaaleqabaGaamOBamaaBaaameaacaaIXaGaam iAaaqabaaaaaWcbaGaamiAaiabgIGiolab=Tqiibqab0Gaey4dIuna aaGccaWGmbWaaeWaaeaadaabcaqaaiab=Dr8ynaaCaaaleqabaGaaG ymaaaakiaaykW7aiaawIa7aiaaykW7cqaH4oqCaiaawIcacaGLPaaa ciGGqbGaaiOCamaabmaabaGaeqiUdehacaGLOaGaayzkaaGaaGzbVl aaywW7caGGOaGaaGOmaiaac6cacaaIYaGaaiykaaaa@8DB7@

where T ( S ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGubWaaeWaaeaatuuDJXwAK1uy0H wmaeHbfv3ySLgzG0uy0Hgip5wzaGabaiab=jr8tbGaayjkaiaawMca aaaa@3F30@ emphasizes that the density is for the NDPMPM with support restricted to C S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djabgkHiTiab=jr8tjaac6caaaa@4028@

The likelihood in (2.1) can be written as a generative model of the form

X i k | G i , λ Discrete ( λ G i 1 ( k ) , , λ G i d k ( k ) ) i = 1, , n and k = p + 1, , p + q ( 2.3 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpi0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaWaaqGaaeaacaWGyb WaaSbaaSqaaiaadMgacaWGRbaabeaakiaaykW7aiaawIa7aiaaykW7 caWGhbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaysW7cqaH7oaBrq qr1ngBPrgifHhDYfgaiqaacqWF8iIoaeaacaqGebGaaeyAaiaaboha caqGJbGaaeOCaiaabwgacaqG0bGaaeyzamaabmaabaGaeq4UdW2aa0 baaSqaaiaadEeadaWgaaadbaGaamyAaaqabaWccaaIXaaabaGaaGik aiaadUgacaaIPaaaaOGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVl abeU7aSnaaDaaaleaacaWGhbWaaSbaaWqaaiaadMgaaeqaaSGaamiz amaaBaaameaacaWGRbaabeaaaSqaaiaaiIcacaWGRbGaaGykaaaaaO GaayjkaiaawMcaaaqaaaqaaiabgcGiIiaadMgacaaI9aGaaGymaiaa iYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGUbGaaGjbVlaaykW7ca qGHbGaaeOBaiaabsgacaaMc8UaaGjbVlaadUgacaaI9aGaamiCaiab gUcaRiaaigdacaaISaGaaGjbVlablAciljaaiYcacaaMe8UaamiCai abgUcaRiaadghacaaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6ca caaIZaGaaiykaaaaaaa@89C1@

X i j k | G i , M i j , ϕ , n i Discrete ( ϕ G i M i j 1 ( k ) , , ϕ G i M i j d k ( k ) ) i = 1, , n , j = 1, , n i and k = 1, , p ( 2.4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpi0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaGaamiwamaaBaaale aacaWGPbGaamOAaiaadUgaaeqaaOGaaGiFaiaadEeadaWgaaWcbaGa amyAaaqabaGccaaISaGaaGjbVlaad2eadaWgaaWcbaGaamyAaiaadQ gaaeqaaOGaaGilaiaaysW7cqaHvpGzcaaISaGaaGjbVlaad6gadaWg aaWcbaGaamyAaaqabaqeeuuDJXwAKbsr4rNCHbaceaGccqWF8iIoae aacaqGebGaaeyAaiaabohacaqGJbGaaeOCaiaabwgacaqG0bGaaeyz amaabmaabaGaeqy1dy2aa0baaSqaaiaadEeadaWgaaadbaGaamyAaa qabaWccaWGnbWaaSbaaWqaaiaadMgacaWGQbaabeaaliaaigdaaeaa daqadaqaaiaadUgaaiaawIcacaGLPaaaaaGccaaISaGaaGjbVlablA ciljaaiYcacaaMe8Uaeqy1dy2aa0baaSqaaiaadEeadaWgaaadbaGa amyAaaqabaWccaWGnbWaaSbaaWqaaiaadMgacaWGQbaabeaaliaads gadaWgaaadbaGaam4AaaqabaaaleaadaqadaqaaiaadUgaaiaawIca caGLPaaaaaaakiaawIcacaGLPaaaaeaaaeaacqGHaiIicaWGPbGaaG ypaiaaigdacaaISaGaaGjbVlablAciljaaiYcacaaMe8UaamOBaiaa ysW7caaISaGaaGjbVlaadQgacaaI9aGaaGymaiaaiYcacaaMe8UaeS OjGSKaaGilaiaaysW7caWGUbWaaSbaaSqaaiaadMgaaeqaaOGaaGjb VlaaykW7caqGHbGaaeOBaiaabsgacaaMe8UaaGPaVlaadUgacaaI9a GaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7caWGWbGaaGzb VlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGinaiaacMcaaaaaaa@A130@

G i | π Discrete ( π 1 , , π F ) i = 1, , n ( 2.5 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8qrpi0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaWaaqGaaeaacaWGhb WaaSbaaSqaaiaadMgaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlabec8a Wfbbfv3ySLgzGueE0jxyaGabaiab=XJi6aqaaiaabseacaqGPbGaae 4CaiaabogacaqGYbGaaeyzaiaabshacaqGLbWaaeWaaeaacqaHapaC daWgaaWcbaGaaGymaaqabaGccaaISaGaaGjbVlablAciljaaiYcaca aMe8UaeqiWda3aaSbaaSqaaiaadAeaaeqaaaGccaGLOaGaayzkaaaa baaabaGaeyiaIiIaamyAaiaai2dacaaIXaGaaGilaiaaysW7cqWIMa YscaaISaGaaGjbVlaad6gacaaMf8UaaGzbVlaaywW7caaMf8UaaGzb VlaaywW7caGGOaGaaGOmaiaac6cacaaI1aGaaiykaaaaaaa@69D4@

M i j | G i , ω , n i Discrete ( ω G i 1 , , ω G i S ) i = 1, , n and j = 1, , n i ( 2.6 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaafaqaaeGacaaabaWaaqGaaeaacaWGnb WaaSbaaSqaaiaadMgacaWGQbaabeaakiaaykW7aiaawIa7aiaaykW7 caWGhbWaaSbaaSqaaiaadMgaaeqaaOGaaGilaiaaysW7cqaHjpWDca aISaGaaGjbVlaad6gadaWgaaWcbaGaamyAaaqabaqeeuuDJXwAKbsr 4rNCHbaceaGccqWF8iIoaeaacaqGebGaaeyAaiaabohacaqGJbGaae OCaiaabwgacaqG0bGaaeyzamaabmaabaGaeqyYdC3aaSbaaSqaaiaa dEeadaWgaaadbaGaamyAaaqabaWccaaIXaaabeaakiaaiYcacaaMe8 UaeSOjGSKaaGilaiaaysW7cqaHjpWDdaWgaaWcbaGaam4ramaaBaaa meaacaWGPbaabeaaliaadofaaeqaaaGccaGLOaGaayzkaaaabaaaba GaeyiaIiIaamyAaiaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaI SaGaaGjbVlaad6gacaaMe8UaaGPaVlaabggacaqGUbGaaeizaiaayk W7caaMe8UaamOAaiaai2dacaaIXaGaaGilaiaaysW7cqWIMaYscaaI SaGaaGjbVlaad6gadaWgaaWcbaGaamyAaaqabaGccaaMf8UaaGzbVl aaywW7caaMf8UaaiikaiaaikdacaGGUaGaaGOnaiaacMcaaaaaaa@87CA@

where the Discrete distribution refers to the multinomial distribution with sample size equal to one. We restrict the support of each X i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaaSbaaSqaaiaadMgaaeqaaa aa@3365@ to ensure the model assigns zero probability to all combinations in S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tbaa@3CCE@ as desired. The model in (2.3) to (2.6) can be used without restricting the support to C S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8djabgkHiTiab=jr8tjaac6caaaa@4028@ This ignores all structural zeros. While not appropriate for the joint distribution of household data, this model turns out to useful for the Gibbs sampler. We refer to the generative model in (2.3) to (2.6) with support on all of C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dbaa@3CAE@ as the untruncated NDPMPM. For contrast, we call the model in (2.1) the truncated NDPMPM.

For prior distributions, we follow the recommendations of Hu et al. (2018). We use independent uniform Dirichlet distributions as priors for λ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBaaa@331E@ and ϕ , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHvpGzcaGGSaaaaa@33E2@ and the truncated stick-breaking representation of the Dirichlet process as priors for π MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCaaa@3327@ and ω MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHjpWDaaa@3337@ (Sethuraman, 1994; Dunson and Xing, 2009; Si and Reiter, 2013; Manrique-Vallier and Reiter, 2014),

λ g ( k ) = ( λ g 1 ( k ) , , λ g d k ( k ) ) Dirichlet ( 1, , 1 ) ( 2.7 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH7oaBdaqhaaWcbaGaam4zaaqaam aabmaabaGaam4AaaGaayjkaiaawMcaaaaakiaai2dadaqadaqaaiab eU7aSnaaDaaaleaacaWGNbGaaGymaaqaamaabmaabaGaam4AaaGaay jkaiaawMcaaaaakiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7cqaH 7oaBdaqhaaWcbaGaam4zaiaadsgadaWgaaadbaGaam4Aaaqabaaale aadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaaakiaawIcacaGLPaaa rqqr1ngBPrgifHhDYfgaiqaacqWF8iIocaqGebGaaeyAaiaabkhaca qGPbGaae4yaiaabIgacaqGSbGaaeyzaiaabshadaqadaqaaiaaigda caaISaGaaGjbVlablAciljaaiYcacaaMe8UaaGymaaGaayjkaiaawM caaiaaywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGG UaGaaG4naiaacMcaaaa@6DFD@

ϕ g m ( k ) = ( ϕ g m 1 ( k ) , , ϕ g m d k ( k ) ) Dirichlet ( 1, , 1 ) ( 2.8 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHvpGzdaqhaaWcbaGaam4zaiaad2 gaaeaadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaGccaaI9aWaaeWa aeaacqaHvpGzdaqhaaWcbaGaam4zaiaad2gacaaIXaaabaWaaeWaae aacaWGRbaacaGLOaGaayzkaaaaaOGaaGilaiablAciljaaiYcacqaH vpGzdaqhaaWcbaGaam4zaiaad2gacaWGKbWaaSbaaWqaaiaadUgaae qaaaWcbaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaaGccaGLOaGa ayzkaaqeeuuDJXwAKbsr4rNCHbaceaGae8hpIOJaaeiraiaabMgaca qGYbGaaeyAaiaabogacaqGObGaaeiBaiaabwgacaqG0bWaaeWaaeaa caaIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaaigdaaiaawI cacaGLPaaacaaMf8UaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaI YaGaaiOlaiaaiIdacaGGPaaaaa@6DF6@

π g = u g f < g ( 1 u f ) for g = 1, , F ( 2.9 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaWgaaWcbaGaam4zaaqaba GccaaI9aGaamyDamaaBaaaleaacaWGNbaabeaakmaarafabeWcbaGa amOzaiaaiYdacaWGNbaabeqdcqGHpis1aOWaaeWaaeaacaaIXaGaey OeI0IaamyDamaaBaaaleaacaWGMbaabeaaaOGaayjkaiaawMcaaiaa ykW7caaMe8UaaeOzaiaab+gacaqGYbGaaGjbVlaaykW7caWGNbGaaG ypaiaaigdacaaISaGaaGjbVlablAciljaacYcacaaMe8UaamOraiaa ywW7caaMf8UaaGzbVlaaywW7caaMf8UaaiikaiaaikdacaGGUaGaaG yoaiaacMcaaaa@5E5C@

u g Beta ( 1, α ) for g = 1, , F 1, u F = 1 ( 2.10 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG1bWaaSbaaSqaaiaadEgaaeqaae bbfv3ySLgzGueE0jxyaGabaOGae8hpIOJaaeOqaiaabwgacaqG0bGa aeyyamaabmaabaGaaGymaiaaiYcacaaMe8UaeqySdegacaGLOaGaay zkaaGaaGjbVlaaykW7caqGMbGaae4BaiaabkhacaaMc8UaaGjbVlaa dEgacaaI9aGaaGymaiaaiYcacaaMe8UaeSOjGSKaaGilaiaaysW7ca WGgbGaeyOeI0IaaGymaiaaiYcacaaMe8UaamyDamaaBaaaleaacaWG gbaabeaakiaai2dacaaIXaGaaGzbVlaaywW7caaMf8UaaGzbVlaacI cacaaIYaGaaiOlaiaaigdacaaIWaGaaiykaaaa@66A8@

α Gamma ( 0 .25 , 0 .25 ) ( 2.11 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHXoqyrqqr1ngBPrgifHhDYfgaiq aacqWF8iIocaqGhbGaaeyyaiaab2gacaqGTbGaaeyyamaabmaabaGa aeimaiaab6cacaqGYaGaaeynaiaaiYcacaaMe8Uaaeimaiaab6caca qGYaGaaeynaaGaayjkaiaawMcaaiaaywW7caaMf8UaaGzbVlaaywW7 caaMf8UaaiikaiaaikdacaGGUaGaaGymaiaaigdacaGGPaaaaa@52A3@

ω g m = v g m s < m ( 1 v g s ) for m = 1, S ( 2.12 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHjpWDdaWgaaWcbaGaam4zaiaad2 gaaeqaaOGaaGypaiaadAhadaWgaaWcbaGaam4zaiaad2gaaeqaaOWa aebuaeqaleaacaWGZbGaaGipaiaad2gaaeqaniabg+GivdGcdaqada qaaiaaigdacqGHsislcaWG2bWaaSbaaSqaaiaadEgacaWGZbaabeaa aOGaayjkaiaawMcaaiaaysW7caaMc8UaaeOzaiaab+gacaqGYbGaaG PaVlaaysW7caWGTbGaaGypaiaaigdacaaISaGaeSOjGSKaam4uaiaa ywW7caaMf8UaaGzbVlaaywW7caGGOaGaaGOmaiaac6cacaaIXaGaaG OmaiaacMcaaaa@5CCD@

v g m Beta ( 1, β g ) for m = 1, , S 1, v g S = 1 ( 2.13 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG2bWaaSbaaSqaaiaadEgacaWGTb aabeaarqqr1ngBPrgifHhDYfgaiqaakiab=XJi6iaabkeacaqGLbGa aeiDaiaabggadaqadaqaaiaaigdacaaISaGaaGjbVlabek7aInaaBa aaleaacaWGNbaabeaaaOGaayjkaiaawMcaaiaaysW7caaMc8UaaeOz aiaab+gacaqGYbGaaGPaVlaaysW7caWGTbGaaGypaiaaigdacaaISa GaeSOjGSKaaGilaiaadofacqGHsislcaaIXaGaaGilaiaaysW7caWG 2bWaaSbaaSqaaiaadEgacaWGtbaabeaakiaai2dacaaIXaGaaGzbVl aaywW7caaMf8UaaGzbVlaacIcacaaIYaGaaiOlaiaaigdacaaIZaGa aiykaaaa@66B5@

β g Gamma ( 0 .25 , 0 .25 ) . ( 2.14 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4zaaqaba qeeuuDJXwAKbsr4rNCHbaceaGccqWF8iIocaqGhbGaaeyyaiaab2ga caqGTbGaaeyyamaabmaabaGaaeimaiaab6cacaqGYaGaaeynaiaaiY cacaaMe8UaaGPaVlaabcdacaqGUaGaaeOmaiaabwdaaiaawIcacaGL PaaacaaIUaGaaGzbVlaaywW7caaMf8UaaGzbVlaacIcacaaIYaGaai OlaiaaigdacaaI0aGaaiykaaaa@547F@

We set the parameters for the Dirichlet distributions in (2.7) and (2.8) to 1 d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHXaWaaSbaaSqaaiaadsgadaWgaa adbaGaam4Aaaqabaaaleqaaaaa@3461@ (a d k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGKbWaaSbaaSqaaiaadUgaaeqaaO GaaGjcVlabgkHiTaaa@35F7@ dimensional vector of ones) and the parameters for the Gamma distributions in (2.11) and (2.14) to 0.25 to represent vague prior specifications. We also set β g = β MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4zaaqaba GccaaI9aGaeqOSdigaaa@3695@ for computational expedience. For further discussion on prior specifications, see Hu et al. (2018).

Conceptually, the latent household-level classes can be interpreted as clusters of households with similar compositions, e.g., households with children or households in which no one is related. Similarly, the latent individual-level classes can be interpreted as clusters of individuals with similar characteristics, e.g., older male spouses or young female children. However, for purposes of imputation, we do not care much about interpreting the classes, as they serve mainly to induce dependence across variables and individuals in the joint distribution.

It is important to select F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbaaaa@3242@ to be large enough to ensure accurate estimation of the joint distribution. However, we also do not want to make F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbaaaa@3242@ so large as to produce many empty classes in the model estimation. Allowing many empty classes increases computational running time without any corresponding increase in estimation accuracy. This can be especially problematic in the Gibbs sampler for the truncated NDPMPM, as these empty classes can introduce mass in regions of the space where impossible combinations are likely to be generated. This slows down the convergence of the Gibbs sampler.

We therefore recommend following the strategy in Hu et al. (2018) when setting ( F , S ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaadAeacaaMb8UaaGilai aaysW7caWGtbaacaGLOaGaayzkaaGaaiOlaaaa@3915@ Analysts can start with moderate values for both, say between 10 and 15, in initial tuning runs. After convergence, analysts examine posterior samples of the latent classes to check how many individual-level and household-level latent classes are occupied. Such posterior predictive checks can provide evidence for the case that larger values for F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbaaaa@3242@ are needed. If the numbers of occupied household-level classes hits F , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbGaaGzaVlaacYcaaaa@346F@ we suggest increasing F . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbGaaGzaVlaac6caaaa@3471@ If the number of occupied individual-level classes hits S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbGaaiilaaaa@32F2@ we suggest increasing F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ first but then increasing S , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbGaaiilaaaa@32F2@ possibly in addition to F , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbGaaGzaVlaacYcaaaa@346F@ if increasing F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ alone does not suffice. When posterior predictive checks do not provide evidence that larger values of F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGgbaaaa@3235@ and S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGtbaaaa@3242@ are needed, analysts need not increase the number of classes, as doing so is not expected to improve the accuracy of the estimation. We note that similar logic is used in other mixture model contexts (Walker, 2007; Si and Reiter, 2013; Manrique-Vallier and Reiter, 2014; Murray and Reiter, 2016).

2.2  MCMC sampler for the NDPMPM

Hu et al. (2018) use a data augmentation strategy (Manrique-Vallier and Reiter, 2014) to estimate the posterior distribution in (2.2). They assume that the observed data X 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGymaaaakiaaygW7 caGGSaaaaa@4004@ which includes only feasible households, is a subset from a hypothetical sample X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ of ( n + n 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaqadaqaaiaad6gacqGHRaWkcaWGUb WaaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaaaaa@36AB@ households directly generated from the untruncated NDPMPM. That is, X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ is generated on the support C MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jq8dbaa@3CAE@ where all combinations are possible and structural zeros rules are not enforced, but we only observe the sample of n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbaaaa@325D@ households X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGymaaaaaaa@3DC0@ that satisfy the structural zero rules and do not observe the sample of n 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaa aa@3343@ households X 0 = X X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGimaaaakiaai2da cqWFxepwcqGHsislcqWFxepwdaahaaWcbeqaaiaaigdaaaaaaa@442F@ that fail the rules.

We use the strategy of Hu et al. (2018) and augment the data as follows. For each h H , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFlecsieaacaGFSaaaaa@3F12@ we simulate X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ from the untruncated NDPMPM, stopping when the number of simulated feasible households in X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ directly matches n 1 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaigdacaWGOb aabeaaaaa@3431@ for all h H . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObGaeyicI48efv3ySLgznfgDOf daryqr1ngBPrginfgDObYtUvgaiqaacqWFlecscaGGUaaaaa@3F0F@ We replace the simulated feasible households in X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ with X 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGymaaaakiaaygW7 caGGSaaaaa@4004@ thus, assuming that X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ already contains X 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGymaaaaaaa@3DC0@ and we only need to generate the part X 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGimaaaaaaa@3DBF@ that fall in S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=jr8tjaac6caaaa@3D80@ Given a draw of X , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8yHqaaiaa+Xcaaaa@3D8D@ we draw θ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH4oqCaaa@3320@ from posterior distribution defined by the untruncated NDPMPM, treating X MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ybaa@3CD8@ as the observed data. This posterior distribution can be estimated using a blocked Gibbs sampler (Ishwaran and James, 2001; Si and Reiter, 2013).

We now present the full MCMC sampler for fitting the truncated NDPMPM. Let G 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHhbWaaWbaaSqabeaacaaIWaaaaa aa@3321@ and M 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHnbWaaWbaaSqabeaacaaIWaaaaa aa@3327@ be vectors of the latent class membership indicators for the households in X 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGimaaaaaaa@3DBF@ and n 0 h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaicdacaWGOb aabeaaaaa@3430@ be the number of households of size h MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGObaaaa@3257@ in X 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGimaaaakiaaygW7 caGGSaaaaa@4003@ with n 0 = h n 0 h . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaicdaaeqaaO GaaGypamaaqababeWcbaGaamiAaaqab0GaeyyeIuoakiaaykW7caWG UbWaaSbaaSqaaiaaicdacaWGObaabeaakiaac6caaaa@3BFC@ In each full conditional, let “ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfKttLearuGrYvMBJHgitnMCPbhDG0evam XvP5wqSXMqHnxAJn0BKvguHDwzZbqegqvATv2CG4uz3bIuV1wyUbqe dmvETj2BSbqegm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8rrpk 0dbbf9q8WrFfeuY=Hhbbf9v8vrpy0dd9qqpae9q8qqvqFr0dXdHiVc =bYP0xH8peuj0lXxfrpe0=vqpeeaY=brpwe9Fve9Fve8meaacaGacm GadaWaaiqacaabaiaafaaakeaaiiaajugybabaaaaaaaaapeGaa83e Gaaa@3ECD@ ” represent conditioning on all other variables and parameters in the model. At each MCMC iteration, we do the following steps.

  1. Set t 0 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaaicdaaaa@34D4@ and t 1 = 0. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaaicdacaGGUaaaaa@3587@
  2. Sample G i 0 { 1, , F } Discrete ( π 1 * * , , π F * * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaa0baaSqaaiaadMgaaeaaca aIWaaaaOGaeyicI48aaiWaaeaacaaIXaGaaGilaiaaysW7cqWIMaYs caaISaGaaGjbVlaadAeaaiaawUhacaGL9baarqqr1ngBPrgifHhDYf gaiqaacqWF8iIocaqGebGaaeyAaiaabohacaqGJbGaaeOCaiaabwga caqG0bGaaeyzamaabmaabaGaeqiWda3aa0baaSqaaiaaigdaaeaaie aacaGFQaGaa4NkaaaakiaaygW7caaISaGaaGjbVlablAciljaaiYca caaMe8UaeqiWda3aa0baaSqaaiaadAeaaeaacaGFQaGaa4NkaaaaaO GaayjkaiaawMcaaaaa@5CD5@ where π g * * λ g h ( k ) π g MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaqhaaWcbaGaam4zaaqaaG qaaiaa=PcacaWFQaaaaOGaaGjbVlabg2Hi1kaaysW7cqaH7oaBdaqh aaWcbaGaam4zaiaadIgaaeaadaqadaqaaiaadUgaaiaawIcacaGLPa aaaaGccqaHapaCdaWgaaWcbaGaam4zaaqabaaaaa@4355@ and k MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbaaaa@325A@ is the index for the household-level variable “household size”.
  3. For j = 1, , h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamiAaiaacYcaaaa@3B20@ sample M i j 0 { 1, , S } Discrete ( ω G i 0 1 , , ω G i 0 S ) . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaa0baaSqaaiaadMgacaWGQb aabaGaaGimaaaakiabgIGiopaacmaabaGaaGymaiaaiYcacaaMe8Ua eSOjGSKaaGilaiaaysW7caWGtbaacaGL7bGaayzFaaqeeuuDJXwAKb sr4rNCHbaceaGae8hpIOJaaeiraiaabMgacaqGZbGaae4yaiaabkha caqGLbGaaeiDaiaabwgadaqadaqaaiabeM8a3naaBaaaleaacaWGhb Waa0baaWqaaiaadMgaaeaacaaIWaaaaSGaaGymaaqabaGccaaISaGa aGjbVlablAciljaaiYcacaaMe8UaeqyYdC3aaSbaaSqaaiaadEeada qhaaadbaGaamyAaaqaaiaaicdaaaWccaWGtbaabeaaaOGaayjkaiaa wMcaaiaac6caaaa@5FD3@
  4. Set X i k 0 = h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybWaa0baaSqaaiaadMgacaWGRb aabaGaaGimaaaakiaai2dacaWGObGaaiilaaaa@377A@ where X i k 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGybWaa0baaSqaaiaadMgacaWGRb aabaGaaGimaaaaaaa@350C@ corresponds to the variable for household size. Sample the remaining household-level and individual-level values using the likelihoods in (2.3) and (2.4). Set the household’s simulated value to X i 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaa0baaSqaaiaadMgaaeaaca aIWaaaaOGaaiOlaaaa@34DC@
  5. If X i 0 S h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHybWaa0baaSqaaiaadMgaaeaaca aIWaaaaOGaeyicI48efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYt UvgaiqaacqWFse=udaWgaaWcbaGaamiAaaqabaGccaGGSaaaaa@42E5@ let t 0 = t 0 + 1 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaicdaaeqaaO GaaGypaiaadshadaWgaaWcbaGaaGimaaqabaGccqGHRaWkcaaIXaGa aiilaaaa@3850@ X 0 = X 0 X i 0 , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=Dr8ynaaCaaaleqabaGaaGimaaaakiaai2da cqWFxepwdaahaaWcbeqaaiaaicdaaaGccqGHQicYcaWHybWaa0baaS qaaiaadMgaaeaacaaIWaaaaOGaaiilaaaa@4676@ G 0 = G 0 G i 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHhbWaaWbaaSqabeaacaaIWaaaaO GaaGypaiaahEeadaahaaWcbeqaaiaaicdaaaGccqGHQicYcaWGhbWa a0baaSqaaiaadMgaaeaacaaIWaaaaaaa@39F4@ and M 0 = M 0 { M i 1 0 , , M i h 0 } . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWHnbWaaWbaaSqabeaacaaIWaaaaO GaaGypaiaah2eadaahaaWcbeqaaiaaicdaaaGccqGHQicYdaGadaqa aiaad2eadaqhaaWcbaGaamyAaiaaigdaaeaacaaIWaaaaOGaaGilai aaysW7cqWIMaYscaaISaGaaGjbVlaad2eadaqhaaWcbaGaamyAaiaa dIgaaeaacaaIWaaaaaGccaGL7bGaayzFaaGaaiOlaaaa@46F4@ Otherwise set t 1 = t 1 + 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGypaiaadshadaWgaaWcbaGaaGymaaqabaGccqGHRaWkcaaIXaGa aiOlaaaa@3854@
  6. If t 1 < n 1 h , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWG0bWaaSbaaSqaaiaaigdaaeqaaO GaaGipaiaad6gadaWgaaWcbaGaaGymaiaadIgaaeqaaOGaaiilaaaa @379B@ return to step (b). Otherwise, set n 0 h = t 0 . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGUbWaaSbaaSqaaiaaicdacaWGOb aabeaakiaai2dacaWG0bWaaSbaaSqaaiaaicdaaeqaaOGaaiOlaaaa @379C@
  1. Sample G i { 1, , F } Discrete ( π 1 * , , π F * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaaSbaaSqaaiaadMgaaeqaaO GaeyicI48aaiWaaeaacaaIXaGaaGilaiaaysW7cqWIMaYscaaISaGa aGjbVlaadAeaaiaawUhacaGL9baarqqr1ngBPrgifHhDYfgaiqaacq WF8iIocaqGebGaaeyAaiaabohacaqGJbGaaeOCaiaabwgacaqG0bGa aeyzamaabmaabaGaeqiWda3aa0baaSqaaiaaigdaaeaaieaacaGFQa aaaOGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlabec8aWnaaDaaa leaacaWGgbaabaGaa4NkaaaaaOGaayjkaiaawMcaaaaa@593C@ for i = 1, , n , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBaiaacYcaaaa@3B25@ where

π g * = Pr ( G i = g | ) = π g [ k = p + 1 q λ g X i k 1 ( k ) ( j = 1 n i m = 1 S ω g m k = 1 p ϕ g m X i j k 1 ( k ) ) ] f = 1 F π f [ k = p + 1 q λ f X i k 1 ( k ) ( j = 1 n i m = 1 S ω g m k = 1 p ϕ f m X i j k 1 ( k ) ) ] MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHapaCdaqhaaWcbaGaam4zaaqaaG qaaiaa=PcaaaGccaaI9aGaciiuaiaackhadaqadaqaaiaadEeadaWg aaWcbaGaamyAaaqabaGccaaI9aWaaqGaaeaacaWGNbGaaGPaVdGaay jcSdGaaGPaVlabgkHiTaGaayjkaiaawMcaaiaai2dadaWcaaqaaiab ec8aWnaaBaaaleaacaWGNbaabeaakmaadmaabaWaaebmaeaacqaH7o aBdaqhaaWcbaGaam4zaiaadIfadaqhaaadbaGaamyAaiaadUgaaeaa caaIXaaaaaWcbaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaaqaai aadUgacaaI9aGaamiCaiabgUcaRiaaigdaaeaacaWGXbaaniabg+Gi vdGcdaqadaqaamaaradabaWaaabmaeaacqaHjpWDdaWgaaWcbaGaam 4zaiaad2gaaeqaaaqaaiaad2gacaaI9aGaaGymaaqaaiaadofaa0Ga eyyeIuoakmaaradabaGaeqy1dy2aa0baaSqaaiaadEgacaWGTbGaam iwamaaDaaameaacaWGPbGaamOAaiaadUgaaeaacaaIXaaaaaWcbaWa aeWaaeaacaWGRbaacaGLOaGaayzkaaaaaaqaaiaadUgacaaI9aGaaG ymaaqaaiaadchaa0Gaey4dIunaaSqaaiaadQgacaaI9aGaaGymaaqa aiaad6gadaWgaaadbaGaamyAaaqabaaaniabg+GivdaakiaawIcaca GLPaaaaiaawUfacaGLDbaaaeaadaaeWaqaaiabec8aWnaaBaaaleaa caWGMbaabeaakmaadmaabaWaaebmaeaacqaH7oaBdaqhaaWcbaGaam OzaiaadIfadaqhaaadbaGaamyAaiaadUgaaeaacaaIXaaaaaWcbaWa aeWaaeaacaWGRbaacaGLOaGaayzkaaaaaOWaaeWaaeaadaqeWaqaam aaqadabaGaeqyYdC3aaSbaaSqaaiaadEgacaWGTbaabeaaaeaacaWG TbGaaGypaiaaigdaaeaacaWGtbaaniabggHiLdaaleaacaWGQbGaaG ypaiaaigdaaeaacaWGUbWaaSbaaWqaaiaadMgaaeqaaaqdcqGHpis1 aOWaaebmaeaacqaHvpGzdaqhaaWcbaGaamOzaiaad2gacaWGybWaa0 baaWqaaiaadMgacaWGQbGaam4Aaaqaaiaaigdaaaaaleaadaqadaqa aiaadUgaaiaawIcacaGLPaaaaaaabaGaam4Aaiaai2dacaaIXaaaba GaamiCaaqdcqGHpis1aaGccaGLOaGaayzkaaaaleaacaWGRbGaaGyp aiaadchacqGHRaWkcaaIXaaabaGaamyCaaqdcqGHpis1aaGccaGLBb GaayzxaaaaleaacaWGMbGaaGypaiaaigdaaeaacaWGgbaaniabggHi Ldaaaaaa@B51E@

for g = 1, , F . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOraiaaygW7caGGUaaaaa@3C87@ Set G i 1 = G i . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGhbWaa0baaSqaaiaadMgaaeaaca aIXaaaaOGaaGypaiaadEeadaWgaaWcbaGaamyAaaqabaGccaGGUaaa aa@377F@
  1. Sample M i j { 1, , S } Discrete ( ω G i 1 1 * , , ω G i 1 S * ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaaSbaaSqaaiaadMgacaWGQb aabeaakiabgIGiopaacmaabaGaaGymaiaaiYcacaaMe8UaeSOjGSKa aGilaiaaysW7caWGtbaacaGL7bGaayzFaaqeeuuDJXwAKbsr4rNCHb aceaGae8hpIOJaaeiraiaabMgacaqGZbGaae4yaiaabkhacaqGLbGa aeiDaiaabwgadaqadaqaaiabeM8a3naaDaaaleaacaWGhbWaa0baaW qaaiaadMgaaeaacaaIXaaaaSGaaGymaaqaaGqaaiaa+PcaaaGccaaI SaGaaGjbVlablAciljaaiYcacaaMe8UaeqyYdC3aa0baaSqaaiaadE eadaqhaaadbaGaamyAaaqaaiaaigdaaaWccaWGtbaabaGaa4Nkaaaa aOGaayjkaiaawMcaaaaa@5FC7@ for i = 1, , n MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGPbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBaaaa@3A75@ and j = 1, , n i , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGQbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOBamaaBaaaleaacaWGPbaabeaa kiaacYcaaaa@3C4A@ where

ω G i 1 m * = Pr ( M i j = m | ) = ω G i 1 m k = 1 p ϕ G i 1 m X i j k 1 ( k ) s = 1 S ω G i 1 s k = 1 p ϕ G i 1 s X i j k 1 ( k ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaHjpWDdaqhaaWcbaGaam4ramaaDa aameaacaWGPbaabaGaaGymaaaaliaad2gaaeaaieaacaWFQaaaaOGa aGypaiGaccfacaGGYbWaaeWaaeaadaabcaqaaiaad2eadaWgaaWcba GaamyAaiaadQgaaeqaaOGaaGypaiaad2gacaaMc8oacaGLiWoacaaM c8UaeyOeI0cacaGLOaGaayzkaaGaaGypamaalaaabaGaeqyYdC3aaS baaSqaaiaadEeadaqhaaadbaGaamyAaaqaaiaaigdaaaWccaWGTbaa beaakmaaradabaGaeqy1dy2aa0baaSqaaiaadEeadaqhaaadbaGaam yAaaqaaiaaigdaaaWccaWGTbGaamiwamaaDaaameaacaWGPbGaamOA aiaadUgaaeaacaaIXaaaaaWcbaWaaeWaaeaacaWGRbaacaGLOaGaay zkaaaaaaqaaiaadUgacaaI9aGaaGymaaqaaiaadchaa0Gaey4dIuna aOqaamaaqadabaGaeqyYdC3aaSbaaSqaaiaadEeadaqhaaadbaGaam yAaaqaaiaaigdaaaWccaWGZbaabeaaaeaacaWGZbGaaGypaiaaigda aeaacaWGtbaaniabggHiLdGcdaqeWaqaaiabew9aMnaaDaaaleaaca WGhbWaa0baaWqaaiaadMgaaeaacaaIXaaaaSGaam4CaiaadIfadaqh aaadbaGaamyAaiaadQgacaWGRbaabaGaaGymaaaaaSqaamaabmaaba Gaam4AaaGaayjkaiaawMcaaaaaaeaacaWGRbGaaGypaiaaigdaaeaa caWGWbaaniabg+Givdaaaaaa@7B82@

for m = 1, , S . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8Uaam4uaiaac6caaaa@3B10@ Set M i j 1 = M i j . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGnbWaa0baaSqaaiaadMgacaWGQb aabaGaaGymaaaakiaai2dacaWGnbWaaSbaaSqaaiaadMgacaWGQbaa beaakiaac6caaaa@3969@

u g | Beta ( 1 + U g , α + f = g + 1 F U f ) , π g = u g f < g ( 1 u f ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabcaqaaiaadwhadaWgaaWcbaGaam 4zaaqabaGccaaMc8oacaGLiWoacaaMc8UaeyOeI0seeuuDJXwAKbsr 4rNCHbaceaGae8hpIOJaaeOqaiaabwgacaqG0bGaaeyyamaabmaaba GaaGymaiabgUcaRiaadwfadaWgaaWcbaGaam4zaaqabaGccaaISaGa aGjbVlabeg7aHjabgUcaRmaaqahabeWcbaGaamOzaiaai2dacaWGNb Gaey4kaSIaaGymaaqaaiaadAeaa0GaeyyeIuoakiaaykW7caWGvbWa aSbaaSqaaiaadAgaaeqaaaGccaGLOaGaayzkaaGaaGilaiaaysW7ca aMe8UaeqiWda3aaSbaaSqaaiaadEgaaeqaaOGaaGypaiaadwhadaWg aaWcbaGaam4zaaqabaGcdaqeqbqabSqaaiaadAgacaaI8aGaam4zaa qab0Gaey4dIunakiaaykW7daqadaqaaiaaigdacqGHsislcaWG1bWa aSbaaSqaaiaadAgaaeqaaaGccaGLOaGaayzkaaaaaa@6C40@

where

U g = i = 1 n 1 ( G i 1 = g ) + i = 1 n 0 1 ( G i 0 = g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGvbWaaSbaaSqaaiaadEgaaeqaaO GaaGypamaaqahabeWcbaGaamyAaiaai2dacaaIXaaabaGaamOBaaqd cqGHris5aOGaaGPaVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHrhAG8 KBLbaceaGae8xmaeZaaeWaaeaacaWGhbWaa0baaSqaaiaadMgaaeaa caaIXaaaaOGaaGypaiaadEgaaiaawIcacaGLPaaacqGHRaWkdaaeWb qabSqaaiaadMgacaaI9aGaaGymaaqaaiaad6gadaWgaaadbaGaaGim aaqabaaaniabggHiLdGccaaMc8Uae8xmaeZaaeWaaeaacaWGhbWaa0 baaSqaaiaadMgaaeaacaaIWaaaaOGaaGypaiaadEgaaiaawIcacaGL Paaaaaa@5B91@

for g = 1, , F 1. MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOraiabgkHiTiaaigdacaGGUaaa aa@3CA5@

v g m | Beta ( 1 + V g m , β + s = m + 1 S V g s ) , ω g m = v g m s < m ( 1 v g s ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabcaqaaiaadAhadaWgaaWcbaGaam 4zaiaad2gaaeqaaOGaaGPaVdGaayjcSdGaaGPaVlabgkHiTebbfv3y SLgzGueE0jxyaGabaiab=XJi6iaabkeacaqGLbGaaeiDaiaabggada qadaqaaiaaigdacqGHRaWkcaWGwbWaaSbaaSqaaiaadEgacaWGTbaa beaakiaaiYcacaaMe8UaeqOSdiMaey4kaSYaaabCaeqaleaacaWGZb GaaGypaiaad2gacqGHRaWkcaaIXaaabaGaam4uaaqdcqGHris5aOGa aGPaVlaadAfadaWgaaWcbaGaam4zaiaadohaaeqaaaGccaGLOaGaay zkaaGaaGilaiaaysW7caaMe8UaeqyYdC3aaSbaaSqaaiaadEgacaWG Tbaabeaakiaai2dacaWG2bWaaSbaaSqaaiaadEgacaWGTbaabeaakm aarafabeWcbaGaam4CaiaaiYdacaWGTbaabeqdcqGHpis1aOWaaeWa aeaacaaIXaGaeyOeI0IaamODamaaBaaaleaacaWGNbGaam4Caaqaba aakiaawIcacaGLPaaaaaa@70B9@

where

V g m = i = 1 n 1 ( M i j 1 = m , G i 1 = g ) + i = 1 n 0 1 ( M i j 0 = m , G i 0 = g ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGwbWaaSbaaSqaaiaadEgacaWGTb aabeaakiaai2dadaaeWbqabSqaaiaadMgacaaI9aGaaGymaaqaaiaa d6gaa0GaeyyeIuoakiaaykW7tuuDJXwAK1uy0HwmaeHbfv3ySLgzG0 uy0Hgip5wzaGabaiab=fdaXmaabmaabaGaamytamaaDaaaleaacaWG PbGaamOAaaqaaiaaigdaaaGccaaI9aGaamyBaiaaiYcacaaMe8Uaam 4ramaaDaaaleaacaWGPbaabaGaaGymaaaakiaai2dacaWGNbaacaGL OaGaayzkaaGaey4kaSYaaabCaeqaleaacaWGPbGaaGypaiaaigdaae aacaWGUbWaaSbaaWqaaiaaicdaaeqaaaqdcqGHris5aOGaaGPaVlab =fdaXmaabmaabaGaamytamaaDaaaleaacaWGPbGaamOAaaqaaiaaic daaaGccaaI9aGaamyBaiaaiYcacaaMe8Uaam4ramaaDaaaleaacaWG PbaabaGaaGimaaaakiaai2dacaWGNbaacaGLOaGaayzkaaaaaa@6BBD@

for m = 1, , S 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8Uaam4uaiabgkHiTiaaigdaaaa@3C06@ and g = 1, , F . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOraiaac6caaaa@3AFD@

λ g ( k ) | Dirichlet ( 1 + η g 1 ( k ) , , 1 + η g d k ( k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabcaqaaiabeU7aSnaaDaaaleaaca WGNbaabaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaOGaaGPaVdGa ayjcSdGaaGPaVlabgkHiTebbfv3ySLgzGueE0jxyaGabaiab=XJi6i aabseacaqGPbGaaeOCaiaabMgacaqGJbGaaeiAaiaabYgacaqGLbGa aeiDamaabmaabaGaaGymaiabgUcaRiabeE7aOnaaDaaaleaacaWGNb GaaGymaaqaamaabmaabaGaam4AaaGaayjkaiaawMcaaaaakiaaiYca caaMe8UaeSOjGSKaaGilaiaaysW7caaIXaGaey4kaSIaeq4TdG2aa0 baaSqaaiaadEgacaWGKbWaaSbaaWqaaiaadUgaaeqaaaWcbaWaaeWa aeaacaWGRbaacaGLOaGaayzkaaaaaaGccaGLOaGaayzkaaaaaa@6204@

where

η g c ( k ) = i | G i 1 = g n 1 ( X i k 1 = c ) + i | G i 0 = g n 0 1 ( X i k 0 = c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH3oaAdaqhaaWcbaGaam4zaiaado gaaeaadaqadaqaaiaadUgaaiaawIcacaGLPaaaaaGccaaI9aWaaabC aeqaleaadaabcaqaaiaadMgacaaMc8oacaGLiWoacaaMc8Uaam4ram aaDaaameaacaWGPbaabaGaaGymaaaaliaai2dacaWGNbaabaGaamOB aaqdcqGHris5aOGaaGPaVprr1ngBPrwtHrhAXaqeguuDJXwAKbstHr hAG8KBLbaceaGae8xmaeZaaeWaaeaacaWGybWaa0baaSqaaiaadMga caWGRbaabaGaaGymaaaakiaai2dacaWGJbaacaGLOaGaayzkaaGaey 4kaSYaaabCaeqaleaadaabcaqaaiaadMgacaaMc8oacaGLiWoacaaM c8Uaam4ramaaDaaameaacaWGPbaabaGaaGimaaaaliaai2dacaWGNb aabaGaamOBamaaBaaameaacaaIWaaabeaaa0GaeyyeIuoakiaaykW7 cqWFXaqmdaqadaqaaiaadIfadaqhaaWcbaGaamyAaiaadUgaaeaaca aIWaaaaOGaaGypaiaadogaaiaawIcacaGLPaaaaaa@70D4@

for g = 1, , F MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOraaaa@3A4B@ and k = p + 1, , q . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaadchacqGHRaWkca aIXaGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaadghacaGGUaaa aa@3D03@

ϕ g m ( k ) | Dirichlet ( 1 + ν g m 1 ( k ) , , 1 + ν g m d k ( k ) ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabcaqaaiabew9aMnaaDaaaleaaca WGNbGaamyBaaqaamaabmaabaGaam4AaaGaayjkaiaawMcaaaaakiaa ykW7aiaawIa7aiaaykW7cqGHsislrqqr1ngBPrgifHhDYfgaiqaacq WF8iIocaqGebGaaeyAaiaabkhacaqGPbGaae4yaiaabIgacaqGSbGa aeyzaiaabshadaqadaqaaiaaigdacqGHRaWkcqaH9oGBdaqhaaWcba Gaam4zaiaad2gacaaIXaaabaWaaeWaaeaacaWGRbaacaGLOaGaayzk aaaaaOGaaGilaiaaysW7cqWIMaYscaaISaGaaGjbVlaaigdacqGHRa WkcqaH9oGBdaqhaaWcbaGaam4zaiaad2gacaWGKbWaaSbaaWqaaiaa dUgaaeqaaaWcbaWaaeWaaeaacaWGRbaacaGLOaGaayzkaaaaaaGcca GLOaGaayzkaaaaaa@6506@

where

ν g m c ( k ) = i , j | G i 1 = g , M i j 1 = m n 1 ( X i j k 1 = c ) + i , j | G i 0 = g , M i j 0 = m n 0 1 ( X i j k 0 = c ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacqaH9oGBdaqhaaWcbaGaam4zaiaad2 gacaWGJbaabaGaaGikaiaadUgacaaIPaaaaOGaaGypamaaqahabeWc baGaamyAaiaaiYcacaaMc8+aaqGaaeaacaWGQbGaaGPaVdGaayjcSd GaaGPaVtaaceqaaiaadEeadaqhaaadbaGaamyAaaqaaiaaigdaaaWc caaI9aGaam4zaiaaiYcacaaMe8UaamytamaaDaaameaacaWGPbGaam OAaaqaaiaaigdaaaWccaaI9aGaamyBaaaaaeaacaWGUbaaniabggHi LdGccaaMc8+efv3ySLgznfgDOfdaryqr1ngBPrginfgDObYtUvgaiq aacqWFXaqmdaqadaqaaiaadIfadaqhaaWcbaGaamyAaiaadQgacaWG RbaabaGaaGymaaaakiaai2dacaWGJbaacaGLOaGaayzkaaGaey4kaS YaaabCaeqaleaacaWGPbGaaGilaiaaykW7daabcaqaaiaadQgacaaM c8oacaGLiWoacaaMc8obaiqabaGaam4ramaaDaaameaacaWGPbaaba GaaGimaaaaliaai2dacaWGNbGaaGilaiaaykW7caWGnbWaa0baaWqa aiaadMgacaWGQbaabaGaaGimaaaaliaai2dacaWGTbaaaaqaaiaad6 gadaWgaaadbaGaaGimaaqabaaaniabggHiLdGccaaMc8Uae8xmaeZa aeWaaeaacaWGybWaa0baaSqaaiaadMgacaWGQbGaam4Aaaqaaiaaic daaaGccaaI9aGaam4yaaGaayjkaiaawMcaaaaa@8937@

for g = 1, , F , MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGNbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamOraiaacYcaaaa@3AFB@ m = 1, , S MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGTbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8Uaam4uaaaa@3A5E@ and k = 1, , p . MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaacaWGRbGaaGypaiaaigdacaaISaGaaG jbVlablAciljaaiYcacaaMe8UaamiCaiaac6caaaa@3B2B@

α | Gamma ( a α + F 1, b α g = 1 F 1 log ( 1 u g ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabcaqaaiabeg7aHjaaykW7aiaawI a7aiaaykW7cqGHsislrqqr1ngBPrgifHhDYfgaiqaacqWF8iIocaqG hbGaaeyyaiaab2gacaqGTbGaaeyyamaabmaabaGaamyyamaaBaaale aacqaHXoqyaeqaaOGaey4kaSIaamOraiabgkHiTiaaigdacaaISaGa aGjbVlaadkgadaWgaaWcbaGaeqySdegabeaakiabgkHiTmaaqahabe WcbaGaam4zaiaai2dacaaIXaaabaGaamOraiabgkHiTiaaigdaa0Ga eyyeIuoakiaaykW7caqGSbGaae4BaiaabEgadaqadaqaaiaaigdacq GHsislcaWG1bWaaSbaaSqaaiaadEgaaeqaaaGccaGLOaGaayzkaaaa caGLOaGaayzkaaGaaGOlaaaa@61D9@

β | Gamma ( a β + F × ( S 1 ) , b β m = 1 S 1 g = 1 F log ( 1 v g m ) ) . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rrps0l bbf9q8WrFfeuY=Hhbbf9y8WrFj0xb9qqFj0db9qqvqFr0dXdHiVc=b YP0xH8peeu0xXdcrpe0db9Wqpepec9ar=xfr=xfr=tmeaabaqaciGa caGaaeqabaqaaeaadaaakeaadaabcaqaaiabek7aIjaaykW7aiaawI a7aiaaykW7cqGHsislrqqr1ngBPrgifHhDYfgaiqaacqWF8iIocaqG hbGaaeyyaiaab2gacaqGTbGaaeyyamaabmaabaGaamyyamaaBaaale aacqaHYoGyaeqaaOGaey4kaSIaamOraiabgEna0oaabmaabaGaam4u aiabgkHiTiaaigdaaiaawIcacaGLPaaacaaISaGaaGjbVlaadkgada WgaaWcbaGaeqOSdigabeaakiabgkHiTmaaqahabeWcbaGaamyBaiaa i2dacaaIXaaabaGaam4uaiabgkHiTiaaigdaa0GaeyyeIuoakiaayk W7daaeWbqabSqaaiaadEgacaaI9aGaaGymaaqaaiaadAeaa0Gaeyye IuoakiaaykW7caqGSbGaae4BaiaabEgadaqadaqaaiaaigdacqGHsi slcaWG2bWaaSbaaSqaaiaadEgacaWGTbaabeaaaOGaayjkaiaawMca aaGaayjkaiaawMcaaiaai6caaaa@6E6E@

This Gibbs sampler is implemented in the R software package “NestedCategBayesImpute” (Wang, Akande, Hu, Reiter and Barrientos, 2016). The software can be used to generate synthetic versions of the original data, but it requires all data to be complete.


Report a problem on this page

Is something not working? Is there information outdated? Can't find what you're looking for?

Please contact us and let us know how we can help you.

Privacy notice

Date modified: