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Multiple imputation of missing values in household data with 
structural zeros 

Olanrewaju Akande, Jerome Reiter and Andrés F. Barrientos1 

Abstract 

We present an approach for imputation of missing items in multivariate categorical data nested within 
households. The approach relies on a latent class model that (i) allows for household-level and individual-level 
variables, (ii) ensures that impossible household configurations have zero probability in the model, and (iii) can 
preserve multivariate distributions both within households and across households. We present a Gibbs sampler 
for estimating the model and generating imputations. We also describe strategies for improving the computational 
efficiency of the model estimation. We illustrate the performance of the approach with data that mimic the 
variables collected in typical population censuses. 

 
Key Words: Categorical; Census; Edit; Latent; Mixture; Nonresponse. 

 
 

1  Introduction 
 

In many population censuses and demographic surveys, statistical agencies collect data on individuals 

grouped within houses. In the U.S. decennial census, for example, the Census Bureau collects the age, race, 

sex, and relationship to the household head for every individual in the household, as well as whether or not 

the residents own the house. After collection, agencies share these datasets for secondary analysis, either as 

tabular summaries, public use microdata samples, or restricted access files. 

When creating these data products, agencies typically have to deal with item nonresponse both for 

individual-level variables and household-level variables. They typically do so using some type of imputation 

procedure. Ideally, these procedures satisfy three desiderata. First, the imputations preserve the joint 

distribution of the variables as best as possible. As part of this, the procedure should preserve relationships 

within households. For example, the missing race of a spouse likely, but certainly not definitely, matches 

the race of the household head; the imputation procedure should reflect that. Second, the imputations respect 

structural zeros. For example, a daughter’s age cannot exceed her biological mother’s age. The imputations 

should not create impossible combinations of individuals in the same household. Third, the imputation 

procedure allows for appropriate uncertainty to be propagated in subsequent analyses of the data. 

Typical approaches to imputation of missing household items use some variant of hot deck imputation 

(Kalton and Kasprzyk, 1986; Andridge and Little, 2010). However, depending on how the hot deck is 

implemented, it may not satisfy one or more of the desiderata. Indeed, we are not aware of any hot deck 

imputation procedure for household data that satisfies all three explicitly. An alternative is to estimate a 

model that describes the joint distribution of all the variables, and impute missing values from the implied 

predictive distributions in the model. For household data, one such model is the nested data Dirichlet process 

mixture of products of multinomial distributions (NDPMPM) model of Hu, Reiter and Wang (2018), which 

assumes that (i) each household is a member of a household-level latent class, and (ii) each individual is a 
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member of an individual-level latent class nested within its household-level latent class. The model assigns 

zero probability to combinations corresponding to structural zeros, and also handles both household-level 

and individual-level variables simultaneously. The NDPMPM is appealing as an imputation engine, as it 

can preserve multivariate associations while avoiding imputations that result in impossible households. The 

NDPMPM is related to models proposed by Vermunt (2003, 2008) and Bennink, Croon, Kroon and Vermunt 

(2016), although these are used for regression rather than multivariate imputation and do not deal with 

structural zeros. 

Hu et al. (2018) use the NDPMPM to generate synthetic datasets (Rubin, 1993; Raghunathan and Rubin, 

2001; Reiter and Raghunathan, 2007) for statistical disclosure limitation, but they do not describe how to 

use it for imputation of missing data. We do so in this article. With structural zeros in the NDPMPM, the 

conditional distributions of the missing values given the observed values are not available in closed form. 

We therefore add a rejection sampling step to the Gibbs sampler used by Hu et al. (2018), which generates 

completed datasets as byproducts of the Markov chain Monte Carlo (MCMC) algorithms used to estimate 

the model. These completed datasets can be analyzed using multiple imputation inferences (Rubin, 1987). 

We also present two new strategies for speeding up the computations with NDPMPMs, namely (i) turning 

data for the household head into household-level variables rather than individual-level variables, and (ii) 

using an approximation to the likelihood function. These scalable innovations are necessary, as the 

NDPMPM is computationally quite intensive even without missing data. The speed-up strategies also can 

be employed when using the NDPMPM to generate synthetic data. 

The remainder of this article is organized as follows. In Section 2, we review the NDPMPM model in 

the presence of structural zeros and the MCMC sampler for fitting the model without missing data. In 

Section 3, we extend the MCMC sampler for the NDPMPM model to allow for missing data. In Section 4, 

we present the two strategies for speeding up the MCMC sampler. In Section 5, we present results of 

simulation studies used to examine the performance of the NDPMPM as a multiple imputation engine, using 

the two strategies for speeding up the run time. In Section 6, we discuss findings, caveats and future work. 

 
2  Review of the NDPMPM model 
 

Hu et al. (2018) present the NDPMPM model including motivation for how it can preserve associations 

across variables and account for structural zeros. Here, we summarize the model without detailed 

motivations, referring the reader to Hu et al. (2018) for more information. We begin with notation needed 

to understand the model and the Gibbs sampler, assuming complete data. The presentation closely follows 

that in Hu et al. (2018). 

 

2.1  Notation and model specification 
 

Suppose the data contain n  households. Each household = 1, ,i n  contains in  individuals, so that 

there are 
=1

=
n

ii
n N  individuals in the data. Let  1, ,ik kX d   be the value of categorical variable 

k  for household ,i  which is assumed to be identical for all in  individuals in household ,i  where 

= 1, , .k p p q   Let  1, ,ijk kX d   be the value of categorical variable k  for person j  in 
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household ,i  where = 1, , ij n  and = 1, , .k p  Let     111= , , , , ,
ii i in pi p i p qX X X X X    

include all household-level and individual-level variables for the in  individuals in household .i  

Let   be the set of all household sizes that are possible in the population. For all ,h   let h  represent 

the set of all combinations of individual-level and household-level variables for households of size h , 

including impossible combinations; that is,    
= 1 =1 =1

= 1, , 1, , .
p q h p

h k kk p j k
d d



     Let h h   

represent the set of impossible combinations, i.e., those that are structural zeros, for households of size .h  

These include combinations of variables within any individual, e.g., a three year old person cannot be a 

spouse, or across individuals in the same household, e.g., a person cannot be older than his biological 

parents. Let = hh 
   and = .hh 

   

Although the NDPMPM model we use restricts the support of iX  to ,   it is helpful for 

understanding the model to begin with no restrictions on the support of .iX  Each household i  belongs to 

one of F  classes representing latent household types. For = 1, , ,i n  let  1, ,iG F   indicate the 

household class for household .i  Let  = Pr =g iG g  be the probability that household i  belongs to class 

.g  Within any class, all household-level variables follow independent, multinomial distributions. For any 

 1, ,k p p q    and any  1, , ,kc d   let    = Pr = =k
gc ik iX c G g  for any class ,g  where 

 k
gc  is the same value for every household in class .g  Let  1= , , ,F    and =  { : =k

gc c  

1, , ; = 1, , ; = 1, , }.kd k p p q g F     

Within each household class, each individual belongs to one of S  individual-level latent classes. For 

= 1, ,i n  and = 1, , ,ij n  let ijM  represent the individual-level latent class of individual j  in 

household .i  Let  = Pr = =gm ij iM m G g  be the probability that individual j  in household i  belongs 

to individual-level class m  nested within household-level class .g  Within any individual-level class, all 

individual-level variables follow independent, multinomial distributions. For any  1, ,k p   and any 

 1, , ,kc d   let       = Pr = , = ,k
gmc ijk i ijX c G M g m  for the class pair  , ,g m  where  k

gmc  is the 

same value for every individual in the class pair  , .g m  Let  = : = 1, , ; = 1, , ,gm g F m S     and 
  = : = 1, , ; = 1, , ; = 1, , ; = 1, , .k
gmc kc d k p m S g F       

For purposes of the Gibbs sampler in Section 2.2, it is useful to distinguish values of iX  that satisfy all 

the structural zero constraints from those that do not. Let the superscript 1“ ”  indicate that a random variable 

has support only on .   For example, 1
iX  represents data for a household with values restricted only on 

,   i.e., not an impossible household, whereas iX  represents data for a household with any values in 

.  Let 1  be the observed data comprising n  households, that is, a realization of  1 1
1 , , .nX X  The 

kernel of the NDPMPM,  1Pr ,  is  

        
1 1

1 1

=1 =1 = 1 =1 =1 =1

( | ) = = ,
ik ijk

p q pn F h S
k k

i i h g gmgX gmX
i h g k p j m k

L n h    


 

    
    X


     (2.1) 

where   includes all the parameters, and .  equals one when the condition inside the   is true and 

equals zero otherwise. 

For all ,h   let  1 =1
= =

n

h ii
n n h   be the number of households of size h  in 1  and 

   0 = Pr .h i h  X   As stated in Hu et al. (2018), the normalizing constant in the likelihood in (2.1) 

is    1
01 .n h

hh
 


 

 Therefore, the posterior distribution is  
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       
  

   
1

1 1 1

0

1
Pr , Pr Pr = Pr

1 hn
hh

T L    
 




 

     (2.2) 

where  T   emphasizes that the density is for the NDPMPM with support restricted to .   

The likelihood in (2.1) can be written as a generative model of the form  

                                              
 ( ) ( )

1, Discrete , ,

= 1, , and = 1, ,

i i k

k k
ik i G G dX G

i n k p p q

  

  



 


 

(2.3)
 

                              
    1| , , , Discrete , ,

= 1, , , = 1, , and = 1, ,

i ij i ij k

k k
ijk i ij i G M G M d

i

X G M n

i n j n k p

  





  


 

(2.4)
 

                                                      
 1Discrete , ,

= 1, ,

i FG

i n

  








 

(2.5)
 

                                       
 1, , Discrete , ,

= 1, , and = 1, ,

i iij i i G G S

i

M G n

i n j n

  





 


 

(2.6)
 

where the Discrete distribution refers to the multinomial distribution with sample size equal to one. We 

restrict the support of each iX  to ensure the model assigns zero probability to all combinations in   as 

desired. The model in (2.3) to (2.6) can be used without restricting the support to .   This ignores all 

structural zeros. While not appropriate for the joint distribution of household data, this model turns out to 

useful for the Gibbs sampler. We refer to the generative model in (2.3) to (2.6) with support on all of   as 

the untruncated NDPMPM. For contrast, we call the model in (2.1) the truncated NDPMPM. 

For prior distributions, we follow the recommendations of Hu et al. (2018). We use independent uniform 

Dirichlet distributions as priors for   and ,  and the truncated stick-breaking representation of the Dirichlet 

process as priors for   and   (Sethuraman, 1994; Dunson and Xing, 2009; Si and Reiter, 2013; Manrique-

Vallier and Reiter, 2014), 

                                                     1= , , Dirichlet 1, , 1
k

k k k
g g gd     (2.7) 

                                                     1= , , Dirichlet 1, , 1
k

k k k
gm gm gmd     (2.8) 

                                               
<

= 1 for = 1, ,g g f
f g

u u g F    (2.9) 

                                                Beta 1, for = 1, , 1, = 1g Fu g F u   (2.10) 

                                                 Gamma 0.25, 0.25   (2.11) 

                                              
<

= 1 for = 1,gm gm gs
s m

v v m S    (2.12) 

                                              Beta 1, for = 1, , 1, = 1gm g gSv m S v   (2.13) 
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  Gamma 0.25, 0.25 .g   (2.14) 

We set the parameters for the Dirichlet distributions in (2.7) and (2.8) to 
kd1  (a kd  dimensional vector 

of ones) and the parameters for the Gamma distributions in (2.11) and (2.14) to 0.25 to represent vague prior 

specifications. We also set =g   for computational expedience. For further discussion on prior 

specifications, see Hu et al. (2018). 

Conceptually, the latent household-level classes can be interpreted as clusters of households with similar 

compositions, e.g., households with children or households in which no one is related. Similarly, the latent 

individual-level classes can be interpreted as clusters of individuals with similar characteristics, e.g., older 

male spouses or young female children. However, for purposes of imputation, we do not care much about 

interpreting the classes, as they serve mainly to induce dependence across variables and individuals in the 

joint distribution. 

It is important to select F  and S  to be large enough to ensure accurate estimation of the joint 

distribution. However, we also do not want to make F  and S  so large as to produce many empty classes 

in the model estimation. Allowing many empty classes increases computational running time without any 

corresponding increase in estimation accuracy. This can be especially problematic in the Gibbs sampler for 

the truncated NDPMPM, as these empty classes can introduce mass in regions of the space where impossible 

combinations are likely to be generated. This slows down the convergence of the Gibbs sampler. 

We therefore recommend following the strategy in Hu et al. (2018) when setting  , .F S  Analysts can 

start with moderate values for both, say between 10 and 15, in initial tuning runs. After convergence, 

analysts examine posterior samples of the latent classes to check how many individual-level and household-

level latent classes are occupied. Such posterior predictive checks can provide evidence for the case that 

larger values for F  and S  are needed. If the numbers of occupied household-level classes hits ,F  we 

suggest increasing .F  If the number of occupied individual-level classes hits ,S  we suggest increasing F  

first but then increasing ,S  possibly in addition to ,F  if increasing F  alone does not suffice. When posterior 

predictive checks do not provide evidence that larger values of F  and S  are needed, analysts need not 

increase the number of classes, as doing so is not expected to improve the accuracy of the estimation. We 

note that similar logic is used in other mixture model contexts (Walker, 2007; Si and Reiter, 2013; Manrique-

Vallier and Reiter, 2014; Murray and Reiter, 2016). 

 
2.2  MCMC sampler for the NDPMPM 
 

Hu et al. (2018) use a data augmentation strategy (Manrique-Vallier and Reiter, 2014) to estimate the 

posterior distribution in (2.2). They assume that the observed data 1,  which includes only feasible 

households, is a subset from a hypothetical sample   of  0n n  households directly generated from the 

untruncated NDPMPM. That is,   is generated on the support   where all combinations are possible and 

structural zeros rules are not enforced, but we only observe the sample of n  households 1  that satisfy the 

structural zero rules and do not observe the sample of 0n  households 0 1=     that fail the rules. 

We use the strategy of Hu et al. (2018) and augment the data as follows. For each ,h   we simulate 

  from the untruncated NDPMPM, stopping when the number of simulated feasible households in   
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directly matches 1hn  for all .h   We replace the simulated feasible households in   with 1,  thus, 

assuming that   already contains 1  and we only need to generate the part 0  that fall in .  Given a 

draw of ,  we draw   from posterior distribution defined by the untruncated NDPMPM, treating   as 

the observed data. This posterior distribution can be estimated using a blocked Gibbs sampler (Ishwaran 

and James, 2001; Si and Reiter, 2013). 

We now present the full MCMC sampler for fitting the truncated NDPMPM. Let 0G  and 0M  be vectors 

of the latent class membership indicators for the households in 0  and 0hn  be the number of households 

of size h  in 0,  with 0 0= .hh
n n  In each full conditional, let “–” represent conditioning on all other 

variables and parameters in the model. At each MCMC iteration, we do the following steps. 
 

S1. Set 0 0 0= = = .G M  For each ,h   repeat the following: 

(a) Set 0 = 0t  and 1 = 0.t  

(b) Sample    0 ** **
11, , Discrete , ,i FG F      where  ** k

g gh g    and k  is the index 

for the household-level variable “household size”.  

(c) For = 1, , ,j h  sample    0 0
0

11, , Discrete , , .
i iij G G SM S      

(d) Set 0 = ,ikX h  where 0
ikX  corresponds to the variable for household size. Sample the 

remaining household-level and individual-level values using the likelihoods in (2.3) and 

(2.4). Set the household’s simulated value to 0 .iX  

(e) If 0 ,i hX   let 0 0= 1,t t  0 0 0= ,i X  0 0 0= iGG G  and 00 0
1= { , ,iMM M   

0 }.ihM  Otherwise set 1 1= 1.t t   

(f) If 1 1< ,ht n  return to step (b). Otherwise, set 0 0= .hn t  

 

S2. For observations in 1,  

(a) Sample    * *
11, , Discrete , ,i FG F      for = 1, , ,i n  where  

                      
    

    
1 1

1 1

= 1 =1 =1 =1*

=1 = 1 =1 =1 =1

= Pr = =

i

ik ijk

i

ik ijk

q n S pk k
g gmgX gmXk p j m k

g i F q n S pk k
f gmfX fmXf k p j m k

G g
   


   





 
 

 
 

   
    

  

for = 1, , .g F  Set 1 = .i iG G  

(b) Sample    1 1
* *

11, , Discrete , ,
i iij G G SM S      for = 1, ,i n  and = 1, , ,ij n  

where  

                      
 

 

1 1 1

1

1 1 1

=1*

=1 =1

= Pr = = i i ijk

i

i i ijk

p k
G m G mXk

ijG m S p k
G s G sXs k

M m
 


 




 
  

for = 1, , .m S  Set 1 = .ij ijM M  
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S3. Set = 1.Fu  Sample  

                      
= 1 <

Beta 1 , , = 1
F

g g f g g f
f g f g

u U U u u 


    
 

    

where 

                        
0

1 0

=1 =1

= = =
nn

g i i
i i

U G g G g     

for = 1, , 1.g F   

 
S4. Set = 1gMv  for = 1, , .g F  Sample  

                      
= 1 <

Beta 1 , , = 1
S

gm gm gs gm gm gs
s m s m

v V V v v 


    
 

    

where 

                        
0

1 1 0 0

=1 =1

= = , = = , =
nn

gm ij i ij i
i i

V M m G g M m G g     

for = 1, , 1m S   and = 1, , .g F  

 
S5. Sample  

                           1Dirichlet 1 , , 1
k

k k k
g g gd       

where 

                          
0

1 0

01

= =

= = =
i i

nn
k

gc ik ik
i G g i G g

X c X c      

for = 1, ,g F  and = 1, , .k p q   

 
S6. Sample  

                           1Dirichlet 1 , , 1
k

k k k
gm gm gmd       

where 

                        
0

1 1 0 0

01( )

, = , = , = , =

= = =
i ij i ij

nn
k

gmc ijk ijk
i j G g M m i j G g M m

X c X c      

for = 1, , ,g F = 1, ,m S  and = 1, , .k p  

 
S7. Sample  

                      
1

=1

Gamma 1, log 1 .
F

g
g

a F b u 
      

 
   
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S8. Sample  

                        
1

=1 =1

Gamma 1 , log 1 .
S F

gm
m g

a F S b v 
       

 
   

 
This Gibbs sampler is implemented in the R software package “NestedCategBayesImpute” (Wang, 

Akande, Hu, Reiter and Barrientos, 2016). The software can be used to generate synthetic versions of the 

original data, but it requires all data to be complete. 

 
3  Handling missing data using the NDPMPM 
 

We modify the Gibbs sampler for the truncated NDPMPM to incorporate missing data. For = 1, , ,i n  

let     1= , ,i i p i p qa a a   be a vector with = 1ika  when household-level variable { 1, ,k p    

}p q  in 1
iX  is missing, and = 0ika  otherwise. For = 1, ,i n  and = 1, , ,ij n  let =ijb  

 1 , ,ij ijpb b  be a vector with = 1ijkb  when individual-level variable  1, ,k p   for individual 

 1, , ij n   in 1
iX  is missing, and = 0ijkb  otherwise. For each household ,i  let  1 obs mis= ,i i iX X X , 

where obs
iX  comprise all data values corresponding to = 0ika  and = 0,ijkb  and mis

iX  comprises all data 

values corresponding to = 1ika  and = 1.ijkb  We assume that the data are missing at random (Rubin, 1976). 

To incorporate missing values in the Gibbs sampler, we need to sample from the full conditional of each 

variable in mis,iX  conditioned on the variables for which = 0ika  and = 0,ijkb  at every iteration. Thus, we 

add the ninth step, 
 

S9. For = 1, , ,i n  sample mis
iX  from its full conditional distribution  

                            
1 1 1 1 1 1 1 1

mis 1

=1 =1 =1

Pr .
i

i i i ij i ijik ijk
ik ijk

np q p
k k

i i h G G X G M G M X
k a j k b

   
 

   
 

  X X    

 

Sampling from this conditional distribution is nontrivial because of the dependence among variables 

induced by the structural zero rules in each .h  Because of the dependence, we cannot simply sample each 

variable independently using the likelihoods in (2.3) and (2.4). If we could generate the set of all possible 

completions for all households with missing entries, conditional on the observed values, then calculating 

the probability of each one and sampling from the set would be straightforward. Unfortunately, this approach 

is not practical when the size of each h  is large. Even when the size of each h  is modest, each household 

could have different sets of completions, necessitating significant computing, storage, and memory 

requirements. 

However, the full conditional in S9 takes a similar form as the kernel of the truncated NDPMPM in 

(2.1), so that we can generate the desired samples through a second rejection sampling scheme. 

Essentially, we sample from an untruncated version of the full conditional mis
* =

i
PX  

    1 1 1 1 1 1 1 1=1 =1 =1
,i

i i i ij i ijik ijkik ijk

p q n pk k
G G X G M G M Xk a j k b

       until we obtain a valid sample that satisfies 1 ;i hX   
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see the Appendix for a proof that this rejection sampling scheme results in a valid Gibbs sampler. Notice 

that since mis
*

i
PX  itself is untruncated, we can generate samples from it by sampling each variable 

independently using (2.3) and (2.4). We therefore replace step S9 with S9'. 

S9'. For = 1, , ,i n  sample mis
iX  as follows. 

(a) For each missing household-level variable, that is, each variable where {k p   

1, , }p q  with = 1,ika  sample 1
ikX  using (2.3). 

(b) For each missing individual-level variable, that is, each variable where = 1, , ij n  and 

 1, ,k p   with = 1,ijkb  sample 1
ijkX  using (2.4). 

(c) Set the sampled household-level and individual-level values to mis*.iX  

(d) Combine mis*
iX  with the observed obs,iX  that is, set  1* obs mis*= ,i i iX X X . If 1* ,i hX   set 

mis mis*= ,i iX X  otherwise, return to step (9'a).  

 

To initialize each mis,iX  we suggest sampling from the empirical marginal distribution of each variable 

k  using the available cases for each variable, and requiring that the household satisfies 1 .i hX   

 
4  Strategies for speeding up the MCMC sampler 
 

The rejection sampling step in the Gibbs sampler in Section 2.2 can be inefficient when   is large 

(Manrique-Vallier and Reiter, 2014; Hu et al., 2018), as the sampler tends to generate many impossible 

households before getting enough feasible ones. In addition, it takes computing time to check whether or 

not each sampled household satisfies all the structural zero rules. These computational costs are 

compounded when the sampler also incorporates missing values. In this section, we present two strategies 

that can reduce the number of impossible households that the algorithm generates, thereby speeding up the 

sampler. The Appendix includes simulation studies showing that both strategies can speed up the MCMC 

significantly. 

 
4.1  Moving the household head to the household level 
 

Many datasets include a variable recording the relationship of each individual to the household head. 

There can be only one household head in any household. This restriction can account for a large proportion 

of the combinations in . As a simple working example, consider a dataset that contains = 1,000n  

households of size two, resulting in a total of = 2,000N  individuals. Suppose the data contain no 

household-level variables and two individual-level variables, age and relationship to household head. Also, 

suppose age has 100 levels while relationship to household head has 13 levels, which include household 

head, spouse of the household head, etc. Then,   contains 2 2 613 100 = 1.69 10   combinations. Suppose 

the rule, “each household must contain exactly one head”, is the only structural zero rule defined on the 

dataset. Then,   contains 61.45 10  impossible combinations, approximately 86% the size of .  If, for 

example, the model assigns uniform probability to all combinations in ,  we would expect to sample about 
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 0.86 0.14 * 1,000 6,143  impossible households at every iteration to augment the n  feasible 

households. 

Instead, we treat the variables for the household head as a household-level characteristic. This eliminates 

structural zero rules defined on the household head alone. Using the working example, moving the 

household head to the household level results in one new household-level variable, age of household head, 

which has 100 levels. The relationship to household head variable can be ignored for household heads. For 

others in the household, the relationship to household head variable now has 12 levels, with the level 

corresponding to “household head” removed. Thus,   contains 2 512 100 = 1.20 10   combinations, and 

  contains zero impossible combinations. We wouldn’t even need to sample impossible households in the 

Gibbs sampler in Section 2.2. 

In general, this strategy can reduce the size of   significantly, albeit usually not to zero as in the simple 

example here since   usually contains combinations resulting from other types of structural zero rules. This 

strategy is not a replacement for the rejection sampler in Section 2.2; rather, it is a data reformatting 

technique that can be combined with the sampler. 

 
4.2  Setting an upper bound on the number of impossible households to sample 
 

To reduce computation time, we can put an upper bound on the number of sampled cases in 0.  One 

way to achieve this is to replace 1hn  in step S1(f) of Section 2.2 with 1 ,h hn     for some h  such that 

1 h  is a positive integer, so that we sample only approximately 0h hn     impossible households for 

each .h   However, doing so underestimates the actual probability mass assigned to   by the model. 

We can illustrate this using the simple example of Section 4.1. Suppose the model assigns uniform 

probability to all combinations in   as before. We set 2 = 0.5,  so that we sample approximately 

3,072 = 6,143 0.5    impossible households in every iteration of the MCMC sampler. The probability of 

generating one impossible household is  3,072 1,000 3,072 = 0.75,  a decrease from the actual value of 

0.86. Therefore, we would underestimate the true contribution of  0 0 0, ,G M  to the likelihood. 

To use the cap-and-weight approach, we need to apply a correction that re-weights the contribution of 

 0 0 0, ,G M  to the full joint likelihood. We do so using ideas akin to those used by Chambers and Skinner 

(2003) and Savitsky and Toth (2016), approximating the likelihood of the full unobserved data with a 

“pseudo” likelihood using weights (the 1 ’s).h  The impossible households only contribute to the full joint 

likelihood through the discrete distributions in (2.3) to (2.6). The sufficient statistics for estimating the 

parameters of the discrete distributions in (2.3) to (2.6) are the observed counts for the corresponding 

variables in the set  1 1 1 0 0 0, , , , , ,G M G M   within each latent class for the household-level variables 

and within each latent class pair for the individual-level variables. Thus, for each ,h   we can re-weight 

the contribution of impossible households by multiplying the observed counts for households of size h  in 

 0 0 0, ,G M  by 1 h  for the corresponding variable and latent classes. This raises the likelihood 

contribution of impossible households of size h  to the power of 1 .h  Clearly, 1 h  need not be a positive 

integer. We require that only to make its multiplication with the observed counts free of decimals. We 
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modify the Gibbs sampler to incorporate the cap-and-weight approach by replacing steps S1, S3, S4, S5 and 

S6; see the Appendix for the modified steps. 

Setting each = 1h  corresponds to the original rejection sampler, so that the two approaches should 

provide very similar results when h  near 1. Based on our experience, results of the cap-and-weight 

approach become significantly less accurate than the regular rejection sampler when < 1 4 .h  The time 

gained using this speedup approach in comparison to the regular sampler depends on the features of the data 

and the specified values for the weights  : .h h   To select the ’s,h  we suggest trying out different 

values – starting with values close to one – in initial runs of the MCMC sampler on a small random sample 

of the data. Analysts should examine the convergence and mixing behavior of the chains in comparison to 

the chain with all the ’sh  set to one, and select values that offer reasonable speedup while preserving 

convergence and mixing. This can be done quickly by comparing trace plots of a random set of parameters 

from the model that are not subject to label switching, such as   and ,  or by examining marginal, 

bivariate and trivariate probabilities estimated from synthetic data generated from the MCMC. 

 
5  Empirical study 
 

To evaluate the performance of the NDPMPM as an imputation method, as well as the speed up 

strategies, we use data from the public use microdata files from the 2012 ACS, available for download from 

the United States Census Bureau (http://www2.census.gov/acs2012_1yr/pums/). We construct a population 

of 764,580 households of sizes  = 2, 3, 4 ,  from which we sample = 5,000n  households comprising 

= 13,181N  individuals. We work with the variables described in Table 5.1, which mimic those in the U.S. 

decennial census. The structural zeros involve ages and relationships of individuals in the same house; see 

the Appendix for a full list of rules that we used. We move the household head to the household level as in 

Section 4.1 to take advantage of the computational gains. 

We introduce missing values using the following scenario. We let household size and age of household 

heads be fully observed. We randomly and independently blank 30% of each variable for the remaining 

household-level variables. For individuals other than the household head, we randomly and independently 

blank 30% of the values for gender, race and Hispanic origin. We make age missing with rates 50%, 20%, 

40% and 30% for values of the relationship variable in the sets {2}, {3, 4, 5, 10}, {7, 9} and 

{6, 8, 11, 12, 13}, respectively. We make the relationship variable missing with rates 40%, 25%, 10%, and 

55% for values of age in the sets  : 20 ,x x   : 20 < 50 ,x x   : 50 < 70 ,x x   and  : > 70 ,x x  

respectively. This results in approximately 30% missing values for both variables. About 8% of the 

individuals in the sample are missing both the age and relationship variable, and 2% are missing gender, 

age, and relationship jointly. This mechanism results in data that technically are not missing at random, but 

we use the NDPMPM approach regardless to examine its potential in a complicated missingness 

mechanism. Actual rates of item nonresponse in census data tend to be smaller than what we use here, but 

we use high rates to put the NDPMPM through a challenging stress test. We also introduce missing values 
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using a missing completely at random scenario with rates in the 10% range across all the variables. In short, 

the results are similar to those here, though more accurate due to the lower rates of missingness. See the 

Appendix for the results. 

 
Table 5.1 
Description of variables used in the study. “HH” means household head 
 

Description of variable  Categories

Household-level variables  Ownership of dwelling 1 = owned or being bought, 2 = rented 

Household size  2 = 2 people, 3 = 3 people, 4 = 4 people 

Gender of HH  1 = male, 2 = female

Race of HH  1 = white, 2 = black,
3 = American Indian or Alaska native, 
4 = Chinese, 5 = Japanese, 
6 = other Asian/Pacific islander, 7 = other race,
8 = two major races,
9 = three or more major races 

Hispanic origin of HH  1 = not Hispanic, 2 = Mexican, 
3 = Puerto Rican, 4 = Cuban, 5 = other 

Age of HH  1 = less than one year old, 2 = 1 year old, 
3 = 2 years old, ..., 96 = 95 years old 

Individual-level variables  Gender  same as “Gender of HH” 

Race  same as “Race of HH”

Hispanic origin  same as “Hispanic origin of HH” 

Age  same as “Age of HH”

Relationship to head of household  1 = spouse, 2 = biological child, 
3 = adopted child, 4 = stepchild, 5 = sibling,
6 = parent, 7 = grandchild, 8 = parent-in-law,
9 = child-in-law, 10 = other relative, 
11 = boarder, roommate or partner, 
12 = other non-relative or foster child 

 
We estimate the NDPMPM using two approaches, both using the rejection step S9' in Section 3. The 

first approach considers 2 3 4= = = 1,    i.e., without using the cap-and-weight approach, while the 

second approach considers 2 3= = 1 2   and 4 = 1 3.  For each approach, we run the MCMC sampler 

for 10,000 iterations, discarding the first 5,000 as burn-in and thinning the remaining samples every five 

iterations, resulting in 1,000 MCMC post burn-in iterates. We set = 30F  and = 15S  for each approach 

based on initial tuning runs. Across the approaches, the effective number of occupied household-level 

clusters usually ranges from 13 to 16 with a maximum of 25, while the effective number of occupied 

individual-level clusters across all household-level clusters ranges from 3 to 5 with a maximum of 10. For 

convergence, we examined trace plots of , ,  and weighted averages of a random sample of the 

multinomial probabilities in (2.3) and (2.4) (since the multinomial probabilities themselves are prone to 

label switching). 

For both methods, we generate = 50L  completed datasets,   50(1)= , ,Z Z Z , using the posterior 

predictive distribution of the NDPMPM, from which we estimate all marginal distributions, bivariate 

distributions of all possible pairs of variables, and trivariate distributions of all possible triplets of variables. 
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We also estimate several probabilities that depend on within household relationships and the household head 

to investigate the performance of the NDPMPM in estimating complex relationships. We obtain confidence 

intervals using multiple imputation inferences (Rubin, 1987). As a brief review, let q  be the completed-

data point estimator of some estimand ,Q  and let u  be the estimator of variance associated with .q  For 

= 1, , ,l L  let  lq  and  lu  be the values of q  and u  in completed dataset  .lZ  We use 
 

=1
=

L
l

L l
q q L  as the point estimate of .Q  We use  = 1 1L L LT L b u   as the estimated variance of 

,q  where     2

=1
= 1

L
l

L Ll
b q q L   and  

=1
= .

L
l

L l
u u L  We make inference about Q  using 

   0, ,L v Lq Q t T   where vt  is a t distribution with       2= 1 1 1 1L Lv L u L b    degrees of 

freedom. 

Figures 5.1 and 5.2 display the value of 50q  for each estimated marginal, bivariate and trivariate 

probability plotted against its corresponding estimate from the original data, without missing values. 

Figure 5.1 shows the results for the NDPMPM with the rejection sampler, and Figure 5.2 shows the results 

for the NDPMPM using the cap-and-weight approach. For both approaches, the point estimates are close to 

those from the data before introducing missing values, suggesting that the NDPMPM does a good job of 

capturing important features of the joint distribution of the variables. Figure 5.2 in particular also shows that 

the cap-and-weight approach did not degrade the estimates. 

Table 5.2 displays 95% confidence intervals for several probabilities involving within-household 

relationships, as well as the value in the full population of 764,580 households. The intervals include the 

two based on the NDPMPM imputation engines and the interval from the data before introducing 

missingness. For the latter, we use the usual Wald interval,  ˆ ˆ ˆ1.96 1 ,p p p n   where p̂  is the 

corresponding sample percentage. For the most part, the intervals from the NDPMPM with the full rejection 

sampling are close to those based on the data without any missingness. They tend to include the true 

population quantity. The NDPMPM imputation engine results in noticeable downward bias for the 

percentages of households where everyone is the same race, with bias increasing as the household size gets 

bigger. This is a challenging estimand to estimate accurately via imputation, particularly for larger 

households. Hu et al. (2018) identified biases in the same direction when using the NDPMPM (with 

household head data treated as individual-level variables) to generate fully synthetic data, noting that the 

bias gets smaller as the sample size increases. The NDPMPM fits the joint distribution of the data better and 

better as the sample size grows. Hence, we expect the NDPMPM imputation engine to be more accurate 

with larger sample sizes, as well as with smaller fractions of missing values. 

The interval estimates from the cap-and-weight method are generally similar to those for the full 

rejection sampler, with some degradation particularly for the percentages of same race households by 

household size. This degradation comes with a benefit, however. Based on MCMC runs on a standard 

laptop, the NDPMPM using the cap-and-weight approach and moving household heads’ data values to the 

household level is about 42% faster than the NDPMPM with household heads’ data values moved to the 

household level. 



284 Akande, Reiter and Barrientos: Multiple imputation of missing values in household data with structural zeros 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 5.1 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets from 

the truncated NDPMPM with the rejection sampler. Household heads’ data values moved to the 
household level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets from 

the truncated NDPMPM using the cap-and-weight approach. Household heads’ data values to the 
household level. 
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Table 5.2 
Confidence intervals for selected probabilities that depend on within-household relationships in the original 
and imputed datasets. “No missing” is based on the sampled data before introducing missing values, 
“NDPMPM” uses the truncated NDPMPM, moving household heads’ data values to the household level, and 
“NDPMPM Capped” uses the truncated NDPMPM with the cap-and-weight approach and moving household 
heads’ data values to the household level. “HH ” means household head, “SP” means spouse, “CH” means child, 
and “CP” means couple. Q is the value in the full population of 764,580 households 
 

  Q No Missing NDPMPM NDPMPM Capped 
All same race household:  = 2in 0.942 (0.932, 0.949) (0.891, 0.917) (0.884, 0.911)

= 3in 0.908 (0.907, 0.937) (0.843, 0.890) (0.821, 0.870)
= 4in   0.901 (0.879, 0.917) (0.793, 0.851) (0.766, 0.828) 

SP present  0.696 (0.682, 0.707) (0.695, 0.722) (0.695, 0.722)
Same race CP  0.656 (0.641, 0.668) (0.640, 0.669) (0.634, 0.664)
SP present, HH is White  0.600 (0.589, 0.616) (0.603, 0.632) (0.604, 0.634) 
White CP  0.580 (0.569, 0.596) (0.577, 0.606) (0.574, 0.604)
CP with age difference less than five  0.488 (0.465, 0.492) (0.341, 0.371) (0.324, 0.355)
Male HH, home owner  0.476 (0.456, 0.484) (0.450, 0.479) (0.451, 0.480) 
HH over 35, no CH present  0.462 (0.441, 0.468) (0.442, 0.470) (0.443, 0.471)
At least one biological CH present 0.437 (0.431, 0.458) (0.430, 0.459) (0.428, 0.456)
HH older than SP, White HH  0.322 (0.309, 0.335) (0.307, 0.339) (0.311, 0.343) 
Adult female w/ at least one CH under 5  0.078 (0.070, 0.085) (0.062, 0.078) (0.061, 0.077)
White HH with Hisp origin  0.066 (0.064, 0.078) (0.062, 0.079) (0.062, 0.078)
Non-White CP, home owner  0.058 (0.050, 0.063) (0.038, 0.052) (0.037, 0.051) 
Two generations present, Black HH  0.057 (0.053, 0.066) (0.052, 0.066) (0.052, 0.067)
Black HH, home owner  0.052 (0.046, 0.058) (0.044, 0.058) (0.044, 0.059)
SP present, HH is Black  0.039 (0.032, 0.042) (0.032, 0.044) (0.031, 0.043) 
White-nonwhite CP  0.034 (0.029, 0.039) (0.038, 0.053) (0.043, 0.059)
Hisp HH over 50, home owner  0.029 (0.025, 0.034) (0.023, 0.034) (0.024, 0.034)
One grandchild present  0.028 (0.023, 0.033) (0.024, 0.035) (0.023, 0.035) 
Adult Black female w/ at least one CH under 18  0.027 (0.028, 0.038) (0.025, 0.036) (0.025, 0.036)
At least two generations present, Hisp CP  0.027 (0.022, 0.031) (0.022, 0.032) (0.023, 0.033)
Hisp CP with at least one biological CH  0.025 (0.020, 0.028) (0.019, 0.029) (0.020, 0.030) 
At least three generations present  0.023 (0.020, 0.028) (0.017, 0.026) (0.017, 0.026)
Only one parent  0.020 (0.016, 0.024) (0.013, 0.021) (0.013, 0.021)
At least one stepchild  0.019 (0.018, 0.026) (0.019, 0.030) (0.019, 0.030) 
Adult Hisp male w/ at least one CH under 10  0.018 (0.017, 0.025) (0.014, 0.022) (0.014, 0.022)
At least one adopted CH, White CP  0.008 (0.005, 0.010) (0.004, 0.010) (0.004, 0.011)
Black CP with at least two biological children  0.006 (0.003, 0.007) (0.003, 0.007) (0.003, 0.007) 
Black HH under 40, home owner  0.005 (0.005, 0.009) (0.006, 0.013) (0.007, 0.013)
Three generations present, White CP  0.005 (0.004, 0.008) (0.004, 0.010) (0.004, 0.009)
White HH under 25, home owner  0.003 (0.002, 0.005) (0.003, 0.007) (0.003, 0.007) 

 
6  Discussion 
 

The empirical study suggests that the NDPMPM can provide high quality imputations for categorical 

data nested within households. To our knowledge, this is the first parametric imputation engine for nested 

multivariate categorical data. The study also illustrates that, with modest sample sizes, agencies should not 

expect the NDPMPM to preserve all features of the joint distribution. Of course, this is the case with any 

imputation engine. For the NDPMPM, agencies may be able to improve accuracy for targeted quantities by 

recoding the data used to fit the model. For example, one can create a new household-level variable that 

equals one when everyone has the same race and equals zero otherwise, and replace the individual race 

variable with a new variable that has levels “1 = race is the same as race of household head”, “2 = race is 

white and differs from race of household head”, “3 = race is black and differs from race of household head”, 

and so on. The NDPMPM would be estimated with the household-level same race variable and the new 

individual-level race variable. This would encourage the NDPMPM to estimate the percentages with the 
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same race very accurately, as it would be just another household-level variable like home ownership. It also 

would add structural zeros involving race to the computation. Evaluating the trade offs in accuracy and 

computational costs of such recodings is a topic for future research. 

The NDPMPM can be computationally expensive, even with the speed-ups presented in this article. The 

expensive parts of the algorithm are the rejection sampling steps. Fortunately, these can be done easily by 

parallel processing. For example, we can require each processor to generate a fraction of the impossible 

cases in Section 2.2. We also can spread the rejection steps for the imputations over many processors. These 

steps should cut run time by a factor roughly equal to the number of processors available. 

The empirical study used households up to size four. We have run the model on data with households 

up to size seven in reasonable time (a few hours on a standard laptop). Accuracy results are similar 

qualitatively. As the household sizes get large, the model can generate hundreds or even thousands times as 

many impossible households as there are feasible ones, slowing the algorithm. In such cases, the cap-and-

weight approach is essential for practical applications. 
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Appendix 

 

This is an Appendix to the paper. It contains proof that the rejection sampling step S9' in Section 3 

generates samples from the correct posterior distribution. It also contains the modified Gibbs sampler for 

the cap-and-weight approach and a list of the structural zero rules used in fitting the NDPMPM model. 

Finally, we include empirical results for the speedup approaches mentioned in the paper, using synthetic 

data, and additional results for handling missing data using the NDPMPM under a missing completely at 

random scenario. 

 
A.1 Proof that the rejection sampling step S9' in Section 3 generates samples 

from the correct posterior distribution 
 

The 1
ikX  and 1

ijkX  values generated using the rejection sampler in Step S9' are generated from the full 

conditionals, resulting in a valid Gibbs sampler. The proof follows from the properties of rejection sampling 

(or simple accept reject). The target distribution is the full conditional for mis.iX  It can be re-expressed as  

  
 
 

 
1

mis mis=
Pr

i h
i i

i h

p g





X
X X

X

 


  

where  
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      
1 1 1 1 1 1 1 1

mis

=1 =1 =1

= .
i i i ij i ijik ijk

ik ijk

np q pi
k k

i G G X G M G M X
k a j k b

g    
 


 

  X   

Our rejection scheme uses  mis
ig X  as a proposal for  mis .ip X  To show that the draws are indeed from 

 mis ,ip X  we need to verify that      mis mis mis= < ,i i iw p g MX X X  where 1 < < ,M   and that we are 

accepting each sample with probability  mis .iw MX  In our case, 
 

1.            mis mis mis 1= = Pr 1 Pr ,i i i i h i h i hw p g     X X X X X X     and 

   0 < Pr < 1 1 < 1 Pr <i h i h    X X   necessarily. 

2. By sampling until we obtain a valid sample that satisfies 1 ,i hX   we are indeed sampling with 

probability    mis 1= .i i hw M X X   

 
A.2 Modified Gibbs sampler for the cap-and-weight approach 
 

The modified Gibbs sampler for the cap-and-weight approach replaces steps S1, S3, S4, S5 and S6 of 

the Gibbs sampler in the main text as follows. 

S1*. For each ,h   repeat steps S1(a) to S1(e) as before but modify step S1(f) to: if 

1 1< ,h ht n     return to step (b). Otherwise, set 0 0= .hn t  

 

S3*. Set = 1.Fu  Sample  

                      
= 1 <

Beta 1 , , = 1
F

g g f g g f
f g f g

u U U u u 


    
 

    

where 

                        
0

1 0

=1 =

1
= = =

i

n

g i i
i h i n hh

U G g G g


  


    

for = 1, , 1.g F   

 

S4*. Set = 1gMv  for = 1, , .g F  Sample  

                      
= 1 <

Beta 1 , , = 1
S

gm gm gs gm gm gs
s m s m

v V V v v 


    
 

    

where 

                        
0

1 1 0 0

=1 =

1
= = , = = , =

i

n

gm ij i ij i
i h i n hh

V M m G g M m G g


  


    

for = 1, , 1m S   and = 1, , .g F  
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S5*. Sample  

                           1Dirichlet 1 , , 1
k

k k k
g g gd       

where 

                          
1 0 0

01

= = , =

1
= = =

i i i

n
k

gc ik ik
hi G g i n h G gh

X c X c


  


    

for = 1, ,g F  and = 1, , .k p q   

 

S6*. Sample  

                           1Dirichlet 1 , , 1
k

k k k
gm gm gmd       

where 

                          
1 1 0 0 0

01

= , = = , = , =

1
= = =

i ij i i ij

n
k

gmc ijk ijk
hi G g M m i n h G g M mh

X c X c


  


    

for = 1, , ,g F = 1, ,m S  and = 1, , .k p  

 
A.3 List of structural zeros 
 

We fit the NDPMPM model using structural zeros which involve ages and relationships of individuals 

in the same house. The full list of the rules used is presented in Table A.1. These rules were derived from 

the 2012 ACS by identifying combinations involving the relationship variable that do not appear in the 

constructed population. This list should not be interpreted as a “true” list of impossible combinations in 

census data. 

 
Table A.1 
List of structural zeros 
 

Description  

Rules common to generating both the synthetic and imputed datasets 
1. Each household must contain exactly one head and he/she must be at least 16 years old. 
2. Each household cannot contain more than one spouse and he/she must be at least 16 years old.  
3. Married couples are of opposite sex, and age difference between individuals in the couples cannot exceed 49. 
4. The youngest parent must be older than the household head by at least 4. 
5. The youngest parent-in-law must be older than the household head by at least 4.  
6. The age difference between the household head and siblings cannot exceed 37. 
7. The household head must be at least 31 years old to be a grandparent and his/her spouse must be at least 17. Also, He/she must be older than 

the oldest grandchild by at least 26.  

Rules specific to generating the synthetic datasets  
8. The household head must be older than the oldest child by at least 7. 

Rules specific to generating the imputed datasets  
9. The household head must be older than the oldest biological child by at least 7. 

10. The household head must be older than the oldest adopted child by at least 11.  
11. The household head must be older than the oldest stepchild by at least 9.  
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A.4 Empirical study of the speedup approaches 
 

We evaluate the performance of the two speedup approaches mentioned in the main text using synthetic 

data. We use data from the public use microdata files from the 2012 ACS, available for download from the 

United States Census Bureau (http://www2.census.gov/acs2012_1yr/pums/) to construct a population of 

857,018 households of sizes  = 2, 3, 4, 5, 6 ,  from which we sample = 10,000n  households 

comprising = 29,117N  individuals. We work with the variables described in Table A.2. We evaluate the 

approaches using probabilities that depend on within household relationships and the household head. 

 
Table A.2 
Description of variables used in the synthetic data illustration 
 

Description of variable  Categories

Household-level variables  Ownership of dwelling 1 = owned or being bought, 2 = rented 

Household size  2 = 2 people, 3 = 3 people, 4 = 4 people, 
5 = 5 people, 6 = 6 people 

Individual-level variables  Gender  1 = male, 2 = female

Race  1 = white, 2 = black,
3 = American Indian or Alaska native, 
4 = Chinese, 5 = Japanese,
6 = other Asian/Pacific islander, 7 = other race, 
8 = two major races,
9 = three or more major races 

Hispanic origin  1 = not Hispanic, 2 = Mexican, 
3 = Puerto Rican, 4 = Cuban, 5 = other 

Age  1 = less than one year old, 2 = 1 year old, 
3 = 2 years old, ..., 96 = 95 years old 

Relationship to head of household  1 = household head, 2 = spouse, 3 = child, 
4 = child-in-law, 5 = parent, 6 = parent-in-law, 
7 = sibling, 8 = sibling-in-law, 9 = grandchild, 
10 = other relative, 11 = partner/friend/visitor, 
12 = other non-relative

 
We consider the NDPMPM using two approaches, both moving the values of the household head to the 

household level as in Section 4.1 of the main text and also using the cap-and-weight approach in Section 4.2 

of the main text. The first approach considers 2 3 4 5 6= = = = = 1      while the second approach 

considers 2 3= = 1 2   and 4 5 6= = = 1 3.    We compare these approaches to the NDPMPM as 

presented in Hu et al., 2018. For each approach, we create = 50L  synthetic datasets,     1 50= , , .Z Z Z  

We generate the synthetic datasets so that the number of households of size h   in each  lZ  exactly 

matches hn  from the observed data. Thus, Z  comprises partially synthetic data (Little, 1993; Reiter, 2003), 

even though every released ijkZ  is a simulated value. We combine the estimates using using the approach 

in Reiter (2003). As a brief review, let q  be the point estimator of some estimand ,Q  and let u  be the 

estimator of variance associated with .q  For = 1, , ,l L  let lq  and lu  be the values of q  and u  in 

synthetic dataset  .lZ  We use 
=1

=
L

ll
q q L  as the point estimate of Q  and =T u b L  as the 

estimated variance of ,q  where    2

=1
= 1

L

ll
b q q L   and 

=1
= .

L

ll
u u L  We make inference 

about Q  using    0, ,vq Q t T   where vt  is a t distribution with     2= 1 1v L Lu b   degrees of 

freedom. 
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For each approach, we run the MCMC sampler for 20,000 iterations, discarding the first 10,000 as burn-

in and thinning the remaining samples every five iterations, resulting in 2,000 MCMC post burn-in iterates. 

We create the = 50L  synthetic datasets by randomly sampling from the 2,000 iterates. We set = 40F  and 

= 15S  for each approach based on initial tuning runs. For convergence, we examined trace plots of  ,   

and weighted averages of a random sample of the multinomial probabilities in the NDPMPM likelihood. 

Across the approaches, the effective number of occupied household-level clusters usually ranges from 20 

to 33 with a maximum of 38, while the effective number of occupied individual-level clusters across all 

household-level clusters ranges from 5 to 9 with a maximum of 12. 

Based on MCMC runs on a standard laptop, moving household heads’ data values to the household level 

alone results in a speedup of about 63% on the default rejection sampler while the cap-and-weight approach 

alone results in a speedup of about 40%. 

Table A.3 shows the 95% confidence intervals for each approach. Essentially, all three approaches result 

in similar confidence intervals, suggesting not much loss in accuracy from the speedups. Most intervals also 

are reasonably similar to confidence intervals based on the original data, except for the percentage of same 

age couples. The last row is a rigorous test of how well each method can estimate a probability that can be 

fairly difficult to estimate accurately. In this case, the probability that a household head and spouse are the 

same age can be difficult to estimate since each individual’s age can take 96 different values. All three 

approaches are thus off from the estimate from the original data in this case. These results suggest that we 

can significantly speedup the sampler with minimal loss in accuracy of estimates and confidence intervals 

of population estimands. 
 

Table A.3 
Confidence intervals for selected probabilities that depend on within-household relationships in the original 
and synthetic datasets. “Original” is based on the sampled data, “NDPMPM” is the default MCMC sampler 
described in Section 2.2 of the main text, “NDPMPM w/ HH moved” is the default sampler, moving household 
heads’ data values to the household level, “NDPMPM capped w/ HH moved” uses the cap-and-weight approach 
and moving household heads’ data values to the household level. “HH ” means household head and “SP” means 
spouse 
 

  Original NDPMPM NDPMPM w/ HH moved NDPMPM capped w/ HH moved 
All same race  = 2in   (0.939, 0.951) (0.918, 0.932) (0.912, 0.928) (0.910, 0.925)

= 3in   (0.896, 0.920) (0.859, 0.888) (0.845, 0.875) (0.844, 0.874)
= 4in   (0.885, 0.912) (0.826, 0.860) (0.813, 0.848) (0.817, 0.852) 
= 5in   (0.879, 0.922) (0.786, 0.841) (0.786, 0.841) (0.777, 0.834)
= 6in   (0.831, 0.910) (0.701, 0.803) (0.718, 0.819) (0.660, 0.768)

SP present  (0.693, 0.711) (0.678, 0.697) (0.676, 0.695) (0.677, 0.695) 
SP with white HH  (0.589, 0.608) (0.577, 0.597) (0.576, 0.595) (0.575, 0.595)
SP with black HH  (0.036, 0.043) (0.035, 0.043) (0.034, 0.042) (0.034, 0.042)
White couple  (0.570, 0.589) (0.560, 0.580) (0.553, 0.573) (0.552, 0.572) 
White couple, own  (0.495, 0.514) (0.468, 0.488) (0.461, 0.481) (0.463, 0.483)
Same race couple  (0.655, 0.673) (0.636, 0.655) (0.626, 0.645) (0.625, 0.644)
White-nonwhite couple  (0.028, 0.035) (0.028, 0.035) (0.034, 0.041) (0.036, 0.044) 
Nonwhite couple, own  (0.057, 0.067) (0.047, 0.056) (0.045, 0.053) (0.045, 0.054)
Only mother present  (0.017, 0.022) (0.014, 0.019) (0.014, 0.019) (0.013, 0.018)
Only one parent present  (0.021, 0.026) (0.026, 0.032) (0.026, 0.033) (0.027, 0.033) 
Children present  (0.507, 0.527) (0.493, 0.512) (0.517, 0.537) (0.511, 0.531)
Siblings present  (0.022, 0.028) (0.027, 0.034) (0.027, 0.033) (0.027, 0.033)
Grandchild present  (0.041, 0.049) (0.051, 0.060) (0.049, 0.058) (0.050, 0.059) 
Three generations present  (0.036, 0.044) (0.037, 0.045) (0.042, 0.050) (0.040, 0.048)
White HH, older than SP  (0.309, 0.327) (0.283, 0.301) (0.294, 0.313) (0.302, 0.321)
Nonhisp HH  (0.882, 0.894) (0.875, 0.888) (0.879, 0.891) (0.876, 0.889) 
White, Hisp HH  (0.071, 0.082) (0.074, 0.085) (0.072, 0.082) (0.073, 0.084)
Same age couple  (0.087, 0.098) (0.027, 0.034) (0.023, 0.029) (0.024, 0.031) 
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A.5 Empirical study of missing data imputation under MCAR 
 

We also evaluate the performance of the NDPMPM as an imputation method under a missing completely 

at random (MCAR) scenario. We use the same data as in Section 5 of the main text. As a reminder, the data 

contains = 5,000n  households of sizes  = 2, 3, 4 ,  comprising = 13,181N  individuals. We introduce 

missing values using a MCAR scenario. We randomly select 80% households to be complete cases for all 

variables. For the remaining 20%, we let the variable “household size” be fully observed and randomly – 

and independently – blank 50% of each variable for the remaining household-level and individual-level 

variables. We use these low rates to mimic the actual rates of item nonresponse in census data. 

Similar to the main text, we estimate the NDPMPM using two approaches, both combining the rejection 

step in Section 4.1 of the main text with the cap-and-weight approach in Section 4.2 of the main text. The 

first approach considers 2 3 4= = = 1    while the second approach considers 2 3= = 1 2   and 

4 = 1 3.  For each approach, we run the MCMC sampler for 10,000 iterations, discarding the first 5,000 

as burn-in and thinning the remaining samples every five iterations, resulting in 1,000 MCMC post burn-in 

iterates. We set = 30F  and = 15S  for each approach based on initial tuning runs. We monitor 

convergence as in the main text. For both methods, we generate = 50L  completed datasets, =Z  

    1 50, , ,Z Z  using the posterior predictive distribution of the NDPMPM, from which we estimate the 

same probabilities as in the main text. 

Figures A.1 and A.2 display each estimated marginal, bivariate and trivariate probability 50q  plotted 

against its corresponding estimate from the original data, without missing values. Figure A.1 shows the 

results for the NDPMPM with the rejection sampler, and Figure A.2 shows the results for the NDPMPM 

using the cap-and-weight approach. For both approaches, the NDPMPM does a good job of capturing 

important features of the joint distribution of the variables as the point estimates are very close to those from 

the data before introducing missing values. In short, the results are very similar to those in the main text, 

though more accurate. 

Table A.4 displays 95% confidence intervals for selected probabilities involving within-household 

relationships, as well as the value in the full population of 764,580 households. The intervals include the 

two based on the NDPMPM imputation engines and the interval from the data before introducing 

missingness. The intervals are generally more accurate than those presented in the main text. This is 

expected since we use lower rates of missingness in the MCAR scenario. For the most part, the intervals 

from the NDPMPM with the two approaches tend to include the true population quantity. Again, the 

NDPMPM imputation engine results in downward bias for the percentages of households where everyone 

is the same race. As mentioned in the main text, this is a challenging estimand to estimate accurately via 

imputation, particularly for larger households. 
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Figure A.1 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets 

under MCAR from the truncated NDPMPM with the rejection sampler. Household heads’ data 
values moved to the household level. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure A.2 Marginal, bivariate and trivariate probabilities computed in the sample and imputed datasets 

under MCAR from the truncated NDPMPM using the cap-and-weight approach. Household heads’ 
data values to the household level. 

 
 

      
 

1.0 
 
 
 

 
0.8 

 
 
 

 
0.6 

 
 
 

 
0.4 

 
 
 

 
0.2 

 
 
 

 
0.0 

A
ve

ra
ge

 f
ro

m
 5

0 
im

pu
te

d 
da

ta
se

ts
 

   
1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
ge

 f
ro

m
 5

0 
im

pu
te

d 
da

ta
se

ts
 

                 
       Marginal                                                                                Bivariate                                                                               Trivariate 

                 
 0.0           0.2           0.3           0.4           0.5           0.6                   0.0           0.2           0.3          0.4            0.5          0.6                   0.0           0.2            0.3          0.4           0.5           0.6 
                            Sample estimate                                                                      Sample estimate                                                                    Sample estimate 

   
1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
ge

 f
ro

m
 5

0 
im

pu
te

d 
da

ta
se

ts
 

   
1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
ge

 f
ro

m
 5

0 
im

pu
te

d 
da

ta
se

ts
 

     
1.0 

 
 
 

 
0.8 

 
 
 

 
0.6 

 
 
 

 
0.4 

 
 
 

 
0.2 

 
 
 

 
0.0 

A
ve

ra
ge

 f
ro

m
 5

0 
im

pu
te

d 
da

ta
se

ts
 

   
1.0

0.8

0.6

0.4

0.2

0.0

A
ve

ra
ge

 f
ro

m
 5

0 
im

pu
te

d 
da

ta
se

ts
 

                 
        Marginal                                                                               Bivariate                                                                                Trivariate 

                 
 0.0           0.2           0.3           0.4           0.5           0.6                   0.0           0.2           0.3          0.4            0.5           0.6                  0.0           0.2           0.3           0.4           0.5           0.6 
                           Sample estimate                                                                      Sample estimate                                                                     Sample estimate 



Survey Methodology, June 2019 293 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Table A.4 
Confidence intervals for selected probabilities that depend on within-household relationships in the original 
and imputed datasets under MCAR. “No missing” is based on the sampled data before introducing missing 
values, “NDPMPM” uses the truncated NDPMPM, moving household heads’ data values to the household level, 
and “NDPMPM Capped” uses the truncated NDPMPM with the cap-and-weight approach and moving 
household heads’ data values to the household level. “HH ” means household head, “SP” means spouse, “CH” 
means child, and “CP” means couple. Q is the value in the full population of 764,580 households 
 

 Q No Missing NDPMPM NDPMPM Capped 
All same race household:  = 2in 0.942 (0.932, 0.949) (0.924, 0.944) (0.925, 0.946)

= 3in 0.908 (0.907, 0.937) (0.887, 0.924) (0.890, 0.925)
= 4in   0.901 (0.879, 0.917) (0.854, 0.900) (0.855, 0.900) 

SP present  0.696 (0.682, 0.707) (0.683, 0.709) (0.683, 0.709)
Same race CP  0.656 (0.641, 0.668) (0.637, 0.664) (0.638, 0.665)
SP present, HH is White  0.600 (0.589, 0.616) (0.590, 0.618) (0.590, 0.618) 
White CP  0.580 (0.569, 0.596) (0.568, 0.596) (0.568, 0.597)
CP with age difference less than five  0.488 (0.465, 0.492) (0.422, 0.451) (0.422, 0.450)
Male HH, home owner  0.476 (0.456, 0.484) (0.455, 0.483) (0.456, 0.485) 
HH over 35, no CH present  0.462 (0.441, 0.468) (0.438, 0.466) (0.438, 0.466)
At least one biological CH present 0.437 (0.431, 0.458) (0.432, 0.460) (0.432, 0.460)
HH older than SP, White HH  0.322 (0.309, 0.335) (0.308, 0.335) (0.306, 0.333) 
Adult female w/ at least one CH under 5  0.078 (0.070, 0.085) (0.068, 0.084) (0.067, 0.083)
White HH with Hisp origin  0.066 (0.064, 0.078) (0.064, 0.079) (0.064, 0.079)
Non-White CP, home owner  0.058 (0.050, 0.063) (0.048, 0.061) (0.048, 0.061) 
Two generations present, Black HH  0.057 (0.053, 0.066) (0.053, 0.066) (0.053, 0.067)
Black HH, home owner  0.052 (0.046, 0.058) (0.046, 0.059) (0.046, 0.059)
SP present, HH is Black  0.039 (0.032, 0.042) (0.032, 0.043) (0.032, 0.042) 
White-nonwhite CP  0.034 (0.029, 0.039) (0.032, 0.044) (0.032, 0.044)
Hisp HH over 50, home owner  0.029 (0.025, 0.034) (0.025, 0.035) (0.025, 0.035)
One grandchild present  0.028 (0.023, 0.033) (0.024, 0.034) (0.024, 0.034) 
Adult Black female w/ at least one CH under 18  0.027 (0.028, 0.038) (0.027, 0.037) (0.027, 0.037)
At least two generations present, Hisp CP  0.027 (0.022, 0.031) (0.022, 0.031) (0.022, 0.031)
Hisp CP with at least one biological CH  0.025 (0.020, 0.028) (0.019, 0.028) (0.019, 0.028) 
At least three generations present  0.023 (0.020, 0.028) (0.019, 0.028) (0.019, 0.028)
Only one parent  0.020 (0.016, 0.024) (0.016, 0.024) (0.016, 0.024)
At least one stepchild  0.019 (0.018, 0.026) (0.018, 0.027) (0.018, 0.027) 
Adult Hisp male w/ at least one CH under 10  0.018 (0.017, 0.025) (0.016, 0.025) (0.016, 0.025)
At least one adopted CH, White CP  0.008 (0.005, 0.010) (0.005, 0.010) (0.005, 0.010)
Black CP with at least two biological children  0.006 (0.003, 0.007) (0.003, 0.007) (0.003, 0.007) 
Black HH under 40, home owner  0.005 (0.005, 0.009) (0.005, 0.010) (0.005, 0.011)
Three generations present, White CP  0.005 (0.004, 0.008) (0.004, 0.010) (0.004, 0.009)
White HH under 25, home owner  0.003 (0.002, 0.005) (0.004, 0.009) (0.004, 0.009) 
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