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Bayesian benchmarking of the Fay-Herriot model using 
random deletion 

Balgobin Nandram, Andreea L. Erciulescu and Nathan B. Cruze1 

Abstract 

Benchmarking lower level estimates to upper level estimates is an important activity at the United States 
Department of Agriculture’s National Agricultural Statistical Service (NASS) (e.g., benchmarking county 
estimates to state estimates for corn acreage). Assuming that a county is a small area, we use the original Fay-
Herriot model to obtain a general Bayesian method to benchmark county estimates to the state estimate (the 
target). Here the target is assumed known, and the county estimates are obtained subject to the constraint that 
these estimates must sum to the target. This is an external benchmarking; it is important for official statistics, not 
just NASS, and it occurs more generally in small area estimation. One can benchmark these estimates by 
“deleting” one of the counties (typically the last one) to incorporate the benchmarking constraint into the model. 
However, it is also true that the estimates may change depending on which county is deleted when the constraint 
is included in the model. Our current contribution is to give each small area a chance to be deleted, and we call 
this procedure the random deletion benchmarking method. We show empirically that there are differences in the 
estimates as to which county is deleted and that there are differences of these estimates from those obtained from 
random deletion as well. Although these differences may be considered small, it is most sensible to use random 
deletion because it does not give preferential treatment to any county and it can provide small improvement in 
precision over deleting the last one benchmarking as well. 

 
Key Words: Constraint; Direct estimates; Fay-Herriot model; Multivariate normal density; Official statistics; Small area 

estimation. 

 
 

1  Introduction 
 

In official statistics, it is important for lower level estimates to sum to upper level estimates. For example, 

the National Agricultural Statistics Service (NASS) often uses a “top-down” sequence in the release of its 

official estimates in which national and state estimates, e.g., estimated corn acreage totals, are published 

prior to the completion of supplemental data collection and estimation of corresponding county estimates 

(Cruze, Erciulescu, Nandram, Barboza and Young, 2019). Within these small administrative areas, the 

survey data often become sparse. Several popular modeling techniques give rise to more reliable small area 

estimates. However, the small area estimates may not automatically satisfy relationships with estimates at 

other levels of aggregation, and benchmarking procedures may be applied to enforce consistency among 

estimates. 

There is a considerable history on benchmarking techniques which have been used to impose agreement 

among multiple levels and to protect against possible model misspecification. These procedures can be 

broadly classified in two categories: internal benchmarking, in which a target is derived from current survey 

data, and external benchmarking, in which a desired target may be taken from other sources such as 

administrative data or previously established estimates. We discuss external benchmarking, in accordance 

with NASS’s “top-down” procedure, of the Fay-Herriot (FH) model (Fay and Herriot, 1979). 
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The most recent review of small area estimation is given in Pfeffermann (2013), but see Rao and Molina 

(2015) for the most updated textbook on small area estimation. Earlier Jiang and Lahiri (2006) gave an 

extensive review of the classical inferential approach for linear and generalized linear mixed models that 

are used in small area estimation. There are discussions of benchmarking in these works as well, but the 

latter review was not on the hierarchical Bayes approach that is of primary interest in this paper. 

Within the hierarchical Bayes framework, You, Rao and Dick (2004) studied benchmarked estimators 

for small area estimation based on unmatched sampling and linking models proposed earlier by You and 

Rao (2002). They applied this approach to undercoverage estimation for the ten provinces across Canada 

for the 1991 Canadian Census. Wang, Fuller and Qu (2008) gave a characterization of the best linear 

unbiased predictor (BLUP) for small area means under an area level model that satisfies a benchmarking 

constraint and minimizes the loss function criterion that all linear unbiased predictors satisfy. They also 

presented an alternative way of imposing the benchmarking constraint such that the BLUP estimator would 

have a self-calibrated property (discussed in You and Rao, 2002). Wang et al. (2008) characterized a class 

of benchmarked estimators as the predictors that minimize a quadratic loss function subject to a 

benchmarking restriction. Their proposed self-calibrated augmented model reduces bias both at the overall 

and small area level. Other benchmarking procedures are given by Bell, Datta and Ghosh (2013), Ghosh 

and Steorts (2013), Pfeffermann, Sikov and Tiller (2014) and Pfeffermann and Tiller (2006). 

Whether fitting unit-level or area-level models, incorporating a fixed, external target amounts to 

imposing the general constraint 
=1

= ,i ii
w a 

 where a  is a known constant and the i  denote small area 

estimates to be benchmarked; for totals, the weights iw  are all equal to 1. One way to do so is by using the 

following transformation, 
=1

= ,ii
a   

 keeping , = 1, , 1,i i    unchanged and “deleting” the last 

small area, replacing it with  1

=1
= .ii

a  
   

  Janicki and Vesper (2017) introduced a slightly 

different transformation, 
=1

= , = 1, , 1, = ,i i ii
i     

   which is essentially an internal 

benchmarking that preserves the sum of all   estimates. If that sum (of all   unbenchmarked estimates) 

were prescribed as an external target, then 
1

=1
= ,ii

  
  

   and Janicki and Vesper’s transformation 

becomes equivalent to deleting last small area estimate. 

External benchmarking procedures, which deleted the last small area estimate, were explored by 

Nandram and Sayit (2011) and by Nandram, Berg, and Barboza (2014) for the purposes of benchmarking 

binomial probabilities and forecasts of crop yield, respectively. (In both of these contexts the constraint was 

actually imposed on the weighted sum of small area estimates.) Erciulescu, Cruze, and Nandram (2019) 

considered a variety of external benchmarking techniques including deletion, difference benchmarking, and 

ratio benchmarking in the context of hierarchical Bayesian small area models. Collectively, the external 

benchmarking constraint has been inserted in the likelihood function (e.g., Toto and Nandram, 2010), the 

joint density of the area effects (e.g., Nandram and Sayit, 2011), or in the posterior density of the area effects 

(Janicki and Vesper, 2017), although the latter choice is using the prior knowledge or requirements 

embodied in the constraint a posteriori rather than on the prior distributions themselves. 

Datta, Ghosh, Steorts and Maples (2011), henceforth DGSM, proposed a general class of constrained 

Bayes estimators to provide benchmarked estimates. Referring specifically to the method of Toto and 
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Nandram (2010) for unit level models, DGSM wrote the following: “A disadvantage to such an approach 

is that results can differ depending on which unit is dropped ”. This statement also applies to Nandram and 

Toto (2010), Nandram, Toto and Choi (2011), Janicki and Vesper (2017) and others. It also applies in the 

same way to an area-level model subject to an external constraint. The procedures of DGSM depend on an 

important area-specific parameter (see Section 4). This parameter also has several different specifications, 

and it can be argued that the resulting estimates could also be affected by the choice of specification. 

Moreover, the procedures of DGSM do not provide posterior standard errors or credible intervals. 

In response to DGSM’s comment on the last area deletion benchmarking, we introduce a random deletion 

benchmarking, giving a chance to each area to be deleted, and not just the last one. The random deletion 

benchmarking method is motivated mathematically in Appendix A. Empirical results show that there are 

slight differences between the last one deletion benchmarking and the random deletion benchmarking. 

In this paper, we discuss random deletion benchmarking in the context of a Bayesian FH (BFH) model. 

In Section 2, the BFH model without constraint is introduced. The methodology for imposing an external 

target on the BFH model through random deletion is developed in Section 3. In Section 4, we describe the 

empirical studies to assess features of estimates obtained from random deletion benchmarking, including 

related measures of uncertainty. Finally, Section 5 has concluding remarks; more technical details are 

provided in several appendices. 

 
2  Bayesian Fay-Herriot model  
 

Assume that the observed data are  ˆ , , = 1, , ,i is i    where î  and is  are respectively an estimate 

and its standard error (for simplicity, assumed known) of a quantity under study, e.g., the thi  area total .i  

The BFH model is  

                                                                  ind
2ˆ Normal , ,i i i is     

  ind
2 2, Normal , ,i i  β x β   

  2, , β  (2.1) 

where = 1, , ,i   ix  are a set of covariates with p  components (including intercept) and  2, β  is 

the joint prior distribution for  2, .β  A priori it is assumed that      2 2, ,    β β  i.e., β  and 
2  are independent, with 

       22 21 and = 1 1 .    β  (2.2) 

By Bayes’ theorem, the joint posterior density of 1p   model parameters is  

  
 

   
2

2 2
2

2 2 2 22 =1

1 1 1 1 1ˆˆ, , exp .
21

i i i i
i is

    
 

                      
θ β θ x β

 

 (2.3) 
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In (2.2),  2   is a proper prior distribution, flatter than  2 21    near zero, with no moments. In 

fact, any proper prior for 2  is fine; an improper prior on 2  may lead to improper posterior density. 

Because   β  is improper, the product      2 2,    β β  is improper, and this could cause the joint 

posterior density of  2, , θ β  to be improper, an undesirable scenario. Theorem 1 below establishes the 

propriety of the joint posterior density (2.3). 

More details about the BFH model are presented in Appendix B. Specifically, letting 2

2 2= ,
i

i s

   

= 1, , ,i    we have shown that  

                                       ind
2 2ˆˆ, , Normal 1 , 1 , = 1, , ,i i i i i i i         β θ x β    (2.4) 

                                          2 ˆ ˆ ˆ, Normal , , β θ β  (2.5) 

                                         
 

2 2
3 22

1ˆ ,
1

Q  





θ  (2.6) 

where 

                                                     1
2 2 2 2

=1 =1

ˆ
ˆ ˆ ˆ= , = ,i i i i

i ii is s


 




 
  
x x x

β
 

  

                                             
 

  21/2
2

1 2 2 22 2=1 =1

1 1 1 ˆ ˆˆ= exp .
2 i i

i i ii

Q
ss

 


 
    

  
  x β
 

  

 
Theorem 1 

The joint posterior density (2.3) is proper provided the design matrix is full rank. 
 

Proof of Theorem 1 

Because the design matrix is full rank, β̂  and ̂  are well defined for all 2 .  This implies that  2Q   is 

bounded in 2 .  Therefore, as  
 22

12
1 

 


  is proper, the posterior density  2
3

ˆ  θ  is proper. Then, 

by applying the multiplication rule of probability, it follows that the joint posterior density,  2 ˆ, , , θ β θ  

is proper. 

With propriety assured, sampling from the joint posterior density and inference about i  can be achieved 

through a simple Monte Carlo procedure. Using the multiplication rule and drawing samples from (2.6), 

(2.5) and (2.4), the procedure follows. First, draw a sample from  2
3

ˆ  θ  in (2.6). Draws from this 

distribution can be made using a grid method; see Appendix B. It is then easy to draw samples from the 

conditional posterior density of β  in (2.5). Finally, samples of the i  can be drawn independently from 

(2.4). Sampling in this manner from the joint posterior density under the unconstrained BFH model does 

not need monitoring (unlike Markov chain Monte Carlo methods). The unconstrained BFH model will 
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provide a basis for comparison of the estimates and related measures of uncertainty obtained under the 

proposed random deletion benchmarking method. 

 
3  Random deletion methodology 
 

As remarked earlier, the random deletion methodology is obtained by introducing a new variable which 

takes the values 1, ,   with equal, possibly different, probabilities (weights). In Section 3.1, we show 

how to construct the joint posterior density of the parameters of the BFH model under random deletion, and 

in Section 3.2, we show how to sample from the joint posterior density. 

 
3.1  Construction of the joint posterior density 
 

The Basic Benchmarking Theorem is motivated by the work reviewed in Section 1. The next goal is to 

construct the joint prior density of 1 , ,    subject to the benchmarking constraint that 
=1

= ,ii
a 

 

where a  is a known external target. The joint prior density of 1 , ,    will be used to complete the 

constrained Fay-Herriot model for the last one deletion benchmarking (see Section 1). 
 

Theorem 2 

Let  ind
2Normal , , 1, , .i i i  u β    Then, under the constraint, 

=1
= ,ii

a 
 where a  is constant, 

letting  θ   be the vector of all the i  except the last one, the joint density of , = 1, , ,i i    is  

  

1
2

=1

1 1
Normal , , = ,i

i

I J I J a  
         

   
θ c


  
  (3.1) 

    1 1, , ,a J
     c j u u β u u β    and j  are respectively a    1 1     matrix and a 

 1  vector of ones. 
 

Proof of Theorem 2 

See Appendix C. 

The proof of Theorem 2 uses the multivariate normal distribution, and it will be used to prove the more 

general theorem when the prior is adjusted to delete any area. 

The constrained BFH model is 

  ind
2ˆ Normal , , = 1, , ,i i i is i      (3.2) 

                                                ind
2 2

=1

, Normal , , = ,i i i
i

a    β x β


   

  2, . β   

The constraint on the prior on 1 , ,    essentially adjusts the joint prior density. However, to incorporate 

the constraint, we will use Theorem 2 to adjust the posterior density under the unconstrained model. 
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For = 1, , ,i    let 2

22=
i

i s


   and  ˆ̂ ˆ= 1 .i i i i i     x β  Also, let  2 2ˆ = 1 , = 1, , .i i i      

Then, under the unconstrained model the joint posterior density is 

      2
2 2 2

ˆ
1

ˆ̂ˆ ˆ, , , Normal , Normal , .
ii

nb i i i
i i




     



  
   

  
θ β θ β x β


  

We now extend the result of Theorem 2, to reflect our interest in the constrained BFH model. Theorem 3, 

below, is used to construct the random deletion benchmarking method. 
 

Theorem 3 

Using a general notation, let  ind
2Normal , , = 1, , .i i iy i     Let  iy  denote the vector of all the iy  

except the thi  one. Also, let 2 2
1

, = 1, , ,i i jj
v i 


      and * 2 2

1
, = 1, , .i i jj

v i 


      

Under the constraint 
1

,ii
y a


 

 

             
2*

1

Normal , diagonalji i i i i i
j

u a


       
  

y u v σ v v


  (3.3) 

with = .i jj i
y a y


   Then,  

    
            

2*

=1

, = = 0 = Normal , diagonal ,
r ry j jr r r r r

j r j

p z r a y a  


            
    

 yy μ v σ v v


 (3.4) 

for = 1, ,r    and 
=1

= .ii
a y   

 
 

Proof of Theorem 3 

The proof of Theorem 3 is similar to Theorem 2. See Appendix C. 

In what follows, one of the   area parameters will be deleted randomly (i.e., with probability 1 ).  Let 

= 1, ,z    represent the county that is deleted. That is,  = = 1 , = 1, , .P z r r    Then, under the 

constrained BFH model, using Theorem 3, the joint posterior density is 

 

   

            

2
2 2

ˆ
=1

2*

1

ˆ, = , , , Normal ,

ˆˆ ˆˆ ˆNormal , diagonal ,

ri

r

b i j
i j ri

jr r r r r
j

z r a

a




     









             

        
  

 

θ

θ β θ β x β

θ v σ v v




 

(3.5)

 

where = 1, , ,r    and for = 1, , ,i   * 2 2
=1

ˆ ˆ=i i jj
v   

 and 2 2
=1

ˆ ˆ= .i i jj
v   

 

 
3.2  Sampling the joint posterior density 
 

Unlike the BFH model, the constrained model in (3.2) cannot be fit using random draws; we use a Gibbs 

sampler. The joint conditional posterior density (cpd) of  , zθ  is  
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2

2*

=1

ˆ, = , ,

ˆˆ ˆˆ ˆNormal , diagonal ,

r

r

j
j r

jr r r r r
j

z r a

a

   





  
 

        
  



θ

θ β θ

θ v σ v v


 

(3.6)

 

where  = 1, , , rr θ   denotes the vector of i  with the thr  component deleted, and v  and *v  are defined 

in Theorem 3. Then, the joint conditional posterior density of  2, β  is 

 

   

            

2
2 2

ˆ
=1

* 2

=1

ˆ, , , = , Normal ,

ˆˆ ˆˆ ˆNormal , diagonal .

i

r

i
i i

jr r r r r
j

z r

a




   






  

 

        
  



θ

β θ θ β x β

θ v σ v v




 

(3.7)

 

It is straight forward to sample the cpd’s of θ  and .z  However, it is not so simple to sample the cpd’s 

of β  and 2  that we will next discuss. 

First, to obtain the cpd’s of β  and 2 ,  we define 

 1 12 2
1 1

1 1ˆ and .i i i i i i
i i

A  
  

   g x x x
 

  

Second, for = 1, , ,i    let   *
1

ˆ ˆ
i i i j j ij

d a v   


   
 and    *

1
1 1 .i i i i j jj

v 


   x x x


 

Let  rd  and  rX  respectively denote the vector with entries id  excluding the thr  component and the matrix 

with columns ix  excluding .rx  Now, let 

               2 2and ,r r r r r r rX A X X      g θ d      

where  r  is the covariance matrix without the thr  row and column. Third, with a multivariate normal prior 

on β  of the form  0 0Normal , ,β β  where 0β  and 0  are specified, we let  

 1
0 0 0 0 0and = ;A A  g β   

thereby offering some protection against posterior impropriety. It follows that  

 
1 12 2 2

2

=0 =0 =0

ˆ, = , , Normal ,  .s s s s
s s s

z r A A A
    

    
   
  β θ θ g   

We can eliminate the prior of β  by letting 0    (i.e., noninformative prior) to get   1 β  as in the 

BFH model. 

Finally, we consider the cpd of 2 .  Let 

      *

1

ˆ ˆ1 1 , 1, , ,i i i i i j j j j i
j

U a v i     


           
 
x β x β


    

and 

                                   2
1

1

diagonal 1 , , 1 1 1 1 .i i j
j

     


         
 




   



372 Nandram, Erciulescu and Cruze: Bayesian benchmarking of the Fay-Herriot model using random deletion 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Then, the cpd of 2  is 

      
      2 2 2 2

ˆ
1

ˆ, , , Normal , Normal , ,
ri

i i r r
i

z r s    


       
 θθ β θ x β U


  

where  rU  denotes the vector of the iU  excluding the thr  component and  2   is a prior on 2 .  As in 

the BFH model (see Section 2), we assign the prior density     22 2 21 1 , > 0      to 2 .  Because 

the baseline BFH posterior density is proper, the constraint BFH posterior density will also be proper. 

 
4  Empirical studies 
 

The purposes of these empirical studies are twofold. First, it is demonstrated that the BFH model can be 

fit as stated in Section 2 and the deleting the last one benchmarking and random benchmarking methods are 

performed. Second, the benchmarking methods are compared in a simulation study that uses a well-used 

dataset in the small area literature. 

In the data generation process, we use the data on corn and soybean acres in Battese, Harter and Fuller 

(1988), available for 12 counties (areas) in Iowa. The resulting county-level corn and soybean acreages are 

constructed using a number of segments sampled from the population (known number of segments). Landsat 

satellite data on the number of pixels of corn and soybean in the sampled segments (i.e., two covariates) are 

also available. The finite population means of the number of pixels classified as corn and soybean for each 

county are also reported. Starting with this dataset, we construct new datasets with any number of areas. 

The data generation process has two steps. In the first step, the unit-level model ,ij ij ijy e  x β  

1, , , 1, , ,ii j n     where  iid
20, ,ije   is fit to the data available for the 12  counties in Iowa. 

The area sample sizes are 1 2 3 1,n n n   4 5 6 7 82, 3,n n n n n     9 10 114, 5,n n n    and 

12 6.n   Using least squares, we estimate β  and 2  by β̂  and 2ˆ ,  respectively. For the areas with sample 

size greater than one, we set 2
is  equal to the estimated variance of the sample mean  1

in

i i ij ij
y y y n


   

and we let 2S  be their geometric mean. For the areas with sample size equal to one, we set 2
is  equal to 2 .S  

The vector of covariates iX  has three elements, the integer one (for the intercept), followed by the 

population means of pixels classified as corn and soybean. 

In the second step, the data generation process for any desired number   of small areas is illustrated. 

The covariates , 1, , ,i i x    are sampled with replacement from , 1, , 12.i i X   Then, the area-level 

means are drawn using 

  ind
2ˆ ˆNormal , , 1, , ,i i i  x β     

where β̂  and 2̂  are the least squares estimates defined above. The sample variances 2
is  are generated in 

two steps. First, the sample sizes are drawn from a uniform distribution,  iid
Uniform 5, 25 ,in   

= 1, , .i    Second, let  2 2= 1 ,i i is S V n   where 
ind 2

1ii nV    and 2S  defined above. Finally, the small 

area survey estimates are drawn using  ind
2ˆ Normal , , = 1, , .i i is i     The benchmarking target is set 

equal to the sum of the î  and variants of this value, 
=1 îi
 

 scaled up or down by 50%. In NASS’s practice, 
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for crop county estimates, this target is an already set state value. To evaluate the benchmarking methods in 

extreme cases, we consider additional simulation scenarios, where an area sample size is set to 2 or 50, or 

where the factor 2S  is multiplied by ten. 

In what follows, we report empirical results mostly for a simulation scenario using 12 areas. Examples 

using larger number of areas are briefly discussed. For example, Iowa has 99 counties, and one of NASS’s 

interests is in benchmarking county estimates for planted acres, harvested acres and production (bushels) to 

the predefined state-level total. For such small numbers of areas, no adjustment is needed to the 

benchmarking procedures, deleting the last one or random deletion, introduced in the previous sections. 

However, the computation may be intolerable for an extremely large number of areas (say, one million), 

and some adjustments would be needed to the current procedures. 

It is pertinent to discuss the computations for the simulation scenario with 12 areas. For posterior 

inference under the BFH model, we have used 1,000 random draws, and this runs in just a few seconds. On 

the other hand, it is more difficult to run a Gibbs sampler for deleting one at a time or random deletion 

benchmarking. However, we have provided an efficient Gibbs sampler as follows. We used a long run of 

20,000 iterations, with a “burn in” of the first 10,000 iterations, choosing every tenth iterate thereafter. This 

was obtained by trial and error that is gauged by the autocorrelations, the Geweke test for stationarity and 

the effective sample sizes. For the 1,000 selected iterations, the autocorrelations are all negligible. For 

random deletion benchmarking, the p-values of the Geweke test for the three regression coefficients and 2  

are, respectively, 0.651, 0.087, 0.828 and 0.699 (i.e., stationarity is not rejected), and the effective sample 

sizes are all 1,000. Also, the trace plots show no evidence of nonstationarity. Therefore, the Gibbs sampler 

is efficient, taking a few seconds despite the large number of runs. 

The performance of benchmarking methods is assessed using a set of metrics that include posterior 

means (PM) and posterior standard deviations (PSD), and when it is convenient, posterior coefficients of 

variation (PCV), numerical standard errors (NSE) of the estimates and 95% highest posterior density 

intervals (95% HPD). Numerical results are presented in Tables 4.1-4.8. 

A summarized version of the basic results is presented in Table 4.1, and serves for comparison of the 

average, standard error and coefficient of variation of the observed data with the PMs, PSDs, PCVs from 

the BFH model, benchmarking (deleting the last one, LO) model and random benchmarking (RD) model. 

The results in Table 4.1 apply to two simulation scenarios, where 2 = 163,S  small variation in the observed 

data, and where 2 = 1,630,S  relatively larger variation in the observed data. When 2 = 163,S  there are 

very little differences between the observed data and the posterior quantities from the BFH, LO and RD 

models. Given the small coefficients of variation for the survey estimates, it is difficult for any model to 

further reduce variability. Hence, the PCVs are comparable to the CVs of the survey estimates. On the other 

hand, three interesting points can be made for the scenario where 2 = 1,630.S  First, the PMs under the 

BFH model can be very different from those of LO and RD models and these latter two PMs are very close. 

Second, the PSDs are much smaller than the standard errors of the observed data; there are substantial gains 

in precision under the BFH model. However, the PSDs are about four to five times smaller than those for 

the observed data and the PSDS under the LO and RD model are about twice those of the BFH model. The 
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PCVs follow the same pattern. Third, LO and RD are very close in all three measures (PMs, PSDs, PCVs) 

with RD model having just slightly smaller PSDs. As expected, there is small difference between the LO 

model and the RD model. But one must also observe that benchmarking the BFH model is important because 

we can get answers that are different from the BFH model at least in terms of posterior standard deviations 

and coefficients of variation. Benchmarking is a jittering procedure, which helps to protect the model from 

misspecification, and therefore it must lead to increased variability in the small area estimates. 

 

Table 4.1 
Comparison of BFH model with no benchmarking, deleting the last one benchmarking and random 
benchmarking via posterior mean (PM), posterior standard deviation (PSD) and posterior coefficient of 
variation (PCV) for two values of 2S  
 

  PM PSD PCV 
 A OB BFH LO RD OB BFH LO RD OB BFH LO RD
a. 2 = 163; 1,435S a   1 135.6 134.0 133.8 133.5 6.03 5.62 5.47 5.41 0.044 0.042 0.041 0.041

2 102.0 103.5 103.1 103.0 7.10 6.50 6.11 5.82 0.070 0.063 0.059 0.057
3 117.7 121.0 120.7 120.5 7.31 6.72 6.55 6.25 0.062 0.056 0.054 0.052
4 77.0 81.5 81.4 81.0 5.88 6.00 5.46 5.53 0.076 0.074 0.067 0.068
5 126.9 127.8 127.5 127.5 5.63 5.25 5.25 5.06 0.044 0.041 0.041 0.040
6 113.1 113.4 112.9 113.1 8.06 7.15 6.82 6.74 0.071 0.063 0.060 0.060
7 137.2 133.7 133.5 133.9 6.74 6.38 5.93 6.02 0.049 0.048 0.044 0.045
8 124.8 124.7 124.7 124.7 4.03 3.91 3.83 3.76 0.032 0.031 0.031 0.030
9 118.3 116.5 115.8 116.6 7.54 6.79 6.29 6.65 0.064 0.058 0.054 0.057

10 156.5 153.4 153.3 153.3 4.37 4.45 4.12 4.18 0.028 0.029 0.027 0.027
11 109.5 110.3 110.3 110.2 4.88 4.64 4.70 4.70 0.045 0.042 0.043 0.043
12 116.3 118.1 117.9 117.7 7.23 6.62 6.26 6.00 0.062 0.056 0.053 0.051

b. 2 = 1,630; 1,482S a   1 129.1 129.8 127.2 126.5 19.07 4.64 10.71 10.45 0.148 0.036 0.084 0.083
2 117.3 126.3 122.1 122.1 22.46 5.08 12.73 12.51 0.191 0.040 0.104 0.102
3 120.0 145.5 137.3 136.9 23.11 5.93 12.91 12.68 0.193 0.041 0.094 0.093
4 68.8 107.3 94.0 93.6 18.60 7.47 12.04 11.86 0.270 0.070 0.128 0.127
5 142.4 146.4 142.3 142.2 17.80 4.52 11.98 11.15 0.125 0.031 0.084 0.078
6 108.8 120.2 115.2 115.4 25.49 5.43 11.75 11.66 0.234 0.045 0.102 0.101
7 136.8 116.2 118.2 119.0 21.31 5.37 11.32 11.90 0.156 0.046 0.096 0.100
8 124.5 132.5 127.3 127.3 12.76 4.39 9.00 8.91 0.102 0.033 0.071 0.070
9 144.2 127.5 128.0 129.5 23.86 5.33 12.74 14.00 0.165 0.042 0.100 0.108

10 172.9 129.2 145.5 145.3 13.81 9.23 10.28 10.37 0.080 0.071 0.071 0.071
11 109.1 114.7 110.6 110.2 15.42 4.31 10.53 10.43 0.141 0.038 0.095 0.095
12 108.4 120.3 114.6 114.2 22.87 5.10 12.42 12.01 0.211 0.042 0.108 0.105

 

Note: OB: observed data; BFH: Bayesian Fay-Herriot model; LO: benchmarking (deleting the last one) model; RD: random benchmarking
model; a is the target. For OB, the direct estimate, standard error and coefficient of variation are presented under PM, PSD and PCV, 
respectively. Under the DGSM benchmarking procedure, at 2 = 163,S  the benchmarking values are 133.7, 103.3, 120.8, 81.3, 127.6, 
113.2, 133.4, 124.5, 116.3, 153.1, 110.1, 117.9, and at 2 = 1,630,S  the benchmarking values are 126.9, 123.5, 142.3, 105.0, 143.2, 117.5, 
113.6, 129.5, 124.7, 126.4, 112.1, 117.6. 

 
Under the basic simulation scenario, we compare the deletion benchmarking methods to one of the 

methods in DGSM that provides benchmarked posterior estimates without deletion. To match the notation 

in DGSM, the benchmarking equation must be rewritten as  
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 Note that among the several specifications in DGSM, we have selected i  at random 

(no preference). Then, the benchmarked Bayes estimators of DGSM are  

            *ˆ ˆ ˆ= , = 1, , .BM B
i i B it r S i        

Empirical results using the estimator  ˆ BM
i  are presented in the note to Table 4.1. The largest difference 

between the benchmarked estimates under different benchmarking methods is for area 10 (OB: 172.9; BFH: 

129.2; LO: 145.5; RD: 145.3; DGSM: 126.4). In general, the PMs from LO and RD are closer to OB 

(observed data). Otherwise, these estimates compare reasonably well with the LO benchmarking and RD 

deletion although there are some small differences; DGSM does not provide posterior standard deviations 

and credible intervals. 

More detailed results for 2 = 163,S  are presented in Tables 4.2-4.8 and in Figures 4.1-4.4. Our interest 

is mainly to compare deletion of a single area (e.g., LO) and RD. 

Using the results in Table 4.2, we conclude that the PMs from the BFH model (without benchmarking) 

are slightly different from the direct estimates, and as expected, larger than the smaller direct estimates and 

smaller than the larger ones. Except for two areas, as expected, the PSDs are smaller than the direct standard 

deviations. For example, the smallest direct estimate (76.997) has the largest shrinkage with a larger 

standard deviation (5.881 vs. 5.995); the results are consistent with the standard shrinkage that occurs in 

small area estimation. We note that the PCVs are all small and the NSEs are reasonably small, too. 

 

Table 4.2 
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area 
parameters 
 

Area n  ̂  s  PM PSD PCV NSE 95% HPD 
1 5 135.575 6.031 133.985 5.617 0.042 0.057 (123.422, 145.402) 
2 7 101.980 7.101 103.461 6.498 0.063 0.065 (90.598, 116.134) 
3 24 117.655 7.309 121.006 6.716 0.056 0.066 (107.730, 134.124) 
4 23 76.997 5.881 81.473 5.995 0.074 0.058 (69.046, 92.578) 
5 21 126.917 5.629 127.832 5.248 0.041 0.052 (117.850, 138.406) 
6 9 113.132 8.061 113.393 7.147 0.063 0.068 (99.441, 127.451) 
7 5 137.236 6.739 133.661 6.378 0.048 0.064 (121.771, 146.662) 
8 20 124.839 4.034 124.732 3.906 0.031 0.039 (117.233, 132.309) 
9 16 118.306 7.544 116.479 6.785 0.058 0.071 (103.225, 130.003) 
10 9 156.503 4.368 153.355 4.449 0.029 0.045 (144.785, 162.031) 
11 23 109.546 4.877 110.348 4.637 0.042 0.047 (101.179, 119.294) 
12 9 116.314 7.232 118.098 6.623 0.056 0.068 (105.135, 131.186) 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean, PSD is the posterior standard 
deviation and HPD is highest posterior density interval. NSE is the numerical standard errors of the posterior means. The benchmarking 
value is 1,435 and the sum of the posterior mean is 1,437.823 (not benchmarked).

 
The estimates from the BFH model with deleting the last area and with random deletion under a uniform 

prior (equal weights) are presented in Tables 4.3 and 4.4. The posterior weights barely differ from 0.083 
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with the largest one (0.097) of the last area and smallest one (0.056) of the th8  area. Both random deletion 

and deleting the last one provide improved precision, as the PSDs of the benchmarked estimates are all 

smaller than the observed standard errors, for both benchmarking methods. The NSEs are larger than for no 

benchmarking, but this barely matters as these are errors of the PMs (the characteristic of the PM has three 

digits). 

 

Table 4.3 
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area 
parameters under random deletion benchmarking 
 

Area n  ̂  s  PM PSD PCV NSE 95% HPD 
1 5 135.575 6.031 133.516 5.431 0.041 0.171 (123.414, 143.541) 
2 7 101.980 7.101 102.903 5.793 0.056 0.199 (92.378, 114.250)
3 24 117.655 7.309 120.671 6.237 0.052 0.194 (107.744, 132.190)
4 23 76.997 5.881 81.170 5.597 0.069 0.202 (69.781, 91.177)
5 21 126.917 5.629 127.652 5.036 0.039 0.170 (118.293, 137.228)
6 9 113.132 8.061 112.805 6.707 0.059 0.223 (100.926, 126.074)
7 5 137.236 6.739 133.908 6.007 0.045 0.177 (122.135, 145.344)
8 20 124.839 4.034 124.703 3.757 0.030 0.120 (117.962, 132.304)
9 16 118.306 7.544 116.451 6.650 0.057 0.249 (103.400, 129.316)
10 9 156.503 4.368 153.222 4.216 0.028 0.134 (144.392, 160.854)
11 23 109.546 4.877 110.221 4.694 0.043 0.150 (101.038, 119.570)
12 9 116.314 7.232 117.780 5.997 0.051 0.208 (104.619, 128.158)

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean, PSD is the posterior standard 
deviation and HPD is highest posterior density interval. NSE is the numerical standard errors of the posterior means. The benchmarking 
value is 1,435. Under a uniform prior (equal weights) the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 are deleted 
are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097.

 

Table 4.4 
Comparison of the direct estimator with posterior inference from the Bayesian Fay-Herriot model for the area 
parameters under deleting the last area 
 

Area n  ̂  s  PM PSD PCV NSE 95% HPD 
1 5 135.575 6.031 133.772 5.519 0.041 0.151 (122.213, 143.991) 
2 7 101.980 7.101 103.026 6.319 0.061 0.171 (89.424, 113.857)
3 24 117.655 7.309 120.470 6.458 0.054 0.209 (108.783, 134.261)
4 23 76.997 5.881 81.391 5.906 0.073 0.171 (69.636, 92.634)
5 21 126.917 5.629 127.883 5.158 0.040 0.142 (117.282, 137.305)
6 9 113.132 8.061 112.895 6.270 0.056 0.216 (100.664, 124.320)
7 5 137.236 6.739 133.298 5.948 0.045 0.178 (121.831, 144.727)
8 20 124.839 4.034 124.664 3.810 0.031 0.124 (117.321, 131.941)
9 16 118.306 7.544 116.542 6.531 0.056 0.203 (104.238, 129.622)

10 9 156.503 4.368 153.229 4.353 0.028 0.132 (144.443, 161.593)
11 23 109.546 4.877 109.997 4.563 0.041 0.168 (101.428, 118.953)
12 9 116.314 7.232 117.835 6.344 0.054 0.215 (106.421, 131.483)

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean, PSD is the posterior standard 
deviation and HPD is highest posterior density interval. NSE is the numerical standard errors of the posterior means. The benchmarking 
value is 1,435. 

 

The three methods (BFH, RD, LO) are compared using the results in Table 4.5. The PMs are comparable, 

so that benchmarking (RD, LO) does not distort (shrink) the estimates much beyond the shrinkage under 

the BFH model. Also, the PSDs under LO and RD are almost always smaller than those under the BFH 

model. For eight of the twelve areas, RD has smaller PSDs than LO; in these areas, RD shows roughly 1% 

decrease in PSD over LO and roughly 4% over the PSDs from BFH. 
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To investigate how sensitive the PSDs are to different benchmarking targets, we present results using 

three choices of targets in Table 4.6. The PSDs change only slightly over different targets and are still better 

than the standard errors of the direct estimates. 

As part of designing a complex set of simulations, we consider using unequal probabilities (weights) in 

the random deletion benchmarking, and present results in Table 4.7. Uniform weights (EW) are compared 

to weights inversely proportional (IW) to the sample sizes and to weights directly proportional (DW) to the 

samples sizes. Again, small differences are present among the three PMs and among the three PSDs. The 

PSDs are still smaller than those of the direct estimates. 

Using the results in Table 4.8, we study how extreme sample sizes in the last county (to be deleted) affect 

posterior inference. For this, we set the sample size of the last county to be outside the simulation range (5-

25), at 2 and 50. First, consider the case in which the sample size of the last county is 2. Consistent with 

previous findings, there are minor differences of the PMs over no benchmarking, deleting the last one and 

random deletion for all counties. The PSDs for LO and RD are smaller than those of BFH with nine of these 

PSDs for RD smaller than LO. However, for the last county, we observe relatively large posterior standard 

deviations (10.00, 8.771, 8.525), roughly 15% decrease in PSD of RD over no benchmarking. Next, consider 

the case in which the sample size of the last county is 50. The patterns are similar, except the PSDs for the 

last county are comparable to the others under BFH, LO and RD and again there is an approximately 10% 

decrease (6.282, 5.958, 5.702) in PSD of RD over no benchmarking. It appears that deliberately putting the 

county with the most extreme sample size (small or large) as the last county can affect the benchmarking 

procedure. In contrast, minor changes are observed when the areas with extreme sample size are not 

systematically deleted. When the sample size is 2, the new PMs and PSDs are the following, BFH: 124.307, 

9.993; LO: 123.371, 9.000 RD: 123.540, 8.887. When the sample size is 50, the new PMs and PSDs are the 

following, BFH: 118.167, 6.284; LO: 117.802, 6.094; RD: 117.716, 5.948. 

 
Table 4.5 
A summary of the comparison of inference from the direct estimator, the Bayesian Fay-Herriot (BFH) model, 
random deletion (RD) benchmarking and deleting the last one (LO) 
 

    BFH RD LO 

Area n  ̂  s  PM PSD PM PSD PM PSD 
1 5 135.575 6.031 133.985 5.617 133.516 5.431 133.772 5.519 
2 7 101.980 7.101 103.461 6.498 102.903 5.793 103.026 6.319 
3 24 117.655 7.309 121.006 6.716 120.671 6.237 120.470 6.458 
4 23 76.997 5.881 81.473 5.995 81.170 5.597 81.391 5.906 
5 21 126.917 5.629 127.832 5.248 127.652 5.036 127.883 5.158 
6 9 113.132 8.061 113.393 7.147 112.805 6.707 112.895 6.270 
7 5 137.236 6.739 133.661 6.378 133.908 6.007 133.298 5.948 
8 20 124.839 4.034 124.732 3.906 124.703 3.757 124.664 3.810 
9 16 118.306 7.544 116.479 6.785 116.451 6.650 116.542 6.531 

10 9 156.503 4.368 153.355 4.449 153.222 4.216 153.229 4.353 
11 23 109.546 4.877 110.348 4.637 110.221 4.694 109.997 4.563 
12 9 116.314 7.232 118.098 6.623 117.780 5.997 117.835 6.344 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. The benchmarking value is 1,435. Under a uniform prior, the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12 are deleted are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. 
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Table 4.6 
Comparison of posterior inference of the area parameters under random deletion benchmarking with different 
targets (a = 1,435) 
 

    a 1.5a 0.5a 

Area n  ̂  s  PM PSD PM PSD PM PSD 
1 5 135.575 6.031 133.516 5.431 189.249 5.385 77.769 5.561 
2 7 101.980 7.101 102.903 5.793 175.963 5.794 29.847 5.899 
3 24 117.655 7.309 120.671 6.237 197.219 6.099 44.145 6.461 
4 23 76.997 5.881 81.170 5.597 134.628 5.871 27.771 5.460 
5 21 126.917 5.629 127.652 5.036 177.209 5.165 78.125 5.053 
6 9 113.132 8.061 112.805 6.707 201.949 7.145 23.614 6.995 
7 5 137.236 6.739 133.908 6.007 200.989 6.018 66.781 6.024 
8 20 124.839 4.034 124.703 3.757 151.951 3.952 97.484 3.924 
9 16 118.306 7.544 116.451 6.650 196.849 6.990 35.990 6.607 

10 9 156.503 4.368 153.222 4.216 184.720 4.019 121.708 4.706 
11 23 109.546 4.877 110.221 4.694 148.724 4.966 71.752 4.760 
12 9 116.314 7.232 117.780 5.997 193.050 5.954 42.514 6.081 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. The benchmarking value is 1,435. Under a uniform prior, the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12 are deleted are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. When the benchmarking 
value is increased by 50%, these probabilities are 0.090, 0.084, 0.095, 0.079, 0.064, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. When 
the benchmarking value is decreased by 50%, these probabilities are 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.057, 0.097, 0.068, 
0.079, 0.097. 

 

Table 4.7 
Comparison of posterior inference of the area parameters under random deletion benchmarking with equal 
weights (EW), weights inversely proportional sample sizes (IW) and weights directly proportional to sample 
sizes (DW) 
 

    EW IW DW 

Area n  ̂  s  PM PSD PM PSD PM PSD 
1 5 135.575 6.031 133.516 5.431 133.508 5.518 133.436 5.404 
2 7 101.980 7.101 102.903 5.793 103.042 5.737 103.049 5.809 
3 24 117.655 7.309 120.671 6.237 120.529 6.176 120.634 6.247 
4 23 76.997 5.881 81.170 5.597 81.167 5.571 81.111 5.567 
5 21 126.917 5.629 127.652 5.036 127.669 5.079 127.541 5.055 
6 9 113.132 8.061 112.805 6.707 112.762 6.704 113.074 6.716 
7 5 137.236 6.739 133.908 6.007 133.965 5.968 133.798 6.027 
8 20 124.839 4.034 124.703 3.757 124.829 3.734 124.719 3.757 
9 16 118.306 7.544 116.451 6.650 116.300 6.707 116.502 6.640 

10 9 156.503 4.368 153.222 4.216 153.238 4.198 153.204 4.220 
11 23 109.546 4.877 110.221 4.694 110.190 4.697 110.208 4.690 
12 9 116.314 7.232 117.780 5.997 117.802 6.010 117.726 5.989 

 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. The benchmarking value is 1,435. Under a uniform prior, the posterior probabilities that the areas 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12 are deleted are respectively 0.090, 0.084, 0.095, 0.077, 0.066, 0.093, 0.097, 0.056, 0.098, 0.068, 0.079, 0.097. When the benchmarking 
is done using weights inversely proportional to sample sizes, these probabilities are 0.167, 0.127, 0.039, 0.037, 0.026, 0.105, 0.184, 0.030, 
0.061, 0.078, 0.039, 0.107. When the benchmarking is done using weights directly proportional to sample sizes, these probabilities are 
0.032, 0.048, 0.168, 0.124, 0.103, 0.061, 0.036, 0.083, 0.112, 0.044, 0.123, 0.066.

 

For comparison, different posterior densities are presented in Figures 4.1-4.4. In Figures 4.1 and 4.2, we 

present posterior densities of all twelve area parameters when each area, in turn, is deleted. We observe that 

the posterior densities are slightly different around the modes, but nothing remarkable. In Figures 4.3 and 

4.4, we present posterior densities of all twelve area parameters under the FH model (unconstrained), 

random deletion benchmarking and deleting the last one. There are some differences among the three 

densities, but again these are not alarmingly different. 
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Finally, empirical results are presented for a simulation scenario with 99 areas, reflecting the 99 counties 

in Iowa. The data are generated as previously described, and the BFH model without benchmarking, with 

random deletion benchmarking, and with deleting the last one benchmarking is fit using 20,000 iterations 

for the Gibbs sampler. For each model fit, the first 10,000 iterations are used as a burn-in and every tenth 

iteration is kept thereafter. The BFH model fitting takes 15 seconds, while the deletion benchmarking 

models takes slightly less than three minutes each. For the random deletion benchmarking model 

parameters, the regression coefficients β  and the variance 2 ,  the p-values of the Geweke test are, 

respectively, 0.822, 0.128, 0.752 and 0.219, and the effective sample sizes are all 1,000 for the 1,000 selected 

iterations (i.e., an efficient Gibbs sampler). Note that the target is 12,162.93 and the sum of the PMs from 

the BFH model is 12,168.49, a difference of 5.56. In Figure 4.5, we present a plot of the coefficients of 

variation under random deletion benchmarking, deleting the last one benchmarking and BFH model versus 

the direct estimates by area. The differences among these models are not remarkable. Most of the points 

with direct CVs larger than about 0.04 fall below the o45  straight line. However, some points (diamond) 

under the BFH model are above the o45  line, four of them are noticeable, possibly shrinking too much. We 

conclude that it is sensible to perform the random deletion benchmarking. 

 
Table 4.8 
A summary of the comparison of inference from the direct estimator, the Bayesian Fay-Herriot (BFH) model, 
deleting the last one (LO) and random deletion (RD) benchmarking when the last county is extreme 
 

  BFH LO RD 
 Area n  ̂  s  PM PSD PM PSD PM PSD 
a. The last county size is 2. 1 5 135.575 6.031 134.116 5.607 133.772 5.473 133.510 5.409 
 2 7 101.980 7.101 103.205 6.482 102.818 6.118 102.745 5.837 
 3 24 117.655 7.309 121.110 6.730 120.911 6.577 120.666 6.260 
 4 23 76.997 5.881 81.586 6.021 81.741 5.544 81.196 5.631 
 5 21 126.917 5.629 127.901 5.252 127.552 5.264 127.619 5.041 
 6 9 113.132 8.061 113.454 7.147 112.889 6.818 113.074 6.815 
 7 5 137.236 6.739 133.938 6.339 133.479 5.968 133.947 5.994 
 8 20 124.839 4.034 124.753 3.906 124.699 3.824 124.738 3.735 
 9 16 118.306 7.544 116.199 6.806 115.329 6.327 116.065 6.785 
 10 9 156.503 4.368 153.419 4.434 153.148 4.174 153.240 4.213 
 11 23 109.546 4.877 110.512 4.645 110.473 4.696 110.324 4.686 
 12 2 121.881 12.75 124.243 10.00 123.755 8.771 123.444 8.525 
b. The last county size is 50. 1 5 135.575 6.031 133.984 5.618 133.745 5.461 133.452 5.385 
 2 7 101.980 7.101 103.462 6.499 103.136 6.086 103.044 5.780 
 3 24 117.655 7.309 121.006 6.716 120.832 6.536 120.698 6.232 
 4 23 76.997 5.881 81.473 5.995 81.596 5.512 81.162 5.728 
 5 21 126.917 5.629 127.832 5.248 127.519 5.238 127.661 5.001 
 6 9 113.132 8.061 113.393 7.146 112.929 6.777 112.899 6.675 
 7 5 137.236 6.739 133.659 6.380 133.351 5.947 133.851 5.941 
 8 20 124.839 4.034 124.732 3.906 124.713 3.821 124.726 3.825 
 9 16 118.306 7.544 116.480 6.785 115.766 6.269 116.319 6.601 
 10 9 156.503 4.368 153.355 4.449 153.225 4.173 153.306 4.230 
 11 23 109.546 4.877 110.347 4.637 110.378 4.692 110.155 4.689 
 12 50 116.538 6.791 118.117 6.282 118.035 5.958 117.952 5.702 
 

Note: n  is the area sample size, ̂  is the direct estimator and s  its standard error. PM is the posterior mean and PSD is the posterior standard 
deviation. When the sample size of the last county is 50 (2), the benchmarking value is 1,435 (1,441). The uniform prior is used in the random 
benchmarking. 
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Figures 4.1  Comparison of the posterior densities for 1  to 6  when each area is deleted at a time (e.g., the first 

area is deleted in the first panel etc.). 
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Figure 4.2 Comparison of the posterior densities for 7  to 12  when each area is deleted at a time. 
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Figure 4.3 Comparison of the posterior densities for 1  to 6  under the Fay-Herriot model (-1), random 

deletion benchmarking (0) and area-12 deletion. 
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Figure 4.4 Comparison of the posterior densities of 7  to 12  under the Fay-Herriot model (-1), random 

deletion benchmarking (0) and area-12 deletion. 
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Figure 4.5 Plot of the coefficients of variation under the random deletion benchmarking, deleting the last one 

and the Bayesian Fay-Herriot model for 99 areas. 

 
5  Concluding remarks 
 

The Bayesian Fay-Herriot (BFH) model is discussed in detail. We show that the BFH can be fit using 

random samples rather than a Markov chain Monte Carlo sampler. Since random samples required no 

monitoring, this method is beneficial because there is little time at NASS between receiving the county-

level survey summary data and presenting the final estimates. In support to the BFH model, we show that 

the posterior density under the BFH model is proper, providing a baseline for benchmarking. The effects of 

benchmarking are studied in a simulation study, comparing the BFH model without benchmarking to the 

BFH model with two benchmarking methods.  

In this study, we assume that the benchmarking constraint is of the form 
1

.ii
a


 

 A straightforward 

generalization of the benchmarking methods may be developed for the constraint of the form 

1
,i ii

w a


 
 where the iw  are weights. For example, this latter situation occurs for benchmarking yield, 

ratio of production and harvested acres. 
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Our major contribution is the extension of BFH model to accommodate benchmarking. Previous 

approaches delete the last area, giving rise to the question “Does it matter which area is deleted?”. In this 

paper, we develop and illustrate a method that gives each area a chance to be deleted. We show how to fit 

this extended BFH model using the Gibbs sampler. Because of the complexity of the joint posterior density, 

a sampling based method, without Markov chains, cannot be used. Using empirical studies, we show that 

the differences in the posterior means over no benchmarking, deleting the last county and random deletion 

are very small. 

The effects of changing the benchmarking target are studied in a sensitivity analysis. As expected, 

changing the benchmarking target leads to different estimates, but, unexpectedly, the changes in the 

posterior standard deviations are small. Small changes in the estimates are noted for the benchmarking 

methods using different probabilities of deletion. 

It is expected that the posterior standard deviations from deleting the last one benchmarking and random 

benchmarking be larger than those from the BFH model because of the jittering effect from benchmarking. 

However, in the empirical studies we present, deleting the last one benchmarking and random benchmarking 

have about the same posterior standard deviations with a small reduction when random benchmarking is 

used. The key strength of the random benchmarking approach is that there is no preferential treatment for 

any area/county. 
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Appendix A 
 

Exemplification of the sensitivity of deletion 
 

Let  ind
2Normal , , 1, 2,i i iy i    such that 1 2 ,y y a   and  2 2 2

2 1 2 .      Then, if we 

start by deleting 2 ,y  the joint density of  1 2,y y  is 

           
1

2
1 2 2 1 2 2, 0 Normal 1 , 1 ,yf y y a y a               

where   1a b   if a b  and   0a b   if .a b  However, if we start by deleting 1 ,y  the joint density 

of  1 2,y y  is 
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           2
1 2 1 2 1 2 2, 0 Normal 1 , 1 .yg y y a y a                

It will matter in the estimation procedure which variable is deleted because the two joint distributions are 

different. Note that the two distributions are the same if and only if 

        1 2 1 21 1 ,a a               

which gives 

               1 22 1 2 .a a         

Even if we assume that 2 2
1 2 ,   the two distributions are different. However, under this assumption, 

1 2 ,   and the condition for the two distributions to be the same is that 1 2 .   That is, overall the 

condition for the two joint distributions to be the same is that 1 2   and 1 2 ,   thereby making 1y  

and 2y  exchangeable. However, this is a very restricted situation. 

One way out of this diffculty is to actually delete both 1y  and 2y  in the following way. Let 1z   if 1y  

is deleted and let 0z   if 2y  is deleted. Then, 

          1
1 2 1 2 1 2, , 0 , 0 1 , 0 ,z zp y y z pg y y p f y y          

where we have taken  Bernoulliz p  and, because z  is not really identifiable, we will take 1 2p   

(i.e., we randomly delete one or the other). However, note that 

 
 

       
1 2

1 2
1 2 1 2

, 0
, , 0 Bernoulli .

, 0 1 , 0

pg y y
z y y

pg y y p f y y




 
 

  
    

   

 
Appendix B 
 
Fitting the Bayesian Fay-Herriot model 
 

The Bayesian Fay-Herriot (BFH) model is given in (2.1) and the joint posterior density under the BFH 

model is given in (2.3), which for convenience we state here, 

  
 

   
2

2 2
2

2 2 2 22 1

1 1 1 1 1ˆˆ, , exp .
21

i i i i
i is

    
  

                      
θ β θ x β

 

 (B.1) 

We show how to fit the joint posterior density of the parameters using random samples (not even a Gibbs 

sampler), thereby avoiding any monitoring. We will use the multiplication rule to write  

        2 2 2 2
1 2 3

ˆ ˆ ˆ ˆ, , = , , , ,       θ β θ θ β θ β θ θ   

where  2
1

ˆ, , θ β θ  and  2
2

ˆ, β θ  have standard forms and  2
3

ˆ  θ  is nonstandard but it is 

density of a single parameter. 
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Momentarily, we will drop the term, 
 

 2 22

21 1

1
,


 because it only affects the posterior density of 2 .  

That is,  

      2 2
2

1 2 2
=1

1 1 1ˆˆ, , exp .
2 i i i i

i is
    


    

         
    

θ β θ x β


  

Standard calculations reduce the argument (without 1 2)  of the exponential term to  

 
 

     
22 2

2 2 2 2

1 ˆ ˆ1 , , 1, , .
1

i
i i i i i i i i

i i

i
s

 
     

   
        

 
x β x β     

Hence, for  2
1

ˆ, , , θ β θ  

     ind
2 2ˆˆ, , Normal 1 , 1 , = 1, , .i i i i i i i         β θ x β    (B.2) 

Momentarily, we will drop the term,   1 22
=1

1 .ii
  

 Then, integrating out the ,i  we get  

     2
2

2 2
=1

1 ˆˆ, exp .
2

i
i i

i


  


     
 

β θ x β


  

Hence, the exponent (without 1 2)  can be written as,  

      2
1

2
=1

ˆ ˆ ˆ ˆˆ ,i
i i

i





      x β β β β β



  

where  

 1
2 2 2 2

=1 =1

ˆ
ˆ ˆ ˆ= and = .i i i i

i ii is s


 




 
  
x x x

β
 

  

It is worth noting that β̂  and ̂  are well defined for all 2  provided that the design matrix, ,X  where 

 1 , ,X   x x   is full rank. Then, 

        2
2 1

2 2
1

1 1ˆˆ ˆ ˆ ˆˆ, exp .
2 2

i
i i

i


  






         
 

β θ x β β β β β


  

That is, 

  2 ˆ ˆ ˆ, Normal , . β θ β  (B.3) 

Now, integrating out β  and incorporating the terms in 2 ,  which were dropped, we have 

     
 

2 2
3 22

1ˆ ,
1

Q  





θ  (B.4) 

where  

  
 

  21 2
2

1 2 2 22 2=1 =1

1 1 1 ˆ ˆˆ= exp .
2 i i

i i ii

Q
ss

 


 
    

  
  x β
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To obtain a random sample from (B.1), we sample 2  from (B.4), β  from (B.3) and the i  

independently from (B.2). The conditional posterior density in (B.4) is nonstandard, and to draw a sample 

from it, we use a grid method (e.g., Nandram and Yin, 2016). First, we transform 2  to  2 21     

so that 0 < < 1.  Then, we divide (0, 1) into 100 grids. Actually, we have located the range of   in (0, 1) 

and we have divided this interval into 100 grids. This gives us a probability mass function that we sample. 

Jittering is used in the selected grid to get deviates, which are different with probability one; see Nandram 

and Yin (2016) for more details. 

 
Appendix C 
 
Proof of Theorem 2 
 

It is convenient to make the following transformations, 

 
1

, 1, , 1, .i i i
i

i a   


    


    

Here,   is a dummy variable, which holds the benchmarking constraint, and it ensures a non-singular 

transformation. The Jacobian is unity and the inverse transformation is 

      
1

1

, 1, , 1, .i i i
i

i a    




      


    

The transformed density is 

  1 1, , , .       

Then, the density that holds the benchmarking constraint exactly is 

  
1

1 1
1

, , 0 , .i
i

a     





   


     

Therefore, 

       21 12

1 1 2
1 1

1
, , 0 exp .

2 i i i i
i i

a     


 


 

   
          

   
 u β u β
 

   

Dropping terms that do not involve    1 1, , ,  
θ    it is easy to show that the exponent is 

             1 12

1
2 , , .

2
I J a

 
        θ θ u u β u u β j θ       

Then, using the properties of a multivariate normal density, we have 

           1 12
1 10 Normal , , , .I J a I J  



         
 

θ j u u β u u β      



Survey Methodology, June 2019 389 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Finally, using the Sherman-Morrison formula,   1 1 ,I J I J     we have 

        2
1 1

1 1
0 Normal , , , .I J a I J 

             
   

θ j u u β u u β   
 

   

It is worth noting that the matrix determinant lemma gives  det I J    and so   12det I J    

  11 2 . 
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