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On combining independent probability samples 

Anton Grafström, Magnus Ekström, Bengt Gunnar Jonsson,  
Per-Anders Esseen and Göran Ståhl1 

Abstract 

Merging available sources of information is becoming increasingly important for improving estimates of 
population characteristics in a variety of fields. In presence of several independent probability samples from a 
finite population we investigate options for a combined estimator of the population total, based on either a linear 
combination of the separate estimators or on the combined sample approach. A linear combination estimator 
based on estimated variances can be biased as the separate estimators of the population total can be highly 
correlated to their respective variance estimators. We illustrate the possibility to use the combined sample to 
estimate the variances of the separate estimators, which results in general pooled variance estimators. These 
pooled variance estimators use all available information and have potential to significantly reduce bias of a linear 
combination of separate estimators. 

 
Key Words: Horvitz-Thompson estimator; Inclusion probabilities; Linear combination estimator; Variance estimation. 

 
 

1  Introduction 
 

The idea of using all available information to produce better estimates is very appealing, but it is seldom 

clear how to proceed to achieve the best results. There is a vast literature on what has become known as 

meta-analysis, that builds on the idea of combining results of multiple studies. Cochran and Carroll (1953) 

and Cochran (1954) are two early papers that treat combination of estimates from different experiments. 

Koricheva, Gurevitch and Mengersen (2013) and Schmidt and Hunter (2014) are two books that provide an 

updated and more comprehensive treatment of meta-analysis. In this paper we do not treat combination of 

results from traditional experiments, but rather from multiple probability samples. We present all required 

design elements, such as inclusion probabilities of first and second order, for a general combination of 

multiple independent samples from different sampling designs. We also present new estimators for the 

variance of separate estimators based on the design of the combined samples. These suggested variance 

estimators can be thought of as general pooled variance estimators using all available information. In 

particular such pooled variance estimators can be used in a linear combination of separate estimators to 

reduce the mean square error (MSE) compared to using the separate, and thus independent, variance 

estimators. 

A restriction is that we only treat combination of independent probability samples selected from the same 

population at the same point in time, or under the assumption that there has been a non-significant change 

in the target variable. Further, we assume that each sampling design is known to the extent that inclusion 

probabilities of first and second order are known for all units. In general we will also need to be able to 
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uniquely identify each unit so that we can detect if the same unit is selected in more than one sample, or 

multiple times in the same sample. At least some of these assumptions may be quite restrictive as they may 

not hold in some practical circumstances. 

Let  = 1, 2, ,U N  be the set of labels of the N  units in the population. Our objective is to estimate 

the total of a target variable ,y  that takes value iy  for unit .i U  Thus we wish to estimate 
=1

= .
N

ii
Y y  

We assume access to k  independent probability samples  ,S  = 1, , ,k   from ,U  where the samples 

may be from different sampling designs. Under these assumptions, we investigate different options for 

estimating the population total by use of all available information. Knowledge of what units have been 

included in multiple different samples is required in some cases. Such knowledge is more readily available 

today in environmental monitoring and natural resource surveys, following the widespread use of accurate 

satellite-based positioning systems (Næsset and Gjevestad, 2008). In environmental studies the units can 

often be considered as locations with given coordinates, so the situation is different from surveys of e.g., 

people that may be anonymous or unidentifiable. Further, in several countries landscape and forest 

monitoring programmes are performed (Tomppo, Gschwantner, Lawrence and McRoberts, 2009; Ståhl, 

Allard, Esseen, Glimskår, Ringvall, Svensson, Sundquist, Christensen, Gallegos Torell, Högström, 

Lagerqvist, Marklund, Nilsson and Inghe, 2011; Fridman, Holm, Nilsson, Nilsson, Ringvall and Ståhl, 

2014) which sometimes need to be augmented by special sampling programmes in order to reach specific 

accuracy targets for certain regions or years (Christensen and Ringvall, 2013). 

In Section 2 we first recall the theory for an optimal linear combination of separate independent 

estimators. Then, in Section 3, we present the theory for combining independent samples. As a unit may be 

included in more than one sample or multiple times in the same sample we need to choose between using 

single or multiple count of inclusion. By using single count the resulting design becomes a without 

replacement design and multiple count results in a form of with replacement design. Two examples 

comparing different alternatives for estimation are presented in Section 4. We end with a discussion in 

Section 5. 

 
2  Combining separate estimates 
 

We assume that we have 2k   estimators, 1 2
ˆ ˆ ˆ, , , kY Y Y  of a population total ,Y  resulting from k  

independent samples from the same population. Our options greatly depend on what information is 

available. If we have estimates and corresponding variance estimates, then a linear combination based on 

weights calculated from estimated variances may be an interesting option. We could also weight the 

estimators with respect to sample size, if available, but that is known to be far from optimal in some 

situations. We recall the theory for an optimal linear combination of independent unbiased estimators. The 

linear combination of 1 2
ˆ ˆ ˆ, , , kY Y Y  with the smallest variance is  

 1 1 2 2
ˆ ˆ ˆ ˆ= ... ,L k kY Y Y Y       

where  
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are positive weights that sum to 1. The variance of ˆ
LY  is  

                                                            
 

=1

1ˆ = .
ˆ1

L k

j jj

V Y
V Y

  

It is common that variance estimates are used in place of the unknown variances when calculating the 

 -weights, see Cochran and Carroll (1953) and Cochran (1954). If the variance estimators are consistent, 

that approach will asymptotically provide the optimal weighting. Moreover, under the assumption that the 

variance estimators are independent of the estimators 1 2
ˆ ˆ ˆ, , , ,kY Y Y  the resulting estimator  

                                                                 *
1 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ= ... ,L k kY Y Y Y       

is unbiased and its variance depends only on the variance of ˆ
LY  and the MSEs of the ˆ ’s,i  see Rubin and 

Weisberg (1974). However, as we soon will illustrate, the assumption of independence is likely to be 

violated in many sampling applications. In case of positive correlations between the estimators and their 

variance estimators, we will on average put more weight on small estimates because they tend to have 

smaller estimated variances. Thus the combined estimator (using weights based on estimated variances) will 

be negatively biased and the negative bias can increase as the number of independent surveys we combine 

increases, see Example 1. The opposite holds as well, in case of negative correlation, but that is likely a 

rarer situation in sampling applications. 
 

Example 1: A very simplistic example that illustrates that the bias can increase as the number of 

independent surveys we combine increase. Let the unbiased estimator Ŷ  for one sample take the values 1 

or 2 with equal probabilities and let the variance estimator take values c  times the estimator (perfectly 

correlated) and let it be unbiased  1 6 .c   Clearly the expected value of Ŷ  is 1.5. Next, we consider the 

linear combination of two independent estimators  1 2
ˆ ˆ,Y Y  of the same type as Ŷ  using estimated variances. 

The pair  1 2
ˆ ˆ,Y Y  has the following four possible outcomes (1,1), (1,2), (2,1), (2,2), each with probability 

1/4. The corresponding outcomes for the linear combination *ˆ
LY  with estimated variances are 1, 4/3, 4/3, 2 

with expectation 17 12 1.4167.  It is negatively biased. If a third independent estimator of the same type 

is added we have the eight outcomes (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2), each 

with equal probability 1/8. The corresponding outcomes for *ˆ
LY  are 1, 6/5, 6/5, 3/2, 6/5, 3/2, 3/2, 2, with 

expectation 111 80 = 1.3875.  It is even more negatively biased, and the bias continues to grow as more 

independent estimators of the same type are added in the combination.  

 
2.1 Why positive correlation between estimator and variance estimator is 

common in sampling applications 
 

The issue of positive correlation between the estimator of a total and its variance estimator has previously 

been noticed by e.g., Gregoire and Schabenberger (1999) when sampling skewed biological populations, 

but we show that a high correlation may appear in more general sampling applications. Assume that the 
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target variable is non-negative and that > 0iy  for exactly N   units. The proportion of non-zero (positive) 

’siy  is denoted by = .p N N  This is a very common situation in sampling and we get such a target 

variable if we estimate a domain total ( = 0iy  outside of the domain) or if only a subset of the population 

has the property of interest. 

The design-based unbiased Horvitz-Thompson (HT) estimator is given by  

                                                             ˆ = ,i

i S i

y
Y


   

where S  denotes the random set of sampled units and  = Pr .i i S   Under fixed size designs the 

variance of Ŷ  is  

                                                          
2

=1 =1

1ˆ = ,
2

N N
ji

ij i j
i j i j

yy
V Y   

 


   
 

   

where  = Pr ,ij i S j S    is the second order inclusion probability. The corresponding variance 

estimator is  

                                                        
2

1ˆ ˆ = .
2

ij i j ji

i S j S ij i j

yy
V Y

  
   

 
  

 
   

Provided that all ij  are strictly positive, it follows that the variance estimator is an unbiased estimator 

of  ˆ .V Y  

The number of non-zero ’siy  in S  (and hence in ˆ )Y  is here denoted by n  and it will usually be a 

random number. It can be shown that the number of non-zero elements in  ˆ ˆV Y  is approximately 

proportional to n  if p  is small, which indicates that there might be a strong correlation between Ŷ  and 

 ˆ ˆV Y  in general if p  is small. To show that the number of non-zero terms in  ˆ ˆV Y  is approximately 

proportional to n  we look at three cases, where the third case is the most general.   
 

Case 1: Assume that all the non-zero ’si iy   are different, i.e., i i j jy y   for ,i j  and 

ij i j    for all , .i j  The double sum in  ˆ ˆV Y  then contains  2n n n   non-zero terms of the form  

 
2

,ij i j k

ij k

y  
 
 


 

  

where k  is equal to i  or j  and .i j  There are  1n n    non-zero terms of the form  

 

2

,ij i j ji

ij i j

yy  
  
 

 
 

  

where .i j  In total the number of non-zero terms is  2 1 .n n n    If n  is fairly large and p  is small, 

then <<n n  and roughly we have  2 1 2 .n n n n n      The number of non-zero terms is approximately 

proportional to .n  
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Case 2: Assume that all the non-zero ’si iy   are equal, e.g., iy  is an indicator variable and = ,i n N  

and ij i j    for all , .i j  Then the double sum in  ˆ ˆV Y  contain  2n n n   non-zero terms of the form  

 
2

,ij i j k

ij k

y  
 
 


 

  

where k  is equal to i  or j  and .i j  If n  is fairly large and p  is small, then <<n n  and roughly we 

have  2 2 .n n n n n     Thus, the number of non-zero terms is still approximately proportional to .n  
 

Case 3: If some of the non-zero ’si iy   are equal and the rest are different, then the number of non-zero 

terms will be between  2n n n   (case 2) and  2 1n n n    (case 1). Thus, the number of non-zero 

terms in  ˆ ˆV Y  is always approximately proportional to n  if p  is small.  
 

If ij i j    for all ,i j  then all non-zero terms are positive. This condition holds e.g., for simple 

random sampling (SRS) and high entropy unequal probability designs such as Conditional Poisson, 

Sampford and Pareto. More discussion about entropy of sampling designs can be found in e.g., Grafström 

(2010). The average size of the positive terms in  ˆ ˆ ,V Y  or ˆ ,Y  is not likely to depend much on .n  Thus, if 

Ŷ  contains n  positive terms, and  ˆ ˆV Y  contains a number of positive terms that is proportional to ,n  

their sizes are mainly determined by .n  A high relative variance in n  can cause a high correlation between 

Ŷ  and  ˆ ˆ ,V Y  see Example 2. 

Commonly used designs can produce a high relative variance for .n  If we do simple random sampling 

without replacement we get  Hyp , ,n N N n   and          = 1 1V n E n p N n N       

   1 1 ,p n N   which means that we need a large p  or a large sample fraction n N  in order to achieve 

a small relative variance for .n  In many applications we will have a rather small p  and a small sampling 

fraction n N  and, thus, for many designs (that do not use prior information which can explain to some 

extent if 0iy   or not) there will be a high relative variance for .n  To illustrate the magnitude of the 

resulting correlation between the estimator and its variance estimator an example for simple random 

sampling without replacement follows. 
 

Example 2: For this example we first simulate a population of size = 1,000N  where = 100,N   i.e., 

= 0.1.p  The 100 non-zero -y values are simulated from  2,N    with = 10  and = 2.  We select 

samples of size = 200n  with simple random sampling, so =i n N  and     = 1 1ij n n N N    for 

.i j  The observed correlation between Ŷ  and  ˆ ˆV Y  was 0.974 for 610  samples, see Figure 2.1 for the 

first 1,000 observations of   ˆ ˆ ˆ, .Y V Y  If we increase p  to 0.3, the correlation is still above 0.9. The results 

remain unchanged if the ratio    remains unchanged, e.g., we get the same correlations if = 100  and 

= 20.  

Now, assume we have access to more than one sample for the estimation of .Y  As previously noted, 

with high positive correlations between the estimators and their corresponding variance estimators there is 

a risk of severe bias if we use a linear combination with estimated variances. The interest of using combined 
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information may be the largest for small domains or rare properties, in which case the problem of high 

correlation is the most likely. Next, we turn to alternative options for using combined information from 

multiple samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1 Relationship between Horvitz-Thompson estimator and its variance estimator for a variable with 

90% zeros. 

 
3  Combining samples 
 

Here we derive the design elements (e.g., inclusion probabilities of first and second order) for the 

combined sample. There are however different options to combine samples. We must e.g., choose between 

multiple or single count for the combined design. When combining independent samples selected from the 

same population we need to know the inclusion probabilities of all units in the samples, for all designs. 

Second order inclusion probabilities are needed for variance estimation. In some cases we also need to have 

unique identifiers (labels) for the units so they can be matched, e.g., when we use single count or when at 

least one separate design has unequal probabilities. Bankier (1986) considered the single count approach for 

the special case of combining two independently selected stratified simple random samples from the same 

frame. Roberts and Binder (2009) and O’Muircheartaigh and Pedlow (2002) discussed different options for 

combining independent samples from the same frame, but not with general sampling designs. 

A somewhat similar problem is estimation based on samples from multiple overlapping frames, see e.g., 

the review articles by Lohr (2009, 2011) and the referenced articles therein. Even though having the same 
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frame can be considered as a special case of multiple frames, we have not found derivations of the design 

elements (in particular second order inclusion probabilities and second order of expected number of 

inclusions) for the combination of general sampling designs. Below we present, for general probability 

sampling designs, in detail two main ways to combine probability samples and derive corresponding design 

features needed for unbiased estimation and unbiased variance estimation. 

 
3.1  Combining with single count 
 

Here we first combine two independent samples  1S  and  2S  selected from the same population, and 

look at the union of the two samples as our combined sample. Thus, the inclusion of a unit is only counted 

once even if it is included in more than one sample. The first order inclusion probabilities are  

          1, 2 1 2 1 2= ,i i i i i       (3.1) 

where       1, 2 1 2= Pri i S S    and     = Pri i S    for = 1, 2.  We let  1 ,iI  2
iI  and  1, 2

iI  be the 

inclusion indicator for unit i  in  1 ,S  2S  and    1 2S S  respectively. The resulting design is no longer a 

fixed size design (even if the separate designs are of fixed size). The expected size of the union    1 2S S  

is given by     1, 21, 2
=1

= ,
N

ii
E n   where    1, 21, 2

=1
=

N

ii
n I  denotes the random size of the union. If we 

are interested in how much the samples will overlap on average, the expected size of the overlap is given 

by the sum    1 2

=1
.

N

i ii
   

The second order inclusion probabilities  1, 2
ij  for the union    1 2S S  can be written in terms of first 

and second order inclusion probabilities of the two respective designs. Let    1 2= ( ,B i S S   
   1 2 ),j S S   then    1, 2 = Pr .ij B  By conditioning on the outcomes for i  and j  in  1S  we get the 

following four cases  

 

   

     

         

         

           

11 1

1 1 21 1

1 1 21 1

1 1 1 21 1

1 , 1

2 ,

3 ,

4 , 1

ij

i ij j

j ij i

i j ij ij

i S j S

i S j S

i S j S

i S j S



  

  

   

 

  

  

    

Pr Prm m mm A A B A

  

where       = Pr ,ij i S j S      for = 1, 2.  The events ,mA = 1, 2, 3, 4,m  are disjoint and 

 4

=1
Pr = 1.mm

A  Thus, by the law of total probability, we have    1, 2 = Pr =ij B  

   4

=1
Pr Pr .m mm

B A A  This gives us  

                           1, 2 1 2 1 1 2 1 1 2 1 1 1= 1 .ij ij j i ij i j ij ij i j ij                    (3.2) 
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The equations (3.1) and (3.2) can be generalized to recursively obtain first and second order inclusion 

probabilities of the union of an arbitrary number k  of independent samples. After having derived 

probabilities for the union of the first two samples, we can combine the result with the probabilities of the 

third design using the same formulas and so on. To exemplify, let  1, ,
i
   be the first order inclusion 

probability of unit i  in the union of the first   samples. Then we have  

                                         1, , 1 1, , 1 1, , 1= ,i i i i i                 

as the first order inclusion probability of unit i  in the union of the first 1  samples. Similarly, for the 

second order inclusion probabilities we get the recursive formula  

                               

                 
        

1, , 1 1, , 1 1, , 1, , 1 1, , 1, ,

1 1, , 1, , 1, ,

=

1 .

ij ij j i ij i j ij

ij i j ij

       

   

  



   

   

             

      
  

Henceforth, for the combination of k  independent samples, we use the simplified notation 
 1, ,= ,k

i i    1, ,= k
ij ij    and  1, ,= .k

i iI I   Since the individual samples may overlap, the resulting 

design is not of fixed size. The unbiased combined single count (SC) estimator, which has Horvitz-

Thompson form, is given by 

                                                                      SC
ˆ = .i

i S i

y
Y


   

The variance is  

                                                                   SC
=1 =1

ˆ = ,
N N

ji
ij i j

i j i j

yy
V Y   

 
   

and an unbiased variance estimator is  

                                                                   SC
=1 =1

ˆ ˆ = .
N N

j i ji
ij i j

i j i j ij

y I Iy
V Y   

  
   

For the combination of independent samples with positive first order inclusion probabilities we always have 

> 0ij  for all pairs  , ,i j  which is the requirement for the above variance estimator to be unbiased. In 

terms of MSE it may be beneficial not to use the single count estimator, but instead use an estimator that 

accounts for the random sample size. However, here we restrict ourselves to using only unbiased estimators. 

 
3.2  Combining with multiple count 
 

We first look at how to combine two independent samples  1S  and  2S  selected from the same 

population, where we allow for each unit to possibly be included multiple times. The number of inclusions 

of unit i  in the combined sample is denoted by  1, 2 ,iS  and it is the sum of the number of inclusions of unit 
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i  in the two samples we combine, i.e.,      1, 2 1 2= ,i i iS S S  where  
iS   is the number of inclusions of unit 

i  in sample .  The expected number of inclusions of unit i  in the combination is given by  

                                                       1, 2 1, 2 1 2= = ,i i i iE S E E E  (3.3) 

where     =i iE E S   is the expected number of inclusions for unit i  in sample   ,S  = 1, 2.  The 

(possibly random) sample size is the sum  1, 2

=1

N

ii
S  of all individual inclusions and the expected sample 

size is the sum  1, 2

=1

N

ii
E  of all individual expected number of inclusions. It can be shown that  

                                                         1, 2 1, 2 1, 2 1 1 2 2 1 2= = ,i j ij ij i j i j ijE S S E E E E E E E    (3.4) 

where       = ,ij i jE E S S   = 1, 2  are the second order of expected number of inclusions in sample .  

Obviously    =ij ijE    if the design for sample   is without replacement. Note that as  
iS   may take other 

values than 0 or 1 we have that  
iiE   is generally not equal to   ,iE   but    = .ii i    The equations (3.3) and 

(3.4) can be used recursively to obtain  
iE   and  

ijE   for the combination of an arbitrary number k  of 

independent samples. We then get the recursive formulas  

                                                    1, , 1 1, , 1=i i iE E E        

and  

                                                            1, , 1 1, , 1, , 1 1, , 1 1= .ij ij i j j i ijE E E E E E E                  

The previous results and (3.4) follow from the fact that      1, , 1 1, , 1=i i iS S S       and that  1, ,
iS    and 

 1
iS   are independent. For example, we have  

       

                 
                

           

1, , 1 1, , 1 1, , 1 1, , 1 1, , 1

1, , 1, , 1, , 1 1, , 1 1 1

1, , 1, , 1 1, , 1 1

= = =

=

.

ij i j i i j j

i j i j j i i j

ij i j j i ij

E E S S E S S S S

E S S S S S S S S

E E E E E E

    

   

  

 

  

  

           

           

        

  

For the combination of k  independent samples we now use the simplified notation  1, ,= ,k
i iE E   

 1, ,= ,k
ij ijE E   and  1, ,= .k

i iS S   The total Y  can be estimated without bias with the multiple count (MC) 

estimator, of which the Hansen-Hurwitz estimator (Hansen and Hurwitz, 1943) is a special case. It is given 

by  

                                                        MC
=1

ˆ = .
N

i
i

i i

y
Y S

E
   

We get the Hansen-Hurwitz estimator if = ,i iE np  where n  is the number of units drawn and ,ip  with 

=1
= 1,

N

ii
p  are probabilities for a single independent draw. The variance of MCŶ  can be shown to be  

                                                    MC
=1 =1

ˆ = .
N N

ji
ij i j

i j i j

yy
V Y E E E

E E
   

A variance estimator is  



358 Grafström et al.: On combining independent probability samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

    MC
=1 =1

ˆ ˆ = .
N N

j i ji
ij i j

i j i j ij

y S Sy
V Y E E E

E E E
   

It follows directly that the above variance estimator is unbiased, because when combining independent 

samples with positive first order inclusion probabilities we always have > 0ijE  for all pairs  , .i j  

 
3.3  Comparing the combined and separate estimators 
 

Two examples that illustrate that the combined estimator is not necessarily as good as the best separate 

estimator. 
 

Example 3: Assume that the first sample,  1 ,S  is of fixed size with  1 ,i iy   and that the second is a 

simple random sample with  2 = .i n N  Then the Horvitz-Thompson estimator  
 

1

1
1̂ = ,i ii S

Y y 
  has 

zero variance, but the combined single count estimator with        1 2 1 2=i i i i i       has positive 

variance. Thus the combined estimator is worse than the best separate estimator.  
 

Example 4: Assume that the design for the first sample is stratified in such a way that there is no variation 

within strata. Then the separate estimator  
 

1

1
1̂ = i ii S

Y y 
  has zero variance. If the first sample is 

combined with a non-stratified second sample, then the resulting design does not have fixed sample sizes 

for the strata. Thus, the combined estimator has a positive variance.  
 

These examples tell us that we need to be careful before combining very different designs, such as an 

unequal probability design with an equal probability design or a stratified with a non-stratified sampling 

design. Especially, we need to be careful if we plan to estimate the total directly based on the combined 

sample. When combining samples from relatively similar designs, it is however likely that the combined 

estimator becomes better than the best of the separate estimators. 

Next, we investigate how to use the combined approach for estimation of the separate variances and then 

use the linear combination estimator. In fact, as we will see later, using the combined approach for variance 

estimation of separate variances can act stabilizing for the weights in the linear combination with weights 

based on estimated variances. There is a sort of pooling effect for the variance estimators when they are 

estimated with the same set of information. 

 
3.4 Using the combined sample for estimation of variances of separate 

estimators 
 

An alternative to estimating directly the total Y  based on the combined design is to use the combined 

design to estimate the variances of the separate estimators, and then proceed with a linear combination of 

the separate estimators. We assume access to k  independent samples and that we want to estimate the 

variance of a separate estimator, whose variance is a double sum over the population units. There are two 

main options for the variance estimator; multiply by  
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 ori j i j

ij ij

I I S S

E
  

in the variance formula to obtain an unbiased estimator of the variance based on the combination of all the 

k  samples   ,S  = 1, , .k   For example, assuming that the variance of 1̂Y  is  

                                                             
1 1 1

1 1 1
=1 =1

ˆ = ,
N N

ji
ij i j

i j i j

yy
V Y   

 
   

we can use the combination of   ,S  = 1, , ,k   to estimate  1̂V Y  by the single count estimator  

                                                          
1 1 1

SC 1 1 1
=1 =1

ˆ ˆ =
N N

j i ji
ij i j

i j iji j

y I Iy
V Y   

 
   

or the multiple count estimator  

                                                         
1 1 1

MC 1 1 1
=1 =1

ˆ ˆ = .
N N

j i ji
ij i j

i j iji j

y S Sy
V Y

E
  

 
   

Note that  1, ,= ,k
ij ij    1, ,= ,k

i iI I   1, ,= k
ij ijE E   and  1, ,= ,k

i iS S   so the above variance estimators 

use all available information on the target variable. Hence, these variance estimators can be thought of as 

general pooled variance estimators. It follows directly that both estimators are unbiased because all designs 

have positive first order inclusion probabilities, which imply that all ij  and all ijE  are strictly positive. 

Interestingly, the above variance estimators are unbiased even if the separate design 1 has some second 

order inclusion probabilities that are zero, which prevent unbiased variance estimation based on the sample 
 1S  alone. 

Despite the appealing property of producing an unbiased variance estimator for any design, the above 

variance estimators cannot be recommended for designs with a high degree of zero second order inclusion 

probabilities (such as systematic sampling). The estimators can be very unstable for such designs and can 

produce a high proportion of negative variance estimates. 

As we will see, if we intend to use a linear combination estimator, it is important that all variances are 

estimated in the same way. Then it is likely that the ratios, e.g.,  

 
 
 

 
 

SC 1 MC 1

SC 2 MC 2

ˆ ˆ ˆ ˆ
and

ˆ ˆ ˆ ˆ

V Y V Y

V Y V Y
  

become stable (have small variance). The ratios become more stable because the estimators in the numerator 

and denominator are based on the same information and are estimated with the same weights for all the pairs 

 ,i j  in all estimators. With estimated variances we get  

 
 
 

1

=1

ˆ ˆ
ˆ = ,

ˆ ˆ

k
i

i
j j

V Y

V Y
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so if the ratios of variance estimators have small variance then ˆ i  has small variance. The weighting in the 

linear combination *ˆ
LY  then becomes stabilized. As the following example demonstrates, the ratio of the 

variance estimators can even have zero variance. Thus it can sometimes provide the optimal weighting even 

if the variances are unknown. 
 

Example 5: Assume we want to combine estimates resulting from two simple random samples of different 

sizes. This can of course be done optimally without estimating the variances, but as an example we will use 

the above approach to estimate the separate variances by use of the combined sample. In this case the use 

of the estimators  SC 1
ˆ ˆV Y  and  SC 2

ˆ ˆV Y  provides the optimal weighting, and so does  MC 1
ˆ ˆV Y  and 

 MC 2
ˆ ˆ .V Y  This result follows from the fact that if both designs are simple random sampling we have  

 
 
 

 
 

 
 

SC 1 MC 1 1

SC 2 MC 2 2

ˆ ˆ ˆ ˆ ˆ
= = ,

ˆ ˆ ˆ ˆ ˆ

V Y V Y V Y

V Y V Y V Y
  

which is straightforward to verify. For two simple random samples the situation corresponds to using a 

pooled estimate for 2S  (the population variance of )y  in the expressions for the variance estimates, and 

this pooled estimate is then cancelled out in the calculation of the weights.  
 

The conclusion is that this procedure is likely to provide a more stable weighting also for designs that 

deviate from simple random sampling as long as the involved designs have large entropy (a high degree of 

randomness). The problem of bias for the linear combination estimator with estimated variances will be 

reduced compared to using separate and thus independent variance estimators. 

We believe that this can be a very interesting alternative, because the estimator of the total based on the 

combined design does not necessarily provide a smaller variance than the best of the separate estimators. 

With this strategy we can improve the separate variance estimators, especially for a smaller sample (if data 

is available for a larger sample). Hence the resulting linear combination with jointly estimated variances 

can be a very competitive strategy. 

With single count we might use a ratio type variance estimator such as the following  

             

2
1 1 1

1 1 1
=1 =11, ,

ˆ ˆ = ,
N N

j i ji
R ij i j

i jk iji j

y I IN y
V Y   

  




  

where 1, , =1 =1
= .i j

ij

N N I I

k i j     For multiple count we can replace i j ijI I   with .i j ijS S E  This ratio 

estimator uses the known size of the population of pairs    2, ,1, 2, ,i j N   which is 2 ,N  and divides 

by the sum of the sample weights for the pairs. Note that   2
1, , = .kE N   This correction is useful because 

the number of pairs in the estimator may be random (since the union of the samples may have random size). 

This rescales the sample (of pairs) weights to sum to 2 .N  This will introduce some bias (as usual for ratio 

estimators), but the idea is that this will reduce the variance of the variance estimator. However, this 

approach is only useful if we are interested in the separate variance as the correction term will be the same 

for all separate variance estimators. Hence it does not change the weighting of a linear combination estimator 

with estimated variances. 
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4  Simulation examples 
 

Two Monte-Carlo simulation examples are presented here. In the first example we combine two Poisson 

samples using inclusion probabilities approximately proportional to the target variable. In the second 

example we combine an unstratified simple random sample with a stratified simple random sample. 

 
4.1  Combining two Poisson samples 
 

We generate a population of size = 200,N  with an auxiliary variable  2= 20, = 16 .iX N    

The target variable is generated as  = = ,i i i i iY X x x    where   20, 20 .i iN x  Two sets of 

inclusion probabilities are generated    1 2 ,i i ix    where  1
1=1

=
N

ii
n  and  2

2=1
= .

N

ii
n  We let 

the expected sample sizes be 1 = 15n  and 2 = 25.n  For simplicity we let both designs be Poisson designs 

(where units are selected independently). This allows us to calculate exactly the variances for both separate 

estimators (and thus the optimal linear combination) and for the combined samples with single and multiple 

count. For the strategies with linear combination using estimated variances, we performed a Monte-Carlo 

simulation with 1,000,000 repeated sample selections. True variances for the two separate HT estimators, 

the SC/MC estimators for the combined samples and the optimal linear combination of the separate 

estimators are presented (Table 4.1). Simulation results for the different linear combinations with estimates 

variances are also presented (Table 4.1). 

 
Table 4.1 
Results for the combination of Poisson samples. True variances for the two separate HT estimators, the SC/MC 
estimators for the combined samples and the optimal linear combination of the separate estimators. Simulation 
results, in terms of estimated bias and MSE, for three linear combination estimators with estimated variances 
 

Estimator   Bias (Rel. bias)   MSE  

1̂Y    0   1,053,083 

2Ŷ    0   596,069 

SCŶ    0   361,088  

MCŶ    0   380,929  

ˆ
LY  Optimal   0   380,626 

*ˆ
LY  Separate   -92.8 (-2.24%)   412,248 

*ˆ
LY  Pooled SC   1.6 (+0.04%)   381,106 

*ˆ
LY  Pooled MC   1.6 (+0.04%)   381,106 

 
Using combined (pooled) variance estimators reduced both the bias and the variance for a linear 

combination in comparison to using separate variance estimators. For this example, the linear combination 

with pooled variance estimation came very close to the optimal linear combination in performance. The 

negative bias with separate variance estimators is mainly due to a positive correlation between the total 
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estimator and its variance estimator under the Poisson design. For this setting, the best result was obtained 

by combining the samples using a single count. 

 
4.2  Combining an unstratified SRS with a stratified SRS 
 

Here we generated a population of size = 1,000,N  with two strata of sizes 1 = 600N  and 2 = 400.N  

The target variable ,iy = 1, , ,i N  was generated as follows. In stratum 1 there were 500 ’siy  equal to 

zero and the other 100 ’siy  were drawn from  2
1 = 10, = 4 .N    In stratum 2 there were 300 ’siy  

equal to zero and the other 100 ’siy  were drawn from  2
2 = 15, = 4 .N    The first sample is an 

unstratified simple random sample of size = 50n  and the second sample is a stratified simple random 

sample with stratum sample sizes 1 = 30n  and 2 = 20.n  The variances for both separate HT estimators 

and for the combined samples with single and multiple count were calculated exactly. A Monte-Carlo 

simulation with 10,000 repetitions was performed to evaluate the performance of a linear combination 

estimator with estimated variances. The results are presented in Table 4.2. Bias is reduced by using a linear 

combination with pooled variance estimators compared with using separate variance estimators. Also for 

this setting, the best result was obtained by combining the samples using a single count. 

 
Table 4.2 
Results for the combination of a SRS and a stratified SRS. True variances for the two separate HT estimators, 
the SC/MC estimators for the combined sample and the optimal linear combination of the separate estimators. 
Simulation results, in terms of estimated bias and MSE, for three linear combination estimators with estimated 
variances 
 

Estimator   Bias (Rel. bias)   MSE  

1̂Y    0   516,835 

2Ŷ    0   498,321 

SCŶ    0   248,888  

MCŶ    0   253,789  

ˆ
LY  Optimal   0   253,704 

*ˆ
LY  Separate   -77 (-3%)   287,680 

*ˆ
LY  Pooled SC   9 (+0.4%)   257,229  

*ˆ
LY  Pooled MC   9 (+0.4%)   257,217 

 
5  Discussion 
 

The simulation examples in the previous section are only intended to demonstrate the different 

approaches and we make no claim of the generality of the result. However, we find it very likely that using 

pooled variance estimators is better than using separate variance estimators in a linear combination 

estimator, especially in cases where the separate total estimators are highly correlated to their variance 

estimators. 
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We have presented in detail how to combine independent probability samples and derived corresponding 

design features needed to do unbiased estimation and variance estimation. The danger of using the combined 

sample approach for very different designs has been illustrated. Moreover, we have shown that there is often 

a risk for a strong positive correlation between the HT estimator and its variance estimator. Such dependence 

can be a source for bias if estimated variances are used in a linear combination. Thus, as an alternative 

approach, we have shown how to use the combined sample to estimate separate variances. This alternative 

approach can lead to more stable weights in a linear combination of separate estimators, and has potential 

to reduce both bias and variance. 

There are of course limitations to when this methodology can be applied due to our assumption of fully 

known designs and use of the same frame with identifiable units. Sensitivity for deviations from some of 

these assumptions, such as having unidentifiable units or using approximate second order inclusion 

probabilities, needs further investigation. 

In particular, knowledge of this methodology is important if an initial sampling effort was proven 

insufficient. Such situations are common in e.g., environmental monitoring (Christensen and Ringvall, 

2013). Then a complementary sample may be designed in such a way that it allows for a combination with 

improved efficiency. 
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