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Development of a small area estimation  
system at Statistics Canada 

Michel A. Hidiroglou, Jean-François Beaumont and Wesley Yung1 

Abstract 

The demand for small area estimates by users of Statistics Canada’s data has been steadily increasing over recent 
years. In this paper, we provide a summary of procedures that have been incorporated into a SAS based 
production system for producing official small area estimates at Statistics Canada. This system includes: 
procedures based on unit or area level models; the incorporation of the sampling design; the ability to smooth the 
design variance for each small area if an area level model is used; the ability to ensure that the small area estimates 
add up to reliable higher level estimates; and the development of diagnostic tools to test the adequacy of the 
model. The production system has been used to produce small area estimates on an experimental basis for several 
surveys at Statistics Canada that include: the estimation of health characteristics, the estimation of under-
coverage in the census, the estimation of manufacturing sales and the estimation of unemployment rates and 
employment counts for the Labour Force Survey. Some of the diagnostics implemented in the system are 
illustrated using Labour Force Survey data along with administrative auxiliary data. 

 
Key Words: Small area estimation; Area level model; Unit level model; EBLUP; Hierarchical Bayes methods; Official 

Statistics. 

 
 

1  Introduction 
 

Today’s data users are becoming more and more sophisticated and are asking for more data and at more 

detailed levels. For National Statistical Offices (NSOs) facing declining response rates, producing data at 

finer levels of detail is a particularly daunting challenge. Small area estimation techniques are one way that 

can be considered to meet this demand to produce estimates for specified sub-populations or small areas. A 

small area refers to a subgroup of the population for which the sample size is so small that direct estimates 

are not reliable enough to be published. Examples of small areas include a geographical region (e.g., a 

province, county, municipality, etc.), a demographic group (e.g., age by sex), a demographic group within 

a geographic region or a detailed industry group. The demand for small area data has been recognized for 

years (see Brackstone, 1987), but recently, it has greatly increased as noted in the spring 2014 report of the 

Auditor General of Canada.  

The study of small area estimation procedures has a long history at Statistics Canada, beginning in the 

seventies with Singh and Tessier (1976) and Ghangurde and Singh (1977). Drew, Singh and Choudhry 

(1982) proposed a sample dependent procedure to estimate employment characteristics below the provincial 

level. Dick (1995) modeled net undercoverage for the 1991 Canadian Census of Population. The 

development of a small area estimation system suited to Statistics Canada surveys is well-timed, as there is 

now a great deal of literature written on the subject, including the books by Rao (2003) and Rao and Molina 

(2015). 
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Four papers that have had a great impact in small area estimation (SAE) are Gonzalez and Hoza (1978), 

Fay and Herriot (1979), Battese, Harter and Fuller (1988), and Prasad and Rao (1990). Gonzalez and Hoza 

(1978) were among the first to propose small area estimation procedures (mainly synthetic estimation). Fay 

and Herriot (1979) developed procedures to estimate income for small areas using the long form Census 

Data. This method and its variants are among the most widely used procedures for producing small area 

estimates through the integration of auxiliary data with direct survey estimates. Battese et al. (1988) 

developed a small area procedure to estimate crop areas using survey and satellite data available for 

individual units. Finally, Prasad and Rao (1990) derived a nearly unbiased estimator of the model-based 

mean squared error for both the Fay-Herriot and Battese-Harter-Fuller estimators. 

The statistical theory of model-based SAE is rather complex and much of the software available at 

National Statistical Offices has been programmed on a one-time basis and, as such, is not appropriate in a 

production environment. It was therefore decided to develop a system as it would be beneficial as a 

production tool, as well as a learning tool for employees. At the time that this was decided, around 2006, 

there existed computer programs developed by the EURAREA (2004) project for small area estimation. 

However, this set of programs was no longer in development mode and did not represent the latest advances 

in small area estimation. Therefore, a flexible small area estimation system that would address the needs of 

producing small area estimates in production was developed at Statistics Canada. Some of the basic 

requirements of this small area system included: allowing for both area and unit level models; incorporating 

the sampling design in the estimation of the parameters of interest and the mean squared error; ensuring that 

the small area estimates would add up to reliable higher level estimates (i.e., totals), and developing 

diagnostic tools to test the adequacy of the models used for small area estimation. A prototype system, 

written in SAS, was therefore developed by Estevao, Hidiroglou and You (2015) to reflect these 

requirements. This prototype has been transformed into a production system that is currently used by 

Statistics Canada. 

The paper is organized as follows. Section 2 introduces the notation used in the article. Section 3 

discusses the options available in the production system for the area level model and Empirical Best Linear 

Unbiased Prediction (EBLUP) methods. The options for the unit level model with EBLUP methods are 

presented in Section 4. The Hierarchical Bayes approach is presented in Section 5 for the area level model. 

Section 6 illustrates the production system using Statistics Canada’s Labour Force Survey. Finally, some 

conclusions are given in Section 7. 

 
2  Core notation and background 
 

We first introduce some notation that will define the various small area estimators included in the 

production system. Let U  denote a population of size .N  This population is partitioned into M  mutually 

exclusive and exhaustive areas, where each area , 1, ,iU U i M    has iN  observations. A sample, 

,s  of size n  is drawn from the population using a well-defined probability mechanism  p s  and the 

resulting sample is split into areas , 1, , .i i is Ms U    Note that, for some of the areas, the realized 
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sample size in  may be zero. The set of  m m M  areas, where in  is strictly greater than 0, will be denoted 

as .A  The set of the remaining areas, where in  is equal than 0, will be denoted as .A  

Let  
 :

, ,j s j s
jp s U


   be the inclusion probabilities where  :s j s  denotes summation over 

all samples s  containing unit .j  We denote the sampling weight for unit j  as ,jd  where 1.j jd    The 

final weight associated with unit j  will be denoted as .jw  This weight will normally be the product of the 

original design weight  jd  times an adjustment factor that reflects the incorporation of available auxiliary 

data (via regression or calibration), as well as non-response adjustments. Note that the auxiliary data used 

in the adjustment factor may not necessarily be the same as those used for small area estimation.  

The objective of a small area estimation system is to estimate a population parameter i  (e.g., a mean 

or a total) for each area i  for a given variable of interest y  when some area sample sizes in  are too small 

to use direct estimation procedures. A direct estimator of i  is one that uses values of the variable of 

interest, ,y  strictly from the sample units in area .i  However, a major disadvantage of such estimators is 

that unacceptably large standard errors may result: this is especially true if the area sample size is small. 

Small area procedures use indirect estimators that borrow strength across areas, by using models which link 

all areas through some common parameters. Indirect estimators will be efficient (i.e., increase the effective 

sample size and thus decrease the standard error) if the model holds for each area. Departures from the 

model will result in reduced accuracy. There is a wide variety of indirect estimators available and a good 

summary is provided in Rao and Molina (2015).  

Small area estimators are classified as area or unit level depending on the level at which the modeling is 

performed. Area level small area estimators are based on models linking a given parameter of interest to 

area-specific auxiliary variables. Unit level small area estimators are based on models linking the variable 

of interest to unit-specific auxiliary variables. Area level small area estimators are computed if the unit level 

area data are not available. They can also be computed if the unit level data are available by aggregating 

them to the appropriate area level. This might be useful in practice because the area level small area 

estimators may be less prone to outliers than their unit level counterpart. 

 
3  Area level model 
 

The area level small area estimator first appeared in the seminal paper of Fay and Herriot (1979). 

Following that paper, let the parameter of interest be ;i  common examples are totals, ,
i

i jj U
Y y


   or 

means, .i i iY Y N  As noted above, the vector of auxiliary variables may differ from the one used in 

direct estimation and is denoted as .z  The area level model can be expressed as two equations.  

The first equation, commonly known as the sampling model, is given by  

 î i ie    (3.1) 

and expresses the direct estimate î  in terms of the unknown parameter i  plus a random error ie  due to 

sampling. The sampling errors ie  are independently and identically distributed with mean 0 and variance 
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:i  that is   0p i iE e    and   ,p i i iV e    where p  denotes expectation in terms of the sample 

design. Note that i  is also the design variance of î  and is typically unknown.  

The second equation, known as the linking model, is given by  

 T
i i i ib v  z β  (3.2) 

and expresses the parameter i  as a fixed effect T
iz β  plus a random effect iv  multiplied by .ib  In the 

production system, the ib  term has a default value of one but can be specified by the user to control 

heteroscedastic errors or the impact of influential observations. The random effects iv  are independently 

and identically distributed with mean 0 and unknown model variance 2 ,v  that is   0m iE v   and 

  2
m i vV v   where mE  denotes the model expectation and mV  the model variance. The random errors ie  

are independent of the random effects .iv  The combination of the sampling model and linking model results 

in a single generalized linear mixed model (GLMM) given by 

 ˆ .T
i i i i ib v e   z β  (3.3) 

From the Fay-Herriot model (3.3), we observe that  ˆ T
mp i iE   z β  and   2 2ˆ ,mp i i v iV b      where 

 i m iE   is the smoothed design variance of ˆ .i  In general, we cannot treat i  as fixed, as it is not 

strictly a function of auxiliary data. If the 2 ’sv  and ’si  are known, the solution to the GLMM yields the 

Best Linear Unbiased Predictor (BLUP), BLUP
i  

 
 

BLUP

ˆ 1 for

for

T
i i i i

i
T
i

i A

i A

  


    


z β

z β




 
 (3.4) 

where    2 2 2 2
i i v i i vb b      and     

1
2 2 2 2ˆ .T

i i i i v i i i i vi A i A
b b    



 
   β z z z    

There are four recursive procedures for estimating 2
v  and β  in the production system. The first three 

assume that i  is known, or that a smoothed version of it is available (see the following section for details). 

Under this assumption, the variance components can be computed via the Fay-Herriot procedure (FH) as 

outlined in Fay and Herriot (1979), the restricted maximum likelihood (REML), or the Adjusted Density 

Maximization (ADM) due to Li and Lahiri (2010). The fourth procedure, WF, due to Wang and Fuller 

(2003) assumes that i  is estimated by ˆ i  given that 2.in   The WF procedure does not require any 

smoothing of the estimated ˆ i  values before estimating 2 .v  Wang and Fuller (2003) carried out simulations 

with in  ranging from 9 to 36 and found that their procedure yielded reasonable estimates of i  and its 

estimated mean squared error. 

The main difference between these four procedures is how the 2 ’sv  are computed. They are all based 

on an iterative scoring algorithm that obtains 2ˆ v  as an estimate of the model variance 2 .v  The FH, REML, 

and WF procedures may yield 2ˆ ’sv  that are smaller than zero. If this occurs, the 2ˆ ’sv  are set to zero for 

both the FH and REML procedures. A drawback of truncating the estimated 2
v  to zero is that the resulting 

small area estimator will be synthetic for all areas. Li and Lahiri (2010) suggested the ADM as a way to 
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address the problem of obtaining negative 2ˆ v  by maximizing an adjusted likelihood defined as a product 

of the model variance and a standard likelihood. Although the ADM method always gives a positive solution 

for 2 ,v  it should be used cautiously because it overestimates the model variance. The REML, FH and ADM 

procedures use the smoothed values of the estimated ˆ i  values obtained from the sample or some estimate 

provided by the user. For the WF procedure, if 2ˆ 0,v   Wang and Fuller (2003) suggested to set 2ˆ v  to 

 2ˆ ˆ0.5  ,vV   where  

    
 
 

2
22 2 2 2

ˆˆ ˆˆ ˆ2
1

i
v i i i v

i A i

V b
n


   



 
    
   

and 
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2 2

1

2 2

1
ˆˆ

1
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1
ˆˆ

1

i
i v i

i
i

i
i v ii A

i

n
b

n

n
b

n

 


 







 
  

 
  


  

Plugging 2ˆ v  and an estimate of ’si  into the BLUP ,i  defined by equation (3.4), yields the Empirical 

Best Linear Unbiased Predictor (EBLUP), EBLUPˆ .i  It is given by 

 
 

EBLUP

ˆ ˆˆ ˆ1 for ˆ
ˆ for 

T
i i i i

i
T
i

i A

i A

  


    


z β

z β
  

where    2 2 2 2ˆ ˆ ˆ ,i i v i i vb b         
1

2 2 DIR 2 2ˆˆ ˆ ˆ ,T
i i i i v i i i i vi A i A

b b    


 
   β z z z   and i  is 

chosen according to the procedure used. For the REML, FH and ADM procedures the ’si  are the smoothed 

values of the estimated ˆ i  values obtained from the sample or some estimate provided by the user. For the 

WF procedure, we have that ˆ .i i   If the estimated model variance 2 2ˆi vb   is relatively small compared 

with ,i  then ˆi  will be small and more weight will be attached to the synthetic estimator ˆ .T
iz β  Similarly, 

more weight is attached to the direct estimator, ˆ ,i  if the design variance i  is relatively small.  

Details of the required computations can be found in the methodology specifications for the production 

system in Estevao et al. (2015). 

 
3.1  Estimation of the smooth design variance 
 

The design variance, ,i  could be used as an estimator of the smooth design variance  i m iE   if 

it were known. In most cases, it is unknown. To get around this difficulty, a design-unbiased variance 

estimator ˆ i  of i  is assumed to be available; i.e.,  ˆ .p i iE    Under this assumption, we have that 

    ˆ .mp i m i iE E       
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A simple unbiased estimator of the smooth design variance i  is ˆ .i  However, ˆ i  may be quite 

unstable when the sample size in domain i  is small. A more efficient estimator is obtained by modelling 

ˆ i  given .iz  Dick (1995) and Rivest and Belmonte (2000) considered smoothing models given by  

  ˆlog ,T
i i i  x α   

where ix  is a vector of explanatory variables that are functions of ,iz α  is a vector of unknown model 

parameters to be estimated, and i  is a random error with   0mp iE    and constant variance 

 2 .mp iV   We also assume that the errors i  are identically distributed conditionally on ,iz  

1, , .i m   From the above model, we observe that 

    ˆ exp ,T
i mp i iE   x α   

where   exp .mp iE    Dick (1995) estimated i  by omitting the factor .  Rivest and Belmonte (2000) 

estimated   by assuming that the errors i  are normally distributed. However, we observed empirically 

that the resulting estimator of   is sensitive to deviations from the normality assumption. This assumption 

is avoided by using a method of moments (see Beaumont and Bocci, 2016). This leads to the unbiased 

estimator of   given by 

  
 

1

1

ˆ
ˆ .

exp

m

ii
m

T
ii






  


α
x α

  

An estimator α̂  of the vector of unknown model parameters α  is necessary to estimate .i  It is obtained 

using the ordinary least squares method as 

  
1

1 1

ˆˆ log .
m m

T
i i i i

i i




 

  
 
 α x x x   

The estimator ˆ
i  of i  is then given by 

    ˆˆ ˆ ˆexp .T
i i  x α α   

A nice property of ˆ
i  is that the average of the smooth design variance estimator, ˆ ,i  is equal to the 

average of the direct variance estimator, ˆ ;i  i.e., 

 1 1
ˆ ˆ

.

m m

i ii i

m m

 
  

  

This ensures that ˆ
i  does not systematically overestimate or underestimate  ˆ .i mp iE   

 
3.2  Benchmarking 
 

If the parameter of interest i  is a total   ,i iY   the user may wish to have the sum of the small area 

estimates, EBLUPˆ ˆ ,ii A A
 

 
   agree with the estimated totals ˆ

îi A
Y Y


   at the overall sample level ;s  
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i.e., ˆ ˆ.Y   In the case of a mean, ,i iY   this benchmarking condition becomes EBLUPˆ
i ii A A

N 
 

  
ˆ ,i ii A

N 
  where ˆˆ .i iY   

Two methods are available in the production system to ensure benchmarking for area based small area 

estimates. The first one is based on a difference adjustment and the second one is based on an augmented 

vector. They are valid for any method used to compute EBLUP
î  or whether the variance estimate i  has 

been smoothed or not. The benchmarking based on a difference adjustment is an adaptation of the 

benchmarking given in Battese et al. (1988). The benchmarking based on an augmented vector is due to 

Wang, Fuller and Qu (2008). 

Difference adjustment: For this method, the EBLUP
î  estimator is adjusted only for those areas where the 

realized sample size 1,in i A   and the synthetic estimates ˆT
iz β  for i A  are left as is. The resulting 

benchmarked estimator is given by EBLUP,ˆ b
i  and is defined as follows 

 
EBLUPEBLUP *

EBLUP,
ˆ ˆ ˆ for

ˆ

ˆ for

i i d db
d Ai

T
i

i A

i A

    
 

       
 


z β

  

where     
1

2 2 2 2 2ˆ ˆ
A

i i i i v i i i vi U
b b      




       for ,i A 1,i   if the benchmarking is to a 

total, and ,i iN N   if the benchmarking is for the mean. The estimator *̂  is a value provided by the 

user that represents the total or mean of the y -values of population .U  The benchmarking ensures that 
EBLUP, *ˆ ˆ .b

i ii A A
  

 
  

Augmented vector: The vector T
iz  is augmented with ,i i  to form  * ,T T

i i i iz z   with i  and i  as 

previously defined. The resulting augmented generalized linear mixed model (GLMM) equation is given by 

 * * *ˆ T
i i i i ib v e   z β   (3.5) 

where  * 0m iE v   and  * *2 .m i vV v   The estimates for *β  and *2
v  are once more solved recursively 

for the four EBLUP procedures that we denote as EBLUP*ˆ .i  

The resulting benchmarked estimator EBLUP*,ˆ b
i  is given by 

 
 *

*
* EBLUP * * *

EBLUP ,

* *

ˆ ˆˆ ˆ1 forˆ
ˆ for

T
i i i ib

i
T

i

i A

i A

  


    


z β

z β
  

where    * 2 *2 2 *2ˆ ˆ ˆ ,i i v i i vb b      and     
1

* * * 2 *2 * 2 *2ˆˆ ˆ ˆ .T
i i i i v i i i i vi A i A

b b    


 
   β z z z   

All the components of 
*EBLUP ,ˆ b

i  are computed using the augmented model given by (3.5). It can be 

shown that 
*EBLUP ,ˆ ˆ ,b

i i i ii A A i A
   

  
   and hence the benchmarking holds. 

The difference adjustment and augmented vector methods are two ways that benchmarking can be 

satisfied. Wang et al. (2008) suggested other procedures that can be used. Specifically, they adapted the 

self-calibrated estimator You and Rao (2002) developed in the context of the unit level model to the area 
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level model. You, Rao and Hidiroglou (2013) obtained an estimator of the mean squared prediction error 

and its bias under a misspecified model. 

 
3.3  Mean squared error estimation 
 

The reliability of the EBLUP estimators is obtained as     2
EBLUP EBLUPˆ ˆMSE .i i iE     The 

expectation is with respect to models (3.3) for the non-benchmarked estimator, and (3.5) for the 

benchmarked estimator. 

The estimated Mean Squared Errors (MSEs) of the area level estimators are given in Table 3.1. The 

specific form of the g  terms and the estimated variances can be found in Rao and Molina (2015) or in 

Estevao et al. (2015). For the benchmarked estimators, the estimated MSE for the difference adjustment 

approach uses the non-benchmarked MSE formulas. For the case of the augmented vector approach, the 

MSE is based on augmenting the vector T
iz  with .i i  

 
Table 3.1 
MSE estimates (mse) for the area level estimators 
 

Estimator       mse 

Fay-Herriot         
0 1 2 3

FH

2 2

2 for
ˆmse ˆ ˆvar  for

i i i i

i T
i i i v

g g g g i A

b i A




    
 z β z

 

ADM         
0 1 2 3

ADM

2 2

2 for
ˆmse ˆ ˆvar   for

i i i i

i T
i i i v

g g g g i A

b i A




    
 z β z

 

REML         
1 2 3

REML

2 2

2 for
ˆmse ˆ ˆvar  for

i i i

i T
i i i v

g g g i A

b i A




   
 z β z

 

WF         
1 2 3 4

WF 

2 2

2 for
ˆmse ˆ ˆvar for

i i i i

i T
i i i v

g g g g i A

b i A




    
 z β z

 

 
The various g  terms in Table 3.1 can be interpreted as follows. The 0ig  is a bias correction term for 

FH and ADM. The 1ig  term given by 1 ˆ ,i i ig     accounts for most of the MSE if the number of areas is 

large. The 2ig  term accounts for the estimation of ,β  and 32 ig  accounts for the estimation of 2 .v  The 4ig  

term in the WF procedure reflects that the estimated value of ,i ˆ ,i  has been used. The estimated variance 

of ˆ ,β  given by    2 2

1

ˆ
ˆvar

T
i i

i vibi A  




  z zβ   is dependent on the particular procedure used to estimate 2 .v  

 
4  Unit level model  
 

The original unit level model was proposed by Battese et al. (1988). They assumed the following nested 

error model 
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 for 1, , andT
ij ij i ij iy v e i m j U    z β   (4.1) 

where  ind
20,i vv   are the random effects and are independent of the random errors, ,i je  with 

 ind
20, .i j ee   The production system includes a slight modification to the error structure of the random 

errors. That is,  ind
20, ,ij e ije a  where 0i ja   are positive constants that account for heteroscedasticity.  

The production system computes small area estimates for means  
i i

ic ij ij ijj U j U
Y c y c

 
    and 

totals   .
i

ic ij ij U
Y c Y


   The ijc  values are fixed positive constants known for all population units. The 

addition of ijc  was necessary to allow the use of the system by some business surveys conducted at Statistics 

Canada (see Rubin-Bleuer, Jang and Godbout, 2016). The available auxiliary data are either totals 

,
i

ic ij ijj U
c


 Z z  or means .

i i
ic ij ij ijj U j U

c c
 

  Z z  

In what follows, we provide the estimators of the population means ,icY  say SAEˆ ,i  where 1, , .i M   

Estimates of the corresponding totals ,icY  are obtained by multiplying SAE
î  by 

1
.iN

ijj
c

  

The design weighted sample mean of the ’sy  and ’sz  are respectively 

       1

i i

iwc ij ij ij ij ij
j s j s

y w c w c y


 
     

and 

        1
.

i i

iwc ij ij ij ij ij
j s j s

w c w c


 
  z z   

The model based weighted means are  

    1

i i

ia ij ij ij
j s j s

y a a y


 
     

and  

     1
.

i i

ia ij ij ij
j s j s

a a


 
  z z   

Battese et al. (1988) did not include survey design weights in their procedure, thereby forsaking design 

consistency unless the design was self-weighting. We refer to this estimator as EBLUP  EBLUPˆ .i  However, 

EBLUP is the most efficient estimator under model (4.1), with error structure  ind
20, ,ij e i je a  and this 

is the reason that it is included in the production system.  

Kott (1989), Prasad and Rao (1999), and You and Rao (2002) proposed the use of design-consistent 

model based estimators for the area means by including the survey weight. The You and Rao (2002) 

procedure was suitably modified to reflect the heteroscedastic residuals and the ’s.ijc  The resulting Pseudo-

EBLUP estimator, denoted as PEBLUP  PEBLUPˆ ,i  was included in the production system as it is design 

consistent. 

The EBLUP estimator is defined as  

 
  EBLUP

EBLUP

EBLUP

ˆˆ ˆ ifˆ
ˆ if

T

ia ia ic ia ia
i

T
ic

y i A

i A

 


    


Z z β

Z β
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where   1
2 2 2ˆ ˆ ˆ ˆ .

i
ia v e ij vj s

a   



    The terms iay  and ,iaz  are the previously defined model based 

weighted means for y  and z  respectively. The regression vector β  is estimated as 

    
1

EBLUP

1 1

ˆ ˆ ˆ .
i i

m m
T

ij ij ij iac iac ij ij ij ij iac iac ij
i j s i j s

a c a c y 


   

  
 
 β z z z z z   

The PEBLUP estimator, PEBLUPˆ ,i  is given by  

                         
  PEBLUP

PEBLUP

PEBLUP

ˆˆ ˆ ifˆ
ˆ if

T

iwc iwc ic iwc iwc
i

T
ic

y i A

i A

 


    


Z z β

Z β
  

where    12 2 2 2ˆ ˆ ˆ ˆ ,iwc v e iwc v       and     2 2
2 .

i i
iwc ij ij ij ij ijj s j s

w c w c a


 
    The terms iwcy  and 

,iwcz  are the previously defined design based weighted means for y  and z  respectively. The regression 

vector β  is estimated as 

                            
1

PEBLUP

1 1

ˆ ˆ ˆ
i i

m m
T

ij ij ij iwa iwa ij ij ij ij iwa iwa ij
i j s i j s

w a w a y 


   

  
 
 β z z z z z   

where   1
,

i i
iwa ij ij ij ij ijj s j s

w a w a


 
  z z   12 2 2 2ˆ ˆ ˆ ˆiwa v e iwa v       and with 2

iwa  computed as 

    2 22 .
i i

iwa ij ij ij ij ijj s j s
w a w a a 

 
    

The components of variance, 2
e  and 2 ,v  are estimated using the fitting-of-constants (not weighted by 

the survey weights) method, as given by Battese et al. (1988) or Rao (2003). The resulting estimators of 2
e  

are always greater than or equal to zero, but the estimator of 2
v  may be negative. If 2 0,v   it is set to 

zero, implying that there are no area effects. The associated estimated MSEs are obtained by extending You 

and Rao (2002) and Stukel and Rao (1997). 

Note that if the sample s  is selected from the universe ,U  the realized sampling fraction, ,i i if n N  

could be non-negligible. For estimating a population mean, ,iY  Rao and Molina (2015), accounted for non-

negligible sampling fractions by expressing it as  

  1i i is i isY f y f y     

where isy  is the sample mean of the thi  sampled area and isy  is the sample mean of the non-sampled units 

within that area. They predicted isy  using the unit level model given by equation (4.1). Their expressions 

correspond to the case when 1.ijc   This estimator was extended by Rubin-Bleuer (2014) to include the 

EBLUP and PEBLUP estimators for the case that ijc  is arbitrary. Specific details that also account for MSE 

estimation can be found in Estevao et al. (2015). 

 
4.1  Benchmarking 
 

The current production system does not have a procedure to benchmark the estimates obtained via the 

unit level model. However, the difference adjustment approach can be suitably modified to allow this. The 

EBLUP and PEBLUP estimators are of the form 
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* * * * SAE

SAE

SAE

ˆˆ ˆ( ) if 
ˆ

ˆ if 

T
i i ic i i

i
T
ic

y i A

i A

 


    


Z z β

Z β
  

where *ˆ ,i * ,iy * ,iz  and SAEβ̂  correspond to the terms defined previously: *ˆi  is equal to ˆia  for EBLUP, 

and to ˆiwc  for PEBLUP; *
iy  is equal to iay  for EBLUP, and to iwcy  for PEBLUP; *

iz  is equal to iaz  for 

EBLUP, and to iwcz  for PEBLUP; and, SAEβ̂  is equal to EBLUPβ̂  for EBLUP, and to PEBLUPβ̂  for PEBLUP. 

Suppose that SAE
î  needs to be benchmarked to *ˆ .  The corresponding benchmarked estimator is 

  
SAESAE *

SAE,

SAE

ˆ ˆ if
ˆ

ˆ if

i i d db
d Ai

T
ic

i A

i A

    
 

       
 


Z β

  

where    
1

2 .i d d i id A
    




   The i  term is defined as follows: 1i   if the benchmarking is to a 

total and i iN N   if the benchmarking is for the mean. Possible choices of the ’si  are 2 2 2ˆ ˆ ,v e ia    

  1
2

1
,in

ia ijj
a




   for EBLUP, and 2 2 2ˆ ˆv e iwc    for PEBLUP. 

 
4.2  Mean squared error estimation 
 

The mean squared error estimates of the unit level estimators are based on estimating its mean squared 

error, given model (4.1) and error structure  ind
20, .ij e ije a  Table 4.1 displays these estimated MSE’s. 

 
Table 4.1 
MSE estimates for the unit level estimators 
 

Estimator  mse 

EBLUP    
1 2 3

EBLUP

EBLUP 2

2 for  
ˆmse ˆ ˆvar for  

ia ia ia

i T
i i v

g g g i A

i A




   
 Z β Z

 

PEBLUP    
1 2 3

PEBLUP
PEBLUP 2

2 for
ˆmse ˆ ˆvar for

iw iw iw

i T
i i v

g g g i A

i A




   
 Z β Z

 

 
The various g  terms in Table 4.1 can be interpreted in a similar way to those associated with the area 

level MSE’s. The 1 ’sig  are denoted as 1iag  for EBLUP, and 1iwg  for PEBLUP account for most of the 

MSE if the number of areas is large. The 2 ’sig  account for the estimation of ,β  and the 32 ’sig  account for 

the estimation of 2
v  and 2 .e  

The estimated variances of EBLUPβ̂  and PEBLUPβ̂  are respectively given by  

    
1

EBLUP 2ˆ ˆˆvar
i

T
e ij ij ia ia ij

i A j s

a 


 

  
 
β z x z   

and 
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1 1

PEBLUP 2 * * * * * *ˆ ˆvar
i i i

T T T
e ij ij ij ij ij ij ij

i A j s i A j s i A j s

a
 

     

         
    
  β z z z z z z   

where  * ˆ .ij ij ij ij iwa iwaw a  z z z  

The specific form of the g  terms and the estimated variances can be found in Estevao et al. (2015). 

 
5  Hierarchical Bayes (HB) method 
 

The basic Fay-Herriot area level model includes a linear sampling model for direct survey estimates and 

a linear linking model for the parameters of interest. Such models are matched because i  appears as a 

linear function in both the sampling and linking models. There are instances when these equations are not 

matched such as when a function,   ,ih   is modelled as a linear function of explanatory variables instead 

of .i  The sampling model and linking model pair is 

 î i ie    (5.1) 

and 

   T
i i i ih b v  z β  (5.2) 

where  ind
0,i ie N   and  ind

20, .i vv N   

The model pair given by (5.1) and (5.2) is referred to as an unmatched model. Nonlinear linking models 

are often needed in practice to provide a better model fit to the data. For example, if the parameter of interest 

is a probability or a rate within the range of 0 and 1, a linear linking model with normal random effects may 

not be appropriate. A linking model, in this case, could be a logistic or log-linear model. Such a model was 

used to adjust counts for detailed levels for the 2011 Census of Canada. A good description of what is 

involved to carry out such an adjustment can be found in Dick (1995) and You, Rao and Dick (2004). 

The production system includes the following choices of  ih   

  

 

 

  

Matched Fay-Herriot FH  model

Unmatched log-linear model

Unmatched log cen

:  

log :  

lo sus undercount modg :  el.

i

i i

i i i

h

C



 

 




 




 (5.3) 

The inclusion of  i ih    corresponds to the matched model represented by equations (3.1) and (3.2). 

An advantage of choosing the Hierarchical Bayes method is that the estimated 2
v  cannot be negative. The 

function  log ,i  where i  is equal to the population mean ,iY  was used in Fay and Herriot (1979). Their 

context was to estimate per capita income (PCI) for small places in the United States with a population less 

than 1,000. The function   ,ih    log ,i i iC    was included to support the methodology to estimate 

the net undercoverage in Canadian Censuses. In this model, i  represents the number of individuals not 

counted in the census, while iC  is the known census count. As a result,  i i iC    is the proportion of 

individuals undercounted by the Census. 
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The sampling variances, ,i  are assumed known for all the linking models represented by (5.2). The 

variances are assumed to be estimated for the first two functions (the matched Fay-Herriot and unmatched 

log-linear model) given in (5.3). If the sampling variances, ,i  are assumed known, then the unknown 

parameters in the sampling model (5.1) and the linking model (5.2) can be presented in a hierarchical Bayes 

(HB) framework as follows  

  ˆ , , 1, ,i i i iN i m          

and 

     2 2 2, , .T
i v i i vh N b   z β   

If the sampling variances are unknown, they are estimated by adding  

   2
ii i i i dd        

where 2
id  follows a chi-square distribution with  1i id n   degrees of freedom. 

The model parameters ,β 2
v  and i  (when it is unknown) are assumed to obey prior distributions. The 

distributions used in the production system for β  and 2
v  are the flat prior,   1, β  and 

    1 22 2 .v v     If i  is estimated, the prior     1 2
i i     is added to the Bayesian model. These 

prior distributions are multiplied by the density functions of the distributions associated with the sampling 

and linking models. This yields a joint likelihood function in terms of the model parameters. This function 

is used to obtain a full conditional (posterior) distribution for each of the unknown parameters. For some of 

these, the resulting distribution has a tractable or well-known form. For others, the resulting distribution is 

a product of density functions with no known form. All HB methods involve estimation of the model 

parameters through repeated sampling of their respective full conditional distributions.  

Markov Chain Monte Carlo (MCMC) methods are used to obtain estimates from the full conditional 

distribution of each parameter. Gibbs sampling is used repeatedly to sample from the full conditional 

distributions. The Gibbs sampling method (Gelfand and Smith, 1990) with the Metropolis-Hastings 

algorithm (Chib and Greenberg, 1995) are used to find the posterior means and posterior variances; see 

Estevao et al. (2015) for details. The various estimators of i  resulting from (5.3) are denoted as HBˆ .i  

 
5.1  Benchmarked HB estimator 
 

Benchmarking of the estimators uses the difference adjustment method described in Section 3.2. That is, 

the benchmarked estimators HB
î  are computed as 

 
 HBHB *

HB,
ˆ ˆ ˆ forˆ

ˆ for

i i d db d A
i

T
i

i A

i A

    
 

    



z β

  

where     
1

2 2 2HB 2 2HBˆ ˆi i i i v i i i vi A
b b      




       for ,i A  and *̂  is the benchmark value. The 

terms i  are defined as follows: 1i   if the benchmarking is to a total, and i iN N   if the 



114 Hidiroglou et al.: Development of a small area estimation system at Statistics Canada 
 

 
Statistics Canada, Catalogue No. 12-001-X 

benchmarking is for the mean. The ’si  are either known or unknown. The *̂  can be a value provided by 

the user that represents the total or mean of the y -values of population .U  The benchmarking ensures that 
HB, *ˆ ˆ .b

i ii A A
  

 
  

 
6  Application to Labour Force Survey (LFS) data 
 

Statistics Canada’s LFS is a monthly survey with a stratified two-stage design. It is designed to produce 

reliable unemployment rate estimates for the 55 Employment Insurance Economic Regions (EIER) in 

Canada. The unemployment rate in any given area i  is defined as the ratio 

 
1

2

,i

i

jj U

i
jj U

y

y
 







  

where 1 jy  is a binary variable indicating whether person j  is unemployed  1 1jy   or not  1 0 ,jy   and 

2 jy  is a binary variable indicating whether person j  is in the labour force  2 1jy   or not  2 0 .jy   The 

direct estimator of i  is the calibration composite estimator described in Fuller and Rao (2001). See also 

Singh, Kennedy and Wu (2001) and Gambino, Kennedy and Singh (2001). It can be written in the weighted 

form 

    
1

2

ˆ ,i

i

j jj s
i

j jj s

w y

w y
 







  

where jw  is a calibration composite weight for person .j  

As mentioned above, the calibration composite estimator is reliable for the estimation of the 

unemployment rate for the 55 EIERs. There is also interest in obtaining reliable estimates for 149 areas 

(cities) in Canada. Among them, there are 34 Census Metropolitan Areas (CMA) and 115 Census Areas 

(CA). The CMAs are the largest cities in terms of population size and they usually have a large sample size 

as well. Some of the CAs have a very small sample size, sometimes even 0. For those CAs and other larger 

CAs, the sample size is not large enough to produce sufficiently reliable direct estimates of the monthly 

unemployment rate. Our objective was to investigate whether the Fay-Herriot model could be used to obtain 

monthly estimates that would be reliable enough to be published.  

We constructed an auxiliary variable 1 ,iz  for area ,i  given by EIB 15
1 ,i i iz N N   where EIB

iN  is the 

number of employment insurance beneficiaries in area i  and 15
iN   is the number of persons aged 15 years 

or older in area .i  The numerator is obtained from an administrative source, whereas the denominator is a 

Census projection computed by Statistics Canada. We used the vector  11, ,T
i izz  along with 1,ib   

1, , ,i m   to obtain SAE estimates. We used May 2016 data in this investigation to allow the comparison 

of direct and SAE estimates with 2016 Census estimates. 

Some of the 149 areas of interest had a very small sample size in the LFS: they were not used in the Fay-

Herriot and smoothing models. As a rule of thumb, we excluded from the models, areas where the number 
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of sampled persons in the labour force was smaller than 10. There were 9 such areas; among them, six had 

no sampled person in the labour force. Also, there were 9 other areas where the direct unemployment rate 

estimate, ˆ ,i  and its direct variance estimate, ˆ ,i  were both equal to 0. As these direct estimates were not 

deemed to be reliable enough, their associated areas were excluded from the models. This resulted in using 

only 131 areas in the models. For those areas, the small area estimates are EBLUP estimates, with the 

remaining 18 being synthetic estimates. 

The estimator ˆ i  of the direct variance i  was obtained via the Rao-Wu bootstrap. The estimates of the 

smooth design variances were then obtained by using       15
1 11, log , log 1 , log .T

i i i iz z N  x  A 

graph of the residuals of the smoothing model,  ˆ ˆlog ,i i  x α  versus the predicted values, ˆ ,ix α  did not 

reveal any obvious model misspecification. Figure 6.1 shows a graph of direct variances estimates, ˆ ,i  

versus smooth variance estimates, ˆ .i  The red line is the identity line. If the smoothing model is 

appropriate, for any value of ˆ ,i  the average of direct variance estimates for areas around area i  should be 

roughly equal to ˆ .i  This means that the red line should pass roughly through the middle of the points 

everywhere. From a quick inspection of Figure 6.1, we observe that the red line is close to the middle of the 

points although probably slightly above the middle due to some extreme values of ˆ .i  This may result in a 

slight overestimation of the true smooth variance  ˆ .i mp iE   A slight overestimation is not a major 

issue. What has to be avoided is an underestimation of ,i  as it typically leads to underestimating the MSE 

of the SAE estimate. This would provide the user with a false impression of precision. 

Overall, we were satisfied with our smoothed variance estimates. However, for areas with large sample 

sizes, we set ˆ ˆi i   as our estimate of .i  We assumed that direct variance estimates were stable enough 

when the sample size is large. As a rule of thumb, we set ˆ ˆi i   when the number of sampled persons in 

the labour force was greater than 400. This replacement occurred for 35 areas. The strategy was used to 

avoid possible small model biases in ˆ
i  for the largest areas, which could result in EBLUP estimates that 

become significantly different from the direct estimates. This is not a desirable property for areas with a 

large sample size.  

The smooth variance estimates were then used to obtain small area estimates for the 149 areas of interest. 

Figure 6.2 shows a graph of small area and direct estimates as a function of sample size (number of sampled 

persons in the labour force). The small area estimates are much less volatile than direct estimates, especially 

for the areas with the smallest sample sizes. For the largest areas, as expected, both estimates are similar. 

We first evaluated the quality of the underlying Fay-Herriot model before looking at the MSE estimates. 

Figure 6.3 shows the graph of direct estimates, ˆ ,i  versus predicted values, ˆ .T
iz β  The red line is the identity 

line and the blue line is a nonparametric smoothing spline curve. If the linearity assumption holds, the blue 

line should be close to the red line and the latter should pass roughly through the middle of the points 

everywhere. Figure 6.3 does not give any indication that the linearity assumption of the Fay-Herriot model 

is questionable.  
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Figure 6.1  Graph of direct variance estimates, ˆ ,i  versus smooth variance estimates, ˆ .i  

 

 
 

 

 

 

 

 

 

 

 

Figure 6.2  Graph of small area estimates and direct estimates as a function of sample size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3  Graph of direct estimates versus model predicted values. 
 

 
Composite estimate (131 areas) 
Synthetic estimate (0 areas) 

REML Method 
Plot of direct variance vs. GVF smoothed variance 

Parameter definition: unemployment rate 

 
      0                                  10                                20                                 30                                40                                 50                                60 

GVF smoothed variance 

D
ire

ct
 v

a
ria

n
ce

 
 

300 
 
 
 
 
 
 

200 
 
 
 
 
 
 

100 
 
 
 
 
 
 

0 

Composite estimate (131 areas) 
Synthetic estimate (18 areas) 
Direct estimate (143 areas) 

REML Method 
Plot of direct estimate and SAE estimate by sample size for each area 

Parameter definition: unemployment rate 

 
        0            10           24          36           48          58           80          103         128         151        202         296         542        853       1,239 

Sample size 

D
ire

ct
 e

st
im

a
te

 o
f S

A
E

 e
st

im
a

te
 

40

30 

20 

10

0

 
 Number of areas               131 
 R-squared value              0.63 

REML Method 
Plot of direct estimate vs. model predicted value 

Parameter definition: unemployment rate 

 
      5                              6                              7                              8                              9                             10                           11                            12 

Model predicted value 

D
ire

ct
 e

st
im

a
te

 

30 
 
 
 
 
 
 

20 
 
 
 
 
 
 

10 
 
 
 
 
 
 

0 



Survey Methodology, 2019 (special issue) 117 
 

 
Statistics Canada, Catalogue No. 12-001-X 

It is also informative to compute a measure that indicates the strength of iz  for the prediction of .i  To 

this end, we developed and implemented a coefficient of determination, or 2R  value, associated with the 

linking model .T
i i i ib v  z β  Note that the coefficient of determination associated with the combined 

model, ˆ ,T
i i i i ib v e   z β  is not of interest as the objective is not the prediction of î  but the prediction 

of .i  Our coefficient of determination is given by 

  
 

 

2
2

2 2

ˆ
1 ,

ˆˆ
1

v

v

R
m q

S
m




 





β

  

where q  is the dimension of iz  and  2 ˆS β  is the sample variance of ˆT
i ibz β  (see equation (A.6) for the 

exact definition of the function 2 ( )).S   The details of the derivation of the above coefficient of 

determination are provided in the Appendix. Figure 6.3 indicates that the 2R  value is 0.63. The linking 

model is thus neither weak nor extremely strong but, hopefully, strong enough to achieve efficiency gains 

over the direct estimator. The system also produces estimates of the parameters of the Fay-Herriot model 

along with their standard errors. From this output, we found out that estimates of both the intercept and 

slope parameters of the Fay-Herriot model were significantly different from 0 using a standard Wald test at 

the 0.05 significance level. 

Figure 6.4 shows a graph of standardized residuals,   2 2ˆ ˆ ˆˆ ,T
i i i v ib   z β   versus standardized 

predicted values, 2 2ˆ ˆˆ .T
i i v ib  z β   The red line is a horizontal line at zero and the blue line is a 

nonparametric smoothing spline curve. Similarly to Figure 6.3, the blue line should be close to the red line 

under linearity and the latter should pass roughly through the middle of the points everywhere. Again, 

Figure 6.4 does not indicate any obvious failure of the linearity assumption underlying the Fay-Herriot 

model.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4  Graph of standardized residuals versus standardized predicted values. 

 

 
  
 Number of areas       131 

REML Method 
Plot of model standardized residual vs. model standardized predicted value 

Parameter definition: unemployment rate 

          0                          1                          2                         3                          4                          5                          6                          7                          8    
Model standardized predicted value 

M
o

d
e

l s
ta

n
da

rd
iz

e
d

 r
es

id
u

a
l 

8

7

6

5

4

3

2

1

0

-1

-2

-3



118 Hidiroglou et al.: Development of a small area estimation system at Statistics Canada 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Figure 6.5 shows a graph of squared standardized residuals versus standardized predicted values. The 

red line is a horizontal line at one and the blue line is again a nonparametric smoothing spline curve. This 

graph is used to check the homoscedasticity assumption; i.e., the assumption that the model variance 2
v  is 

constant. Under homoscedasticity, the blue line should be close to the red line everywhere. The graph does 

not reveal any obvious presence of heteroscedasticity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5  Graph of square standardized residuals versus standardized predicted values. 

 
Figure 6.6 shows a QQ-plot of standardized residual quantiles versus standard normal quantiles. It is 

used to verify the normality assumption of the errors i ib v  and .ie  The graph does indicate a modest 

departure from normality. However, Rao and Molina (2015, page 138) argued that EBLUP estimates and 

their corresponding MSE estimates are generally robust to deviations from normality. 

The system also computes Cook’s distances to identify areas that could have a significant influence on 

the estimate ˆ .β  The Cook distance for area i  is given by 
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where  ˆ iβ  is the estimate of β  obtained after deleting area .i  A plot of the influences iD  is provided in 

Figure 6.7. One area seems to have a relatively large influence compared with other areas  1.2851 .iD   

This area has the largest standardized predicted value and the second largest predicted value. Its standardized 

residual is -1.88, which is not extreme, although not very small either. Its sample size is large (number of 

sampled persons in the labour force close to 500) and its smooth variance estimate, ˆ ,i  is relatively small 

compared with other areas. All these reasons explain why this area was detected as being influential. In this 

application, we decided to keep this area in the model as its influence was not large enough to make a big 

difference in the SAE estimates and their corresponding MSE estimates. 
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Figure 6.6  QQ-plot of standardized residual quantiles versus standard normal quantiles. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7  Plot of Cook’s distances. 

 
Since the Fay-Herriot model and smoothing model were both reasonable, we computed MSE estimates 

to evaluate the magnitude of the efficiency gains, if any, obtained by using the Fay-Herriot model. Figure 6.8 

shows the estimated direct Coefficient of Variation (CV), defined as ˆˆ ,i i   and the estimated SAE 

Relative Root Mean Square Error (RRMSE), defined as SAEˆ ˆ ,i i   where î  is an estimate of the MSE, 

  2
SAEˆ ,mp i iE    and SAE

î  is the small area estimate (EBLUP or synthetic estimate) of .i  The sample 

size (number of sampled persons in the labour force) is given on the horizontal axis. The estimated direct 

CVs are in general much larger than the estimated SAE RRMSEs, especially for the areas with the smallest 

sample sizes. The estimated SAE RRMSEs are never above 20% whereas the estimated direct CV is over 
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300% for one area. The estimated SAE RRMSEs are also very stable as a function of the sample size unlike 

the erratic behavior of the estimated direct CVs. For the areas with the largest sample sizes, both estimates 

are very similar, as expected. This indicates that SAE methods can lead to a substantial increase of precision 

over direct estimation methods, particularly for the smallest areas. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8  Graph of estimated direct CVs and SAE RRMSEs as a function of sample size. 

 
For the month of May 2016, we had the luxury of having a very reliable source for the estimation of the 

unemployment rates: the 2016 long form Census administered to roughly one-fourth of the households 

throughout Canada. The Census sample size is much larger than the LFS sample size in all the areas of 

interest. Therefore, we used the 2016 Census direct estimates, denoted by Censusˆ ,i  as a gold standard for 

evaluating the accuracy of both the LFS direct estimates and SAE estimates. We computed Absolute 

Relative Differences (ARD) between LFS direct estimates and Census estimates, Census Censusˆ ˆ ˆ ,i i i    

as well as ARDs between SAE estimates and Census estimates, SAE Census Censusˆ ˆ ˆ .i i i    These ARDs 

were then averaged within 5 different homogeneous subgroups with respect to sample size. Table 6.1 

summarizes the results.  

 
Table 6.1 
Average ARD of SAE estimates and LFS direct estimates expressed in percentage 
 

Sample size Average ARD between LFS 
direct estimates and Census 

estimates 

Average ARD between 
SAE estimates and Census 

estimates 

Average ARD between HB 
estimates and Census 

estimates 
28 smallest areas 70.4% 17.7% 18.3% 
Next 28 smallest areas 38.7% 18.9% 19.0% 
Next 28 smallest areas 26.2% 13.8% 14.1% 
Next 28 smallest areas 20.9% 12.7% 13.0% 
28 largest areas 13.2% 10.2% 10.3% 
Overall 33.9% 14.7% 14.9% 
Note: Out of the 149 areas of interest in the LFS, 9 were excluded from this table: six where the LFS number of sampled persons in the labour 

force was 0 and three that were no longer in the list of CMAs /CAs after the 2016 Census. 
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As expected, the ARD between the LFS and Census direct estimates decreases as the sample size 

increases. This may suggest that the conceptual differences between these two surveys and nonsampling 

errors are reasonably small compared with the sampling error, especially for the smallest areas where the 

sampling error may be the main contributor to the ARD. The SAE estimates are much closer to the Census 

estimates than the LFS direct estimates, particularly for the smallest areas where improvement is most 

needed. This confirms that our underlying models are reasonable in this application. 

For comparison purposes, we also computed HB estimates, HBˆ ,i  based on the matched Fay-Herriot 

model with the noninformative priors for ,β 2
v  and i  provided in Section 5. We then computed ARDs 

between HB estimates and Census estimates, HB Census Censusˆ ˆ ˆ .i i i    Results are given in the last column 

of Table 6.1. The averaged ARDs of the HB estimates are close to those of the EBLUP estimates. 

 
7  Conclusion 
 

A frequent demand from users of data from NSOs is for more granularity for use in planning and policy 

research purposes. NSOs can no longer simply increase the sample sizes of their surveys to obtain reliable 

estimates at the requested level of detail. Reasons for this include the high costs of doing so, response burden 

concerns, as well as the difficult task of obtaining responses from sampled units. An alternative being 

investigated by many NSOs is the use of small area estimation techniques that provide a way to address the 

demand for more granular data. With this in mind, Statistics Canada began the development of an SAE 

production system in the early 2000s and now have such a system available to their statistical programs. 

The production system handles area and unit level models, with multiple options such as different methods 

to estimate the variance components, different linking models and both the EBLUP and HB estimation 

methods. It is currently being used to produce experimental estimates for several Statistics Canada statistical 

programs and it is expected that the first published small area estimates will be available in 2019. 

As it was mentioned in the introduction, the only existing software in 2006 that would produce small 

area estimates and their associated mean squared estimates was sponsored by the EURAREA (2004) project. 

The current production system developed at Statistics Canada is written in SAS, with its methodology 

closely following Rao (2003) and includes some recent advances. As it stands, it satisfies the existing 

requirements for small area estimation at Statistics Canada. However, as the use of small area estimation 

becomes more common within Statistics Canada, there will be a need to add functionality to the system to 

meet this demand. The recent book authored by Rao and Molina (2015) provides an idea of how much 

development has taken place in small area estimation during recent years. The incorporation of all this 

development into the production system would be extremely time consuming, expensive, and may not be 

directly applicable to the needs of Statistics Canada. It, therefore, follows that options other than 

programming these new functionalities in the current SAS production system should be considered. One 

option would be to investigate how packages developed elsewhere, such as those written in ,R  can be 

integrated into it. Notable packages written in R include sae (Molina and Marhuenda, 2015), mme 
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(Lopez-Vizcaino, Lombardia and Morales, 2014), saery (Esteban, Morales and Perez, 2014) and sae2 (Fay 

and Diallo, 2015). These packages include small area procedures that are not in the present system such as 

multinomial linear mixed models, area level models with time effects and time series area level models 

supporting univariate and multivariate applications. The existing SAS production system meets the needs 

of Statistics Canada at this point in time, and there are no concrete plans to add functionality to it. 
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Appendix 
 
Justification of the coefficient of determination 
 

In order to determine a coefficient of determination associated with the linking model, ,T
i i i ib v  z β  

we first rewrite it as  

 ,T
i i iv  z β    

where i i ib   and .i i ibz z  We assume that an intercept is implicitly or explicitly included in ;iz  

i.e., there exists a vector λ  such that 1.T
i λ z  In other words, we assume that there exists a vector λ  such 

that .T
i ib  λ z  If ,i 1, , ,i m   were known, we could estimate the unknown vector of model 

parameters β  by the least squares estimator 
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The well-known adjusted coefficient of determination is  
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where 1
1

.
m

ii
m 


    It is an ideal coefficient of determination because it cannot be computed (since i  

is unknown) but this is the target we would like to estimate. Simply replacing i  with î  does not solve 

the problem as î  reflects the combined model and not just the linking model. The resulting coefficient of 
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determination would typically be too small. To obtain a better estimate of 2
ideal ,R  we first decompose 
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Assuming that an intercept is implicitly or explicitly included in iz  and from the expression for *
ˆ ,β  we 

have that  
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From (A.4), we can rewrite   as *
ˆ ,T  z β   where 1

1
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 z z   As a result, the cross product term 

in (A.2) vanishes and equation (A.2) reduces to 
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From (A.5), it follows that the ideal coefficient of determination (A.1) can be rewritten as 
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The only unknown quantities in (A.7) are *β̂  and 2
*ˆ .v  A computable coefficient of determination can 

thus be obtained by replacing *β̂  and 2
*ˆ v  in (A.7) with β̂  and 2ˆ ,v  the consistent estimators of β  and 2

v  

implemented in the SAE system and described in Section 3. The resulting coefficient of determination can 

be expressed as  2 2ˆ ˆ, ,vR f  β  with the function  ,f    defined in (A.7), and is a consistent estimator 

of the ideal coefficient of determination 2
ideal .R  
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